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Abstract

The Maslov index of a not necessarily closed path M in the symplectic
group Sp(2n) is expressed by an integral formula. We have an explicit
formula for the integrand which is a rational 1-form on Sp(2n).
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1 Introduction

The homotopy class of a loop Λ(t) in the Lagrangian Grassmannian L(2n) in
standard symplectic space R2n is detected by an integer, the Maslov index.
Following Arnold, [1], this can be defined as an intersection number with a
certain subset of L(2n), the Maslov cycle. In [6] this definition of the Maslov
index was extended to not necessarily closed paths, and it is this index which
enters in the Gutzwiller trace formula in semiclassical quantisation, [2], see also
[4].

The group Sp(2n) of symplectic automorphisms of R2n acts transitively on
the set of Lagrangians and thus L(2n) = Sp(2n)/H(2n) is a homogeneous space.
In applications the path Λ(t) is frequently given in the form M(t)Λ0 with a curve
M(t) ∈ Sp(2n) of symplectic automorphisms and a fixed Lagrangian Λ0. In view
of calculations of the Maslov index as in [3] it seems desirable to compute the
Maslov index µ(Λ) = µ(M) directly in terms of M .

In the present note we derive such a formula. We show that the Maslov
index is the line integral over a certain differential form χSp(2n) ∈ Ω1(Sp(2n),R)
plus end point terms which are also given by an explicit function Φ on Sp(2n).

For unitary paths, i.e. paths M(t) ∈ U(n) ⊂ Sp(2n) in the unitary group
the (complex) Trace TrC on the Lie algebra u(n) is an invariant for the adjoint
representation, and therefore provides a bi-invariant 1-form on U(n). On the
symplectic group Sp(2n) however a nontrivial biinvariant 1-form does not exist.
The 1-form χSp(2n) and the function Φ we construct are invariant under the
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left action of Sp(2n) and under the right action of the stabilizer subgroup H(n)
which contains O(n).

We formulate our main result in the next section 2. Then, in section 3, we
compute the 1-form χSp(2n) explicitely in terms of the entries of the symplectic
matrix. Finally we prove our integral formula by verifying the axioms for the
Maslov index in section 4.

2 A local formula for the Maslov index

We need to introduce some notation and recall some well known facts from
symplectic geometry as may be found in [5], for instance. Let Λ0 be a Lagrangian
in R2n and Λ⊥0 the orthogonal complement with respect to the standard scalar
product 〈·| ·〉. The symplectic structure ω on R2n can be written as

ω(x, y) = 〈x| Jy〉

where J is a complex structure, i.e. J ∈ O(2n) with J2 = −12n and we have
JΛ0 = Λ⊥0 .

Usually we choose coordinates such that Λ0 = Rn×{0}, Λ⊥0 = {0}×Rn and
so that the complex structure J becomes

J =
(

0 −1n
1n 0

)
, 1 =

 1 0 0

0
. . . 0

0 0 1

 ∈ Mat(n× n,R) . (1)

With respect to the orthogonal decomposition

R2n = Λ0 ⊕ Λ⊥0 (2)

we can write a (symplectic) matrix M as

M =
(
a b
c d

)
(3)

where

a ∈ Hom(Λ0,Λ0), b ∈ Hom(Λ⊥0 ,Λ0), c ∈ Hom(Λ0,Λ⊥0 ), d ∈ Hom(Λ⊥0 ,Λ
⊥
0 ) .

All these will be identified with Mat(n× n; R).
By means of the complex structure (1) we can read a complex (n×n)-matrix

Y as a real (2n× 2n)-matrix
(
α −β
β α

)
. The traces TrC over C respectively

Tr = TrR over R are related by

TrC(Y ) =
1
2

Tr(Y )− i

2
Tr(JY ) = Tr(α) + iTr(β) . (4)
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The group Sp(2n) of symplectic automorphisms is

Sp(2n) = {M ∈ Gl(2n) |M tJM = J}

and acts transitively on the Lagrangian Grassmannian L(2n). The stabilizer
group, i.e. the isotropy group of this action at Λ0 = Rn × {0} is

H(n) =
{(

A X
0 (At)−1

)
| A ∈ Gl(n) , AX ∈ Mat(n× n,R) symmetric

}
We will also need the subgroup H+(n) consisting of those matrices in H(n) with
A upper triangular and positive. The unitary group U(n) and the orthogonal
group O(n) are naturally identified as subgroups of Sp(2n),

U(n) = {M ∈ Sp(2n) |MJ = JM} = Sp(2n) ∩O(2n)
O(n) = {M ∈ Sp(2n) |MJ = JM and MΛ0 = Λ0} (5)

=
{(

T 0
0 T

)
| T ∈ O(n)

}
= H(n) ∩O(2n) ⊂ U(n) .

