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ABSTRACT

We revise the solutions of the forced Korteweg–de Vries equation describing a resonant interaction of a solitary wave with exter-
nal pulse-type perturbations. In contrast to previous work where only the limiting cases of a very narrow forcing in comparison
with the initial soliton or a very narrow soliton in comparison with the width of external perturbation were studied, we consider
here an arbitrary relationship between the widths of soliton and external perturbation of a relatively small amplitude. In many
particular cases, exact solutions of the forced Korteweg–de Vries equation can be obtained for the specific forcings of arbitrary
amplitude. We use the earlier developed asymptotic method to derive an approximate set of equations up to the second-order
on a small parameter characterising the amplitude of external force. The analysis of exact solutions of the derived equations is
presented and illustrated graphically. It is shown that the theoretical outcomes obtained by the asymptotic method are in a good
agreement with the results of direct numerical modeling within the framework of forced Korteweg–de Vries equation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5063561

We consider interaction of a Korteweg–de Vries (KdV) soliton
with an external forcing within the framework of forced KdV
equation

∂u

∂t
+ c

∂u

∂x
+ αu

∂u

∂x
+ β

∂3u

∂x3
= ε

∂f

∂x
,

where c, α, and β are constant coefficients and f(x, t)
describes the external perturbation of amplitude ε moving
with the constant speed V.

This equation is a canonical model for the description
of resonant excitation of weakly nonlinear waves by mov-
ing perturbations. Such an equation was derived by many
authors for atmospheric internal waves over a local topogra-
phy, surface and internal water waves generated by moving
atmospheric perturbations or in a flow over bottom obsta-
cles, internal waves in a rotating fluid with a current over
an obstacle, etc. The similar equation is also applicable for
description of plasma waves and waves in the Bose–Einstein
condensate by moving sources.

Using the asymptotic approach earlier developed in
the series of papers by Grimshaw and Pelinovsky with co-
authors,16–20 we analyze soliton generation, scattering, and
capturing by a finite width forcing. We do not apply approx-
imation of KdV soliton or forcing function f(x, t) by the
delta-functions as it was assumed in the cited papers. We
show that for some particular forcing function, the forced
KdV equation has exact solutions in the form of a solitary
wave synchronously moving with the forcing. For three such
functions, we present the corresponding exact solutions and
then consider approximate solutions for an external KdV
soliton interacting with the forcing. Solutions obtained are
illustrated by means of phase planes and then compared
with the numerical solutions obtained within the forced KdV
equation. It is shown that the asymptotic theory provides
very accurate solutions which agree well with the numer-
ical solutions. In the meantime, the numerical modeling
reveals some new effects, which are beyond the range of
applicability of asymptotic theory. In particular, a perma-
nent generation of solitary waves with random amplitudes
by a wide forcing was observed.
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I. INTRODUCTION

The forced Korteweg–de Vries (fKdV) equation is a canon-
ical model for the description of resonant excitation of weakly
nonlinear waves by moving perturbations. Such an equation
was derived by many authors for atmospheric internal waves
over a local topography,1,2 surface and internal water waves
generated by moving atmospheric perturbations or in a flow
over bottom obstacles,3–12 internal waves in a rotating fluid
with a current over an obstacle.13 The number of publica-
tions on this topic is so huge that it is impossible to mention
all of them in this article. In addition to the papers men-
tioned above, we will only add a review paper14 and rela-
tively recent publication15 where a reader can find some more
references.

An effective method of asymptotic analysis of fKdV
equation, when the amplitude of external force acting on a
KdV soliton is relatively small, was developed in the series
of papers by Grimshaw and Pelinovsky with co-authors.16–20

Two limiting cases were analyzed in those papers: (i) when
the width of external force is very small in comparison with
the width of a soliton and can be approximated by the Dirac
delta-function and (ii) when a soliton width is very small in
comparison with the width of external perturbation. A simi-
lar approach was used in Ref. 21 where the forcing term was
approximated by the derivative of Dirac delta-function.

