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0. Introduction

There are various notions of “boundaries at infinity” of metric spaces in the literature.
Perhaps the best known is the ideal boundary ∂IX defined using geodesic rays, and
particularly studied for the classes of CAT(0) and proper geodesic Gromov hyperbolic
spaces. Closely related to this is the concept of a Gromov boundary ∂GX defined using
Gromov sequences (or “sequences converging to infinity”). For more on both of these
concepts, see for instance [BH], [GH], [CDP], [BHK], and [V]. The Gromov boundary is
usually defined only for Gromov hyperbolic spaces but we extend this concept to arbitrary
metric spaces.

A third type of boundary at infinity is the g-boundary ∂gX of an unbounded length
space which replaces an unbounded metric l by a bounded metric σ obtained via a con-
formal distortion involving a suitable function g. The spherical and Floyd boundaries are
both just the g-boundary, but with g restricted to lie in certain nice classes of functions;
many results involving these concepts are independent of the choice of g. The spherical
boundary arises as a byproduct of sphericalization, a concept introduced in [BB2] in or-
der to interpret results in [BB1] concerning the quasihyperbolizations of bounded length
spaces in the context of unbounded spaces. The Floyd boundary has been studied for
hyperbolic groups; see, for instance, [F], [CT], [T], [M], [K1], and [K2]. Both are special
cases of the µ-boundary discussed in [G, Section 7.2] and [CDP, Chapter 11]. See also [H]
for a study of uniformizing conformal distortions of hyperbolic spaces.

The current paper aims to shed more light on ∂gX by comparing and contrasting it
with the ideal and Gromov boundaries. Understanding the spherical boundary is vital
for deciding when sphericalization is an invertible process (see [BB2, Section 4]), but no
detailed study of it was carried out there or elsewhere. Some results in this direction
can be found in the literature (as we discuss in Section 2), but here we prove comparison
results for larger classes of spaces X and functions g.

In Section 1, we define the above boundaries at infinity, along with their associated
topologies. In Section 2, we state and prove the main comparison theorems. Finally,
in Section 3, we give various examples to show that all assumptions in the comparison
theorems are essential.
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1. Notation and Preliminaries

We write a∨ b and a∧ b for the maximum and minimum, respectively, of two numbers
a, b.

1.1. Metric spaces and paths.

Let (X, d) be a metric space which may have additional properties as specified. We
denote by Bd(x, r), Bd(x, r), and Sd(x, r), the open ball, closed ball, and sphere of radius
r about x ∈ X. If r ≤ 0, Bd(x, r) is the empty set. A metric space is proper if all its closed
balls are compact.

We denote by Xd the metric closure of (X, d) and, viewing X as a subset of Xd, we
write ∂Xd = Xd \ X. If γ is a path in Xd, lend(γ) denotes the d-length of γ. Given
x, y ∈ Xd, we denote by Γd(x, y; X), or simply Γd(x, y), the class of rectifiable paths
λ : [0, T ] → Xd parametrized by d-arclength for which γ|(0,T ) is a path in X, λ(0) = x,
and λ(T ) = y. An arc in X is an injective path γ : I → X. We do not distinguish
notationally between paths and their images. If γ is an arc in X, and u, v ∈ γ, γ[u, v] is
the subarc of γ with endpoints u, v.

If Y is a rectifiably connected subset of a metric space (X, d), then the intrinsic metric
in Y is defined by the rule that the distance between x, y ∈ Y is the infimum of the
d-lengths of paths in Γd(x, y; Y ). A rectifiably connected metric space (X, d) is a length
space, and d is a length metric, if the intrinsic metric on X equals d, while it is a geodesic
space if, for all x, y ∈ X, there exists a path γ ∈ Γd(x, y) of length d(x, y).

For a length space (X, l) and a function f : X → (0,∞), we define the conformal
distortion l′ of l by

l′(x, y) = inf
γ∈Γl(x,y)

∫

γ

f(z) dl(z), x, y ∈ X,

More briefly, we sometimes write dl′ = f dl or dl′(z) = f(z) dl(z).

Given α ≥ 1, h ≥ 0, an (α, h)-quasi-isometry f between metric spaces (X, d) and
(X ′, d′) is one satisfying the condition

α−1d(u, v) − h ≤ d′(f(u), f(v)) ≤ αd(u, v) + h, u, v ∈ X.

If α = 1, we say that f is a h-rough isometry; if α = 1 and h = 0, we say that f is an
isometry. We suppress the quasi-isometry parameters α, h whenever their exact values
are irrelevant. Quasigeodesics, rough geodesics, and geodesics are quasi-isometric, rough
isometric, and isometric images, respectively, of an interval I ⊂ R; we append segment,
ray, or line to these terms if I is of the form [a, b], [a,∞), or (−∞,∞), respectively, for
some a, b ∈ R, a < b. We also use the notation [x, y], x, y ∈ X, to denote any geodesic
segment from x to y if the metric is understood. Following Väisälä [V], we define a h-short
arc to be an injective h-rough geodesic segment.

It is convenient to have two notations for sequences in metric spaces: we write x = (xi).

We index sequences of sequences as follows: xj = (xj
i )

∞
i=1, j ∈ N.
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1.2. CAT(0) and Gromov hyperbolic spaces.

Let us briefly recall some basic concepts and results concerning CAT(0) and Gromov
hyperbolic spaces. For more on CAT(0) spaces, see [BH], and for more on hyperbolic
spaces, see [CDP], [GH], and [V]. Below, (X, d) is a metric space.

A h-short triangle T ⊂ X with vertices x, y, z is the union of three h-short arcs with
endpoints x, y, z; we call these arcs the sides of T . In particular, a geodesic triangle is a
0-short triangle.

A triangle map is a function f : T → R2 from a geodesic triangle T onto a Euclidean
triangle T ′ ⊂ R2 whose sides are of the same length as those of T , and such that the
restriction of f to any one side is an isometry. Note that triangle maps always exist, and
are unique up to an isometry of R2. A CAT(0) space is a geodesic space (X, d) such that,
d(u, v) ≤ |f(u) − f(v)| for all u, v ∈ T whenever f : T → R2 is a triangle map for the
geodesic triangle T ⊂ X.

The Gromov product with basepoint p ∈ X is defined by

〈x, y〉p = (d(x, p) + d(p, y)− d(x, y))/2, x, y ∈ X.

We write 〈x, y〉p;d if the metric needs to be specified. The metric space (X, d) is (Gromov)
δ-hyperbolic, δ ≥ 0, if

〈x, z〉p ≥ 〈x, y〉p ∧ 〈y, z〉p − δ, x, y, z, p ∈ X. (1.3)

This definition makes it clear that if a space X is hyperbolic, then so are all spaces that are
roughly isometric to X. A useful estimate [V, 2.33] says that if x, y lie in a δ-hyperbolic
space (X, d), and γ ∈ Γd(x, y) is h-short, then

distd(p, γ)− 2δ − h ≤ 〈x, y〉p ≤ distd(p, γ) + h/2. (1.4)

Indeed only the lower bound requires hyperbolicity.

We say that (X, d) has δ-thin triangles, δ ≥ 0, if the distance from a point on a side of
a geodesic triangle to the union of the other two sides is never more than δ. If a geodesic
space (X, d) is δ-hyperbolic, then it has 3δ-thin triangles, and if it has δ-thin triangles, it
is 3δ-hyperbolic; this follows from the h = 0 variants of 2.34 and 2.35 in [V]. Since every
δ-hyperbolic space can be imbedded in a geodesic δ-hyperbolic space [BS], it follows that
even nongeodesic δ-hyperbolic spaces have 3δ-thin triangles. However the thin triangles
condition may then be much weaker than hyperbolicity due to a lack of geodesic segments.

A tripod τ ⊂ R2 is the union of line segments from a single common endpoint p to
three distinct endpoints a, b, c; we equip τ with its intrinsic metric l. A h-tripod map φ
takes a h-short triangle T ⊂ X to a tripod τ , in such a way that its restriction to any
one side is a h-rough isometry. It is readily verified that if T is a h-short triangle with
vertices x, y, z, then there exists a h-tripod map φ from T to a tripod with segments of
length 〈x, y〉z, 〈x, z〉y, and 〈y, z〉x. Furthermore, if (X, d) is δ-hyperbolic, then we can

(and always do) choose φ : (T, d) → (τ, l) to be a (4δ + 4h)-rough isometry; see 2.15 and
2.24 of [V].
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1.5. Ideal and Gromov boundaries.

