*

Small Weakly Universal Turing Machines

Turlough Neary! and Damien Woods?

! Boole Centre for Research in Informatics,
University College Cork, Ireland
tneary@cs.may.ie
2 Department of Computer Science and Artificial Intelligence
University of Seville, Spain
dwoods@us.es

Abstract. We give small universal Turing machines with state-symbol
pairs of (6,2), (3,3) and (2,4). These machines are weakly universal,
which means that they have an infinitely repeated word to the left of
their input and another to the right. They simulate Rule 110 and are
currently the smallest known weakly universal Turing machines. Despite
their small size these machines are efficient polynomial time simulators
of Turing machines.

1 Introduction

Shannon [22] was the first to consider the problem of finding the smallest univer-
sal Turing machine, where size is the number of states and symbols. Here we say
that a Turing machine is standard if it has a single one-dimensional tape, one
tape head, and is deterministic [7]. Over the years, small universal programs were
given for a number of variants on the standard model. By generalising the stan-
dard model we often find smaller universal programs. One such generalisation
is to allow the blank portion of the Turing machine’s tape to have an infinitely
repeated word to the left, and another to the right. We refer to such universal
machines as weakly universal Turing machines, and they are the subject of this
work.

Beginning in the early sixties Minsky and Watanabe engaged in a vigor-
ous competition to see who could come up with the smallest universal Tur-
ing machine [13,14,23,24]. In 1961, Watanabe [23] gave a 6-state, 5-symbol
machine that was the first weakly universal machine. In 1962, Minsky [14] found
a small 7-state, 4-symbol standard universal Turing machine. Not to be out-done,
Watanabe improved on his earlier machine to give 5-state, 4-symbol and 7-state,
3-symbol weakly universal machines [24].

* Turlough Neary is funded by the Irish Research Council for Science, Engineering
and Technology and by Science Foundation Ireland Research Frontiers Programme
grant number 07/RFP/CSMF641. Damien Woods was supported by a Project of
Excellence from the Junta de Andalucia grant TIC-581, and by Science Foundation
Ireland grant 04/IN3/1524.

M. Kutytowski, M. Ggbala, and W. Charatonik (Eds.): FCT 2009, LNCS 5699, pp. 262-273, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Small Weakly Universal Turing Machines 263

The 7-state universal Turing machine of Minsky has received much atten-
tion. Minsky’s machine simulates Turing machines via 2-tag systems, which were
proved universal by Cocke and Minsky [3]. The technique of simulating 2-tag sys-
tems, pioneered by Minsky, was extended by Rogozhin [21] to give the (then)
smallest known universal Turing machines for a number of state-symbol pairs.
Many of these 2-tag simulators were subsequently reduced in size by Kudlek
and Rogozhin [9], and Baiocchi [2]. Neary and Woods [17] gave small universal
machines that simulate Turing machines via a new variant of tag systems called
bi-tag systems. All of the smallest known universal Turing machines, that obey
the standard definition (deterministic, one tape, one head), simulate either 2-tag
or bi-tag systems. They are plotted as circles and triangles in Figure 1. To get
the polynomial time overhead for 2-tag simulators in Figure 1 the 2-tag simu-
lation of Turing Machines given in [15,26] is used instead of the exponentially
slow technique given in [3].

The small weak machines of Watanabe have received little attention. In par-
ticular the 5-state and 7-state machines seem little known and are largely ignored
in the literature. It is worth noting that while all other weak machines simulate
Turing machine via other simple models, Watanabe’s weak machines simulate
Turing machines directly. His machines are the most time efficient of the small
weak machines. More precisely, let ¢ be the running time of any deterministic
single tape Turing machine M, then Watanabe’s machines are the smallest weak
machines that simulate M with a time overhead of O(¢2).

We often refer to Watanabe’s machines as being semi-weak. Semi-weak ma-
chines are a restriction of weak machines: they have an infinitely repeated word
to one side of their input, and on the other side they have a (standard) infinitely
repeated blank symbol. Recently, Woods and Neary [28] have given semi-weakly
universal machines that simulate cyclic tag systems with state-symbol pairs of
(3,7), (4,5) and (2,13). All of the smallest known semi-weakly universal ma-
chines are plotted as diamonds in Figure 1.