In the meantime, in the natural conditions, a relation-
ship between the widths of solitary wave and external forcing
can be arbitrary; therefore, it is of interest to generalise the
analysis of those authors and consider a resonance between
the solitary waves and external forces of arbitrary width. For
such arrangements, we have found few physically interesting
regimes, which were missed in the previous studies. In addi-
tion to that, we show that for some special external forces, the
exact solutions of fKdV equation can be obtained even when
the amplitude of external force is not small. We compare our
solutions derived by means of the asymptotic method with
the results of direct numerical modeling within the framework
of fKdV equation and show that there is a good agreement
between two approaches. In themeantime, the numerical sim-
ulation demonstrates that there are some effects, which are
not caught by the asymptotic theory.

Below, we briefly describe the basic model and the
asymptotic method developed in the papers16–20 for the anal-
ysis of soliton interaction with external forcing, and then
we apply the basic set of approximate equations to the par-
ticular cases of stationary and periodic forcing. In Sec. VII,
we present the results of numerical modeling and com-
parison of theoretical outcomes with the numerical data.
In the Conclusion, we discuss the results obtained in this
paper.

II. THE BASIC MODEL EQUATION

AND PERTURBATION SCHEME

In this paper, we follow the asymptotic method developed
in the aforementioned papers16–20 and apply it to the fKdV

equation in the form

∂u

∂t
+ c

∂u

∂x
+ αu

∂u

∂x
+ β

∂3u

∂x3
= ε

∂f

∂x
, (1)

where c, α, and β are constant coefficients and f(x, t) describes
the external perturbation of amplitude ε moving with the
constant speed V.

Introducing new variables x̂ = x − Vt, t̂ = t, we can trans-
form Eq. (1) to the following form (the symbol ˆ is further
omitted):

∂u

∂t
+ (c − V)

∂u

∂x
+ αu

∂u

∂x
+ β

∂3u

∂x3
= ε

∂f

∂x
. (2)

This form corresponds to the moving coordinate frame where
the external force is stationary and depends only on spatial
coordinate x.

In the absence of external force, i.e., when f(x, t) ≡ 0,
Eq. (2) reduces to the well-known KdV equation which has sta-
tionary solutions in the form of periodic and solitary waves.
We study here the dynamics of a solitary wave under the
action of an external force of small amplitude ε � 1 assuming
that in the zero approximation (when ε = V = 0), the solution
is

u0 = A0 sech
2
(γ08), (3)

where the inverse half-width of a soliton γ0 =
√

αA0/12β and
its speed υ0 = c + αA0/3 depend on the amplitude A0, 8 = x −
x0 − υ0t is the total phase of the soliton, and x0 is an arbitrary
constant determining the initial soliton position at t = 0.

In the presence of external force of a small amplitude,
the solitary wave solution (3) is no longer valid, but one can
assume that under the action of external perturbation, it will
gradually vary so that its amplitude and other parameters can
be considered as functions of “slow time” T = εt, so that

υ(T) = c − V + αA(T)

3
, (4)

9(T) = x0 + 1

ε

T
∫

0

υ(τ)dτ . (5)

Now, we have to define functions A(T) and υ(T). This can be
done by means of the asymptotic method developed, in par-
ticular, in Refs. 16 and 22. Following these papers, we seek for
a solution of the perturbed KdV equation (2) in the form of the
expansion series:

u = u0 + εu1 + ε2u2 + · · ·,
υ = υ0 + ευ1 + ε2υ2 + · · ·. (6)

In the leading order of the perturbation method (in the zero
approximation), when ε = 0, we obtain the solitary wave solu-
tion (3) for u0 and υ0. In the next approximation, we obtain
the same solution, but with slowly varying parameters in time.
The dependence of soliton amplitude A on T can be found from
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the energy balance equation,16 which follows from Eq. (2) after
multiplication by u(x, t) and integration over x:

d

dT

∞
∫

−∞

u2(8)

2
d8 =

∞
∫

−∞

u(8)
df(8 + 9)

d8
d8. (7)

Substituting here solution (3), we obtain the equations for
A(T):

dA

dT
= γ

∞
∫

−∞

sech2
(γ8)

df(8 + 9)

d8
d8. (8)

The second equation for 9(T) in this approximation repre-
sents just a kinematic condition: the time derivative of the
soliton phase is equal to the instant soliton speed in the
moving coordinate frame

d9

dT
= 1V + αA(T)