With these identifications we can represent the Lagrangian Grassmannian as
homogeneous space,

L(2n) = Sp(2n)/H(n) = U(n)/O(n) . (6)

The square of the (complex) determinant

L(2n) = U(n)/O(n)→ U(1), F 7→ detC(F )2 (7)

induces an isomorphism of the fundamental groups

π1(L(2n)) ∼= π1(U(1)) = Z .

The Jordan-, or QR- decomposition, of the symplectic group is

Sp(2n) = U(n) ·H+(n)

and
H+(n) = D+(n) n Sym(n)

is the semidirect product of the group of positive upper triangular matrices with
the vector group of symmetric matrices. In particular, we have a diffeomorphism
and a homotopy equivalence, both equivariant under the right action of H+(n),

F : Sp(2n) ∼= U(n)×H+(n) '−→ U(n) . (8)

We will also need the map

H : Sp(2n) ∼= U(n)×H+(n) '−→ H+(n) . (9)
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These are defined by first decomposing a given M ∈ Sp(2n), M = FH with
F ∈ U(n), H ∈ H+(n) uniquely determined by M . This can be done efficiently
by any of the algorithms for the QR-decomposition. Then we set F(M) := F
and H(M) := H

For the contribution of end points we need a function

Φ: Sp(2n)→ R .

which is defined as follows: Φ(M) is computed from the unitary part

F(M) =
(
α −β
β α

)
(10)

alone. Since F tF = 12n = FF t we have

αtα+ βtβ = 1n, αtβ = βtα,

ααt + ββt = 1n, αβt = βαt.

From these relations it follows that αtα, βtβ and αtβ commute and can therefore
be simultaneously diagonalized. Since Spec(βtβ) ⊂ [0, 1] we may set

X := arcsin
(

(βtβ)1/2
)
∈ Mat(n× n; R) . (11)

Note that X is nonegative symmetric and SpecX ⊂ [0, π2 ]. Now define Tα, Tβ ∈
Mat(n× n; R) as

Tβ = β sin(X)−1 pr(kerX)⊥ , Tα = α cos(X)−1 pr
ker(X−π2 1n)⊥ (12)

where pr denotes the orthogonal projection on the subspace indicated. We then
have

β = Tβ sin(X), α = Tα cos(X), T tβTβ = pr(kerX)⊥ , T
t
αTα = pr

ker(X−π2 1n)⊥

We define
Φ(M) :=

1
π

Tr
(
T tαTβ

(
X − π

2
1n
))

. (13)

This is to arrange for d Φ = χSp(2n) on the complement of the Maslov cycle (see
Lemma 21 and (23) in the proof of that Lemma).

We can now write down an integral formula for the Maslov index:

Theorem Let M : [0, 1] → Sp(2n) be a differentiable path in the symplectic
group of R2n and let Λ0 ⊂ R2n be a fixed Lagrangian subspace. Then the
Maslov index µ(Λ) ∈ 1

2Z of the path Λ: [0, 1] → L(2n), Λ(t) = M(t)Λ0, in
the Lagrangian-Grassmannian of R2n is given by

µ(M) = µ(Λ) =
∫
M

χSp(2n) − Φ(M(1)) + Φ(M(0)) (14)
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where Φ is as defined in (13) and

χSp(2n) = − 1
2π

Tr
(
JM t dM

)
− Tr

(
J H(M)t d(H(M))

)
This form is explicitely computed in (17) in terms of the coefficients of M .

Recall that the stabilizer part H = H(M) ∈ H+(n) ⊂ Mat(2n × 2n) is
uniquely determined from M by the following conditions (see (9)):

1. M tM = HtH),

2. H =
(
A AX
0 (At)−1

)
w.r.t. the splitting R2n = Λ0 ⊕ Λ⊥0 ,

3. A ∈ Mat(n× n,R) is upper triangular with positive eigenvalues,

4. X ∈ Mat(n× n,R) is symmetric.

3 The 1-form on the symplectic group

We will now derive explicit formulas for the integrand in (14). The form χ =
1

2πiz
−1 d z on U(1) = S1 ⊂ C detects the homotopy type of a loop in U(1). To

find the right 1-form for the Maslov index we first pull back χ to U(n) via the
map det2C in (7). Sine d(detC F ) = detC(F ) TrC(F−1 dF ) we get

χU(n) =
(
det2C

)∗
χ =

1
πi

TrC F
−1 dF ∈ Ω1(U(n)) .