Given a geodesic space (X, d), let GRd(X) be the class of geodesic rays in X
parametrized by d-arclength, and let GRd(X, w) be the class of all rays in GRd(X)
with initial point w; we omit the d subscript if the metric is understood. The rays
γ, ν ∈ GR(X) are equivalent, γ ∼ ν, if dH(γ, ν) < ∞, where dH is the Hausdorff distance
associated with d, that is

dH(γ, ν) = sup
x∈γ

distd(x, ν) ∨ sup
x∈ν

distd(x, γ).

It is clear that γ ∼ ν if and only if supt≥0 d(γ(t)), ν(t)) < ∞. We write [γ]X , or simply
[γ], for the equivalence class of γ ∈ GR(X), and define the ideal boundary ∂IX to be
GR(X)/ ∼. We also write XI = X ∪ ∂IX.

If (X, d) is a complete CAT(0) space, we attach the cone topology τC to XI . This
topology is defined using a basepoint o ∈ X, but is independent of the choice of o. For a
detailed definition, see [BH, II.8.5], but we briefly define the concept here. First, in any
complete CAT(0) space, there is a unique geodesic γx from o to x ∈ XI parametrized by
d-arclength. This is rather obvious for x ∈ X, and is proven in [BH, II.8.2] for x ∈ ∂IX; in
this latter case, we mean that γx ∈ GR(X, o) and [γx] = x. Let Xr := ∂IX∪(X\Bd(o, r)),
let pr : Xr → Sd(o, r) be the “projection” defined by pr(x) = γx(r), and let the set
U(a, r, s), r, s > 0, consist of all x ∈ Xr such that d(pr(x), pr(a)) < s. Then τC is the
topology on XI which coincides with the d-topology on X, and has as a local base at
a ∈ ∂IX the sets U(a, r, s), r, s > 0. It is easily verified that τC is Hausdorff and, since it
can be defined as an inverse limit topology, τC is compact whenever X is proper.

Let (X, d, o) be a pointed metric space, and let 〈·, ·〉 ≡ 〈·, ·〉o denote the Gromov
product with respect to the basepoint o. A sequence x = (xi) in X is a Gromov sequence
if 〈xi, xj〉 → ∞ as i, j → ∞. We define a binary relation E on the set of Gromov sequences
as follows:

x E y ⇐⇒ lim inf
i,j→∞

〈xi, yj〉 = ∞.

We say that the sequences x and y are equivalent, x ∼ y, if there is a finite chain of
sequences xk, 0 ≤ k ≤ k0, such that

x = x0, y = xk0 , and xk−1 E xk, 1 ≤ k ≤ k0.

This is easily seen to be an equivalence relation. The Gromov boundary ∂GX is the set
of all equivalence classes [x] of Gromov sequences x, and we write XG = X ∪ ∂GX. We
shall use without comment the fact that every Gromov sequence is equivalent to each of
its subsequences.

Our definition of ∂GX is nonstandard in two ways: ∂GX is usually defined only for
hyperbolic spaces, and in that setting it is customary to say that x and y are equivalent
if limi→∞ 〈xi, yi〉 = ∞. In the hyperbolic setting, such a definition is equivalent to our
definition according to 5.3 and 5.6 of [V], but in a nonhyperbolic setting the definitions
differ. The reason we use a lim inf over i, j rather than a limit over i = j, is so that we
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can associate a geodesic ray with a Gromov sequence in our more general setting. Also
note that, although E and ∼ are the same equivalence relation in the hyperbolic setting
(as is clear from (1.3)), E is not necessarily an equivalence relation in a nonhyperbolic
space. For instance, if v is any unit vector in the Euclidean plane, and we take xj = jv
and yj = −jv for all j ∈ N, then 〈xi, yj〉 = 0 for all i, j, but nevertheless x ∼ y since
x E z and z E y for (zj) = (jw), where w is a unit vector perpendicular to v.

In a proper geodesic hyperbolic space, it is well known that ∂GX and ∂IX can be
identified as sets; see, for instance, [BH, III.H.3.13].

We extend the Gromov product with basepoint o to XG × XG via the equations

〈a, b〉 = inf {lim inf
i,j→∞

〈xi, yj〉 : [x] = a, [y] = b}, a, b ∈ ∂GX,

〈a, b〉 = inf {lim inf
i→∞

〈xi, b〉 : [x] = a}, a ∈ ∂GX, b ∈ X.

Whenever ∂GX is nonempty, we equip it with the pseudometric dε for some ε > 0. Here,
the functions ρε, dε : ∂GX × ∂GX → [0,∞) are defined by the equations

ρε(a, b) = exp(−ε 〈a, b〉), a, b ∈ ∂GX,

dε(a, b) = inf
n

∑

j=1

ρε(aj−1, aj), a, b ∈ ∂GX,

where the infimum is taken over all finite sequences a = a0, . . . , ab = b, in ∂GX. Clearly,
dε is a pseudometric. If X is δ-hyperbolic and εδ ≤ 1/5, then it follows from 5.13 and 5.16
of [V] that dε is actually a metric and

ρε(a, b)/2 ≤ dε(a, b) ≤ ρε(a, b), a, b ∈ ∂GX.

It is useful to define a Gromov product on the ideal boundary also. Let

〈a, b〉 = inf {lim inf
s,t→∞

〈γa(s), γb(t)〉}, a, b ∈ ∂IX,

where the infimum is taken over all γa ∈ a, γb ∈ b.

1.6. Spherical and Floyd boundaries.

The g-boundary ∂gX of a pointed unbounded length space (X, l, o) is ∂Xσ \ ∂Xl,
where dσ(z) = g(|z|) dl(z), g : [0,∞) → (0,∞) is a measurable function, and |x| = l(x, o).
We sometimes denote the metric σ by the more descriptive notation S(l, o, g), and write
G(t) :=

∫ ∞

t
g(s) ds, t ≥ 0. For the rest of this paper, (X, l, o), S(l, o, g), σ, g, G, and |x|

are as defined here.

Not all measurable functions g : [0,∞) → (0,∞) are of interest to us. We now define
the classes of such functions that do interest us. These classes involve the following
conditions in which C > 2 is some parameter.

(F1) g(t) ≤ Cg(s), whenever s, t ≥ 0 and s − 1 ≤ t ≤ 2s + 1.

(S1) g(t) ≤ Cg(s), whenever s, t ≥ 0 and (s − 1)/2 ≤ t ≤ 2s + 1.

(F2) G(0) ≤ Cg(0).

(S2) G(t) ≤ C(1 + t)g(t), t ≥ 0.
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We say that g is a weak C-Floyd function if it satisfies (F1) and (F2), a Floyd function
if it satisfies (S1) and (F2), and a C-sphericalizing function if it satisfies (S1) and (S2).
Lastly, we say that g is C-quasidecreasing if g(t) ≤ Cg(s) for all 0 ≤ s ≤ t.

It is shown in [BB2] that if g is a C-sphericalizing function, there exist C ′, ε > 0,
dependent only on C, such that

(S3)
g(t)

g(s)
≤ C ′

(s

t

)1+ε

, 1 ≤ s ≤ t.

Thus sphericalizing functions are always quasidecreasing. However it is not hard to con-
struct examples of Floyd functions that fail to be quasidecreasing.

As (S1) and (S3) indicate, sphericalization functions decay at some faster-than-linear
polynomial rate. The prototypical sphericalization function is g(t) ≡ 2/(1 + t2), asso-
ciated with the process of obtaining the Riemann sphere from Euclidean space. Floyd
functions can decay more slowly (but not any faster) than sphericalization functions:
g(t) ≡ 1/t log2(2 + t) is a Floyd function, but not a sphericalization function. There is
no limit on how fast a weak Floyd function can decay. For instance, g(t) ≡ exp(−εt) is a
(quasidecreasing) weak Floyd function for all ε > 0.

It is easy to see that a C-Floyd function g satisfies the following properties:

(F3) (1 + t)g(t) ≤ CG(t), for all t ≥ 0.
(F4) limt→∞ tg(t) = 0.

(F5)
g(t)

g(0)
≤ C2/(1 + t), t ≥ 0.

(F6) G(t) ≤ (Cg + 1)G(t + 1), t ≥ 0.

In fact, (S1) readily implies (F3), which in turn implies (F4) because of Lebesgue’s mono-
tone convergence theorem. Also (F2) and (F3) immediately give (F5). It follows that G(t)
and (1+t)g(t) are mutually comparable if g is a sphericalization function. Finally (F6) fol-
lows immediately from the estimate G(t)−G(t+1) ≤ Cg(G(t+1)−G(t+2)) ≤ CgG(t+1).