3
, (9)

where 1V = c − V.
In the second order of asymptotic theory, a correction to

the wave speed υ1 [see Eq. (6)] should be taken into account.
Leaving aside the derivation of the corrected Eq. (9) (the details
can be found in Ref. 16), we present here the final equation

d9

dT
= 1V + αA(T)

3
+ εα

24βγ 2

∞
∫

−∞

[

tanh γ8 + (γ8 − 1) sech2
γ8

]

× ∂f(8 + 9)

∂8
d8. (10)

Thus, the set of equations in the first approximation consists
of Eqs. (8) and (9), whereas in the second approximation, it
consists of Eqs. (8) and (10). However, as has been shown in Ref.
16, the last term in Eq. (10) containing small parameter ε dra-
matically changes the behavior of the system and makes the
result realistic, whereas Eq. (9) provides just a rough approx-
imation to the real solution valid at fairly small time interval
in the vicinity of a forcing. This difference between the solu-
tions in the first and second approximations will be illustrated
in Sec. III, and then we will analyze only solutions correspond-
ing to the second approximation described by Eqs. (8) and (10)
for different kinds of external force f(x).

III. THE KdV-TYPE FORCING

Let us consider first the case when

f(x) = sech2 x

1f
, V = c + 4β

12
f

−
εα12

f

12β
, (11)

where 1f is a free parameter characterising the half-width of
external force.

With this function f(x), one can find an exact solution of
Eq. (2) in the form of a KdV soliton (3) synchronously mov-
ing with the external force, υs = V, and having the amplitude
As = 12β/α12

f and half-width γ −1
s = 1f . This solution repre-

sents a particular case of a family of exact solutions to the

class of forced generalised KdV equations constructed in Ref.
23. Note that here the parameters ε and 1f are arbitrary, and
the amplitude As of a soliton is determined only by the width of
external force 1f , whereas the soliton speed V is determined
both by the width 1f and amplitude ε of external force.

Let us assume now that the parameter ε is small, and we
have the initial condition for Eq. (2) in the form of KdV soli-
ton shifted from the centre of forcing and moving with its
own velocity υ0 with the initial amplitude A0 6= As. By substi-
tution of function f(x) from Eq. (11) in Eq. (8), we obtain for the
parameter γ (T) the following equation:

dγ

dT
= −2εα

3β
e2θ

∞
∫

0

qK
(

e2θ + qK
)2

q − 1
(

q + 1
)3
dq, (12)

where q = exp
(

28/1f

)

, θ = γ9, and K = γ01f is the ratio
of half-widths of external force and initial soliton. The
parameter K can also be presented in terms of the half-
distance Df between the extrema of forcing function f(x): K =
2γ0Df/ ln (2 +

√
3) (see the distance between maximum and

minimum of f ′x in Fig. 1).
Equation (9) of the first approximation in terms of θ = γ9

reads (cf. Ref. 16):

dθ

dT
= 1Vγ + 4βγ 3. (13)

According to the asymptotic theory, soliton velocity should be
close to the forcing velocity. If we assume that at the initial
instant of time they are equal, υ0 = V, then we obtain that the
forcing amplitude ε is linked with the initial soliton amplitude
A0 through the formula

ε =
αA2

0

(

1 − K2
)

3K4
. (14)

This formula shows that the polarity of forcing depends on the
sign of its amplitude ε and is determined by the parameter K:
it is positive, if K < 1, and negative otherwise.

Dividing Eq. (12) by Eq. (13), we obtain

dγ

dθ
= − 2εαe2θ

3βγ
(

1V + 4βγ 2
)

∞
∫

0

qK
(

e2θ + qK
)2

q − 1
(

q + 1
)3
dq. (15)

FIG. 1. The shape and polarity of forcing function f(x) (green lines 1) as per
Eqs. (11) and (14) for K = 0.75 (a) and K = 2 (b), red lines 2 represent the
derivatives f ′

x
(x), and blue lines 3 show the initial KdV solitons of unit amplitudes.
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This is the first-order separable equation whose general solu-
tion can be presented in the form

02 + 20 = 32
K2 − 1

K4

∫

∞
∫

0

[

qK
(

e2θ + qK
)2

q − 1
(

q + 1
)3
dq

]

e2θdθ + C,

(16)
where 0 = A/A0 is the dimensionless amplitude of a solitary
wave and C is a constant of integration.

