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Multi-hazard dependencies can increase or 
decrease risk
In risk analysis, it is recognized that hazards can often combine to worsen their joint impact, but impact data 
for a rail network show that hazards can also tend to be mutually exclusive at seasonal timescales. Ignoring this 
overestimates worst-case risk, so we therefore champion a broader view of risk from compound hazards.

John K. Hillier, Tom Matthews, Robert L. Wilby and Conor Murphy

The interplay among natural hazards 
affects risk globally, and this is 
expected to evolve as climate changes 

(for examples, see refs. 1–3). Conventional 
modelling has focused on impacts from 
each hazard in isolation4,5, but this is being 
transcended by a ‘compound event’ paradigm 
for multi-hazards3,6. Over meteorological 
timescales (hours to weeks), hazards like 
wind and precipitation extremes can 
combine to exacerbate total risk7–9. However, 
infrastructure operators, government 
agencies, (re)insurance and health services 
are also interested in aggregated risk over 
climatological timescales (seasonal to 
annual). Using Australia and Great Britain 

as examples, we illustrate that, from this 
perspective, some hazards tend to be mutually 
exclusive due to low-frequency modes of 
variability. Pairwise views of a multi-hazard 
environment that target instances where risk 
is exacerbated7–9 might therefore overestimate 
worst-case risk. This complication is one 
reason for the ongoing development of 
multi-variate statistical frameworks to better 
model hazardous extremes10–13, but cases 
are under-reported. Thus, we highlight the 
need for a broader and more holistic view of 
multi-hazard risks applied at spatial scales 
meaningful to stakeholders, which include 
the climatological timescales relevant to 
them. From this standpoint, it becomes 

clear that hazards can be influenced by 
modes of atmospheric variability in ways 
that reduce the likelihood of some hazard 
combinations, thereby moderating tail-end 
(that is, worst-case) risk (Fig. 1). How such 
risk moderation works is explained using an 
analogy of rolling dice and by relating hazards 
to climate modes, such as the El Niño/
Southern Oscillation (ENSO).

El Niño example
Consider weather-related hazards in 
Australia. During summer, El Niño tends to 
reduce the likelihood of tropical cyclones2 
and flooding8, but enhances drought14 and 
wildfire15 risk, whereas La Niña drives the 
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Fig. 1 | Illustration of plausible effects when the activity of hazard(s) switches between climatologically controlled modes of behaviour, based on Great 
Britain. a, Impact-centric1,3 conceptualization of the multi-hazard system. Two hazard modes, each associated with a dominant wind direction (blue arrows), 
drive six hazards (circles). Rail infrastructure (red) is exposed to all six hazards, while (re)insurance (black) is primarily concerned with only two hazards in 
Mode 2. b, Losses in terms of magnitude and frequency, with rare ‘worst cases’ on the right-hand side (grey band). A conventional view that does not consider 
dependencies (grey) might underestimate risk if two hazards (for example, flood and wind) compound. However, where exposed assets are subject to hazards 
driven by two opposing modes (red), compounding effects are suppressed, so care is needed to avoid overestimating risk. Solid arrows represent effect 
magnitudes seen within the Network Rail loss data (Fig. 2 and Box 1), with dashed lines indicating plausible stronger effects.
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opposite conditions. Under the present 
climate there are then two regimes or modes 
of hazard behaviour which are unlikely to 
co-occur. Concurrent impacts from both 
cyclone- and drought-related hazards are 
unlikely when either mode is active, making 
severe aggregate impacts from all four 
hazards less likely than might be expected 
if the two hazard modes were independent. 
This creates the possibility that, if a tendency 
for hazard modes to be mutually exclusive 
exists but is not accounted for, a focus on 
damaging extremes that compound to 
worsen impacts (individually5,15,16 or in 
pairs/triplets7–9) may overestimate risk. 
Numerous oscillatory climate modes (for 
example, ENSO and the North Atlantic 
Oscillation (NAO)) have been related to the 
activity level of hazards2,16, meaning that 
cases similar to this Australian example may 
not be unusual.