Cook [4] and Wolfram [25], recently gave weakly universal Turing machines,
smaller than Watanabe’s semi-weak machines, that simulate the universal cellu-
lar automaton Rule 110. These machines have state-symbol pairs of (7, 2), (4, 3),
(3,4) and (2,5) and are plotted as hollow squares in Figure 1. (Note that David
Eppstein constructed the (7,2) machine to be found in [4].)

Here we present weakly universal Turing machines with state-symbol pairs
of (6,2), (3,3) and (2,4) making them the smallest known weakly universal
machines. Our machines efficiently simulate (single tape, deterministic) Turing
machines in time O(#* log? t), via Rule 110. These machines are plotted as solid
squares in Figure 1 and induce a weakly universal curve.

Weakness has not been the only generalisation on the standard model in the
search for small universal Turing machines. Priese [20] gave a 2-state, 4-symbol
machine with a 2-dimensional tape, and a 2-state, 2-symbol machine with a 2-
dimensional tape and 2 tape heads. Margenstern and Pavlotskaya [11] gave a
2-state, 3-symbol Turing machine that is universal when coupled with a finite
automaton. The Turing machine part of this couple uses only 5 instructions, and

264 T. Neary and D. Woods

18 : universal, 2-tag simulation, O(t* log? t)

17 : universal, bi-tag simulation, O(t%)
16 : semi-weakly universal, direct simulation, O(t2)
: semi-weakly universal, cyclic tag simulation, O(t4 log2 t)

14 : weakly universal, Rule 110 simulation, O(t* log? t)

"0 e < p O

13 : weakly universal, Rule 110 simulation, O(t* log? t)

12 : universal curve (standard machines)

11 — = : weakly universal curve

10 — : non-universal curve (standard machines)

->

o N o ©

5

symbols ,

3 i—D—-| 0 Ao N
2 —_I O U _‘.F -
1

0

- e e e e - == = = = O

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

states

Fig. 1. State-symbol plot of small universal Turing machines. Each of our new weak
machines is represented by a solid square. These machines induce a weakly universal
curve. Simulation time overheads are specified. The non-universal curve shows standard
machines that are known to have a decidable halting problem.

they also show that the halting problem is decidable for couples in which the Tur-
ing machine has only 4 instructions. Hence, it is not possible to have a universal
couple with a 4-instruction Turing machine that simulates any Turing machine
M and halts if and only if M halts. Thus, they have given the smallest possible
Turing machine that is universal when coupled with a finite automaton. It is
worth noting that the weakly universal machines that we present in this paper
have the smallest number of instructions of any known universal machines with
polynomial time overhead. This comparison even includes all other generalised
Turing machine models such as those mentioned above: all known machines that
use fewer instructions but generalise other aspects (multiple tapes, coupling with
automata etc.) of the model are exponentially slow.

More on small universal Turing machines, and related notions, can be found
in [10,15,27].

1.1 Preliminaries

The Turing machines considered in this paper are deterministic and have a single
bi-infinite tape. We let Uy, ,, denote our weakly universal Turing machine with m
states and n symbols. We write ¢; F ¢o if a configuration ¢, is obtained from ¢y
via a single computation step. We let ¢; F° c2 denote a sequence of s computation
steps, and let ¢; F* ¢o denote zero or more computation steps.

Small Weakly Universal Turing Machines 265

..-9-8-7-6-5-4-3-2-101 23456789 ...

co
c1
c2
c3

Fig. 2. Seven consecutive timesteps of Rule 110. These seven timesteps show the evo-
lution of the background ether that is used in the proof [4] of universality of Rule 110.
Each black or each white square represents, a Rule 110 cell containing, state 1 or 0
respectively. Each cell is identified by the index given above it. To the left of each row
of cells there is a configuration label that identifies that row.

2 Rule 110

Rule 110 is a very simple (2 state, nearest neighbour, one dimensional) cel-
lular automaton. It is composed of a sequence of cells ...p_1pop1 ... where
each cell has a binary state p; € {0,1}. At timestep s + 1, the value p; 541 =
F(pi—1,5:Di,s, Pi+1,s) of the cell at position ¢ is given by the synchronous local
update function F

F(0,0,0) =0 F(1,0,0) =0
F(0,0,1) =1 F(1,0,1) =1 n
F(0,1,0) =1 F(1,1,0) =1
F(0,1,1) =1 F(1,1,1) =0

Rule 110 was proven universal by Cook [4] (Cook’s proof is sketched in [25]).
Neary and Woods [16] proved that Rule 110 simulates Turing machines efficiently
in polynomial time O(#3 logt), an exponential improvement. This time overhead
was further improved to O(t?logt) [15]. Rule 110 simulates cyclic tag systems
in linear time. The weak machines in this paper, and in [4,25], simulate Rule
110 with a quadratic polynomial increase in time and hence simulate Turing
machines in time O(t*log?t). It is worth noting that the prediction problem [5]
for these machines is P-complete, and this is also the case when we consider only
bounded initial conditions [16].