Of these four properties only (F3) fails for weak Floyd functions, although we have
to work a little harder to verify (F4). Suppose for the sake of contradiction that g is
a C-weak Floyd function and lim supt→∞ tg(t) > ε > 0. We write t0 := 0 and choose
positive numbers tn, n ∈ N, with tng(tn) > ε and tn ≥ 2tn−1 for all n ∈ N. Using the
quasidecreasing property, we see that

G(tn−1) − G(tn) ≥

∫ tn

tn/2

g(s) ds ≥
ε(tn/2)

Ctn
=

ε

2C
.

By summing the telescoping series, we get a contradiction to the integrability of g.

Suppose g is a weak Floyd function. It is straightforward to see that σ is a bounded
metric. Furthermore, if γ ∈ Γl(x, y), x ∈ X, y ∈ ∂Xl, then clearly γ is also of finite
σ-length. Thus ∂Xl can be viewed in a natural way as a subset of ∂Xσ. We define the
g-boundary of X, ∂gX to be ∂Xσ \ ∂Xl, and the g-closure of X to be Xσ. We use terms
such as Floyd/spherical boundary when we wish to restrict the class of functions to which
g belongs. A simple example of a spherical boundary is the North Pole of the Riemann
sphere, obtained by sphericalizing Rn, n > 1, using g(t) = 2/(1 + t2).



COMPARING THE FLOYD AND IDEAL BOUNDARIES OF A METRIC SPACE 7

Property (S2) is needed for the comparability of the quasihyperbolic metrics asso-
ciated with (X, l) and (X, σ) investigated in [BB2]. When comparing ∂gX and ∂GX,
however, more general functions g can be handled. Dealing with (quasidecreasing) weak
Floyd functions, where possible, has the advantage of unifying the treatment of the spher-
ical boundary with that of the Floyd boundary (which seems to have been previously
studied only in the context of group theory) and that of the g-boundary for exponential
decay functions in hyperbolic spaces (studied for instance in [G, 7.2.M], [CDP, Proposi-
tion 11.1.9], and [BHK]). Let us also note that the concept of a “Floyd boundary” in the
group theory literature is not fixed. Floyd’s original concept in [F] is roughly what we
call a quasidecreasing Floyd function, while that in [K1] is roughly what we call a weak
Floyd function.

For all general results in this paper, the choice of g is irrelevant as long as it is a
sphericalization function; in fact, most results allow g to belong to a more general class
such as quasidecreasing weak Floyd functions. However, Example 3.10 shows that in
general, different choices of sphericalization functions g can lead to different g-boundaries.

It is useful to define a Gromov product on Floyd boundaries in the obvious way:

〈a, b〉 = inf {lim inf
i,j→∞

〈xi, yj〉}, a, b ∈ ∂gX,

where the infimum is taken over all sequences x and y in X that σ-converge to a and b,
respectively.

2. Main comparison results

The literature contains quite a few equivalent models of the Gromov boundary of a
proper geodesic δ-hyperbolic space based, for instance, on equivalence classes of quasi-
geodesic rays, geodesic rays, or Gromov sequences; see [GH, Section 3.1] and [BH, Section
III.H.3]. Two of these notions lead to what we have called the ideal and Gromov bound-
aries, and they can be identified as sets in this context [BH, Lemma III.H.3.13]. Addi-
tionally, it is known that the Gromov boundary coincides with ∂gX when g(t) = exp(−εt)
and 0 < ε < ε0(δ); see [G, 7.2.M], [CDP, Proposition 11.1.9], or [BHK, Proposition 4.13].

In this section, we give variants of these results for more general weak Floyd func-
tions, such as Theorem 2.1(c), and also results for larger classes of spaces. Along the
way, we prove estimates linking σ-distance and the Gromov product that may have some
independent interest.

There are several reasons to study more general results of this type, the most obvious
being that the assumptions in the earlier results are quite strong, so it is natural to
see what can be proved using much weaker assumptions. But, more importantly, these
generalizations are essential if we wish to use ideal and Gromov boundaries to better
understand spherical boundaries, since functions of the form g(t) = exp(−εt) are not
sphericalization functions and cannot give analogues of the sort of quasihyperbolic metric
comparison results found in [BB2]. Additionally, sphericalization of a given metric l is
designed to help determine whether the associated quasihyperbolic metric kl is hyperbolic
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but, even if kl is a proper geodesic hyperbolic metric, there is no reason to expect l to
have any of these properties.

Standing assumptions for this section: (X, l, o) is an unbounded pointed length
space, g is a weak Floyd function, σ = S(l, o, g), and ∂gX is the associated g-boundary.
We write |x| = l(x, o), and denote by 〈·, ·〉 the Gromov product with respect to the metric l
and basepoint o. We use the other notation introduced in §1.2 and §1.5 without comment.

We will say that there is a natural map from ∂GX to ∂gX, if every Gromov sequence
is also a σ-Cauchy sequence. It is easy to see that if this is the case, the boundary
element of ∂gX defined by a Gromov sequence x is independent of the representative in
the equivalence class [x] ∈ ∂GX; thus we have a well defined map J1 : ∂GX → ∂gX.
The natural map from ∂IX to ∂GX is the one that associates with a geodesic ray γ in
X the Gromov sequence (γ(ti)) where ti → ∞ as i → ∞; this is independent of the
representative γ and the sequence (ti).

Two of our main boundary comparison results are as follows; the assumption εδ ≤ 1/5
is made solely to ensure the comparability of ρε and dε.

Theorem 2.1. Suppose that the numbers δ ≥ 0 and ε > 0 are such that εδ ≤ 1/5.

(a) If ∂GX is nonempty and g is quasidecreasing, then ∂gX is nonempty, and there is
a natural map J1 : ∂GX → ∂gX.

(b) If (X, l) is proper then ∂GX is nonempty, and if the natural map J1 : ∂GX → ∂gX
exists, then it is surjective.

(c) If (X, l) is δ-hyperbolic, ∂GX is nonempty, and g satisfies the decay condition
g(t) exp(ε0t) ≥ K > 0 for sufficiently small ε0 = ε0(δ) > 0, then we have a natural
map J1 : (∂GX, dε) → (∂gX, σ), which is a homeomorphism.

Theorem 2.2. Suppose that the numbers δ ≥ 0 and ε > 0 are such that εδ ≤ 1/5.
Suppose also that (X, l) is geodesic.

(a) If ∂IX is nonempty, then so is ∂GX, and there is a natural map J2 : ∂IX → ∂GX.
(b) If (X, l) is proper, then ∂IX is nonempty and J2 : ∂IX → ∂GX is surjective.
(c) If (X, l) is δ-hyperbolic, and ∂IX is nonempty, then J2 : ∂IX → ∂GX is injective.
(d) If (X, l) is δ-hyperbolic, complete, and CAT(0), and ∂IX is nonempty, then J2 is

a homeomorphism from (∂IX, τC) to its image in (∂GX, dε).

It is easy to see that the decay condition of Theorem 2.1(c) is necessary to ensure that
the natural map J1 is injective. For example, in hyperbolic space of curvature −1 and
dimension n, where the Riemannian mteric in polar coordinates is dt2 + sinh(t)2dθ2 on
(0,∞) × Sn−1, it is easy to see that curves with constant distance to the origin γr : t 7→
(r, ω(t)) have length sinh(r) lenSn−1(ω). Thus if we choose g such that g(r) sinh(r) → 0,
then the g-boundary is a single point.

Note that Floyd functions automatically satisfy the decay condition of Theorem 2.1(c)
for every ε0 > 0, so as an immediate corollary of the above theorems, we get the following
result for proper hyperbolic spaces. The second statement of this corollary was already
known; see, for instance, [BH, section III.H.3.7].
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Corollary 2.3. Suppose that (X, l) is proper and δ-hyperbolic for some δ ≥ 0, that g is
a Floyd function, and that ε > 0 is such that εδ ≤ 1/5. Then J1 : (∂GX, dε) → (∂gX, σ)
is a homeomorphism. If (X, l) is also CAT(0), then J2 : (∂IX, τC) → (∂GX, dε) is also a
homeomorphism.

There is a natural map J3 : ∂IX → ∂gX, defined like J2 by taking sequences along
rays. It is easy to see that this map is well defined. Let us state for the record an analogue
of Theorems 2.1 and 2.2 for the natural map J3.

Theorem 2.4. Suppose (X, l) is geodesic.