This already gives a formula, similiar to that for the winding number, for the
Maslov index of a unitary path F (t)Λ0, F : [0, 1]→ U(n),

µ(F ) =
1
πi

∫
TrC(F−1 dF )− Φ(F (1)) + Φ(F (0))

The 1-form on Sp(2n) we are looking for is the pull back of χU(n) over the
map F in (8). We compute this explicitely.

Lemma 15 Denote by a, b, c, d ∈ Mat(n×n,R) the components of a symplectic
matrix M , i.e the matrices such that

M =
(
a b
c d

)
(16)

with respect to the decomposition (2). Then

χSp(2n) = F ∗χU(n) =
1
πi

TrC
(
F(M)−1 dF(M)

)
=
−1
2π

Tr
(
JM t dM − JHt dH

)
=
−1
2π

Tr
[
−bt d a− dt d c+ at d b+ ct d d

−(ata+ ctc) d
[
(ata+ ctc)−1(atb+ ctd)

]]
(17)
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Proof: Let M ∈ Sp(2n) and F = F(M) = MH−1 ∈ U(n) with H ∈ H+(n).
We get

F−1 dF = HM−1(dM)H−1 +HM−1M d(H−1) ∈ Ω1(Sp(2n), u(n)) .

Because of (4) and since HtH = M tM ,

TrC F
−1 dF =

1
2i

Tr JF−1dF =
1
2i

Tr
(
JHM−1(dM)H−1 + JHM−1M d

(
H−1

))
=

1
2i

Tr
(
H−1JHM−1 dM − JHH−1(dH)H−1

)
=

1
2i

Tr
(
JHtHM−1 dM − J(dH)H−1

)
=

1
2i

Tr
(
JM tMM−1 dM + J(dH)JHtJ

)
=

1
2i

Tr
(
JM t dM − JHt dH

)
(18)

In view of (16) we can simplify this further. First

Tr(JM t dM) = Tr
(

0 −1
1 0

)(
at ct

bt dt

)(
d a d b
d c d d

)
= Tr(−bt d a− dt d c+ at d b+ ct d d)

For the second summand in (18) let H =
(
A AX
0 (At)−1

)
∈ H+(n). We com-

pute

Tr
(
JHt dH

)
= Tr

(
0 −1
1 0

)(
At 0
XtAt A−1

)( dA d(AX)
0 d

(
(At)−1

) )
= Tr(−XtAt dA+At d(AX))

= Tr(AtAdX)

since X is symmetric. As HtH = M tM we have AtA = ata+ ctc and AtAX =
atb+ ctd which yields

Tr
(
JHt dH

)
= Tr

[
(ata+ ctc) d

[
(ata+ ctc)−1(atb+ ctd)

]]

4 The axiomatic characterization of the Maslov
index

For the proof of the Theorem, denote by µ̃(M) the right hand side of (14) for
a path M(t) ∈ Sp(2n). In order to show that µ̃ coincides with the Maslov
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index, we will check that µ̃ satisfies the five properties which were shown to
characterize the Maslov index by Theorem 4.1 in [6].

We need two Lemmas. The first will permit us to move the path by paths
in O(n).

Lemma 19 The form χSp(2n) ∈ Ω1(Sp(2n)) from (17) and the function Φ of
(13) are left-O(n) and right-H(n)-invariant. Thus if M(t) ∈ Sp(2n) and T (t) ∈
O(n), H(t) ∈ H(n) are smooth paths, then

µ̃(M) = µ̃(TMH) .

Proof: Let

M = FH+ and H = T1H
+
1 with F ∈ U(n), H+, H+

1 ∈ H+(n), T1 ∈ O(n) .

Then
F(TMH) = F(TFH+T1H

+
1 ) = F(TFT2H

+
2 ) = TFT2

with some T2 = F(H+T1H
+
1 ) ∈ O(n) and some H+

2 ∈ H+(n), since

H(n) = O(n) ·H+(n) = H+(n) ·O(n). (20)

Now

TrC
(
(TFT2)−1 d(TFT2)

)
= TrC

(
(TFT2)−1TF (dT2)

)
+ TrC

(
(TFT2)−1T (dF )T2

)
+ TrC

(
(TFT2)−1(dT )FT2

)
= TrC(F−1 dF )

since T−1 dT lies in the Lie algebra of O(n) and therefore TrC(T−1 dT ) = 0.
For the invariance of the function Φ of (13) it suffices to prove left and right

invariance under O(n), because of (20) as before. We also may assume M = F
unitary since right-H+(n)-invariance of Φ is clear from its definition. So let

F =
(
α −β
β α

)
be unitary with real (n× n)-matrices α and β. We then have

TF =
(
T 0
0 T

)(
α −β
β α

)
=
(
Tα −Tβ
Tβ Tα

)
From (12) and (11) we see that this replaces the matrices Tα, Tβ used to define
Φ by TTα, TTβ while leaving X unchanged. By definition (13) Φ(TF ) = Φ(F ).
Similiarly, multiplying T from the right, replaces α, β by αT , βT . Thus, by (12)
and (11), Tα, Tβ , X are replaced by TαT , TβT and T−1XT , since sin(T−1XT ) =
T−1 sin(X)T . By (13) and the conjugation invariance of the trace, Φ again is
unchanged.

