An Integral Formula for the Maslov-Index of a Symplectic Path

Stefan Bechtluft-Sachs Department of Mathematics, NUI Maynooth, Co Kildare, Ireland e-mail: stefan@maths.nuim.ie

November 8, 2007

Abstract

The Maslov index of a not necessarily closed path M in the symplectic group $Sp(2n)$ is expressed by an integral formula. We have an explicit formula for the integrand which is a rational 1-form on $Sp(2n)$.

Keywords: Symplectic Group, Lagrangian Grassmannian, Maslov Index

1 Introduction

The homotopy class of a loop $\Lambda(t)$ in the Lagrangian Grassmannian $\mathbf{L}(2n)$ in standard symplectic space \mathbb{R}^{2n} is detected by an integer, the Maslov index. Following Arnold, [\[1\]](#page-10-0), this can be defined as an intersection number with a certain subset of $L(2n)$, the Maslov cycle. In [\[6\]](#page-10-1) this definition of the Maslov index was extended to not necessarily closed paths, and it is this index which enters in the Gutzwiller trace formula in semiclassical quantisation, [\[2\]](#page-10-2), see also $[4]$

The group $\text{Sp}(2n)$ of symplectic automorphisms of \mathbb{R}^{2n} acts transitively on the set of Lagrangians and thus $\mathbf{L}(2n) = \frac{\text{Sp}(2n)}{\text{H}(2n)}$ is a homogeneous space. In applications the path $\Lambda(t)$ is frequently given in the form $M(t)\Lambda_0$ with a curve $M(t) \in Sp(2n)$ of symplectic automorphisms and a fixed Lagrangian Λ_0 . In view of calculations of the Maslov index as in [\[3\]](#page-10-4) it seems desirable to compute the Maslov index $\mu(\Lambda) = \mu(M)$ directly in terms of M.

In the present note we derive such a formula. We show that the Maslov index is the line integral over a certain differential form $\chi_{\text{Sp}(2n)} \in \Omega^1(\text{Sp}(2n), \mathbb{R})$ plus end point terms which are also given by an explicit function Φ on $Sp(2n)$.

For unitary paths, i.e. paths $M(t) \in U(n) \subset Sp(2n)$ in the unitary group the (complex) Trace $\text{Tr}_{\mathbb{C}}$ on the Lie algebra $\mathfrak{u}(n)$ is an invariant for the adjoint representation, and therefore provides a bi-invariant 1-form on $U(n)$. On the symplectic group $Sp(2n)$ however a nontrivial biinvariant 1-form does not exist. The 1-form $\chi_{Sp(2n)}$ and the function Φ we construct are invariant under the left action of $Sp(2n)$ and under the right action of the stabilizer subgroup $H(n)$ which contains $O(n)$.

We formulate our main result in the next section [2.](#page-1-0) Then, in section [3,](#page-4-0) we compute the 1-form $\chi_{Sp(2n)}$ explicitely in terms of the entries of the symplectic matrix. Finally we prove our integral formula by verifying the axioms for the Maslov index in section [4.](#page-5-0)

2 A local formula for the Maslov index

We need to introduce some notation and recall some well known facts from symplectic geometry as may be found in [\[5\]](#page-10-5), for instance. Let Λ_0 be a Lagrangian in \mathbb{R}^{2n} and Λ_0^{\perp} the orthogonal complement with respect to the standard scalar product $\langle \cdot | \cdot \rangle$. The symplectic structure ω on \mathbb{R}^{2n} can be written as

$$
\omega(x, y) = \langle x | Jy \rangle
$$

where J is a complex structure, i.e. $J \in O(2n)$ with $J^2 = -\mathbf{1}_{2n}$ and we have $J\Lambda_0 = \Lambda_0^{\perp}.$

Usually we choose coordinates such that $\Lambda_0 = \mathbb{R}^n \times \{0\}$, $\Lambda_0^{\perp} = \{0\} \times \mathbb{R}^n$ and so that the complex structure J becomes

$$
J = \left(\begin{array}{cc} 0 & -\mathbf{1}_n \\ \mathbf{1}_n & 0 \end{array}\right) , \quad \mathbf{1} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{array}\right) \in \text{Mat}(n \times n, \mathbb{R}) . \tag{1}
$$

With respect to the orthogonal decomposition

$$
\mathbb{R}^{2n} = \Lambda_0 \oplus \Lambda_0^{\perp} \tag{2}
$$

we can write a (symplectic) matrix M as

$$
M = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \tag{3}
$$

where

 $a \in \text{Hom}(\Lambda_0, \Lambda_0), \ b \in \text{Hom}(\Lambda_0^{\perp}, \Lambda_0), \ c \in \text{Hom}(\Lambda_0, \Lambda_0^{\perp}), \ d \in \text{Hom}(\Lambda_0^{\perp}, \Lambda_0^{\perp})$.