(a) If ∂IX is nonempty , then so is ∂gX, and there is a natural map J3 : ∂IX → ∂gX.
(b) If (X, l) is proper, then ∂IX is nonempty and J3 : ∂IX → ∂gX is surjective.
(c) If (X, l) is complete and CAT(0), and ∂IX is nonempty, then J3 : (∂IX, τC) →

(∂gX, σ) is continuous.
(d) If (X, l) is δ-hyperbolic, complete, and CAT(0), ∂IX is nonempty, and g satisfies

the decay condition g(t) exp(ε0t) ≥ K > 0 for sufficiently small ε0 = ε0(δ) > 0,
then J3 is a homeomorphism from (∂IX, τC) to its image in (∂gX, σ).

The proofs of (a) and (b) are similar to the proofs of (a) and (b) of Theorem 2.2. We
also omit the easy proof of part (c). Part (d) follows from Theorems 2.1 and 2.2, since
J3 = J1 ◦ J2 whenever the natural map J1 is well defined, e.g. when g is quasidecreasing
or (X, l) is Gromov hyperbolic.

Note that for proper hyperbolic spaces, the ideal boundary is often identified with the
Gromov boundary via the natural bijection J2, and is then endowed with the metric dε

for sufficiently small ε > 0, rather than the cone metric that we use. In this case, the
ideal and Floyd boundary are homeomorphic without any need to assume that the space
is CAT(0); of course this also follows from Theorems 2.1 and 2.2.

Before proving Theorems 2.1 and 2.2, let us state and prove three auxiliary results
that link σ-distance with the Gromov product.

Lemma 2.5. Suppose that u, v ∈ X, 〈u, v〉 ≥ s ≥ 2, and that g is a Cg-weak Floyd
function.

(a) If g is C-quasidecreasing, we have σ(u, v) < 2CG(s − 1).
(b) If (X, l) is δ-hyperbolic, we have σ(u, v) < C ′G(s − 1), for some constant C ′ =

C ′(δ, Cg).

Proof. Let L := l(u, v) and choose γ ∈ Γl(u, v) with l-length L′, where L′ − L ≤ 1.
Writing η = (|u| + |v| − L′)/2, we see that 1 ≤ 〈u, v〉 − 1 ≤ η ≤ 〈u, v〉, and it follows
from the triangle inequality that η ≤ |u|. We split γ into two parts: γ1 = γ|[0,|u|−η] and

γ2 = γ|[|u|−η,L′]. We have |u| − t ≤ |γ1(t)|, and in the quasidecreasing case (a) it follows

that g(|γ1(t)|) ≤ Cgg(|u| − t). In the other case (b), it follows from (1.4) that there is a
constant K0(δ) such that also |γ1(t)| ≤ |u| − t + K0(δ) and then (F1) implies that there
is a constant C ′ = C ′(δ, Cg) such that g(|γ1(t)|) ≤ C ′g(|u| − t).
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Let K denote either C or C ′ depending on the case. Then

lenσ(γ1) ≤ K

∫ |u|−η

0

g(|u| − t) dt = K

∫ |u|

η

g(t) dt < KG(η).

Since |u| − η = L′ − (|v| − η), a similar argument yields the estimate lenσ(γ2) < KG(η).
Since η ≥ s − 1, we are done. �

Theorem 2.6. Suppose g is a Cg-weak Floyd function, (X, l) is δ-hyperbolic, x, y ∈ X,
and s := 〈x, y〉.

(a) If γ ∈ Γl(x, y) is a h-short arc with respect to l, h ≥ 0, then γ is an (α, βg(0))-
quasigeodesic with respect to σ, where α, β depend only on δ, h and Cg. In par-
ticular, for fixed δ and Cg, and 0 ≤ h ≤ 1, we can take β = β0h, with α and β0

being absolute constants.
(b) There exists c = c(δ, Cg) > 0 such that

σ(x, y) ≥ c(G(s) − G(s + ε)), where ε := l(x, y) ∧ ((1 + s)/2), (2.7)

Thus if g is a Cg-Floyd function, then there exists c′ = c′(δ, Cg) > 0 such that

σ(x, y) ≥ c′g(s)[(1 + s) ∧ l(x, y)]. (2.8)

Proof. The assumptions and conclusions are invariant under multiplication of g by a
constant, so we assume without loss of generality that g(0) = 1. Recall that a δ-hyperbolic
space can be imbedded in a geodesic δ-hyperbolic space according to a result of Bonk and
Schramm [BS]. Thus we can regard (X, l) as a subspace of a geodesic δ-hyperbolic space
(X ′, l′). We write |x|′ = l′(x, o), x ∈ X ′, and define σ′ = S(l′, o, g). Since | · |′ is an
extension of | · |, it follows that lenσ′ is an extension of lenσ. Thus σ′(x, y) ≤ σ(x, y), but
equality may fail since there are typically more paths in X ′ than in X.

To prove that γ is an (α, β)-quasigeodesic, it suffices to prove that lenσ(γ) ≤ ασ(x, y)+
β, since we can apply this to arbitrary subsegments of γ. Suppose first that l(x, y) < 1,
and so lenl(γ) < 1 + h. Since all values g(|z|), z ∈ γ, are mutually comparable, we have
lenσ(γ) ≤ C0g(|x|)(l(x, y) + h), where C0 depends only on Cg and h; in particular, we
can take C0 = C2

g if h ≤ 1. If λ ∈ Γl(x, y) is arbitrary, we similarly have lenσ(λ) ≥

C−1
g g(|x|)l(x, y). Using also (S1), we deduce that γ is an (α, βg(0))-quasigeodesic, where

α = C0Cg and β = C0h.

We next consider the case l(x, y) ≥ 1. We appeal to Proposition 11.1.6 of [CDP],
which says that geodesic segments with respect to l are (C, 0)-quasigeodesics with respect
to σ. This works for every so-called µ-metric σ, and the class of µ-metrics contains all
Floyd metrics. Throughout Chapter 11 of [CDP], it is assumed that the space is proper
and geodesic as well as hyperbolic, but a careful reading of Proposition 11.1.6 and the
results it uses shows that the assumption that the space is proper is not needed here. We
may therefore apply this result to (X ′, l′) to deduce that in the case h = 0, γ must be a
(C, 0)-quasigeodesic with respect to σ′ in X ′, and so also with respect to σ in X.
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The case h > 0 follows from the following phenomenon which is usually referred to
as geodesic stability: all (α, h)-quasigeodesic segments in the δ-hyperbolic space (X ′, l′)
between our given points x, y lie within a bounded distance of each other, with the bound
depending only on α, h, and δ. For a proof, see [V, 3.7]. Let us cut both our given path
γ and some geodesic path λ ∈ Γl(x, y; X ′) into n equal length subpaths, where n is the
least integer not less than l(x, y). By geodesic stability, and the properties of λ and γ, we
see that the union of any one subpath of γ together with the corresponding subpath of λ
is contained in some l-ball of uniformly bounded diameter. Thus by (F1), the σ-lengths
of these subpaths are both comparable to the same multiple of their l-lengths. Since
their l-lengths differ by at most a factor 2h + 1, it follows that their σ-lengths are also
comparable. Summing over subpaths, we get comparability of lenσ(γ) and σ(x, y).

It remains to prove (2.8). Let h ∈ (0, 1]. Suppose γ ∈ Γl(x, y) is a h-short arc, and
z ∈ γ minimizes distance to o. By (1.4), s−1/2 ≤ |z| ≤ s+2δ +1. If lenl(γ) ≤ 1+s, then
it is clear from (F1) that lenσ(γ) >∼ g(s) lenl(γ) >∼ G(s)−G(s+lenl(γ)). If lenl(γ) ≥ 1+s,
then taking a subpath γ′ of γ that includes z and has length (1 + s)/2, we see that

lenσ(γ) ≥ lenσ(γ′) >∼ G(s) − G(2s + 1).

Putting together both cases, we get that lenσ(γ) >∼ G(s) − G(s + ε). Letting h → 0,
and using the fact that γ is an (α, β0h)-quasigeodesic with respect to σ, we deduce (2.7).
Finally (2.8) follows immediately from (2.7) and (S1). �

Remark 2.9. If x, y, z are as in the last paragraph of the proof of Theorem 2.6, then by rou-
tine analysis (as in [BB2, Remark 2.8]), it follows that σ(x, y) ≥ 2G(|z|)−G(|x|)−G(|y|).
Assuming h < 1, we know that G(|z|) ≈ G(s), where s := 〈x, y〉 and the comparability
constants depend only on δ and Cg. Without loss of generality, we assume that |x| ≤ |y|.
Since G(|z|) ≥ G(|x|), it follows that exists c = c(δ, Cg) > 0 such that

σ(x, y) ≥ cG(s) − G(|y|). (2.10)

But G(|y|) → 0 as |y| → ∞, so it follows that σ(x, y) ≥ cG(s)/2 whenever |x| ∨ |y| > R,
and R is some radius dependent only on δ, Cg, and G(s).