By the next Lemma µ̃ vanishes on a path M(t) such that M(t)Λ0 stays away
from the Maslov cycle {Λ ∈ L(2n) | Λ ∩ Λ0 6= 0}. Thus, away from the Maslov
cycle, the function Φ is an integral of χSp(2n).
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Lemma 21 For M ∈ Sp(2n) let β(M), α(M) ∈ Mat(n× n; R) be the matrices
in the unitary part

F(M) =
(
α(M) −β(M)
β(M) α(M)

)
of M as in (10). Then on the set Sp×(2n) = {M | β(M) invertible } we have
d Φ = χSp(2n).

In particular µ̃ vanishes on paths staying in Sp×(2n).

The set Sp×(2n) is the set of allM such thatM(t)Λ0∩Λ0 = 0. Thus Sp×(2n)
is the preimage of the complement of the Maslov cycle under the projection
Sp(2n)→ L(2n).
Proof: It suffices to prove the Lemma on U×(n) = U(n) ∩ Sp×(2n) since
both the form χSp(2n) and Φ are right-H+(n) invariant. We will now show that∫
F
χ(2n) = [Φ(F (t)]t=1

t=0 for arbitrary paths F : [0, 1]→ U(n).
Let M = F ∈ U×(n). Then the matrices X(F ) and Tβ(F ) defined as in (11)

and (12) are invertible and depend smoothly on F . Let

Xs := (1− s)π
2
1n + sX(F ) for s ∈ [0, 1] and

αs = Tα(F ) cos(Xs) , βs = Tβ(F ) sin(Xs) .

The path

Fs =
(
αs −βs
βs αs

)
(22)

has F1 = F = M and

F0 =
(

0 −Tβ(M)

Tβ(F ) 0

)
= J

(
Tβ(F ) 0

0 Tβ(F )

)
= JTβ(F ) ∈ J O(n) .

Now by definition Φ vanishes on J O(n), so Φ(F0) = 0. We integrate∫
Fs

χSp(2n) =
1
π

∫
Fs

Tr
(
αts dβs − βts dαs

)
=

1
π

∫
Fs

Tr
(

cos(Xs)T tα(F )Tβ(F ) cos(Xs) dXs + sin(Xs)T tβ(F )Tα(F ) sin(Xs) dXs

)
=

1
π

∫
Fs

Tr
(
T tα(F )Tβ(F ) dXs

)
=

1
π

Tr
(
T tα(F )Tβ(F )(X1 −X0)

)
=

1
π

Tr
(
T tα(F )Tβ(F )

(
X(F )− π

2
1n
))

= Φ(F1) = Φ(F )
(23)

by definition (13) of Φ. Here we have used that Xs, dXs, T tα(F )Tβ(F ) commute,
together with the identity cos2(Xs) + sin2(Xs) = 1n.

8



Since Fs defined by (22) depends smoothly on F , we have a deformation
retraction of U×(n) (and Sp×(2n)) on J O(n) ∼= O(n). Therefore any path
F (t) ∈ U×(n) is homotopic relative end points to the catenation a ∗T ∗ b of two
paths a, b of type (22) and a path T in J O(n). Since χSp(2n) is the pull back of
the closed form χ on U(1) it is closed as well and therefore line integrals over
χSp(2n) depend on the homotopy class relative end points only. For an arbitrary
path F in U×(n) we can therefore compute∫

F

χSp(2n) =
∫
a∗T∗b

χSp(2n) =
∫
a

χSp(2n) +
∫
T

χSp(2n) +
∫
b

χSp(2n) .

The integral over T vanishes since (JT )−1 d(JT ) = T−1 dT has trace 0. The
integrals over a and b have been evaluated in (23). Thus we get that∫

F

χSp(2n) = Φ(F (1))− Φ(F (0))

for any path F (t) in U×(n) which proves the Lemma.

