
WARPED PRODUCTS AND CONFORMAL BOUNDARIES OF
CAT(0)-SPACES

STEPHEN M. BUCKLEY AND SIMON L. KOKKENDORFF

Abstract. We discuss the conformal boundary of a warped product of two length
spaces and provide a method to calculate this in terms of the individual conformal
boundaries. This technique is then applied to produce CAT(0)-spaces with complicated
conformal boundaries. Finally we prove that the conformal boundary of an Hadamard
n-manifold is always simply connected for n ≥ 3, thus providing a bound for the level
of complication of the boundary of such a manifold.
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1. Introduction

There are various notions of boundaries at infinity of a metric space. In this paper we
will discuss and compare two of these.

The ideal boundary is a classical concept usually defined as a set of equivalence classes
of paths converging to infinity. The precise definition will be given in the next section.
Conformal boundaries are defined via conformal distortions of the metric space, and thus
depend on the choice of distortion function. In certain classes of spaces, e.g. Gromov
hyperbolic spaces, there is a range of canonical choices of distortions, which produce
homeomorphic boundaries, c.f. [3, Chapter 3]. These turn out also to be homeomorphic
to the ideal boundary with a canonically defined topology, see [5, Theorem 2.4]. In the
class of CAT(0)-spaces however, there is no canonical choice of conformal distortion,
and the ideal and conformal boundary will typically be different, when the space is not
Gromov hyperbolic. This is the case e.g. when there are flat “sections” in the space
extending to infinity.

One of the main purposes of this paper is to determine the conformal boundary of
a warped product with warping function in a class of functions of distance to a base
point. This we do in Section 3 after some preliminaries in Section 2. In Section 4, we
use our warped product characterization to produce CAT(0)-spaces where the two types
of boundary differ in interesting ways.

In particular, we prove the following result. Note that the ideal boundary of every
Hadamard n-manifold is homeomorphic to Sn−1 [4, II.8.11].

Theorem 1.1. For each n > 2, there exists an Hadamard n-manifold whose conformal
boundary is homeomorphic to a 1-point union of two (n− 1)-spheres and an Hadamard
n-manifold whose conformal boundary is homeomorphic to an (n− 2)-disk.
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Finally in Section 5, we show that even though the conformal boundary of an Hadamard
manifold can be quite complicated from a topological viewpoint, it is at least simply con-
nected, when the dimension of the manifold is greater than 2.

Theorem 1.2. Let M be an Hadamard n-manifold, n ≥ 3, then the conformal boundary
∂ρM is simply connected.

2. Preliminaries

2.1. Length spaces and conformal distortions. We refer to [4] and [5] for more
details on the concepts we briefly introduce below.

A length space is a metric space (X, d), where the distance between two points is given
as the infimum of lengths of rectifiable curves connecting points:

d(p, q) = inf
γ∈Γ(p,q)

L(γ),

where Γ(p, q) denotes the set of rectifiable paths having p and q as endpoints. Given
a continuous function ρ : X → (0,∞), we can define the conformally distorted length
metric:

σρ(p, q) := inf
γ∈Γ(p,q)

∫

γ

ρ ds,

see e.g. [3] for more details. One then defines the conformal boundary of X with respect
to the distortion ρ as

∂ρX := Xρ \X,

where Xρ denotes the metric completion of X with respect to the length metric σρ.
We will mainly focus attention on the case where the distortion is a function of the

distance to a base point o ∈ X:

ρ(p) = g
(
d(o, p)

)
,

and g : [0,∞) → (0,∞) is a continuous function with g ∈ L1
(
[0,∞)

)
. We use ∂gX as a

short notation for the boundary with respect to such a conformal distortion. If X has an
infinitely long geodesic ray emanating from o, e.g. if X is proper and unbounded, then
we always have ∂gX 6= ∅. See [5] for more details on conformal boundaries of this type.

The restriction to conformal distortions which are distance functions will simplify the
analysis, but is not essential. In Theorem 1.2, proven in the final section, we also consider
a slightly larger class of deformations. One easy observation, allowing for generalizations
of the class of exact distance type deformations, is the following:

Proposition 2.1. Let X be a length space with base point o ∈ X, g : [0,∞) → (0,∞) a
continuous function and ρ : X → (0,∞) a continuous function such that

1

C
g
(
d(o, p)

) ≤ ρ(p) ≤ Cg
(
d(o, p)

)
,

for some C ≥ 1 and all p ∈ X. Then ∂ρX is homeomorphic, in fact bi-Lipschitz
equivalent, to ∂gX.

The proof is trivial and is left to the reader.
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2.2. Ideal Boundaries. A K-rough geodesic γ : I → X is a path, such that for all
s < t ∈ I, we have

(2.2) d(γ(s), γ(t)) ≥ L
(
γ([s, t])

)−K,

for some K ≥ 0. Here we do do not distinguish notationally between paths and their
images. If (2.2) holds with K = 0, γ is called a geodesic. A length space is called geodesic
if any two points can be joined by a geodesic. Any proper (i.e. where closed balls are
compact) length space is geodesic by the Hopf-Rinow Theorem [4, I.3.7].