Illustration using dice
A probabilistic configuration of 
multi-hazards that protects against 
worst-case combinations can be illustrated 
by rolling dice. Imagine that flooding and 
wind damage happen if a six is rolled on a 
standard die. In traditional risk analysis17, 
flooding and extreme winds are treated as 
independent phenomena so would have a 

die each. A ‘worst case’ scenario is when 
both occur (two sixes), on average 1-in-36 
throws. If flooding and wind always happen 
together, however, only one die is needed 
and both hazards occur if a six is thrown 
(1-in-6 rolls). Thus, assessing such hazards 
independently underestimates risk7,9,17. 
Flooding and wind damage in a tropical 
cyclone are strongly related8 and thus close 
to this specific case. To replicate a situation 
where flooding and wind never happen 
together, a rule is introduced that rolling a 
six on one die dictates (somehow) that the 
other die must score a one; two sixes are not 
allowed. Hence, neglecting a relationship 
in which states are mutually exclusive 
overestimates worst-case risk.

Where there is a weaker tendency for 
phenomena to occur together, such as 
for flooding and wind in extratropical 
cyclones1,7 (Box 1), two similarly loaded 
dice is a more apt analogy. Both would 
tend to score high or low such that the 
chance of two sixes is greater, perhaps 
1-in-12. On the other hand, hazards (for 
example, flooding and wildfire in Australia) 
might tend to be mutually exclusive over 
a season or year. Then the loading of the 
dice would be such that if a six is rolled 
on the first die, the chance of a second six 
is reduced. This lowers the probability of 

two sixes, a worst-case impact, to perhaps 
1-in-60 throws on average. Supplementary 
Discussion 3 describes a series of exercises 
using standard dice that can be used 
to illustrate and verify these statistical 
assertions. These arguments apply to 
ENSO-driven hazard modes in Australia 
and to impactful winter weather in Great 
Britain.

Great Britain case study
Given that risk relates to potential for loss, 
an impact-centric approach1,3 is essential. 
The holistic view advocated here requires 
consideration of multi-hazards and their 
dependencies at timescales relevant to 
stakeholders for their hazard-specific 
exposure (that is, assets at risk; Fig. 1a). 
For instance, wintertime weather-related 
impacts on the rail network in Great Britain 
(2006–2018) quantitatively show how such 
interactions can suppress tail-end risk, 
mitigating pairwise compound effects 
(detailed in Box 1). In a narrow (bivariate) 
multi-hazard view, based on the idea that 
storms might drive concurrent flooding 
and wind damage7,8, the largest losses for 
these hazards compound substantially, 
increasing by 28% above those simulated 
when assuming that the damage types 
are independent (Fig. 2d). This view is 

Box 1 | A case study of compound risk in Great Britain

A case study of weather-related impacts 
(Fig. 2a and Supplementary Discussion 1)  
on the rail network in Great Britain 
illustrates that interactions may suppress 
tail-end (worst-case) risk, mitigating 
pairwise compound effects (Fig. 2d). Here, 
impact is expressed as delays to trains 
which, when monetized, cost Network Rail 
an estimated £64.6 million annually. Most 
(72.5%) of these costs occur in the ‘winter’ 
half-year (October–March). Thus, winter 
is selected as our temporal domain for a 
seasonal-scale analysis, which in Great 
Britain is hydro-meteorologically distinct 
from summer (see Supplementary Fig. 1).

From a narrow (bivariate) multi-hazard 
perspective, the largest losses (13-yr return 
period) for flooding and wind damage 
(Wi) compound substantially (+28%), as 
shown in Fig. 2d. Simulation modelling1,10 
is conducted to demonstrate that this 
observation (dark blue line) is not due to 
chance (P < 0.05) by breaking all hazard 
inter-relationships. In the simulation (see 
Supplementary Discussion 1), this was 
achieved by shuffling the years in which 
losses occur independently for each hazard, 

and 10,000 of these random realizations are 
used (dashed line).