3 Three Small Weakly Universal Turing Machines

The following observation is one of the reasons for the improvement in size over
previous weak machines, and gives some insight into the simulation algorithm
we use. Notice from Equation (1) that the value of the update function F', with
the exception of F(0,1,1) and F(1,1,1), may be determined using only the
rightmost two states. Each of our universal Turing machines exploit this fact as
follows. The machines scan from right to left, and in six of the eight cases they

266 T. Neary and D. Woods

need only remember the cell immediately to the right of the current cell ¢ in
order to compute the update for i. Thus for these six cases we need only store a
single cell value, rather than two values. The remaining two cases are simulated
as follows. If two consecutive encoded states with value 1 are read, it is assumed
that there is another encoded 1 to the left and the update F(1,1,1) = 0 is
simulated. If our assumption proves false (we instead read an encoded 0 to the
left), then our machine returns to the wrongly updated cell and simulates the
update F'(0,1,1) = 1.

Before giving our three small Rule 110 simulators, we give some further back-
ground explanation. Rule 110 simulates Turing machines via cyclic tag systems.
A Rule 110 instance that simulates a cyclic tag system computation is of the
following form (for more details see [4]). The input to the cyclic tag system
is encoded in a contiguous finite number of Rule 110 cells. On the left of the
input a fixed constant word (representing the ‘ossifiers’) is repeated infinitely
many times. On the right, another fixed constant word (representing the cyclic
tag system program/appendants, and the ‘leaders’) is repeated infinitely many
times. Both of these repeated words are independent of the input.

As in [4], our weakly universal machines operate by traversing a finite amount
of the tape from left to right and then from right to left. This simulates a single
timestep of Rule 110 over a finite part of the encoded infinite Rule 110 instance.
With each simulated timestep the length of a traversal increases. To ensure that
each traversal is of finite length, the left blank word [and the right blank word
r of each of our weak machines must have a special form. These words contain
special subwords or symbols that terminate each traversal, causing the tape head
to turn. When the head is turning it overwrites any symbols that caused a turn.
Thus the number of cells that are being updated increases monotonically over
time. This technique simulates Rule 110 properly if the initial condition is set up
so that within each repeated blank word, the subword between each successive
turn point is shifted one timestep forward in time.

In the sequel we describe the computation of our three machines by showing a
simulation of the update on the ether in Figure 2. In the next paragraph below,
we outline why this example is in fact general enough to prove universality. First,
we must define blank words that are suitable for this example. The left blank
word [, on the Turing machine tape, encodes the Rule 110 sequence 0001. In
the initial configuration as we move left each subsequent sequence 0001 is one
timestep further ahead. To see this note from Figure 2 that 0001 occupies, cells
—7 to —4 in configuration ¢y, cells —11 to —8 in ¢3, cells —15 to —12 in c3, etc.
Similarly, the right blank word r encodes the Rule 110 sequence 110011. Looking
at the initial configuration, as we move right from cell 0, in the first blank word
the first four cells 1100 are shifted two timesteps ahead, and the next two cells
11 are shifted a further one timestep. To see this note from Figure 2 that 1100
occupies cells 1 to 4 in ¢y and 11 occupies cells 5 and 6 in c3. In each subsequent
sequence the first four cells 1100 are shifted only one timestep ahead and the last
two cells 11 are shifted one further timestep. In each row the ether in Figure 2
repeats every 14 cells and if the number of timesteps s between two rows is s = 0

Small Weakly Universal Turing Machines 267

mod 7 then the two rows are identical. The periodic nature of the ether, in both
time and space, allows us to construct such blank words.