A K-rough ray γ in X is an infinitely long K-rough geodesic with one endpoint,
i.e. when parametrized by arclength it can be defined on [0,∞). A ray is then a 0-rough
ray, that is, an infinitely long geodesic with one endpoint.

Two paths γ1, γ2 are said to be asymptotic if the Hausdorff distance between their
images is finite dH(γ1, γ2) < ∞. This defines an equivalence relation ∼ on the set of
paths. One easily checks that for two rough rays γ1, γ2 parametrized by arclength, we
have γ1 ∼ γ2 if and only if

sup
t>0

d(γ1(t), γ2(t)) < ∞.

We define the ideal boundary ∂IX to be the set of equivalence classes of (geodesic) rays.
It will prove convenient to work with the slightly more general notion of a rough ideal
boundary, ∂RIX, defined to be the set of equivalence classes of rough rays. Clearly, we
have ∂IX ⊆ ∂RIX. If X is Gromov hyperbolic then we have ∂IX = ∂RIX, however it is
possible to have a strict inclusion:

Example 2.3. In general for an Hadamard manifold Mn, i.e. a complete, simply con-
nected Riemannian manifold of nonpositive curvature, it is well known that ∂IM is home-
omorphic to Sn−1, when equipped with a canonically defined topology, c.f. [4, II.8.11].
Even in the simplest case M = R2, we have ∂IR2 ( ∂RIR2. Given a ray γ (a half-line
going to infinity) it is possible to construct a rough ray, which “zig-zags” around γ, in a
way such that the two paths are not asymptotic according to the definition above.

2.3. CAT(0)-spaces. A geodesic triangle T in a metric space X is the union of three
geodesics, γ1 ∈ Γ(a, b) , γ2 ∈ Γ(b, c) , γ3 ∈ Γ(c, a). A geodesic triangle T is said to satisfy
the CAT(0)-inequality if it is at least as slim as a comparison triangle with the same side
lengths T̃ ⊂ R2. See e.g. [4, II.1.1] for the precise definition. A CAT(0)-space is then a
geodesic space in which all geodesic triangles satisfy the CAT(0)-condition.

2.4. Warped Products. We will define the warped product of two length spaces as in
[1] and [2], see also [7]:

Let B and F be length spaces, and let f : B → (0,∞) be a continuous function. Then
define the following length structure on B × F :

(2.4) Lf (γ) =

∫

γ

√
v2

B(t) + f 2(γB(t))vF (t)2 dt,

where γ = (γB, γF ) and vB, vF are the speeds of γB, γF respectively, which are defined
almost everywhere. We will write

df (p, q) = inf
γ∈Γ(p,q)

Lf (γ)

for the length metric induced from the length structure Lf . The warped product B×f F
is then B × F equipped with the metric df .
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We use standard terminology as for Riemannian warped products, c.f. [9]. B is called
the base and F is called the fiber. Subsets of the form B×{q}, q ∈ F , are called leaves,
while the subsets {p} × F , p ∈ B are called fibers. A curve of the form t 7→ (α(t), q) is
called horizontal, while t 7→ (p, β(t)) is called a vertical curve.

From the definition of the warped product metric, it is clear that the projection onto
the base coordinate πB : B ×f F → B is 1-Lipschitz,

dB(πB(p), πB(q)) ≤ df (p, q).

It is also evident that the leaves B × {q} , q ∈ F are all isometric to B. Furthermore, if
f : B → (0,∞) has a global minimum at p ∈ B, one easily checks that the fiber {p}×F
is isometric to F with metric scaled by f(p).

Lemma 2.5. The identity map B ×f F → B × F is a homeomorphism when B × F is
equipped with the product topology. If B and F are complete, then so is B ×f F . Thus
if B and F are proper, so is B ×f F .

Proof. Given p, q ∈ B × F , we have

(2.6) df (p, q) ≤ f(πB(p))dF (πF (p), πF (q)) + dB(πB(p), πB(q)),

by first moving in the fiber through p and then in the leaf through q. This shows that
the identity is continuous from B × F to B ×f F .

Now choose a ball B ⊂ B of radius r around πB(p) such that f(x) ≥ 1
2
f(πB(p)) for

x ∈ B. Given ε > 0, choose 0 < δ < min{ε, f(πB(p)) ε
2
, r}. Then if df (p, q) < δ < r

we can ensure that for an almost minimizing curve γ = (γB, γF ) connecting p and q, we
have γB ⊂ B, since LB(γB) ≤ Lf (γ). Thus

Lf (γ) ≥ (min
γ

f)LF (γF ) ≥ 1

2
f(πB(p))LF (γF ) ≥ 1

2
f(πB(p))dF (πF (p), πF (q))

and we conclude that df (p, q) ≥ 1
2
f(πB(p))dF (πF (p), πF (q)),

hence dF (πF (p), πF (q)) < ε and dB(πB(p), πB(q)) < df (p, q) < ε, which shows that the
identity B ×f F → B × F is continuous.