However, a wider (multivariate) view 
yields a distinctly different outcome. 
When one set of hazards in Great Britain 
is active, the other main group is typically 
not. The categories of loss may be, visually 
or otherwise, grouped into subsets that 
tend to coincide (that is, are correlated; 
Fig. 2b). Specifically, when flooding and 
wind damage incidents are prevalent, 
impacts due to cold and snow are muted. 
When summed in pairs (snow + cold 
and flooding + wind damage), there is no 
overlap between the years in which each 
pair’s top five losses occur (P = 0.024, χ2 
test), and an inverse correlation is evident 
(Fig. 2e). In Fig. 2d, this mutual avoidance 
expresses itself as the largest losses 
(that is, a 13-yr return period) being 
suppressed to the level of entirely random 
selection (dashed line), even as each of 
the pairs is demonstrated to compound 
(blue lines). This new observation adds 
to growing evidence of a seasonal scale 
flooding–wind damage association for 
Great Britain1,7,18.

We propose the term ‘hazard modes’  
for subsets of partially associated hazards 
(Fig. 2b). For Great Britain, we hypothesize 
a simple westerly versus north-easterly 
driver of the hazard modes (wind damage +  
flooding: westerly, or snow + cold: north- 
easterly; Fig. 2c). Low pressure systems 
(named storms) are associated with westerly 
and cyclonic synoptic-scale atmospheric 
patterns18, and although individual storms 
are typically viewed as either causing 
flooding or wind damage4,16, some cause 
both (for example, Storm Desmond); 
particular seasons have also been identified 
as notably ‘wet and stormy’18. Opposing this 
behaviour, episodes of extreme wintertime 
cold or snow in Great Britain are typified 
by advection of cold air from the north 
and east, and ‘blocking’ anticyclonic 
circulation5,19. The wintertime frequency 
of mobile westerly and cyclonic flows are 
known to trade off against more stable 
anticyclonic conditions20. Here, we show 
that the North Atlantic Oscillation is a 
useful metric to capture these behaviours 
through its correlations with the hazard 
modes (Fig. 2f,g).
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appropriate for domestic property (re)
insurance where these two hazards 
dominate1. However, Network Rail is also 
exposed to substantial cold and snow 
impacts, which themselves compound 

by +8% during winter. Assuming now 
that hazards are paired, but the pairs are 
independent given that no published 
study explicitly suggests otherwise, yields 
a simulated increase in overall loss of 

+17%. However, these calculations would 
overestimate risk. This is demonstrated 
by simulating the total effect of all 
dependencies acting together on these four 
hazards, which results in little net effect 
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Fig. 2 | Winter multi-hazard impacts in Great Britain. a, National total winter (October–March) losses for nine hazards affecting Network Rail, of which 
seven are substantive, namely <0.1% of total losses. b, Correlations between the loss classifications. *P < 0.05, **P < 0.01, ***P < 0.001. c, Illustration of the 
proposed ‘hazard modes’. d, The effect of interdependencies between hazards upon seasonal loss totals calculated as the difference between observations 
(solid lines), and simulation modelling in which randomization has been used to break any process-based linkages between hazards (dashed line). Larger, rarer 
losses have greater return periods in this exceedance probability plot. Loss values greater than zero indicate that selected hazard combinations compound, or 
alternatively negative values show that combined impacts are suppressed. Statistical significance of the tendency to compound is computed using the AEP 
method1 and simulation. Details of data and simulation methods are provided in Supplementary Discussion 1. e–g, Scatter plots showing correlations between 
paired categories of losses, and between these pairs and the NAO. Pearson’s r and its statstical significance are displayed, and the grey shading represents the 
95% confidence interval for the trend line.

http://www.nature.com/natureclimatechange


598

comment

Nature Climate Change | VOL 10 | July 2020 | 586–598 | www.nature.com/natureclimatechange

(approximately –1%; Fig. 2d). This occurs 
because when flooding and wind incidents 
are prevalent, impacts due to cold and snow 
are muted. Therefore, a broad multi-hazard 
approach evidently leads to a very different 
conclusion from bivariate view(s) (Fig. 1b).