All these will be identified with $\text{Mat}(n \times n; \mathbb{R})$.

By means of the complex structure [\(1\)](#page-1-1) we can read a complex $(n \times n)$ -matrix Y as a real $(2n \times 2n)$ -matrix $\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$. The traces Tr_C over C respectively $\mathrm{Tr}=\mathrm{Tr}_{\mathbb{R}}$ over \mathbb{R} are related by

$$
\operatorname{Tr}_{\mathbb{C}}(Y) = \frac{1}{2}\operatorname{Tr}(Y) - \frac{i}{2}\operatorname{Tr}(JY) = \operatorname{Tr}(\alpha) + i\operatorname{Tr}(\beta) . \tag{4}
$$

The group $Sp(2n)$ of symplectic automorphisms is

$$
Sp(2n) = \{ M \in Gl(2n) \mid M^t J M = J \}
$$

and acts transitively on the Lagrangian Grassmannian $\mathbf{L}(2n)$. The stabilizer group, i.e. the isotropy group of this action at $\Lambda_0 = \mathbb{R}^n \times \{0\}$ is

$$
H(n) = \left\{ \begin{pmatrix} A & X \\ 0 & (A^t)^{-1} \end{pmatrix} | A \in Gl(n) , AX \in Mat(n \times n, \mathbb{R}) \text{ symmetric} \right\}
$$

We will also need the subgroup $H^+(n)$ consisting of those matrices in $H(n)$ with A upper triangular and positive. The unitary group $U(n)$ and the orthogonal group $O(n)$ are naturally identified as subgroups of $Sp(2n)$,

$$
U(n) = \{M \in \text{Sp}(2n) \mid MJ = JM\} = \text{Sp}(2n) \cap \text{O}(2n)
$$

\n
$$
O(n) = \{M \in \text{Sp}(2n) \mid MJ = JM \text{ and } M\Lambda_0 = \Lambda_0\}
$$

\n
$$
= \left\{ \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} | T \in \text{O}(n) \right\} = H(n) \cap \text{O}(2n) \subset U(n) .
$$
\n(5)

With these identifications we can represent the Lagrangian Grassmannian as homogeneous space,

$$
\mathbf{L}(2n) = \text{Sp}(2n) / \text{H}(n) = \text{U}(n) / \text{O}(n) . \tag{6}
$$

The square of the (complex) determinant

$$
\mathbf{L}(2n) = \mathrm{U}(n) / \mathrm{O}(n) \to \mathrm{U}(1), \ F \mapsto \det_{\mathbb{C}}(F)^2 \tag{7}
$$

induces an isomorphism of the fundamental groups

$$
\pi_1(\mathbf{L}(2n)) \cong \pi_1(\mathrm{U}(1)) = \mathbb{Z} .
$$

The Jordan-, or QR- decomposition, of the symplectic group is

$$
Sp(2n) = U(n) \cdot H^+(n)
$$

and

$$
H^+(n) = D^+(n) \ltimes Sym(n)
$$

is the semidirect product of the group of positive upper triangular matrices with the vector group of symmetric matrices. In particular, we have a diffeomorphism and a homotopy equivalence, both equivariant under the right action of $H^+(n)$,

$$
\mathcal{F}: \text{Sp}(2n) \cong \text{U}(n) \times \text{H}^+(n) \xrightarrow{\simeq} \text{U}(n) . \tag{8}
$$

We will also need the map

$$
\mathcal{H} \colon \operatorname{Sp}(2n) \cong \operatorname{U}(n) \times \operatorname{H}^+(n) \xrightarrow{\simeq} \operatorname{H}^+(n) . \tag{9}
$$

These are defined by first decomposing a given $M \in Sp(2n)$, $M = FH$ with $F \in U(n)$, $H \in H^+(n)$ uniquely determined by M. This can be done efficiently by any of the algorithms for the QR-decomposition. Then we set $\mathcal{F}(M) := F$ and $\mathcal{H}(M) := H$

For the contribution of end points we need a function

$$
\Phi\colon\operatorname{Sp}(2n)\to\mathbb{R}.
$$

which is defined as follows: $\Phi(M)$ is computed from the unitary part

$$
\mathcal{F}(M) = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}
$$
 (10)

alone. Since $F^t F = \mathbf{1}_{2n} = FF^t$ we have

$$
\alpha^t \alpha + \beta^t \beta = \mathbf{1}_n, \ \alpha^t \beta = \beta^t \alpha,
$$

$$
\alpha \alpha^t + \beta \beta^t = \mathbf{1}_n, \ \alpha \beta^t = \beta \alpha^t.
$$