Since the projection πB is 1-Lipschitz, we get a Cauchy sequence {πB(pn)} ⊂ B, when
{pn} is Cauchy in B ×f F . An easy variation of the argument given above shows that
also {πF (pn)} ⊂ F is Cauchy, and thus the df -Cauchy sequence {pn} is convergent in
the product topology, hence also in B ×f F .

Finally, if B and F are both proper, hence complete, then B×f F is complete. B×f X
is also locally compact since the product topology is, hence B×f F is proper by the Hopf-
Rinow Theorem, c.f. [4, I.3.7]. ¤

3. Boundaries of warped products

To simplify the analysis, we will from now on consider warping functions, which are
functions of the distance to a point. We assume that a base point oB ∈ B is chosen, and
for p ∈ B introduce the notation |p| := dB(oB, p). For f : [0,∞) → (0,∞) a continuous
function, we consider warping functions of the form

f ◦ | · | : B → (0,∞)

and also use the shorthand notation B ×f F for warped products with this type of
composite warping functions. The meaning should be clear from context.
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The restriction to warping functions of this type is not essential, and the results below
could be generalized by considering warping functions, which are comparable (in the
right way) to functions of distance. However the class of warping functions we consider,
provides us with sufficient flexibility to construct the examples of CAT(0)-spaces, we are
looking for.

Lemma 3.1. Let f : [0,∞) → [1,∞) be a homeomorphism satisfying exponential growth
conditions of the form

∃ a > 0 ∀ t > 0 : f(t + a) ≥ 2f(t),(3.2)

∃ A > 0 ∀ t > 0 : f(t + 1) ≤ Af(t),(3.3)

Then the rough ideal boundary of X := B ×f F is given by the set equation

(3.4) ∂RIX = (∂RIB × F ) ∪ ∂RIF

Proof. First of all, since all leaves B × {q} are isometric to B, and likewise because the
fiber {oB}×F is isometric to F it is clear that (∂RIB×F )∪ ∂RIF ⊆ ∂RIX. So we need
to show that any rough ray γ = (γB, γF ) in X is asymptotic to either a horizontal or a
vertical rough ray.
Assume that γ = (γB, γF ) is a rough ray parametrized by arclength, so vF ≤ 1/f(|γB|) a.e.

We begin by proving a couple of useful estimates for γ. By assumption there exists K ≥ 0
such that for all t ≥ 0:

t−K ≤ df

(
(oB, γF (0)), γ(t)

)

≤ df

(
(oB, γF (0)), (oB, γF (t))

)
+ df

(
(oB, γF (t)), γ(t)

)

≤ LF (γF ([0, t])) + |γB(t)|(3.5)

≤
∫ t

0

1

f(|γB(s)|) ds + |γB(t)|(3.6)

as is seen by first moving in the fiber {oB} × F , then in the base, and applying the
triangle inequality.

If γB(t) 6→ oB for t → ∞ then there is some ε > 0 such that |γB(t)| > ε for some
arbitrarily large values of t. Since the speed of γB is bounded by 1, it follows that
I := {t ≥ 0 : |γB(t)| > ε/2} has infinite Lebesgue measure, and so

(3.7) t−
∫ t

0

ds

f(|γB(s)|) =

∫ t

0

(
1− 1

f(|γB(s)|)
)

ds ≥ µ (I ∩ [0, t])

(
1− 1

f(ε/2)

)
→∞.

Assume that |γB(t)| is bounded, hence γF and thus F must be unbounded. It imme-
diately follows from (3.5) that γF must be a rough ray, so that γ is asymptotic to the
vertical ray t 7→ (oB, γF (t)). In fact we have limt→∞ γB(t) = oB, since if this were false
then (3.7) and (3.6) together would contradict the boundedness of |γB(t)|.

Suppose instead that |γB(t)| is unbounded. Again combining (3.7) and (3.6), we see
that

|γB(t)| ≥ t−K − LF (γF ([0, t])) ≥ t−K −
∫ t

0

1

f(|γB(s)|)ds →∞
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Thus I := {t : |γB(t)| < c1} has finite measure, while J := {t : |γB(t)| > 2c1} has
infinite Lebesgue measure. Thus:

1

f(c1)
t− LF (γF ([0, t])) ≥ 1

f(c1)
t−

∫ t

0

ds

f(|γB(s)|)

=

∫ t

0

(
1

f(c1)
− 1

f(|γB(s)|)
)

ds

≥ µ(J ∩ [0, t])

(
1

f(2c1)
− 1

f(c1)

)
− µ(I ∩ [0, t])f(0) →∞ .

Since f(t) →∞, this last estimate and (3.5) together imply that |γB(t)| − c2t →∞ for
any c2 ∈ [0, 1). By a change of parameters, we deduce that LF (γF ) ≤ C

∫∞
0

1
f(|γB(t)|) dt

is finite, and thus that |γB(t)| > t−K2 for some K2 > 0, i.e. γB is a rough ray in B.
Since LF (γF ) < ∞, we see that γF (t) is convergent to some p ∈ F . Thus γ is

asymptotic to the horizontal rough ray t 7→ (γB(t), p), since by moving vertically it
follows that:

(3.8) sup
t>0

d
(
γ(t), (γB(t), p)

) ≤ sup
t>0

f(|γB(t)|)
∫ ∞

t

1

f(|γB(s)|) ds < ∞ .