It should be noted that the machines we present here, and those in [4,25], re-
quire suitable blank words to simulate a Rule 110 instance directly. If no suitable
blank words can be found (i.e. if it is not possible to construct subwords that
terminate traversals in the encoding) then it may be the case that the particular
instance can not be simulated directly. In the sequel our machines simulate the
background ether that is used in the universality proof of Rule 110 [4]. The glid-
ers used by Cook [4] that move through this ether are periodic in time and space.
Thus, we can construct blank words that include these gliders and place the sub-
words that terminate traversals in the ether. By this reasoning, our example is
sufficiently general to prove that our machines simulate Turing machines via
Rule 110 and we do not give a full (and possibly tedious) proof of correctness.
For Us 3 we explicitly simulate three updates from Figure 2, which is general
enough so that an update [Equation (1)] on each of the eight possible three state
combinations is simulated. We give shorter examples for the machines Us 4 and
Us,2 as they use the same simulation algorithm as Us 3.

As with the machines in [4,25], the machines we present here do not halt.
Cook [4] shows how a special glider may be produced during the simulation of a
Turing machine by Rule 110. This glider may be used to simulate halting as the
encoding can be such that it is generated by Rule 110 if and only if the simulated
machine halts. The glider would be encoded on the tape of our machines as a
unique, constant word.

3.1 Usgs

We begin by describing an initial configuration of Us 3. To the left of, and in-
cluding, the tape head position, the Rule 110 state 0 is encoded by 0, and the
Rule 110 state 1 is encoded by either 1 or b. The word 150 is used to terminate
a left traversal. (Note an exception: the 1 in the subword 150 encodes the Rule
110 state 0.) To the right of the tape head position, the Rule 110 state 0 is
encoded by 1, and the Rule 110 state 1 is encoded by 0 or b. The tape symbol 0
is used to terminate a right traversal. The left and right blank words, described
in paragraph 4 of Section 3, are encoded as 0016 and 0b110b respectively.

Table 1. Table of behaviour for Us 3

U1 U2 us
0 1Lu1 ORU1 bLu1
1 bL’lLQ lLU2 ORU3
b bLU3 1RU3

We give an example of Us 3 simulating the three successive Rule 110 timesteps
co F c1 b co b ocg given in Figure 2. In the below configurations the current
state of Us 3 is highlighted in bold, to the left of its tape contents. The tape
head position of Us s is given by an underline and the start state is u;. The

268 T. Neary and D. Woods

configuration immediately below encodes ¢y from Figure 2 with the tape head
over cell index 0.

up, ... 0016 0016 0016 0001 O0b110b 001100...
uz, ... 0016 0016 0016 000b O0b110b 001100...
up, ... 0016 0016 O001b 000b 0b110b 0b1100b...
ug, ... 0016 0016 O001b 000b 0b110b 0b110Db...
up, ... 0016 0016 0016 00bbL O0b110bL 001100...
F2 4y, ... 0016 001b 001b 11bb 0b110b 0b110b...
Fus, ...0016 001b 001b 11bb 0b110b 0b1100b...

T T T T

When the tape head reads the subword 150 the left traversal is complete and
the right traversal begins.

FS ug, ... 001b 001b 0001 0011 0b110b 0b110b...
Fu,...0016 0015 0001 0011 bb110b O0bL110b...

Immediately after the tape head reads a 0, during a right traversal, the simulation
of timestep ¢y F ¢; is complete. To see this, compare the part of the Turing
machine tape in bold with cells —7 to 0 of configuration ¢; in Figure 2. We
continue our simulation to give timestep ¢; F cs.

Foaug,...001b 001b 0001 001b bb110b 0b110D...
F g, ...001b 001b 0001 001b bb110b 0b110D...
F aup, ...001b 001b 0001 001b bb110b 0b1100...
F aug, ... 001b 001b 0001 00bb bb110b 0b110D...
F> wp, ... 00106 001b 0001 0bbb bb110b 0b110b...
F2 ug, ... 001b 001b 000b 1bbb bb110b 0b110b ...
F3 uy, ... 001b 001b 00bb 1bbb bb110b 0b110b...
F> us, ... 001b 001b 11bb 1bbb bb110b 0b110b ...
% w4, ... 001b 0001 0011 0111 1100bb 0b110b...

The simulation of timestep ¢; F co is complete. To see this, compare the part
of the Turing machine tape in bold with cells —11 to 4 of configuration ¢y in
Figure 2. We continue our simulation to give timestep cs - c3.

F wug, ... 001b 0001 0011 0111 1b11bb 061100 ...
F* up, ...001b 0001 0011 0111 1b11bb 0b110b...