From these relations it follows that $\alpha^t\alpha$, $\beta^t\beta$ and $\alpha^t\beta$ commute and can therefore be simultaneously diagonalized. Since $Spec(\beta^t\beta) \subset [0,1]$ we may set

$$
X := \arcsin\left((\beta^t \beta)^{1/2} \right) \in \text{Mat}(n \times n; \mathbb{R}) \ . \tag{11}
$$

Note that X is nonegative symmetric and Spec $X \subset [0, \frac{\pi}{2}]$. Now define $T_{\alpha}, T_{\beta} \in$ $\mathrm{Mat}(n \times n;\mathbb{R})$ as

$$
T_{\beta} = \beta \sin(X)^{-1} \operatorname{pr}_{(\ker X)^{\perp}}, \ T_{\alpha} = \alpha \cos(X)^{-1} \operatorname{pr}_{\ker\left(X - \frac{\pi}{2} \mathbf{1}_n\right)^{\perp}}
$$
(12)

where pr denotes the orthogonal projection on the subspace indicated. We then have

$$
\beta = T_{\beta} \sin(X), \ \alpha = T_{\alpha} \cos(X), \ T_{\beta}^{t} T_{\beta} = \text{pr}_{(\ker X)^{\perp}}, \ T_{\alpha}^{t} T_{\alpha} = \text{pr}_{\ker(X - \frac{\pi}{2} \mathbf{1}_{n})^{\perp}}
$$

We define

$$
\Phi(M) := \frac{1}{\pi} \operatorname{Tr} \left(T_{\alpha}^t T_{\beta} \left(X - \frac{\pi}{2} \mathbf{1}_n \right) \right) \,. \tag{13}
$$

This is to arrange for $\mathbf{d}\Phi = \chi_{\text{Sp}(2n)}$ on the complement of the Maslov cycle (see Lemma [21](#page-6-0) and [\(23\)](#page-7-0) in the proof of that Lemma).

We can now write down an integral formula for the Maslov index:

Theorem Let $M: [0,1] \rightarrow Sp(2n)$ be a differentiable path in the symplectic group of \mathbb{R}^{2n} and let $\Lambda_0 \subset \mathbb{R}^{2n}$ be a fixed Lagrangian subspace. Then the Maslov index $\mu(\Lambda) \in \frac{1}{2}\mathbb{Z}$ of the path $\Lambda: [0,1] \to \mathbf{L}(2n)$, $\Lambda(t) = M(t)\Lambda_0$, in the Lagrangian-Grassmannian of \mathbb{R}^{2n} is given by

$$
\mu(M) = \mu(\Lambda) = \int_M \chi_{\text{Sp}(2n)} - \Phi(M(1)) + \Phi(M(0)) \tag{14}
$$

where Φ is as defined in [\(13\)](#page-3-0) and

$$
\chi_{\mathrm{Sp}(2n)} = -\frac{1}{2\pi} \mathrm{Tr} \left(J M^t \mathbf{d} M \right) - \mathrm{Tr} \left(J \mathcal{H} (M)^t \mathbf{d} (\mathcal{H} (M)) \right)
$$

This form is explicitely computed in [\(17\)](#page-4-1) in terms of the coefficients of M.

Recall that the stabilizer part $H = \mathcal{H}(M) \in H^+(n) \subset \text{Mat}(2n \times 2n)$ is uniquely determined from M by the following conditions (see [\(9\)](#page-2-0)):

1. $M^t M = H^t H$,

2.
$$
H = \begin{pmatrix} A & AX \\ 0 & (At)^{-1} \end{pmatrix}
$$
 w.r.t. the splitting $\mathbb{R}^{2n} = \Lambda_0 \oplus \Lambda_0^{\perp}$,

- 3. $A \in \text{Mat}(n \times n, \mathbb{R})$ is upper triangular with positive eigenvalues,
- 4. $X \in \text{Mat}(n \times n, \mathbb{R})$ is symmetric.

3 The 1-form on the symplectic group

We will now derive explicit formulas for the integrand in [\(14\)](#page-3-1). The form χ = $\frac{1}{2\pi i}z^{-1}$ **d** z on $U(1) = S^1 \subset \mathbb{C}$ detects the homotopy type of a loop in U(1). To find the right 1-form for the Maslov index we first pull back χ to $U(n)$ via the map det_{\mathbb{C}} in [\(7\)](#page-2-1). Sine $\mathbf{d}(\det_{\mathbb{C}} F) = \det_{\mathbb{C}} (F) \operatorname{Tr}_{\mathbb{C}} (F^{-1} \mathbf{d} F)$ we get

$$
\chi_{\mathrm{U}(n)} = \left(\det_{\mathbb{C}}^2\right)^* \chi = \frac{1}{\pi i} \operatorname{Tr}_{\mathbb{C}} F^{-1} \mathbf{d} F \in \Omega^1(\mathrm{U}(n)) .
$$

This already gives a formula, similiar to that for the winding number, for the Maslov index of a *unitary* path $F(t)\Lambda_0$, $F: [0, 1] \to U(n)$,

$$
\mu(F) = \frac{1}{\pi i} \int \text{Tr}_{\mathbb{C}}(F^{-1} \mathbf{d} F) - \Phi(F(1)) + \Phi(F(0))
$$

The 1-form on $Sp(2n)$ we are looking for is the pull back of $\chi_{U(n)}$ over the map $\mathcal F$ in [\(8\)](#page-2-2). We compute this explicitely.