We now proceed to verify the axioms from [6] for the Maslov index for µ̃.
1. Homotopy: Two paths in Sp(2n) are homotopic relative end points if

and only if the respective values of µ̃ coincide.
Since χSp(2n) =

(
(det2C) ◦ F

)∗
χ is closed we have that µ̃ is homotopy in-

variant relative end points. The map (det2C) ◦ F induces an injective map
π1(Sp(2n)) → π1(U(1)) and the isomorphism π1(U(1)) ∼= Z is given by inte-
grating the form χ. For closed loops the end point terms (14) cancel and the
claim follows.

2. Catenation: Let Mi(t), i = 0, 1 be paths in Sp(2n) with M0(1) = M1(0)
and M = M0 ∗ M1 denote the path with M(t) = M0(2t) for t ≤ 1/2 and
M1(2t− 1) for t ≥ 1/2. Then µ̃(M) = µ̃(M0) + µ̃(M1).

The contributions of the end points M0(1) and M1(0) cancel. The claim
thus follows from the additivity of the integral.

3. Product: If M(t) =
(
M1(t) 0

0 M2(t)

)
with Mi(t) ∈ Sp(2ni), n1 +

n2 = n, then µ̃(M1) + µ̃(M2) = µ̃(M).
This follows from the analogous property of the trace.
4. Zero: Let M(t) be a path such that dim(M(t)Λ0 ∩ Λ0) = k > 0 is

constant for all t. Then µ̃(M) = 0.
By lemma 19 we may replace M(t) by M(t)H(t) with H(t) ∈ H(n) without

changing µ̃. We can thus achieve that that

M(t) = F(M(t)) =
(
α(t) −β(t)
β(t) α(t)

)
∈ U(n)

is unitary. We also have kerβ(t) = M(t)Λ0 ∩Λ0 which is of constant dimension
k by our assumption. Also α(t) maps kerβ(t) isometrically into Λ0. Therefore
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replacing M(t) by T1(t)M(t)T2(t) with suitable paths T1(t), T2(t) ∈ O(n), we
may assume that V = kerβ(t) is independent of t and that α(t) is the identity
on V . Again by Lemma 19, we have µ̃(M) = µ̃(T1MT2).

Let W be the orthogonal complement of V in Λ0. We then can split

R2n = (V ⊕ JV )⊕ (W ⊕ JW )

as the orthogonal sum of two symplectic subspaces. With respect to this split-
ting we now have

M(t) =
(

1V⊕JV 0
0 Q(t)

)
.

The path Q(t) ∈ Sp×(W ⊕ JW ) = Sp×(2(n− k)) avoids the Maslov cycle. By
Lemma 21, µ̃(M) = µ̃(1) + µ̃(Q) = 0.

5. Normalization: Let Y (t) ∈ Sym(n) be a path of symmetric matrices

and M(t) =
(

1 0
Y (t) 1

)
the corresponding path of symplectic shears. Then

µ̃(M) = [sign(Y (1))− sign(Y (0))]/2 ,

where the signature sign(Y ) is the number of positive eigenvalues of Y minus
the number of negative eigenvalues.

To see this, let T (t) ∈ O(n) be such that

T (t)−1Y (t)T (t) =

 λ1(t)
. . .

λn(t)


is diagonal. Then

T−1(t)M(t)T (t) =
(
T (t)−1 0

0 T (t)−1

)(
1 0

Y (t) 1

)(
T (t) 0

0 T (t)

)
=
(

1 0
T (t)−1Y (t)T (t) 1

)
.

By Lemma 19 and the product property,

µ̃(M) = µ̃(T−1MT ) =
n∑
k=0

µ̃

(
1 0

λk(t) 1

)
.

It suffices therefore to verify the normalization property in the case n = 1,

Y (t) = λ(t) and M(t) =
(

1 0
λ(t) 1

)
. The integral in (14), i.e. the integral

over the form (17), becomes∫
M

χSp(2) =
−1
2π

∫
M

−dλ− (1 + λ2) d
(
(1 + λ2)−1λ

)
=

[arctan(λ(t))]t=1
t=0

π
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For the end point term in (14) we compute

F = F
(

1 0
λ 1

)
=

1√
1 + λ2

(
1 −λ
λ 1

)
which gives

X = arcsin
(

|λ|√
1 + λ2

)
= arctan(|λ|) , Tβ = sign(λ) , Tα = 1

in the notation of (11) and (12). From (13) we get

Φ(M) =


1
π arctan(λ)− 1

2 if λ > 0
0 if λ = 0

1
π arctan(λ) + 1

2 if λ < 0
.

This yields µ̃(M) = [sign(λ(1))− sign(λ(0))]/2 as required.
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