In fact, in view of (3.3) and the double inequality t − K3 ≤ |γB(t)| ≤ t + K3 for some
K3 > 0 and all t ≥ 0, the second inequality in (3.8) reduces to the inequality

sup
t>0

f(t)

∫ ∞

t

ds

f(s)
< ∞ ,

and this follows from (3.2). ¤
Let us return to the conformal boundary ∂gX, defined with respect to a base point

o ∈ X and a continuous function g : [0,∞) → (0,∞), with g ∈ L1
(
[0,∞)

)
. We will call

g k-quasidecreasing if
g(t) ≤ kg(s)

for all 0 ≤ s ≤ t and some k ≥ 1.
There is a map

JX : ∂RIX → ∂gX,

defined by choosing sequences going to infinity along each rough ray, e.g. xn = γ(n) , n ∈
N. We will need the following result:

Lemma 3.9. If X is a proper unbounded length space and g : [0,∞) → (0,∞) a quaside-
creasing distortion function in L1

(
[0,∞)

)
, then JX : ∂RIX → ∂gX is well defined and

surjective. In fact JX(∂IX) = ∂gX.

Proof. First of all, we need to see that given a rough ray γ, γ(tn) will define an element
in ∂gX, for tn a parameter sequence converging to ∞. Since γ is a rough ray we have
d(o, γ(t)) ≥ t − K for some fixed K > 0. Thus g

(
d(o, γ(t))

) ≤ kg(t − K), if g is

k-quasidecreasing. Since g ∈ L1
(
[0,∞)

)
it follows that the σg-length of γ is finite,

and thus that γ(tn) will define a σg-Cauchy sequence for any tn → ∞; here σg is the
conformally distorted metric.

That JX is well defined, i.e. that it does not depend on the choice of representative
of an equivalence class of rough rays nor on the choice of sequence {γ(tn)} for tn →∞,
follows also from g ∈ L1

(
[0,∞)

)
and so g(t) → 0 for t → ∞. So for any two sequences
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x = {xn} , y = {yn} chosen along equivalent rays, we have σg(xn, xm) → 0 , σg(yn, ym) →
0 and σg(xn, ym) → 0 for n,m → ∞. Thus x and y will define equivalent σg-Cauchy
sequences converging to some point in ∂gX.

That JX is surjective, in fact already as a map from ∂IX ⊆ ∂RIX follows from Theorem
2.1 and Theorem 2.2 in [5]. In short an argument goes as follows: given a σg-Cauchy
sequence {xn} ⊂ X converging to a point in ∂gX, we must have d(o, xn) → ∞, for any
fixed point o ∈ X. In the proof of Theorem 2.2(b) a geodesic ray γ with γ(0) = o is
constructed such that d(γ, yn) ≤ 1, where y = {yn} is a subsequence of {xn}. Clearly
JX(γ) is then equivalent to y, since g(t) → 0 for t →∞. Furthermore a subsequence of
a σg-Cauchy sequence is equivalent to the original sequence. ¤

Now we fix also a base point oF ∈ F and thus a base point oX := (oB, oF ) ∈ X =
B ×f F . We use the notation |p|B := dB(oB, p) , |q|F := dF (oF , q) , |r|X := dX(oX , r) for
points p ∈ B, q ∈ F, r ∈ X. σB, σF and σX will denote the conformally distorted metrics
of B, F and X with respect to the chosen base points and a fixed distortion function g.

Theorem 3.10. Let B and F be pointed, proper length spaces, with B unbounded. Let
f : [0,∞) → [1,∞) be a warping function satisfying the requirements of Lemma 3.1 and
let g : [0,∞) → (0,∞) be a distortion function as in Lemma 3.9 satisfying also:

(3.11) g(a + b) ≥ k1g(a)g(b) and f(t)g(t) ≥ k2,

for some positive constants k1, k2 and all a, b, t ≥ 0. Then the conformal boundary ∂gX

of the warped product X = B ×f̃ F , where f̃ = f ◦ | · |B, is homeomorphic to the gluing

of ∂gB×F onto ∂gF along ∂gB× ∂gF , using the projection map. If ∂gF = ∅, the gluing
is simply ∂gB × F .

Proof. For each leaf the embedding B ↪→ B×{q} ⊆ X is isometric, and |(p, q)|X ≥ |p|B,
hence g(|(p, q)|X) ≤ k0g(|p|B). Thus clearly any σB-Cauchy sequence {pn} ⊂ B is also a
σX-Cauchy sequence in the leaf B × {q}. Hence we have a map

ψB : ∂gB × F → ∂gX

Likewise the embedding of the standard fiber F ↪→ {oB} × F ⊂ X is isometric, with
|(oB, q)|X = |q|F , so we also have a map

ψF : ∂gF → ∂gX

Now define a map ψ : ∂gB × F → ∂gX by

ψ((x, y)) =

{
ψB((x, y)) (x, y) ∈ ∂gB × F

ψF (y) (x, y) ∈ ∂gB × ∂gF

Another way of getting the gluing of ∂gB × F and ∂gF is by considering the quotient
(∂gB×F ) / ∼, where ∂gB×{y} is collapsed to a point for y ∈ ∂gF . Since ψ is constant
on equivalence classes we may consider it as a map ψ : (∂gB × F ) / ∼→ ∂gX.