Small Weakly Universal Turing Machines 269

F> 4y, ... 0016 0001 0011 bbll 1b11bb 0b110Db...
F2 ug, ... 0016 0001 001b bb11 1b11bb 0b110b ...
F5 4y, ... 001b 0001 0bbb bb11 1b11bb 0b110b...
F2 ug, ... 001b 000b 1bbb bb11 1b11bb 0b110b ...
F6 ug, ... 001b 11bb 1bbb bbll 1b11bb 0b110b...
F! 4, ... 0001 0011 0111 1100 010011 bb110b...

The simulation of timestep cs F c3 is complete. To see this, compare the part
of the Turing machine tape in bold with cells —15 to 6 of configuration c3 in
Figure 2.

3.2 Usy

We begin by describing an initial configuration of Us 4. To the left of, and in-
cluding, the tape head position, the Rule 110 state 0 is encoded by either 0 or {f
and the Rule 110 state 1 is encoded by either 1 or 1. The word @1 is used to
terminate a left traversal. To the right of the tape head position, the Rule 110
state 0 is encoded by (} and the Rule 110 state 1 is encoded by I or 0. The tape
symbol 0 is used to terminate a right traversal. The left and right blank words,
from paragraph 4 of Section 3, are encoded as 0001 and 0 Y @#P0 I respectively.

Table 2. Table of behaviour for Us 4

U1 U2
Q Lu1 1 Ru1
1 LUQ Q LUQ
1 Lu1 ORUQ
1 Lu1 1RUQ

B S SR)

We give an example of Us 4 simulating the two successive Rule 110 timesteps
co b 1 F o given in Figure 2. The configuration immediately below encodes c¢g
from Figure 2 with the tape head over cell index 0.

up, ... 0001 00¢1 00¢1 0001 O0fP@0L O01GPOY ...

6wy, ... 0001 0091 00¢1 g@11 0rggol oigpof...
- us, ... 0001 0001 0009f @@I1 01@g0r O01PP0L...

When the tape head reads the subword 1 the left traversal is complete and the
right traversal begins.

FS ug, ... 0001 00p1 0001 0011 0fpp0oL OF@G@OL...
F o, ...0001 00¢1 0001 0011 fI@pP0ofl 01p@0f...

270 T. Neary and D. Woods

Immediately after the tape head reads a 0, during a right traversal, the simulation
of timestep ¢y F ¢; is complete. To see this, compare the part of the Turing
machine tape in bold with cells —7 to 0 of configuration ¢; in Figure 2. We
continue our simulation to give timestep ¢; F cs.

F2 uy, ... 0001 00@¢1 0001 0011 YY@@POl Of@@OL...
F2 ug, ... 0001 00¢1 0001 00pf J1¢P0L O1@G@OL...
F o, ...0001 0001 0001 O01pf 11@@0Yr 01@@Of...
FY ug, ... 0001 00@1 0001 @Iff XIGPOL OX@@GOL...
Fo g, ... 0001 0001 @g@rY Prrr 1regor orppor...
Foug, ... 0001 0091 @@xr @rrr rregor orgeor...
% w, ... 0001 0001 0011 0111 110011 Ofppof...

The simulation of timestep ¢ F c5 is complete. To see this, compare the part
of the Turing machine tape in bold with cells —11 to 4 of configuration ¢y in
Figure 2.

3.3 Uspz

We begin by describing an initial configuration of Us . To the left of, and in-
cluding, the tape head position, the Rule 110 state 0 is encoded by the word 00
and the Rule 110 state 1 is encoded by the word 11. The word 010100 is used to
terminate a left traversal and encodes the sequence of Rule 110 states 010. To
the right of the tape head position the Rule 110 state 0 is encoded by the word 00
and the Rule 110 state 1 is encoded by either of the words 01 or 10. The word 10
is used to terminate a right traversal. The left and right blank words, from para-
graph 4 of Section 3, are encoded as 00000101 and 100100001001 respectively.

Table 3. Table of behaviour for Us 2

Ul Uu us U4 us Ue
O 0Lu1 0Lu6 ORUQ 1RU5 1LU4 1Lu1
1 1Lu2 OLU3 lLU3 0Ru6 1RU4 0RU4

To illustrate the operation of Us 2 we simulate the Rule 110 timestep co F ¢
given in Figure 2. The configuration immediately below encodes ¢y from Figure 2
with the tape head over cell index 0.

u, ...
l—'u,z,...
I—'u,3,...
F uz, ...