Theorem 2.11. Suppose g is a Cg-weak Floyd function and (X, l) is δ-hyperbolic. There
exists C = C(δ, Cg) > 0 such that for all a, b ∈ ∂gX, a 6= b, and s := 〈a, b〉,

C−1G(s) ≤ σ(a, b) ≤ CG(s). (2.12)

If g is actually a Cg-sphericalization function then there exists C ′ = C ′(δ, Cg) such that

lim inf
i,j→∞

〈ui, vj〉 ≤ C(1 + 〈a, b〉) (2.13)

whenever u and v are sequences in X that are σ-convergent to a and b, respectively.
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Proof. By a subsequence argument, we may choose sequences x and y in X that σ-converge
to a and b, respectively, with

s ≤ lim inf
i→∞

〈xi, yi〉 < s + 1.

Let us choose i so that s − 1 ≤ 〈xi, yi〉 < s + 1, with i being so large that |xi| ∧ |yi| >
2s + 2, σ(xi, a) ∨ σ(yi, b) < σ(a, b)/4, and σ(xi, yi) ≥ cG(s)/2; the last inequality is
given by Remark 2.9. Note that the inequality σ(xi, a) ∨ σ(yi, b) < σ(a, b)/4 ensures the
comparability of σ(xi, yi) and σ(a, b), so it suffices to show that σ(xi, yi) and G(s) are
comparable.

Now l(xi, yi) = |xi| + |yi| − 2 〈xi, yi〉 > 2s + 2. If s ≥ 2, then Lemma 2.5, the
estimate σ(xi, yi) ≥ cG(s)/2, and (F6) together ensure the comparability of σ(xi, yi) and
G(s). If instead, s ≤ 2, then according to (F6), G(s) ≈ G(0). Moreover by Theorem 2.6
and (F2), we see that σ(xi, yi) >∼ g(0) >∼ G(0) and, since diaσ(X) <∼ 2G(0), we again get
comparability of σ(xi, yi) and G(s).

Finally if g is a sphericalization function and u and v are arbitrary sequences in X
that are σ-convergent to a and b, then it follows essentially by the above argument that

σ(a, b) ≤ CG(t),

where t = lim infi,j→∞ 〈ui, vj〉. Thus G(s) <∼ G(t) which, since R is a sphericalization
function, is equivalent to the inequality (1+ s)g(s) <∼ (1+ t)g(t). Now by (S3), we deduce
that 1 + t <∼ 1 + s, as required. �

Proof of Theorem 2.1. Using Lemma 2.5(a), we see that every Gromov sequence x in X
is σ-convergent. Since the tail ends of a Gromov sequence exit every ball Bl(o, r), r > 0,
the σ-limit of x cannot be in X l. Thus x is σ-convergent to some z ∈ ∂gX, and ∂gX is
nonempty whenever ∂GX is nonempty. It also follows from Lemma 2.5(a) that equivalent
Gromov sequences σ-converge to the same z ∈ ∂gX. Thus the natural map J1 is simply
the σ-limit of any representative of the equivalence class, and we have proven (a).

We next prove (b). Let (xi) be a sequence of points in X with |xi| ≥ i, and let A(xi)
be a 1-short arc from o to xi, i ∈ N. We also define Pk(xi), for all k, i ∈ N, k ≤ i, to be
the first point of intersection of A(xi) with Sl(o, k). Writing x0

i = xi, we will inductively

define a sequence of nested subsequences. Given a subsequence (xk−1
i )∞i=1 of (xi), where

k is the inductive index, compactness ensures the existence of a subsequence (xk
i )∞i=1 of

(xk−1
i )∞i=1 such that xk

1 = xn for some n ≥ k, and such that all the points Pk(xk
i ), i ∈ N,

lie within an l-distance 1 of each other. Now let y be the diagonal sequence, i.e. yi = xi
i.

Since all the arcs A(xi) are 1-short, it follows that l(xi, Pk(xi)) ≤ |xi| − k + 1, and so if
i ≤ j then

2 〈yi, yj〉 = |yi| + |yj| − l(yi, yj)

≥ |yi| + |yj| − [l(yi, Pi(yi)) + l(Pi(yi), Pi(yj)) + l(Pi(yj), yj)]

≥ |yi| + |yj| − [(|yi| − i + 1) + 1 + (|yj| − i + 1)] = 2i − 3.
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Thus (yi) is a Gromov sequence and ∂GX is nonempty.

Given x ∈ ∂gX, we can find a sequence x in X which is σ-convergent to x. Since
the tail of x must exit every ball Bl(o, r), we can assume without loss of generality that
|xi| > i. Applying the above argument to x, we get a Gromov sequence y which is a
subsequence of x. Clearly J1([y]) = x and so we have proven (b).

Next, we prove (c). That there is a natural map J1 : ∂GX → ∂gX follows as for
(a), using Lemma 2.5(b). As in the proof of Theorem 2.6, we embed (X, l) in a geodesic
δ-hyperbolic space (X ′, l′) and get that σ′(x, y) ≤ σ(x, y), x, y ∈ X, where σ′ = S(l′, o, g).
We can now use the second half of the argument of [BHK, Lemma 4.10]. This is built
on the Gehring-Hayman theorem [BHK, Theorem 5.1], which holds for geodesic spaces;
properness is not necessary. We then have the second inequality of [BHK, Lemma 4.10]:

exp(−ε′ 〈x, y〉)

ε′
≤ Cσε′(x, y), l(x, y) ≥

1

ε′

for ε′ ≤ ε0(δ) sufficiently small, σε′ = S(l′, o, h), and h(t) = exp(−ε′t).

However if g(t) ≥ K exp(−ε0t) it is clear that

σ(x, y) ≥ σ′(x, y) ≥ Kσε0(x, y) ≥ C ′ exp(−ε′0 〈x, y〉), l(x, y) ≥
1

ε0
.

It follows that every σ-Cauchy sequence converging to a point in ∂gX is also a Gromov
sequence. Thus J1 has an inverse map, and must be bijective. It also follows from the
estimate above, that J1 is open. Continuity of J1 follows from Lemma 2.5(b). �

Remark 2.14. There is an alternative proof of part (c) when g is a Floyd function. As
above, we know that there is a natural map J1 : ∂GX → ∂gX. It follows easily from
(2.8) that every σ-Cauchy sequence converging to ∂gX is also a Gromov sequence. Thus
J1 has an inverse and is bijective. Continuity and openness follow immediately from
Theorem 2.11, the fact that G(s) → 0 as s → ∞, and the comparability of dε and ρε.

Proof of Theorem 2.2. Given a geodesic ray γ ∈ GRl(X), we simply define xi = γ(ti),
i ∈ N, where (ti) is any fixed sequence of non-negative numbers with limit infinity. It
follows immediately from the triangle inequality that x is a Gromov sequence, and that
[x] is independent of the choice of sequence (ti). Thus ∂GX is nonempty whenever ∂IX
is nonempty. If γ, ν ∈ GRl(X), with dH(γ, ν) < ∞, then the triangle inequality again
implies easily that any pair of Gromov sequences constructed from γ and ν are equivalent
to each other. Thus we have a natural map J2 from ∂IX to ∂GX, and (a) follows.

The proof of (b) is similar to that of Theorem 2.1(b). Let (xi) be a sequence of points
in X with |xi| ≥ i, let A(xi) = [o, xi] be associated geodesic segments, and let Pk(xi)
be the point of intersection of A(xi) with Sl(o, k). Writing x0

i = xi, we will inductively

define a sequence of nested subsequences. Given a subsequence (xk−1
i )∞i=1 of (xi), where

k ∈ N is the inductive index, compactness ensures the existence of a subsequence (xk
i )∞i=1

of (xk−1
i )∞i=1 such that xk

1 = xn for some n ≥ k, and such that all the points Pk(xk
i ), i ∈ N,

lie within an l-distance 1 of each other and converge to some point zk ∈ Sl(o, k) as i → ∞.
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We also write z0 = o. Now let y be the diagonal sequence, i.e. yi = xi
i, i ∈ N. It follows

that l(Pk−1(xj), Pk(xj)) = 1 whenever k ≤ j, and so if k ≤ i, j, then

l(Pk−1(yi), Pk(yj)) ≤ l(Pk−1(yi), Pk(yi)) + l(Pk(yi), Pk(yj))

= 1 + l(Pk(yi), Pk(yj)) → 1 (i, j → ∞).