Mutual exclusivity is not self-evident. 
Storm Ciara (8–10 February 2020) led to 
disruption from snow, flooding and wind 
damage. However, some hazards are more 
likely under particular synoptic-scale 
conditions16,18,19 (weather types20), so if the 
frequency of a weather type is high over 
the season, the damage from its associated 
hazards will also be high. Mutual exclusivity 
arises as the frequency of different weather 
types trade off against one another20. The 
greater the difference in hazard likelihood 
between weather types and the clearer the 
seasonal trade-off in their frequency, the 
stronger this effect will be.

For Great Britain, wintertime frequencies 
of cyclonic (flood and wind damage7,18) and 
anticyclonic or north-easterly (cold and 
snow damage5,19) weather types show strong 
compensation20, explaining the emergence 
of ‘hazard modes’ (Box 1). These modes, 
however, may not persist in a future climate. 
Even if the trade-off in circulation types 
persists, air masses associated with cold 
and snow hazards may warm sufficiently to 
no longer yield damage, reducing annual 
average losses by ~30% (Fig. 2a). To resolve 
the effect of such dependencies and to test 
simplified hypotheses like this, statistical 
frameworks for multivariate extremes10–13 
and/or climate models are needed.

A broader view of compound risk
In summary, dependencies between 
causative hazards can both compound 
and suppress risk (for examples, see 
refs. 1,3,9; Figs. 1b and 2d). Both over and 
under-estimation of risk is problematic for 
the systems and people affected. To neither 
waste resources nor to be underprepared, 
scientists, society and decision-makers 
need to be alert to both. To date, however, 
the focus of the modelling community 
(especially within climate science) has 
been on those aspects of dependency that 

make outcomes worse. Our contribution 
highlights that the opposite can also be true 
(Fig. 1b). We therefore advocate a broad 
view of compound risk — a refinement of 
the established ‘compound event’ viewpoint 
that might better serve hazard and risk 
management communities.

The term ‘compound’, as applied to 
risks, developed from its meaning ‘make 
(something bad) worse; intensify the 
negative aspects of ’3,6,17 (see Supplementary 
Discussion 2). Recently, the definition 
has been expanded3,6, but only rarely is a 
beneficial side effect3 or reduction of risk 
noted as a caveat21, and the importance of 
these tends to be downplayed. We believe 
that this wider description, including such 
positive connotations, is viable, as the word 
compound also means to ‘mix or combine 
constituents’ (in this case, a mix of hazards). 
An ‘event’, however, is an occurrence rooted 
in a specific time and place. Thus, perhaps 
the phrase ‘compound event risk’ could 
be explicitly kept narrow. Conversely, we 
advocate that ‘compound risk’ be applied 
more holistically and used to accommodate 
compound events3,6 that increase impact 
severity, but also used to include those 
impacts that combine within extended 
timeframes and those that combine in ways 
that are mutually exclusive.

Based on the examples above, situations 
are likely to be common globally where 
multi-hazard risk is systematically 
suppressed with respect to selected narrow 
(for example, bivariate or pairwise) 
configurations. We suspect that these 
are under-diagnosed due to (1) lack of 
systematic collection and analysis of impact 
data; (2) difficulties in comparing hazards 
(for example, time lags between extreme 
events, different hazard metrics1,17 and time 
lags between end-member conditions, like 
El Niño/La Niña); and lastly (3) a need 
for greater awareness that such situations 
should be identified. The subtle balance 
between hazards is also non-stationary as 
climate changes2,3, so diagnosis is needed 
for future climates. Moreover, dependencies 
are not only between causative hazards 
but are also embedded in vulnerability 

and how impacts cascade3. Broad, 
holistic, stakeholder-relevant assessments 
of compound risk for multi-hazard 
environments are therefore needed to 
improve assessments of current and  
future risk. ❐
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