Lemma 15 Denote by $a, b, c, d \in \text{Mat}(n \times n, \mathbb{R})$ the components of a symplectic matrix M, i.e the matrices such that

$$
M = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \tag{16}
$$

with respect to the decomposition [\(2\)](#page-1-2). Then

$$
\chi_{\text{Sp}(2n)} = F^* \chi_{\text{U}(n)} = \frac{1}{\pi i} \text{Tr}_{\mathbb{C}} \left(\mathcal{F}(M)^{-1} \mathbf{d} \mathcal{F}(M) \right)
$$

\n
$$
= \frac{-1}{2\pi} \text{Tr} \left(J M^t \mathbf{d} M - J H^t \mathbf{d} H \right)
$$

\n
$$
= \frac{-1}{2\pi} \text{Tr} \left[-b^t \mathbf{d} a - d^t \mathbf{d} c + a^t \mathbf{d} b + c^t \mathbf{d} d \right]
$$

\n
$$
- (a^t a + c^t c) \mathbf{d} \left[(a^t a + c^t c)^{-1} (a^t b + c^t d) \right] \right]
$$
\n(17)

Proof: Let $M \in \text{Sp}(2n)$ and $F = \mathcal{F}(M) = MH^{-1} \in \text{U}(n)$ with $H \in \text{H}^+(n)$. We get

$$
F^{-1} dF = HM^{-1} (dM)H^{-1} + HM^{-1}M d(H^{-1}) \in \Omega^1(\text{Sp}(2n), \mathfrak{u}(n)) .
$$

Because of [\(4\)](#page-1-3) and since $H^t H = M^t M$,

$$
\operatorname{Tr}_{\mathbb{C}} F^{-1} \mathbf{d} F = \frac{1}{2i} \operatorname{Tr} J F^{-1} dF = \frac{1}{2i} \operatorname{Tr} (J H M^{-1} (\mathbf{d} M) H^{-1} + J H M^{-1} M \mathbf{d} (H^{-1}))
$$

\n
$$
= \frac{1}{2i} \operatorname{Tr} (H^{-1} J H M^{-1} \mathbf{d} M - J H H^{-1} (\mathbf{d} H) H^{-1})
$$

\n
$$
= \frac{1}{2i} \operatorname{Tr} (J H^{t} H M^{-1} \mathbf{d} M - J (\mathbf{d} H) H^{-1})
$$

\n
$$
= \frac{1}{2i} \operatorname{Tr} (J M^{t} M M^{-1} \mathbf{d} M + J (\mathbf{d} H) J H^{t} J)
$$

\n
$$
= \frac{1}{2i} \operatorname{Tr} (J M^{t} \mathbf{d} M - J H^{t} \mathbf{d} H)
$$

\n(18)

In view of [\(16\)](#page-4-2) we can simplify this further. First

$$
\operatorname{Tr}(JM^t \mathbf{d} M) = \operatorname{Tr}\begin{pmatrix} 0 & -\mathbf{1} \\ \mathbf{1} & 0 \end{pmatrix} \begin{pmatrix} a^t & c^t \\ b^t & d^t \end{pmatrix} \begin{pmatrix} \mathbf{d} a & \mathbf{d} b \\ \mathbf{d} c & \mathbf{d} d \end{pmatrix}
$$

$$
= \operatorname{Tr}(-b^t \mathbf{d} a - d^t \mathbf{d} c + a^t \mathbf{d} b + c^t \mathbf{d} d)
$$

For the second summand in [\(18\)](#page-5-1) let $H = \begin{pmatrix} A & AX \\ 0 & (At)^{-1} \end{pmatrix}$ 0 $(A^t)^{-1}$ $\Big) \in H^+(n)$. We compute

$$
\operatorname{Tr}\left(JH^t \mathbf{d} H\right) = \operatorname{Tr}\left(\begin{array}{cc} 0 & -\mathbf{1} \\ \mathbf{1} & 0 \end{array}\right) \left(\begin{array}{cc} A^t & 0 \\ X^t A^t & A^{-1} \end{array}\right) \left(\begin{array}{cc} \mathbf{d} A & \mathbf{d}(AX) \\ 0 & \mathbf{d}\left((A^t)^{-1}\right) \end{array}\right)
$$

$$
= \operatorname{Tr}(-X^t A^t \mathbf{d} A + A^t \mathbf{d}(AX))
$$

$$
= \operatorname{Tr}(A^t A \mathbf{d} X)
$$

since X is symmetric. As $H^t H = M^t M$ we have $A^t A = a^t a + c^t c$ and $A^t A X =$ $a^t b + c^t d$ which yields