Consequently, l(zk−1, zk) = 1, and so if we string together geodesic segments [zk−1, zk],
k ∈ N, we get a geodesic ray γ. Thus ∂IX is nonempty.

As in the proof of Theorem 2.1(b), we see that the sequence y constructed above is
a Gromov sequence and that y ∼ z. Thus J2([γ]) = [y]. If the original sequence x was
already a Gromov sequence, we have constructed a geodesic ray γ such that J2([γ]) = [x].
Part (b) follows immediately.

We next prove (c). Suppose γ, ν ∈ GRl(X) are not equivalent, and let x0 = γ(0),
y0 = ν(0). Let ν′ be the rough geodesic ray emanating from x0 obtained by concatenating
a geodesic segment [x0, y0] with ν. This ray might have a single loop but, by eliminating
this loop if it exists, we get an injective rough geodesic ray λ parametrized by l-arclength.
Note that all initial segments of λ are h-short arcs, where h := 2l(x0, y0). For each r > 0,
we construct a h-short triangle with vertices x0, γ(r), and λ(r), with sides given by initial
segments of γ and λ, together with some geodesic segment from γ(r) to λ(r). Since γ and
ν are nonequivalent, there exists r0 > 0 such that l(γ(r0), λ(r0)) > 4δ + 4h.

Recall that a tripod map φ for a h-short triangle is a (4δ + 4h)-rough isometry. It
follows that if φr is a tripod map for Tr, r > r0, then φr(γ(r0)) 6= φr(λ(r0)), and so

l(γ(r), λ(r)) > 2(r − r0) − 4(δ + h).

Therefore

2 〈γ(r), λ(r)〉 = |γ(r)|+ |λ(r)| − l(γ(r), λ(r))

< (r + |x0|) + (r + |y0|) − 2(r − r0) + 4(δ + h)

= |x0| + |y0| + 2r0 + 4(δ + h),

and so any Gromov sequences associated with γ and ν are nonequivalent. Thus J2 is
injective.

We next prove the continuity part of (d). Suppose a, b ∈ ∂IX, and suppose that b lies
in the basic open neighbourhood U(a, r, s). Let γa, γb be the geodesic rays from o to a, b,
respectively, as defined for the cone topology in §1.2. We associate with these rays the
Gromov sequences (γa(i))∞i=1 and (γb(i))

∞
i=1. For i, j > r,

2 〈γa(i), γb(j)〉 = i + j − l(γa(i), γb(j))

≥ i + j − [l(γa(i), γa(r)) + l(γa(r), γb(r)) + l(γb(r), γb(j))]

= i + j − [i − r + l(γa(r), γb(r)) + j − r] > 2r − s.
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It follows readily from the definition of hyperbolicity (or by appealing to [V, 5.6]) that

lim inf
i,j→∞

〈

a′
i, b′j

〉

> r − s/2 − 2δ, a′ ∈ J2(a), b′ ∈ J2(b),

and so 〈a, b〉 > r−s/2−2δ. Thus 〈a, b〉 > R whenever b ∈ U(a, r, 1) for r = R+2δ +1/2.
In view of the definition of ρε, and the comparability of dε and ρε, it follows that J2 :
(∂IX, τC) → (∂GX, dε) is continuous.

To finish the proof of (d), we must show that J2 is relatively open. Thus for fixed
a ∈ ∂IX, and r, s > 0, we need to show that there exists R > 0 such that b ∈ U(a, r, s)
whenever b ∈ ∂IX satisfies 〈J2(a), J2(b)〉 > R. We claim that this is true whenever
R > (6r + 3s)δ/s.

Because X is a complete CAT(0) space, we can choose γa, γb ∈ GRl(X, o) such that
[γa] = a, [γb] = b; see [BH, II.8.2]. Let xi = γa(i), yi = γb(i) for each non-negative integer
i. We choose k so large that 〈xi, yj〉 > R for all i, j ≥ k. Let λa, λb be the initial segments
of γa, γb, respectively, of length R−3δ. Since 〈xi, yj〉 > R, geodesic segments [xi, yj] must
remain outside the ball Bl(o, R). By the 3δ-thin triangles property applied to the geodesic
triangle with vertices o, xi, yj, we see that if we take t = R−3δ, then λa(t) must be within
a distance 3δ of some point λb(t

′), 0 ≤ t′ ≤ R − 3δ. Since λa, λb are geodesic segments
with the same initial point, it follows that l(λa(t), λb(t)) ≤ 6δ. The CAT(0) property now
implies that l(λa(r), λb(r)) ≤ 6δr/(R−3δ) < s, which finishes the proof of the claim. �

Remark 2.15. It follows from our analysis that if (X, l) is a δ-hyperbolic space and δε <
1/5, then J1 : (∂GX, dε) → (∂gX, σ) is a quasisymmetry. In fact if a, b are distinct points

in ∂GX and t := ε−1 log+(1/dε(a, b)), then σ(J1(a), J1(b)) ≈ G(t). However, since a Floyd
g(t) decays no faster than a power of t for large t (according to (S1)), the same is true of
G(t), and so the map J1 fails to be a power quasisymmetry in the sense of [BS, Section
6] whenever (∂gX, σ) has any accumulation points and g is a Floyd function.

3. Set-theoretic counterexamples

In this section, we show that each part of Theorems 2.1, 2.2, and 2.4 fails if any of
its assumptions about (X, l) are dropped. We take as a standing assumption that g is a
quasidecreasing weak Floyd function; all our examples are independent of the choice of g
in this class.

Let us call the 3-tuple of cardinalities (#(∂IX), #(∂GX), #(∂gX)) the cardinality triple
of X. Our first goal is to show that there are practically no constraints on the possible
values of cardinality triples. In fact we have the following result.

Theorem 3.1. The cardinality triple (a, b, c) of an unbounded pointed length space
(X, l, o) can take on any value subject only to the two constraints given by Theorems 2.1
and 2.2, namely that if a > 0 then b > 0, and if b > 0 then c > 0.

We begin by discussing the constructions used in the examples required to prove this
result. Let us denote by Joino({(Xi, oi) | i ∈ I}), or simply Joino({Xi | i ∈ I}), the
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one-point join of a family of pointed geodesic spaces (Xi, li, oi). This space (X, o) consists
of the quotient of the disjoint union of {Xi | i ∈ I} under the identification of the points
oi. This common origin is denoted o, and we identify Xi as a subset of X in the natural
manner. We attach the natural geodesic metric l to X, i.e. l(x, y) = li(x, y) if x, y ∈ Xi,
while l(x, y) = li(x, o) + lj(o, y) if x ∈ Xi, y ∈ Xj , i 6= j. Clearly the ideal, Gromov, and
g-boundaries of a one-point join are each given as the disjoint unions of the corresponding
boundaries of the constituent spaces.

Most of the examples we consider are what we call bridge spaces (Y, l). Here, we begin
with pointed geodesic spaces (Xi, li, oi), i ∈ I; we call these the base pieces. Then we form
the base space (X, lX) = Joino({Xi | i ∈ I}), and write |x| = lX(x, o), x ∈ X. Next, let
B be the collection of all pairs (u, v) such that |u| = |v| ≥ 1 and u, v lie in different base
pieces. For each (u, v) ∈ B, we have a bridge β[u, v] with metric lu,v which is isometric to
an interval of length h(|u|) ≥ 1, where the bridge function h : [1,∞) → [1,∞) must be
specified. The (continuous) bridge space Y on X (with bridge function h) is now defined
by joining the bridges and the base space using a set of two-point joins indexed by B; more
precisely, Y is the quotient of the disjoint union of X and all bridges β[u, v], under the
identification of the endpoints of β[u, v] with the points u and v, respectively. This induces
a natural length metric l on Y which restricts to the metric lX on X and lu,v on each
bridge β[u, v]. This metric l is defined using paths that can be broken into a finite number
of subpaths each of which is contained in either X or a single bridge; it does not degenerate
because all bridges have length at least 1. We shall also make occasional use of discrete
bridge spaces in which the set B is replaced by its subset B′ = {(u, v) ∈ B : |u| ∈ N}. The
continuous version makes some proofs a little simpler, but the discrete version is just as
useful, with the added property that it is sometimes proper whereas the continuous version
fails to be proper in all interesting cases. Note that in both the discrete and continuous
cases, l(x, o) = lX(x, o) for all x ∈ X, so we may unambiguously write |y| = l(y, o) for all
y ∈ Y . We always use 〈·, ·〉o to denote the Gromov product in Y with respect to l. When
we need the Gromov product in X, we write 〈·, ·〉o,lX

. We identify β[u, v] with its image

in Y and we also use β[u, v] to denote any arc in Γl(u, v; Y ) with image β[u, v].