Equip ∂gB × F with the product topology induced by the conformally distorted met-
rics σB, σF and give (∂gB × F ) / ∼ the quotient topology. We will show that ψ is a
homeomorphism.

By Lemma 3.9 the conformal distortion map JX : ∂RIX → ∂gX is surjective. Using
the description in Lemma 3.1, it follows that ψ is surjective. In fact, if x ∈ ∂gX and we
choose a rough ray γ such that JX(γ) = x, then either γ is asymptotic to a horizontal ray
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(γB, q) and x is in the image ψB(∂gB × F ), or γ is asymptotic to a vertical ray (oB, γF )
and x is in the image ψF (∂gF ).

To prove that ψ is injective, we first need some estimates. Let γ = (α, β) : [t0, t1] → X
be a path in X. By first moving in the fiber {oB} × F and then horizontally in a leaf,
we have a triangle with side lengths |β(s)|F , |α(s)|B, |(α(s), β(s))|X , so by the triangle
inequality:

|(α(s), β(s))|X ≤ |α(s)|B + |β(s)|F
so, using that g is quasidecreasing and condition (3.11), we have

(3.12) g(|(α(s), β(s))|X) ≥ k0g(|α(s)|B + |β(s)|F ) ≥ k0k1 g(|β(s)|F ) g(|α(s)|B)

Then

(3.13)

∫

γ

g(|γ(s)|X)
√

v2
α + f 2(|α(s)|B)v2

β ds

≥
∫

γ

k0k1g(|β(s)|F ) g(|α(s)|B) f(|α(s)|B) vβ ds

By assumption there is a positive constant k2 such that g(t)f(t) ≥ k2 for all t > 0. Hence

(3.14) LσX
(γ) ≥ k0k1k2LσF

(β),

so we conclude that

(3.15) σX

(
(p1, q1), (p2, q2)

) ≥ K0σF (q1, q2),

where K0 = k0k1k2. A similar crude analysis shows that

(3.16) LσX
(γ) ≥ K1 min

t0≤t≤t1
(g(|β(t)|F ))LσB

(α)

where K1 = k0k1, and we conclude from (3.14) that

(3.17) ε := σX

(
(p1, q1), (p2, q2)

)

≥ K1 min{ g(t) : t ∈ [|q1|F − ε/K0, |q2|F + ε/K0] } σB(p1, p2),

assuming that |q1|F ≤ |q2|F . By continuity (3.15) extends to ∂gX, i.e. to Cauchy se-
quences of the form (x, y), for x ∈ B , y ∈ F . The estimate (3.17) extends to Cauchy
sequences of the form (x, q) , x ∈ ∂gB , q ∈ F , i.e. to the image ψ(∂g × F ).

We then easily deduce that ψ is injective on (∂gB × F ) / ∼. Because if ψ
(
(x1, y1)

)
=

ψ
(
(x2, y2)

)
we must have y1 = y2 := y ∈ F by (3.15), and for y ∈ F we see from (3.16)

that ψ
(
(x1, y)

)
= ψ

(
(x2, y)

)
if and only if x1 = x2.

Using (3.15) and (3.17) we see that ψ−1 is continuous on the horizontal sequences
ψ(∂g × F ). Continuity of ψ−1, in the quotient topology, at a vertical sequence ψF (∂gF )
follows directly from (3.15).

A similar analysis shows that ψ is continuous. However this also follows from the fact
that the involved spaces are compact and Hausdorff. ¤
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4. Exotic boundaries of CAT(0)-spaces

In this section we apply the previous results to give examples of boundaries of CAT(0)-
spaces. That the ideal and conformal boundaries typically differ in this category is
illustrated by the simplest example: ∂IRn is homeomorphic to Sn−1, but ∂gRn is always
a single point for n ≥ 2, and any quasidecreasing distortion function g ∈ L1

(
[0,∞)

)
.

Flat “sections” extending to infinity will always be collapsed in the conformal bound-
ary. In this respect the conformal boundary is in a way dual to the so-called Tits
boundary, c.f. [4]. However negatively curved pieces can also be collapsed, if one chooses
a conformal scaling function with too fast decay.

The following theorem is the main result in [1]:

Theorem 4.1 (Alexander & Bishop). If B and F are complete CAT(0) spaces and
f : B → (0,∞) is convex, then B ×f F is CAT(0).

If we furthermore require that the function f : [0,∞) → [1,∞) in the construction
of Theorem 3.10 is convex then, since distance functions are convex in CAT(0)-spaces
[4, II.2.2], it follows easily that the composition (f ◦ | · |)|B is convex and thus, by the
above theorem of Alexander and Bishop, that B ×f F is CAT(0) when B and F are
CAT(0)-spaces.