Tr
$$
(JH^t \mathbf{d} H)
$$
 = Tr $[(a^t a + c^t c) \mathbf{d} [(a^t a + c^t c)^{-1} (a^t b + c^t d)]$

П

4 The axiomatic characterization of the Maslov index

For the proof of the Theorem, denote by $\tilde{\mu}(M)$ the right hand side of [\(14\)](#page-3-1) for a path $M(t) \in Sp(2n)$. In order to show that $\tilde{\mu}$ coincides with the Maslov index, we will check that $\tilde{\mu}$ satisfies the five properties which were shown to characterize the Maslov index by Theorem 4.1 in [\[6\]](#page-10-1).

We need two Lemmas. The first will permit us to move the path by paths in $O(n)$.

Lemma 19 The form $\chi_{\text{Sp}(2n)} \in \Omega^1(\text{Sp}(2n))$ from [\(17\)](#page-4-1) and the function Φ of [\(13\)](#page-3-0) are left-O(n) and right-H(n)-invariant. Thus if $M(t) \in Sp(2n)$ and $T(t) \in$ $O(n)$, $H(t) \in H(n)$ are smooth paths, then

$$
\widetilde{\mu}(M) = \widetilde{\mu}(TMH) .
$$

Proof: Let

 $M = FH^+$ and $H = T_1 H_1^+$ with $F \in U(n)$, $H^+, H_1^+ \in H^+(n)$, $T_1 \in O(n)$. Then

$$
\mathcal{F}(TMH) = \mathcal{F}(TFH^+T_1H_1^+) = \mathcal{F}(TFT_2H_2^+) = TFT_2
$$

with some $T_2 = \mathcal{F}(H^+T_1H_1^+) \in O(n)$ and some $H_2^+ \in H^+(n)$, since

$$
H(n) = O(n) \cdot H^{+}(n) = H^{+}(n) \cdot O(n). \tag{20}
$$

Now

$$
\begin{aligned} \text{Tr}_{\mathbb{C}} \left((TFT_2)^{-1} \mathbf{d} (TFT_2) \right) &= \text{Tr}_{\mathbb{C}} \left((TFT_2)^{-1} T F(\mathbf{d} \, T_2) \right) \\ &+ \text{Tr}_{\mathbb{C}} \left((TFT_2)^{-1} T(\mathbf{d} \, F) T_2 \right) \\ &+ \text{Tr}_{\mathbb{C}} \left((TFT_2)^{-1}(\mathbf{d} \, T) F T_2 \right) \\ &= \text{Tr}_{\mathbb{C}} (F^{-1} \mathbf{d} \, F) \end{aligned}
$$

since $T^{-1} dT$ lies in the Lie algebra of $O(n)$ and therefore $\text{Tr}_{\mathbb{C}}(T^{-1} dT) = 0$.

For the invariance of the function Φ of [\(13\)](#page-3-0) it suffices to prove left and right invariance under $O(n)$, because of [\(20\)](#page-6-1) as before. We also may assume $M = F$ unitary since right-H⁺(n)-invariance of Φ is clear from its definition. So let

$$
F = \left(\begin{array}{cc} \alpha & -\beta \\ \beta & \alpha \end{array}\right)
$$

be unitary with real $(n \times n)$ -matrices α and β . We then have

$$
TF = \left(\begin{array}{cc} T & 0 \\ 0 & T \end{array}\right) \left(\begin{array}{cc} \alpha & -\beta \\ \beta & \alpha \end{array}\right) = \left(\begin{array}{cc} T\alpha & -T\beta \\ T\beta & T\alpha \end{array}\right)
$$

From [\(12\)](#page-3-2) and [\(11\)](#page-3-3) we see that this replaces the matrices T_{α} , T_{β} used to define Φ by TT_{α} , TT_{β} while leaving X unchanged. By definition [\(13\)](#page-3-0) $\Phi(TF) = \Phi(F)$. Similiarly, multiplying T from the right, replaces α , β by αT , βT . Thus, by [\(12\)](#page-3-2) and [\(11\)](#page-3-3), T_{α} , T_{β} , X are replaced by $T_{\alpha}T$, $T_{\beta}T$ and $T^{-1}XT$, since $\sin(T^{-1}XT)$ = $T^{-1}\sin(X)T$. By [\(13\)](#page-3-0) and the conjugation invariance of the trace, Φ again is unchanged.