We are especially interested in bridge spaces with three particular choices of bridge
function h. The short bridge space Y = S(X) corresponds to taking h(t) ≡ 1, the medium
bridge space Y = M(X) corresponds to taking h(t) ≡ t, and the long bridge space Y =
L(X) corresponds to taking h(t) ≡ 2t. We also denote by S ′(X), M ′(X), and L′(X) the
discrete versions of these bridge spaces.

Before stating a result on the various boundaries of the three types of bridge spaces, let
us next define three properties of a pointed geodesic space (Z, l, o) that we shall require for
all of our base pieces, i.e. for (Z, l, o) = (Xi, li, oi), i ∈ I. These properties are clearly true
for all intervals on the real line, and we shall see that short or medium bridge spaces inherit
them from their base pieces. It follows that all our examples satisfy these conditions, since
we always use as base pieces either intervals or short or medium bridge spaces in which
the base pieces are intervals. We say that (Z, l, o) has the geodesic segment property if
there is a geodesic segment from the origin to every x ∈ Z. We say that (Z, l, o) has the
geodesic ray property if for every a ∈ ∂IZ, there exists γ ∈ GR(Z, o) such that [γ] = a,
and we say that (Z, l, o) has the Gromov product property if 〈x, y〉o ≥ l(x, o)/2 whenever
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x, y ∈ Z, |x| ≤ |y|. This last property has some useful consequences. It implies that
the class of Gromov sequences in Z coincides with the class of sequences that tend to
infinity, i.e. sequences (xn) in Z such that |xn| → ∞. It also implies that all such Gromov
sequences are equivalent, and that

l(x, y) ≤ |y|, x, y ∈ Z, |x| ≤ |y|. (3.2)

Lemma 3.3. Suppose (Y, l) is a bridge space on (X, lX) = Joino({(Xi, oi) | i ∈ I}), where
at least two of the base pieces exceeds any given finite diameter, and all base pieces have
the the geodesic segment, geodesic ray, and Gromov product properties.

(a) If Y = S(X) or Y = S′(X), then ∂IY is empty if ∂IX is empty, and ∂IY is a
singleton set if ∂IX is nonempty. Also, ∂GY is a singleton set.

(b) If Y = M(X) or Y = M ′(X), then ∂IY can be identified with ∂IX, while ∂GY is
a singleton set.

(c) If Y = L(X) or Y = L′(X), then ∂IY can be identified with ∂IX, and ∂GY can
be identified with ∂GX.

In all three cases, ∂gX is a singleton set and (Y, l, o) has the geodesic segment and geodesic
ray properties. Also (Y, l, o) has the Gromov product property in cases (a) and (b).

We postpone the proof of Lemma 3.3, and instead give a sequence of examples that we
need to prove Theorem 3.1. The fact that each example has the stated cardinality triple
follows with little difficulty from Lemma 3.3 and the previously mentioned fact that the
ideal, Gromov, and Floyd boundaries of a one-point join are the disjoint unions of the
corresponding boundaries of the constituent spaces.

Example 3.4. Let X = Joino({(Xi, oi) | i ∈ N}), where Xi = [oi, bi] is an interval of
length i. Then X has cardinality triple (0, 0, 0).

Example 3.5. Let V1 = S(X) where X is as in Example 3.4. Then V1 has cardinality
triple (0, 1, 1).

Example 3.6. Let W1 = L(X), where X is as in Example 3.4. Then W1 has cardinality
triple (0, 0, 1).

Example 3.7. For each cardinality c > 0, let Uc = M(Xc), where Xc = Joino({Hi |
i ∈ I}), each space (Hi, li, oi) is isometric to the half-line [0,∞) with origin 0, and I
has cardinality c. We also define U0 to be the space V1 in Example 3.5. Then Uc has
cardinality triple (c, 1, 1), c ≥ 0.

Example 3.8. For each cardinality c > 0, let Vc = L(Xc), where Xc is the one-point join
of a collection of c copies of the set V1 in Example 3.5. We also define V0 to be the space
W1 in Example 3.6. Then Vc has cardinality triple (0, c, 1), for each c ≥ 0.
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Example 3.9. Let Wc be the one-point join of a collection of c copies of W1, where W1

is as in Example 3.6 and c > 0 is some cardinal. We also define W0 to be the space X in
Example 3.4. Then Wc has cardinality triple (0, 0, c), c ≥ 0.

Proof of Theorem 3.1. Putting together Examples 3.7, 3.8, and 3.9, we see that the space
Joino(Uc1

, Vc2
, Wc3

) has cardinality triple (c1, c2 + 1, c3 + 2), where c1, c2, c3 are arbitrary
cardinals. This covers most cases. The missing case a = b = 0 is covered by Example 3.9,
so it remains only to consider the case c = 1. We may assume that b > 0, since otherwise
a = 0 and we can appeal to Example 3.6. If b′ is the cardinal defined by b′ + 1 = b, then
Z = Joino(Ua, Vb′) has cardinality triple (a, b, 2). Finally, A := L(Z) has cardinality triple
(a, b, 1). �

We are now ready to prove that all assumptions about (X, l) in Theorems 2.1, 2.2,
and 2.4 are needed. First note that the nonemptiness assumption is essential where it
occurs, since the space in Example 3.4 is unbounded, geodesic, 0-hyperbolic, CAT(0), and
complete (but not proper), and yet it has cardinality triple (0, 0, 0).

Consider next the proper assumption in parts (b) of these theorems. If X is the one-
point join of a half-line [0,∞) with the space W1 of Example 3.6, then X is a complete
geodesic space and ∂GX is nonempty, but J1 and J are not surjective. If instead X is the
one-point join of a half-line [0,∞) (with o = 0) and the space V1 of Example 3.5, then
X is a complete geodesic space in which ∂IX is nonempty, and moreover X is hyperbolic
(since it is 1-roughly isometric to the real line), but yet J2 and J are not surjective.

We next show that injectivity fails for nonhyperbolic spaces. Let Hi be an isometric
copy of [0,∞) for i = 1, 2, 3, with oi corresponding to 0 in each case. Let X1 be the
one-point join of H1 and H2, let Y1 be the discrete bridge space M ′(X1), let X2 be the
one-point join of Y1 and H3, and let Y2 be the discrete bridge space L′(X2). Then ∂IY2

has three elements corresponding to the three rays Hi. Two of them are identified by
J2, and ∂GY2 has only two elements. Finally both of these elements are identified by J1,
and ∂gY2 is a singleton set. Note that injectivity fails even though Y1 and Y2 are proper
geodesic spaces (we need to use the discrete versions of these bridge spaces to get proper
spaces).

The assumption that X is hyperbolic is the standard assumption in the literature to
ensure that dε is a metric, and the assumption that X is complete and CAT(0) is the
standard assumption to ensure that τC is worthy of study, so we do not need to justify
these assumptions in the parts of these theorems that have topological conclusions.

Example 3.10. So far in this paper, the choice of g was unimportant, at least if it was a
sphericalization function. Note however that it is rather easy to give examples where ∂gX
depends on g. To see this, suppose that g1 and g2 are distinct weak Floyd functions with
g1 decreasing, and limt→∞ g2(t)/g1(t) = 0. We also normalize so that g1(1) = g2(1) = 1.
For instance, the sphericalization functions g1(t) ≡ 2/(1+t2) and g2(t) ≡ 2/(1+t3) satisfy
these conditions. Viewing (R, 0) as the one-point join of (−∞, 0] and [0,∞), we let (Y, lY )
be the bridge over R with bridge function h(t) = 1/g1(t). Finally, we define a new space
(Z, l) by making a further set of two-point joins: we join 0 to every point on every bridge
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β[−t, t], t ≥ 1, via a path of length t. It is readily verified that ∂gZ is either isometric to an
interval or is a singleton set, depending on whether we take g = g1 or g = g2, respectively.