4.1. Examples. We give a few examples of complete, Riemannian CAT(0)-spaces
(i.e. Hadamard manifolds) with interesting boundary, calculated using Theorem 3.10.
When B is an Hadamard manifold, we get a smooth convex warping function satisfying
the requirements of Lemma 3.1 by choosing f(t) = cosh(t).

If an Hadamard manifold Xn has curvature bounded away from zero, κ ≤ κ0 < 0, and
is thus Gromov hyperbolic, then the conformal boundary ∂gX is homeomorphic to the
ideal boundary Sn−1 when we choose the distortion g to satisfy the so-called weak Floyd
conditions

g(t) ≤ Cg(s), whenever s, t ≥ 0, s− 1 ≤ t ≤ 2s + 1 ,∫∞
0

g(t) dt ≤ Cg(0) ,

for some fixed C > 0, together with the decay condition g(t) ≥ K exp(−ε0t) for some
sufficiently small ε0 = ε0(κ) > 0; see Section 1.6 and Theorem 2.4 of [5]. Below we call
any conformal distortion function g that satisfies these three conditions an ε0-moderate
distortion function. For any given ε0 > 0, there always exist ε0-moderate distortion
functions that fulfill the requirements of Theorem 3.10: for instance, it suffices to choose
g(t) = exp(−εt) for sufficiently small ε ∈ (0, ε0].

With these choices of f and g we have:

• If B = R and F = Rn−1, with n > 2, then X is CAT(0) and so ∂IX is homeo-
morphic to Sn−1. However ∂gX is homeomorphic to Sn−1tpSn−1, a 1-point union

of two (n− 1)-spheres. This follows since ∂gRn−1 is a single point {p} and Rn−1

is Sn−1, while ∂gR consists of two points.
• If B = R2 and F = Hn−2 is hyperbolic n-space, n > 2, then X is CAT(0) and so

∂IX is homeomorphic to Sn−1. However ∂gX = Bn−2, the closed unit ball.

Note that the above pair of examples already prove Theorem 1.1. It is also clear that
if we iterate this procedure with some of the ingredients described above, it is possible
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to construct disturbingly complicated conformal boundaries, even when ∂IX is a sphere
of codimension 1.

We also note that while X ∪∂IX is contractible, being homeomorphic to a closed unit
ball in Euclidean space, it is easy to construct examples where X is not contractible.
This is the case in the first example above where ∂gX is homeomorphic to Sn−1 tp Sn−1.

Let us also give some non-Riemannian examples of CAT(0)-spaces. Here we can take
e.g. f(t) = cosh(t) or f(t) = exp(t). Again g is some appropriate distortion function and
X = B ×f F .

• Let B = R and let F be a tree T . Then X is CAT(0), with ∂gX the doubling of
T along ∂gT . In this example the ideal and conformal boundaries are the same.

• Let B = R2 and let F be a tree T . Then X is CAT(0) and ∂gX is simply the
closure of the tree T = T ∪ ∂gT .

• Let B be a tree with finitely many branchings, so that ∂gB is finite. Then ∂gX
is finitely many copies of F glued along ∂gF . If F is CAT(0), then so is X.

5. Simply connected conformal boundaries

In this section we discuss further the topological properties of conformal boundaries
of Hadamard manifolds. In particular we establish that the conformal boundary of an
Hadamard manifold of dimension at least 3 is simply connected. Thus, even though we
have seen that conformal boundaries of Hadamard manifolds can be quite complicated
from a topological viewpoint, this provides a bound for the “level of complication”.

We will need the concept of a quotient (pseudo)metric, see [4] p. 65, so let us dis-
cuss this. Given a metric space (X, d) and an equivalence relation ∼ on X, there is a
pseudometric d′′ on X given by the formula:

d′′(x, y) = inf

{
m∑

i=1

d′(xi−1, xi)

∣∣∣∣∣ x0 = x, xm = y

}
, x, y ∈ X .

where

d′(u, v) =

{
0, u ∼ v,

d(u, v), otherwise,

and the infimum is taken over all finite chains of points in X from x to y. Since

d′′(x, y) = d′′(x′, y′), whenever x ∼ x′, y ∼ y′ ,

d′′ induces a pseudometric d∼ on X/ ∼, which we call the quotient pseudometric.
We call ∼ a metric equivalence relation if d∼ is a metric on X/ ∼. In this section we

let

q : X → X/ ∼
denote the quotient map.

For completeness we include the following useful characterization of metric equivalence
relations on compact spaces.

Lemma 5.1. Suppose (X, d) is a compact metric space and ∼ an equivalence relation
on X. Then the following are equivalent:

(a) the relation ∼ is a metric equivalence relation;
(b) the quotient topology on X∼ is Hausdorff;
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(c) all equivalence classes in X are closed and the quotient topology on X/ ∼ equals
the d∼ topology.

Proof. In this proof, let τ1 be the quotient topology, and τ2 be the d∼ topology on X/ ∼.
Since q is a contraction, τ2 is always coarser than τ1.

It is easy to see that (a) implies (b) since if d∼ is a metric, then τ2 is Hausdorff and
so τ1 is also Hausdorff.