By the next Lemma $\tilde{\mu}$ vanishes on a path $M(t)$ such that $M(t)\Lambda_0$ stays away from the Maslov cycle $\{\Lambda \in \mathbf{L}(2n) \mid \Lambda \cap \Lambda_0 \neq 0\}$. Thus, away from the Maslov cycle, the function Φ is an integral of $\chi_{\text{Sp}(2n)}$.

Lemma 21 For $M \in \text{Sp}(2n)$ let $\beta(M), \alpha(M) \in \text{Mat}(n \times n; \mathbb{R})$ be the matrices in the unitary part

$$
\mathcal{F}(M) = \begin{pmatrix} \alpha(M) & -\beta(M) \\ \beta(M) & \alpha(M) \end{pmatrix}
$$

of M as in [\(10\)](#page-3-4). Then on the set $\text{Sp}^{\times}(2n) = \{M \mid \beta(M) \text{ invertible }\}$ we have $\mathbf{d}\,\Phi=\chi_{Sp(2n)}.$

In particular $\tilde{\mu}$ vanishes on paths staying in $\text{Sp}^{\times}(2n)$.

The set $Sp^{\times}(2n)$ is the set of all M such that $M(t)\Lambda_0 \cap \Lambda_0 = 0$. Thus $Sp^{\times}(2n)$ is the preimage of the complement of the Maslov cycle under the projection $Sp(2n) \rightarrow L(2n)$.

Proof: It suffices to prove the Lemma on $U^{\times}(n) = U(n) \cap Sp^{\times}(2n)$ since both the form $\chi_{Sp(2n)}$ and Φ are right-H⁺(n) invariant. We will now show that $\int_F \chi_{(2n)} = [\Phi(F(t))]_{t=0}^{t=1}$ for arbitrary paths $F: [0,1] \to U(n)$.

Let $M = F \in U^{\times}(n)$. Then the matrices $X(F)$ and $T_{\beta}(F)$ defined as in [\(11\)](#page-3-3) and (12) are invertible and depend smoothly on F . Let

$$
X_s := (1 - s)\frac{\pi}{2}\mathbf{1}_n + sX(F) \text{ for } s \in [0, 1] \text{ and}
$$

$$
\alpha_s = T_{\alpha(F)}\cos(X_s) , \beta_s = T_{\beta(F)}\sin(X_s) .
$$

The path

$$
F_s = \begin{pmatrix} \alpha_s & -\beta_s \\ \beta_s & \alpha_s \end{pmatrix}
$$
 (22)

has $F_1 = F = M$ and

$$
F_0 = \begin{pmatrix} 0 & -T_{\beta(M)} \\ T_{\beta(F)} & 0 \end{pmatrix} = J \begin{pmatrix} T_{\beta(F)} & 0 \\ 0 & T_{\beta(F)} \end{pmatrix} = JT_{\beta(F)} \in J O(n) .
$$

Now by definition Φ vanishes on $J O(n)$, so $\Phi(F_0) = 0$. We integrate

$$
\int_{F_s} \chi_{Sp(2n)} = \frac{1}{\pi} \int_{F_s} \text{Tr} \left(\alpha_s^t \mathbf{d} \beta_s - \beta_s^t \mathbf{d} \alpha_s \right)
$$
\n
$$
= \frac{1}{\pi} \int_{F_s} \text{Tr} \left(\cos(X_s) T_{\alpha(F)}^t T_{\beta(F)} \cos(X_s) \mathbf{d} X_s + \sin(X_s) T_{\beta(F)}^t T_{\alpha(F)} \sin(X_s) \mathbf{d} X_s \right)
$$
\n
$$
= \frac{1}{\pi} \int_{F_s} \text{Tr} \left(T_{\alpha(F)}^t T_{\beta(F)} \mathbf{d} X_s \right)
$$
\n
$$
= \frac{1}{\pi} \text{Tr} \left(T_{\alpha(F)}^t T_{\beta(F)} (X_1 - X_0) \right)
$$
\n
$$
= \frac{1}{\pi} \text{Tr} \left(T_{\alpha(F)}^t T_{\beta(F)} \left(X(F) - \frac{\pi}{2} \mathbf{1}_n \right) \right)
$$
\n
$$
= \Phi(F_1) = \Phi(F) \tag{23}
$$

by definition [\(13\)](#page-3-0) of Φ . Here we have used that X_s , $\mathbf{d} X_s$, $T^t_{\alpha(F)}T_{\beta(F)}$ commute, together with the identity $\cos^2(X_s) + \sin^2(X_s) = \mathbf{1}_n$.