00000101
00000101
00000101
00000101

00000101
00000101
00000101
00000101

00000011
00000011
00000001
00000001

100100001001 ...
100100001001 ...
100100001001 ...
100100001001 ...

Small Weakly Universal Turing Machines 271
F ug, ...00000101 00000101 00000001 100100001001...
F o, ...00000101 00000101 00000101 100100001001...
F5 wp, ...00000101 00000101 00000101 100100001001...
F ug, ...00000101 00000101 00000101 100100001001...
F u, ...00000101 00000101 00000101 100100001001...
F u4, ...00000101 00000001 00000101 100100001001...
When the tape head reads the subword 10100 the left traversal is complete

and the right traversal begins.

Fus,...00000101 00000011 00000101 100100001001 ...
F ug, ...00000101 00000011 00000101 100100001001 ...
F us, ...00000101 00000011 10000101 100100001001 ...
F ug4, ...00000101 00000011 11000101 100100001001 ...
F us, ...00000101 00000011 01000101 100100001001 ...
F ug, ...00000101 00000011 00000101 100100001001 ...
F* ug, ...00000101 00000011 00000101 100100001001 ...
Fus, ...00000101 00000011 00001101 100100001001 ...
F ug, ...00000101 00000011 00001101 100100001001 ...
F2 u4, ...00000101 00000011 00001111 100100001001 ...
F us, ...00000101 00000011 00001111 000100001001...
Fu,...00000101 00000011 00001111 010100001001...

Immediately after the tape head reads a 10, during a right traversal, the simula-
tion of timestep cg k- ¢1 is complete. To see this, compare the part of the Turing
machine tape in bold (recall 0 and 1 are encoded as 00 and 11 respectively) with
cells —7 to 0 of configuration ¢; in Figure 2.

4 Discussion on Lower Bounds

The pursuit to find the smallest possible universal Turing machine must also
involve the search for lower bounds, finding the largest Turing machines that
are in some sense non-universal. One approach is to settle the decidability of
the halting problem, but this approach is not suitable for the machines we have
presented.

It is known that the halting problem is decidable for (standard) Turing ma-
chines with the following state-symbol pairs (2, 2) [8,18], (3,2) [19], (2, 3) (claimed
by Pavlotskaya [18]), (1,n) [6] and (n, 1) (trivial), where n > 1. Then, these decid-
ability results imply that a universal Turing machine, that simulates any Turing
machine M and halts if and only if M halts, is not possible for these state-symbol
pairs. Hence these results give lower bounds on the size of universal machines of

272 T. Neary and D. Woods

this type. While it is trivial to prove that the halting problem is decidable for (pos-
sibly halting) weak machines with state-symbol pairs of the form (n, 1), it is not
known whether the other decidability results above generalise to (possibly halt-
ing) weak Turing machines.

The weakly universal machines presented in this paper, and those in [4,25], do
not halt. Hence the non-universality results discussed in the previous paragraph
would have to be generalised to non-halting weak machines to give lower bounds
that are relevant for our machines. This may prove difficult for two reasons.
The first issue is that, intuitively speaking, weakness gives quite an advantage.
For instance, the program of a universal machine may be encoded in one of the
infinitely repeated blank words of the weak machine. The second issue is related
to the problem of defining a computation. Informally, a computation could be
defined as a sequence of configurations that ends in a special terminal config-
uration. For non-halting machines, there are many ways to define a terminal
configuration. Given a definition of terminal configuration we may prove that
the terminal configuration problem (will a machine ever enter a terminal config-
uration) is decidable for a machine or set of machines. However this result may
not hold as a proof of non-universality if we subsequently alter our definition of
terminal configuration. In fact, it may be easily shown that the Turing machine
Us,4 from Table 2, which we prove weakly universal, is provably non-universal
when it is restricted to the standard blank background.

It is trivial that no weakly universal Turing machines exist for the state-
symbol pair (n,1) even when we consider machines with no halting condition.
We also believe that relevant decidability results for the state-symbol pair (2, 2)
may be given. If this is true, then the problem of whether or not there are 2-
state and 3-state weakly universal machines remains open for only (2,3) and
(3,2) respectively.