We next prove that (b) implies (c), so suppose that τ1 is Hausdorff. Thus singletons in
X/ ∼ are closed and so equivalence classes in X are closed. Every continuous bijection
from a compact space to a Hausdorff space is a homeomorphism so, since (X/ ∼, τ1) is
compact and (X/ ∼, τ2) is Hausdorff, it follows that τ1 = τ2.

Lastly we prove that (c) implies (a). The closure of equivalence classes in X is equiva-
lent to τ1 being T1. Assuming that τ1 is T1 and that τ1 = τ2, it follows that d∼ must be a
metric since otherwise there would be distinct points u, v ∈ X/ ∼ such that d∼(u, v) = 0,
and every τ2-neighborhood of u would include v. ¤

We note that there are equivalence relations on compact sets whose equivalence classes
are closed but which fail to be metric equivalence relations. For instance, if X is the
Euclidean interval [−1, 1], and we define an equivalence relation whose equivalence classes
are {x,−x}, 0 < x < 1, together with the singleton sets {0}, {−1}, and {1}, then
d∼([−1], [1]) = 0 even though −1 and 1 are inequivalent.

Note also that compactness is needed in the lemma above. Consider e.g. the complex
plane, with the relation 0 ∼ ti for all t ≥ 0 and 1 ∼ ti + 1/(t + 1) for all t ≥ 0 and
no other nontrivial equivalence. Then d∼([0], [1]) = 0 but [0] 6= [1], while the quotient
topology is Hausdorff.

We will need the following result, which seems quite fundamental but which the authors
were unable to find in the literature.

Proposition 5.2. If X is a compact length space and ∼ a metric equivalence relation on
X with connected equivalence classes, then X/ ∼ with the quotient metric is a compact
length space and the natural map

q∗ : π1(X) → π1(X/ ∼)

is surjective.

Proof. That in general X/ ∼ is a compact length space, when X is a compact length
space and ∼ is a metric equivalence relation follows from Lemma 5.20 in [4], p.65.

In the following we assume that all curves are parametrized on the unit interval I =
[0, 1] and use standard notation from homotopy theory e.g. brackets [γ] are used to
denote homotopy classes.

We need to prove that q∗ is surjective, which amounts to showing that any homotopy
class [γ] in π1(X/ ∼) can be represented by a lifted curve, [γ] = [q ◦ ω], where q : X →
X/ ∼ is the quotient map. Since X/ ∼ is a compact length space, it follows that any
sufficiently short curve is homotopically trivial, c.f. [6] p. 215. We thus assume that any
curve of length less than 2K > 0 in X/ ∼ is homotopically trivial.

It is easy to see that any connected subset C ⊆ X has the following property: Given
any x, y ∈ C and any ε > 0 there exists finitely many paths ωi : I → X , i ∈ {1, . . . , n},
such that ω1(0) = x, ωn(1) = y, ωi(1) = ωi+1(0) ∈ C and L(ωi) ≤ ε.
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Thus ω = ω1 ∗· · ·∗ωn ∈ Γ(x, y) and if C is an equivalence class of ∼ then q◦ω consists
of finitely many loops with C ∈ X/ ∼ as basepoint. If ε < 2K then since q is contracting
(1-Lipschitz), q ◦ ω will be homotopically trivial.

Let now a closed curve γ : I → X/ ∼ represent a homotopy class in π1(X/ ∼).
We may assume that γ is rectifiable, since any free nontrivial homotopy class has a
minimizing geodesic. Choose an ε ∈ (0, K) and parameter values 0 = t1 < t2 < · · · <
tn = 1 in I, such that the length of each segment γ([ti, ti+1]) is less than K − ε, hence
d∼(γ(ti), γ(ti+1)) < K − ε.

Consider a fixed i ∈ {1, . . . , n − 1}. By definition of d∼ we can find a finite chain of
points {x1, y1, x2, y2, . . . , xm, ym} ⊂ X such that d∼

(
γ(ti), γ(ti+1)

)
+ ε >

∑m
j=1 d(xj, yj),

with x1 ∼ γ(ti), ym ∼ γ(ti+1) and yj ∼ xj+1. Since equivalence classes are connected we
have by the discussion above for each j < m a path βj ∈ Γ(yj, xj+1) such that q ◦ βj is
homotopically trivial in X/ ∼.

Consider then a continuous curve ωi consisting of geodesic segments connecting each
xj and yj as well as curve segments βj connecting yj to xj+1 as above. That is, if
αj ∈ Γ(xj, yj) is a geodesic and βj ∈ Γ(yj, xj+1) is as above, we define

ωi = α1 ∗ β1 ∗ α2 ∗ β2 ∗ · · · ∗ βm−1 ∗ αm.

Since the push forward of each βj curve is homotopically trivial and since q is contracting
it is now clear, that the push forward curve q ◦ ωi is homotopic to a curve ω̃i connecting
γ(ti) to γ(ti+1) with length

L(ω̃i) ≤
m∑

j=1

d(xj, yj) < d∼
(
γ(ti), γ(ti+1)

)
+ ε.