Since F_s defined by [\(22\)](#page-7-1) depends smoothly on F , we have a deformation retraction of U[×](n) (and Sp[×](2n)) on $J O(n) \cong O(n)$. Therefore any path $F(t) \in U^{\times}(n)$ is homotopic relative end points to the catenation $a * T * b$ of two paths a, b of type [\(22\)](#page-7-1) and a path T in $J O(n)$. Since $\chi_{Sp(2n)}$ is the pull back of the closed form χ on U(1) it is closed as well and therefore line integrals over $\chi_{Sp(2n)}$ depend on the homotopy class relative end points only. For an arbitrary path F in $U^*(n)$ we can therefore compute

$$
\int_F \chi_{Sp(2n)} = \int_{a*T*b} \chi_{Sp(2n)} = \int_a \chi_{Sp(2n)} + \int_T \chi_{Sp(2n)} + \int_b \chi_{Sp(2n)}.
$$

The integral over T vanishes since $(JT)^{-1} d(JT) = T^{-1} dT$ has trace 0. The integrals over a and b have been evaluated in (23) . Thus we get that

$$
\int_F \chi_{\mathrm{Sp}(2n)} = \Phi(F(1)) - \Phi(F(0))
$$

for any path $F(t)$ in $U^{\times}(n)$ which proves the Lemma.

We now proceed to verify the axioms from [\[6\]](#page-10-1) for the Maslov index for $\tilde{\mu}$.

1. Homotopy: Two paths in $Sp(2n)$ are homotopic relative end points if and only if the respective values of $\tilde{\mu}$ coincide.

Since $\chi_{\text{Sp}(2n)} = ((\det_{\mathbb{C}}^2) \circ F)^* \chi$ is closed we have that $\tilde{\mu}$ is homotopy invariant relative end points. The map $(\det_{\mathbb{C}}^2) \circ F$ induces an injective map $\pi_1(Sp(2n)) \to \pi_1(U(1))$ and the isomorphism $\pi_1(U(1)) \cong \mathbb{Z}$ is given by integrating the form χ . For closed loops the end point terms [\(14\)](#page-3-1) cancel and the claim follows.

2. Catenation: Let $M_i(t)$, $i = 0, 1$ be paths in $\text{Sp}(2n)$ with $M_0(1) = M_1(0)$ and $M = M_0 * M_1$ denote the path with $M(t) = M_0(2t)$ for $t \leq 1/2$ and $M_1(2t-1)$ for $t \geq 1/2$. Then $\widetilde{\mu}(M) = \widetilde{\mu}(M_0) + \widetilde{\mu}(M_1)$.

The contributions of the end points $M_0(1)$ and $M_1(0)$ cancel. The claim thus follows from the additivity of the integral.

3. Product: If $M(t) = \begin{pmatrix} M_1(t) & 0 \\ 0 & M_1(t) \end{pmatrix}$ $0 \qquad M_2(t)$ with $M_i(t) \in \mathrm{Sp}(2n_i)$, $n_1 +$ $n_2 = n$, then $\widetilde{\mu}(M_1) + \widetilde{\mu}(M_2) = \widetilde{\mu}(M)$.
This follows from the anglesous pro-

This follows from the analogous property of the trace.

4. Zero: Let $M(t)$ be a path such that $\dim(M(t)\Lambda_0 \cap \Lambda_0) = k > 0$ is constant for all t. Then $\widetilde{\mu}(M) = 0$.

By lemma [19](#page-6-2) we may replace $M(t)$ by $M(t)H(t)$ with $H(t) \in H(n)$ without changing $\tilde{\mu}$. We can thus achieve that that

$$
M(t) = \mathcal{F}(M(t)) = \begin{pmatrix} \alpha(t) & -\beta(t) \\ \beta(t) & \alpha(t) \end{pmatrix} \in U(n)
$$

is unitary. We also have ker $\beta(t) = M(t)\Lambda_0 \cap \Lambda_0$ which is of constant dimension k by our assumption. Also $\alpha(t)$ maps ker $\beta(t)$ isometrically into Λ_0 . Therefore

Г

replacing $M(t)$ by $T_1(t)M(t)T_2(t)$ with suitable paths $T_1(t), T_2(t) \in O(n)$, we may assume that $V = \ker \beta(t)$ is independent of t and that $\alpha(t)$ is the identity on V. Again by Lemma [19,](#page-6-2) we have $\widetilde{\mu}(M) = \widetilde{\mu}(T_1MT_2)$.