Margenstern [10], Baiocchi [1], and Michel [12] have found small machines that
simulate iterations of the 3x 4+ 1 problem and other Collatz-like functions. The
smallest known weakly universal machines are almost at the minimum possible
size, thus implementing the Collatz problem on weak machines could be an
interesting way of exploring the little space remaining between these machines
and the state-symbol pairs where weak universality is not possible.

References

1. Baiocchi, C.: 3N+1, UTM e tag-system. Technical Report Pubblicazione 98/38,
Dipartimento di Matematico, Universitd di Roma (1998) (in Italian)

2. Baiocchi, C.: Three small universal Turing machines. In: Margenstern, M., Ro-
gozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 1-10. Springer, Heidelberg
(2001)

3. Cocke, J., Minsky, M.: Universality of tag systems with P = 2. Journal of the
ACM 11(1), 15-20 (1964)

4. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1),
1-40 (2004)

5. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to parallel computation: P-
completeness theory. Oxford University Press, Oxford (1995)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Small Weakly Universal Turing Machines 273

. Hermann, G.: The uniform halting problem for generalized one state Turing ma-

chines. In: Proceedings, Ninth Annual Symposium on Switching and Automata
Theory (FOCS), pp. 368-372. IEEE, New York (1968)

. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and

computation. Addison-Wesley, Reading (1979)

. Kudlek, M.: Small deterministic Turing machines. Theoretical Computer Sci-

ence 168(2), 241-255 (1996)

. Kudlek, M., Rogozhin, Y.: A universal Turing machine with 3 states and 9 symbols.

In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp.
311-318. Springer, Heidelberg (2002)

Margenstern, M.: Frontier between decidability and undecidability: A survey. The-
oretical Computer Science 231(2), 217-251 (2000)

Margenstern, M., Pavlotskaya, L.: On the optimal number of instructions for uni-
versality of Turing machines connected with a finite automaton. International Jour-
nal of Algebra and Computation 13(2), 133-202 (2003)

Michel, P.: Small Turing machines and the generalized busy beaver competition.
Theoretical Computer Science 326(1-3), 45-56 (2004)

Minsky, M.: A 6-symbol 7-state universal Turing machines. Technical Report 54-
G-027, MIT (1960)

Minsky, M.: Size and structure of universal Turing machines using tag systems. In:
Recursive Function Theory, Proceedings, Symposium in Pure Mathematics, vol. 5,
pp. 229-238. AMS, Provelence (1962)

Neary, T.: Small universal Turing machines. PhD thesis, Department of Computer
Science, National University of Ireland, Maynooth (2008)

Neary, T., Woods, D.: P-completeness of cellular automaton Rule 110. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, 1. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
132-143. Springer, Heidelberg (2006)

Neary, T., Woods, D.: Four small universal Turing machines. Fundamenta Infor-
maticae 91(1), 123-144 (2009)

Pavlotskaya, L.: Solvability of the halting problem for certain classes of Turing
machines. Mathematical Notes (Springer) 13(6), 537-541 (1973)

Pavlotskaya, L.: Dostatochnye uslovija razreshimosti problemy ostanovki dlja
mashin T’juring. Problemi kibernetiki, 91-118 (1978) (in Russian)

Priese, L.: Towards a precise characterization of the complexity of universal and
non-universal Turing machines. Siam journal of Computing 8(4), 508-523 (1979)
Rogozhin, Y.: Small universal Turing machines. Theoretical Computer Sci-
ence 168(2), 215-240 (1996)

Shannon, C.E.: A universal Turing machine with two internal states. Automata
Studies, Annals of Mathematics Studies 34, 157-165 (1956)

Watanabe, S.: 5-symbol 8-state and 5-symbol 6-state universal Turing machines.
Journal of ACM 8(4), 476-483 (1961)

Watanabe, S.: 4-symbol 5-state universal Turing machine. Information Processing
Society of Japan Magazine 13(9), 588-592 (1972)

Wolfram, S.: A new kind of science. Wolfram Media, Champaign (2002)

Woods, D., Neary, T.: On the time complexity of 2-tag systems and small universal
Turing machines. In: 47" Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 439-448. IEEE, New York (2006)

Woods, D., Neary, T.: The complexity of small universal Turing machines: A survey.
Theoretical Computer Science 410(4-5), 443-450 (2009)

Woods, D., Neary, T.: Small semi-weakly universal Turing machines. Fundamenta
Informaticae 91(1), 179-195 (2009)