Thus the closed curve ω̃i ∗ γ−1
|[ti,ti+1]

has length less than 2K and is thus homotopically

trivial. It follows that ω̃i, and thus q ◦ ωi, is homotopic to γ|[ti,ti+1].
For i ∈ {1, . . . , n − 1} we get curves ωi in X as above, which we paste together to a

continuous closed curve using curves ζi ∈ Γ(ωi(1), ωi+1(0)) (with indices counted modulo
n − 1) such that q ◦ ζi is homotopically trivial. Then γ is homotopic to the curve built
up of these segments,

[γ] = [q∗(ω1 ∗ ζ1 ∗ ω2 ∗ ζ2 ∗ · · · ∗ ωn−1 ∗ ζn−1)].

¤
Note that in the generality of the proposition above, it is easy to construct examples,

where some continuous curves in X/ ∼ cannot be lifted to X; in contrary to the “usual”
setting, where q : X → X/ ∼ is a fibration.

We are now ready to provide the main result of this section. Here we will allow more
general conformal boundaries defined with respect to a continuous distortion ρ : X → (0,∞)
such that

(5.3) ρ ∈ C0(X) and ρ ◦ γ ∈ L1
(
[0,∞)

)

for any geodesic ray γ ∈ ∂IX; here C0(X) denotes the continuous functions converging to
zero at infinity. As we see from the proof of Lemma 3.9 this class of deformations includes
the previously considered distance deformations ρ = g

(
d(·, o)) with g quasidecreasing.

Once again we will utilize the map JX : ∂IX → ∂ρX, defined by taking sequences
along rays.
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Lemma 5.4. Let X be a proper CAT(0)-space and ρ : X → (0,∞) satisfy (5.3), then
JX : ∂IX → ∂ρX is well-defined, surjective and continuous.

Proof. The proof of well-definedness and surjectivity is similar to the proof of Lemma
3.9, while continuity follows directly from the definition of the cone topology [4, II.8] and
the fact that d(o, xn) →∞ =⇒ ρ(xn) → 0 for any point o ∈ X, since ρ ∈ C0(X). ¤
Corollary 5.5. The conformal boundary ∂ρM of an Hadamard n-manifold, n ≥ 3, is
simply connected.

Proof. Since the map JM : ∂IM → ∂ρM is surjective, continuous and the considered
spaces are compact, ∂ρM has the quotient topology on ∂IM

n ∼= Sn−1 induced by JM .
We can extend JM to a map M ∪ ∂IM → M by defining JM(x) = x for x ∈ M . It is

a routine matter to check that this extension is continuous, with the cone topology on
M ∪ ∂IM which is homeomorphic to the closed unit ball in Rn. We will then pull back
the conformally distorted metric σρ to M ∪ ∂IM using JM , yielding the pseudometric
σ̃(x, y) = σρ(JM(x), JM(y)), for x, y ∈ M ∪ ∂IM .

We only need to show that the fibers J−1
M (x) for x ∈ ∂ρM are connected, allowing

us to apply the previous proposition, since if we consider ∂IM as Sn−1 equipped with
its standard geodesic metric dS, then because the topology on ∂ρM is Hausdorff, the
quotient metric on ∂ρM associated to this choice of metric on Sn−1 becomes a length
space metric1. If some fiber F = J−1

M (x) ⊂ M ∪ ∂IM is not connected, then since the
fibers are closed F can be decomposed into two disjoint closed sets F = F1 ∪ F2. Thus
since M ∪ ∂IM is compact, there is an open set U such that F1 ⊂ U and U ∩ F2 = ∅.

Thus any continuous curve joining a point y1 ∈ F1 to a point y2 ∈ F2 must intersect
the compact set ∂U ⊂ M ∪ ∂IM . That y1 and y2 belong to the same equivalence class
means that there exist curves γ : [0, 1] → M ∪ ∂IM with γ(0) = y1, γ(1) = y2 and
γ((0, 1)) ∈ M of arbitrarily short σ̃-length. Note that σ̃ = σρ is a metric on M .

By compactness of ∂U we have inf{σ̃(y1, y)|y ∈ ∂U} = δ > 0 and it follows that any
curve γ joining y1 and y2 as above will have σ̃-length at least δ. Thus y1 cannot be
equivalent to y2, which is a contradiction. Hence J−1

M (x) must be connected. ¤
Notice that what we actually prove is: Suppose that we can put a topology on

X ∪ ∂IX such that ∂IX is homeomorphic to a length space, X ∪ ∂IX is compact and
JX : X ∪ ∂IX → X is continuous, then JX∗ : π1(∂IX) → π1(∂ρX) is surjective.

This statement of the result should apply to other spaces besides Hadamard manifolds
and CAT(0)-spaces.
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in Mathematics 1441, Springer, Berlin, 1990.
[9] B. O’Neill, Semi-Riemannian Geometry, Academic Press, 1983.

Department of Mathematics, National University of Ireland, Maynooth, Co. Kildare,
Ireland

E-mail address: sbuckley@maths.nuim.ie

Department of Mathematics, Technical University of Denmark, 2800 Kgs. Lyngby,
Denmark

E-mail address: S.L.Kokkendorff@mat.dtu.dk