Let W be the orthogonal complement of V in Λ_0 . We then can split

$$
\mathbb{R}^{2n} = (V \oplus JV) \oplus (W \oplus JW)
$$

as the orthogonal sum of two symplectic subspaces. With respect to this splitting we now have

$$
M(t) = \left(\begin{array}{cc} \mathbf{1}_{V \oplus JV} & 0 \\ 0 & Q(t) \end{array} \right) .
$$

The path $Q(t) \in \text{Sp}^{\times}(W \oplus JW) = \text{Sp}^{\times}(2(n-k))$ avoids the Maslov cycle. By Lemma [21,](#page-6-0) $\widetilde{\mu}(M) = \widetilde{\mu}(1) + \widetilde{\mu}(Q) = 0.$

5. Normalization: Let $Y(t) \in \text{Sym}(n)$ be a path of symmetric matrices and $M(t) = \begin{pmatrix} 1 & 0 \\ V(t) & 1 \end{pmatrix}$ $Y(t)$ 1 $\bigg\}$ the corresponding path of symplectic shears. Then $\tilde{\mu}(M) = [\text{sign}(Y(1)) - \text{sign}(Y(0))] / 2$,

where the signature $sign(Y)$ is the number of positive eigenvalues of Y minus the number of negative eigenvalues.

To see this, let $T(t) \in O(n)$ be such that

$$
T(t)^{-1}Y(t)T(t) = \begin{pmatrix} \lambda_1(t) & & \\ & \ddots & \\ & & \lambda_n(t) \end{pmatrix}
$$

is diagonal. Then

$$
T^{-1}(t)M(t)T(t) = \begin{pmatrix} T(t)^{-1} & 0 \\ 0 & T(t)^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{1} & 0 \\ Y(t) & \mathbf{1} \end{pmatrix} \begin{pmatrix} T(t) & 0 \\ 0 & T(t) \end{pmatrix}
$$

=
$$
\begin{pmatrix} \mathbf{1} & 0 \\ T(t)^{-1}Y(t)T(t) & \mathbf{1} \end{pmatrix}.
$$

By Lemma [19](#page-6-2) and the product property,

$$
\widetilde{\mu}(M) = \widetilde{\mu}(T^{-1}MT) = \sum_{k=0}^{n} \widetilde{\mu} \begin{pmatrix} 1 & 0 \\ \lambda_k(t) & 1 \end{pmatrix} .
$$

It suffices therefore to verify the normalization property in the case $n = 1$, $Y(t) = \lambda(t)$ and $M(t) = \begin{pmatrix} 1 & 0 \\ \lambda(t) & 1 \end{pmatrix}$. The integral in [\(14\)](#page-3-1), i.e. the integral over the form [\(17\)](#page-4-1), becomes

$$
\int_M \chi_{\mathrm{Sp}(2)} = -\frac{1}{2\pi} \int_M -\mathbf{d}\,\lambda - (1+\lambda^2) \, \mathbf{d}\left((1+\lambda^2)^{-1}\lambda\right) = \frac{[\arctan(\lambda(t))]_{t=0}^{t=1}}{\pi}
$$

For the end point term in [\(14\)](#page-3-1) we compute

$$
F = \mathcal{F}\left(\begin{array}{cc} 1 & 0 \\ \lambda & 1 \end{array}\right) = \frac{1}{\sqrt{1 + \lambda^2}} \left(\begin{array}{cc} 1 & -\lambda \\ \lambda & 1 \end{array}\right)
$$

which gives

$$
X = \arcsin\left(\frac{|\lambda|}{\sqrt{1 + \lambda^2}}\right) = \arctan(|\lambda|) \quad , \quad T_\beta = \text{sign}(\lambda) \quad , \quad T_\alpha = 1
$$

in the notation of (11) and (12) . From (13) we get

$$
\Phi(M) = \begin{cases}\n\frac{1}{\pi} \arctan(\lambda) - \frac{1}{2} & \text{if } \lambda > 0 \\
0 & \text{if } \lambda = 0 \\
\frac{1}{\pi} \arctan(\lambda) + \frac{1}{2} & \text{if } \lambda < 0\n\end{cases}
$$

.

This yields $\tilde{\mu}(M) = [\text{sign}(\lambda(1)) - \text{sign}(\lambda(0))]/2$ as required.

References

- [1] V. I. Arnol'd On a characteristic class entering into conditions of quantization Functional Analysis 1 (1967), 1-8.
- [2] M. C. Gutzwiller Chaos in classical and quantum mechanics Springer, New York, 1990
- [3] M. Brack, M. Pletyukhov On the canonically invariant calculation of Maslov indices J. Phys. A 36 (2003), no. 36, 9449–9469.
- [4] M. Brack, R. K. Bhaduri Semiclassical physics Frontiers in Physics, 96. Westview Press, Boulder, CO, 2003
- [5] D. McDuff, D. Salamon Introduction to symplectic topology Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1998
- [6] J. Robbin, D. Salamon The Maslov Index for Paths Topology 32 no 4 (1993), 827-844