Proof of Lemma 3.3. For each type of boundary, we shall see that there is a natural
map from the X-version of this boundary to the Y -version. To avoid having to repeatedly
consider the empty set as a special case, let us agree that the “empty map” is the “natural
map” from the empty set to any other set, and that this map is always injective and is
surjective if and only if the other set is empty. Also, we omit the analysis for discrete
bridge spaces (Y ′, l′) which is essentially the same as that for the corresponding continuous
bridge spaces (Y, l), because l′ is roughly isometric to the restriction of l to Y ′.

We consider each type of boundary separately, beginning with the ideal boundary. First
note that every geodesic ray in X is equivalent to a geodesic ray in X \ {o}: we simply
remove an initial segment if the ray goes through o. It follows that every γ ∈ GR(X) is
equivalent to a ray γ ′ ∈ GR(Xi, o) for some i ∈ I. Since l(x, o) = li(x, o) for all x ∈ Xi, γ′

is also geodesic in Y . It is easy to deduce that Y inherits the geodesic segment property
from X. Also equivalent rays in X remain equivalent in Y . We conclude that there is a
natural map JI : ∂IX → ∂IY , and that Y has the geodesic ray property.

Given any Y -geodesic ray γ0, we can find an equivalent Y -geodesic ray γ ⊂ X simply
by cutting off a sufficiently long initial segment of γ; indeed, since bridges join points
equidistant from the origin and have length at least 1, a Y -geodesic ray γ : [0,∞) → Y
can intersect no more than |γ(0)| + 2 bridges. We may assume that γ ∈ GR(Xi, o), and
so γ is also an X-geodesic ray. Thus JI is surjective.

It remains to consider whether or not inequivalent X-geodesic rays γ, ν are equivalent
in Y . We may assume that γ ∈ GR(Xi, o) and ν ∈ GR(Xj, o) for some i, j ∈ I. Suppose
first that Y = S(X). If i 6= j, then the Hausdorff distance between γ and ν is at most
1, and so γ and ν are equivalent in Y . If i = j, γ and ν are still equivalent since
dH(γ(t), ν(t)) ≤ 2, as can be seen by concatenating the bridges β[γ(t), y] and β[y, ν(t)] for
some point y in another base piece Xj ; note that by assumption there exists a base piece
Xj containing a point y′ with |y′| ≥ t, so there exists a point y with |y| = t on any path
from o to y′. However, in the case of medium or long bridge spaces, γ, ν must remain
inequivalent in Y since bridges far from the origin are very long.

We next wish to consider Gromov boundaries. Since the Gromov product in any
bridge space Y dominates the Gromov product in the base space X, Gromov sequences
in X remain Gromov sequences in Y , and equivalent sequences remain equivalent. Thus
the identity map from GRlX (X) to GRl(Y ) yields a natural map JG : ∂GX → ∂GY .

If u, v lie in distinct base pieces with 1 ≤ |u| ≤ |v|, then

l(u, v) = h(|u|) + |v| − |u|. (3.11)

since if γ ∈ Γl(o, v) is a geodesic path and v′ := γ(|u|), then a minimal length path from u
to v (for any of our three choices of h) consists of the concatenation of β[u, v ′] and γ[v′, v].
Inequality (3.11) immediately implies that

2 〈u, v〉o = 2|u| − h(|u|) (3.12)



20 STEPHEN M. BUCKLEY AND SIMON L. KOKKENDORFF

whenever u, v are as above. For Y = L(X), these estimates imply that 〈u, v〉o = 0 for
points u, v as above, and that distances and inner products in Y between points in X are

the same as their analogues in X. It follows that inequivalent Gromov sequences in X
remain inequivalent in Y = L(X).

By contrast, if (Y, l) is a short or medium bridge space, then (3.12) implies that

〈u, v〉o ≥ |u|/2, and so (Y, l) inherits the Gromov product property from its base pieces.
Thus all Gromov sequences in Y are equivalent in this case. Since X is unbounded, the

Gromov product property ensures that ∂GX is a singleton set.

It remains to show that JG is surjective when Y = L(X). Suppose therefore that
Y = L(X) from now on. There are two potential obstacles to surjectivity: sequences (xn)
in X which are Gromov sequences in Y but not in X, and sequences (yn) in Y which are

Gromov sequences in Y but are not contained in X. The first obstacle does not arise since
〈·, ·〉o in is an extension of 〈·, ·〉o,lX

.

We claim that the second obstacle never produces new elements of ∂GY , i.e. every
a ∈ ∂GY is represented by a Y -Gromov sequence in X. It suffices by a subsequence
argument to consider Gromov sequences (yn), where yn ∈ β[un, vn] and |un| → ∞.

Let us call a sequence (zn) pure if it lies in a single base piece. Since X is a one-

point join, each equivalence class a ∈ ∂GX contains a pure sequence (zn). By another
subsequence argument, we can assume our sequence (yn) is one of three types categorized

according to which base pieces contain the associated points un and vn: in Case A, no
base piece contains more than one of the points {un, vn | n ∈ N}; in Case B, (un) and

(vn) are both pure sequences; in Case C, (un) is a pure sequence but the points vn all lie
in distinct base pieces.

Case A never occurs since it implies that 〈yn, ym〉o = 0 for all m, n ∈ N, contradicting

the fact that (yn) is a Gromov sequence. We next consider Case B. By yet another
subsequence argument and symmetry, we can reduce to the case where l(yn, un) ≤ l(yn, vn)
for all n ∈ N. Suppose |um| ≤ |un|. By the Gromov product property, l(um, un) ≤ |un|,

and so l(ym, un) ≤ cm + |un|. Since |ym| = |um|+ cm, it follows that 〈ym, un〉o ≥ |um|/2.
If instead |um| ≥ |un|, it follows similarly that 〈ym, un〉o ≥ |un|/2. Thus (yn) and (un)

are equivalent.

As for Case C, let dn := l(yn, un) − l(yn, vn). Another subsequence argument allows
us to assume either that (dn) is a positive sequence that tends to infinity or that (dn) is

bounded above. In the former case, we claim that for each m ∈ N and all n ≥ n0 = n0(m),
we have 〈ym, yn〉o = 0. Assuming this (secondary) claim, we get a contradiction to the

assumption that (yn) is a Gromov sequence, and so we call rule out this possibility. To
prove the claim, let us assume that n ≥ m. Note that the only route from yn to ym that
could be strictly shorter than going directly to the origin and back out again is to via

um and un. Comparing l(um, un) with l(vm, vn) = |um| + |un|, the reduction in distance
travelled is at most 2|um|, but the increase in distance caused by going along the longer

parts of the initial and final bridges is dm+dn. Once dn is at least 2|um|−dm, the Gromov
product is zero and so we have proven our secondary claim.
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It remains to consider the case where (dn) is bounded above by some number K. In
this case,

l(ym, yn) ≤ l(ym, um) + l(um, un) + l(un, yn) ≤ l(ym, um) + |un| + l(un, yn),

whereas
|ym| + |yn| ≥ (l(ym, um) + |um| − K) + (l(un, yn) + |un| − K),

and so
2 〈ym, yn〉o ≥ |um| − 2K → ∞.

Thus the fact that |un| → ∞ as n → ∞ ensures that (yn) is indeed a Gromov sequence
in this case. However, it is equivalent to (un). To see this, note that if |um| ≤ |un| then
the Gromov product property ensures that

l(ym, un) ≤ l(ym, um) + l(um, un) ≤ l(ym, um) + |un|

whereas
|ym| + |un| ≥ (l(ym, um) + |um| − K) + |un|,

and so
2 〈ym, un〉o ≥ |um| − K → ∞ (m, n → ∞).

In the case |um| > |un|, we similarly get 〈ym, un〉o ≥ |un| − K. Thus (yn) and (un) are
equivalent, as desired, and we have proven in all cases that every a ∈ ∂GY is represented
by a Y -Gromov sequence in X.

Finally, we consider the g-boundary. Since l(x, o) = lX(x, o), x ∈ X, the metric
σX = S(lX , o, g) coincides with the restriction of σ = S(l, o, g) to X × X. It readily
follows that there is a natural map JS : ∂gX → ∂gY . Using (F4), it is easy to see that the
σ-diameter of a short, medium, or long bridge β[u, v] tends to zero as |u| → ∞. Moreover
the Gromov product property and (F4) also imply that σ(u, v) is arbitrarily small if u, v
are in the same bridge space with |u| ∧ |v| sufficiently large. It follows that in all cases,
there is exactly one equivalence class in ∂gY and it contains all sequences (yn) in Y that
tend to infinity. �
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