The integrals in the right-hand side of Eq. (16) can be eval-
uated analytically; however, we do not present here the results
of integration as they are very cumbersome. After evaluation
of the integrals in Eq. (16), the phase portrait of the dynamical
system (12) and (13) in terms of the dependence 0(θ) can be
plotted for any value of the parameter K.

In the case when the width of the initial solitary wave
is the same as the width of the external force, i.e., K = 1, we
obtain 0 = 1 and C = 3.

When K varies in the range 0 < K < 1, then the forcing
is positive, εf(x) > 0 [see Fig. 1(a)], and the right-hand side of
Eq. (16) is positive too; then the equilibrium state with 0 = 1
and θ = 0 is of the centre-type in the phase plane. Therefore,
if soliton parameters are such that it is slightly shifted from the
equilibrium position, then it will oscillate around this position
as shown in the phase plane of Fig. 2(a). This formally corre-
sponds to the trapping regime when a solitary wave is trapped
in the neighborhood of centre of external force.

If the amplitude and speed of initial soliton are big
enough, then the soliton simply passes through the external
perturbation and moves away. Such a regime of motion corre-
sponds to the transient trajectories shown in the phase plane
of Fig. 2(a) above the separatrix (the line dividing trapped and
transient trajectories).

There are also trajectories in the lower part of the phase
plane which either bury into the horizontal axes with 0 = 0 or
originate from this axis. Such trajectories correspond to decay
of solitons of certain amplitudes or birth of solitons from small
perturbations, which, however, appear for a while, but then
decay. Some of these trajectory types, which appear within the
separatrix, correspond to the “virtual solitons” [see unclosed

(a) (b)

FIG. 2. The phase portraits of the dynamical system (12) and (13) as per Eq. (16)
in the first approximation on the parameter ε for K = 0.75 (a) and K = 2 (b).

trajectories within the separatrix in Fig. 2(a)]. The “virtual soli-
tons” are generated in the neighborhood of forcing maximum,
then increase, but after a while completely disappear.

When K > 1, then the forcing is negative, εf(x) < 0 [see
Fig. 1(b)], the right-hand side of Eq. (16) is negative too, and the
equilibrium state with 0 = 1 and θ = 0 is of the saddle-type,
as shown in Fig. 2(b). In this case there are repulsive regimes,
where solitary waves approach the forcing either from the left
or from the right and bounce back. There are also the transient
regimes above and below separatrices, where solitons of big
or small amplitudes simply pass through the forcing. There are
regimes corresponding to the “virtual solitons,” which arise for
a while from small perturbations and then disappear [see the
trajectories originating at the line 0 = 0 in Fig. 2(b)].

In this approximation, our results are qualitatively simi-
lar to the results obtained in Ref. 16, but in contrast to that
paper, as well as subsequent papers,17–20 we do not use here
the approximation of soliton or forcing by the Dirac delta-
function. In the limiting cases, when the width of one of these
entities becomes very small, our results completely reduce to
those derived in Ref. 16.

As was already noted in Ref. 16, asymptotic equations
of the first approximation actually do not provide physically
realistic description of soliton dynamics. Only in the second
approximation, the dynamical system for 0 and θ reflects a
realistic description. In this approximation, Eq. (12) remains
the same, and Eq. (13) should be replaced by a more complex
equation, which follows from Eq. (10) and in terms of function
θ reads

dθ

dT
= 1Vγ + 4βγ 3 − 1V2

βγ

K2 − 1

K4

×
∞

∫

0

e2θ
(

1 + 2θ − K ln q
)

− qK

(

e2θ + qK
)2

q − 1
(

q + 1
)3
qKdq. (17)

The integral on the right-hand side of this equation can be
calculated analytically, but the result is very cumbersome.

Combining Eq. (17) with Eq. (12), one can plot the improved
phase portrait of the dynamical system; it is shown in Fig. 3. It

(a) (b)

FIG. 3. The phase portraits of the dynamical system (12) and (17) in the second
approximation on the parameter ε for K = 0.75 (a) and K = 2 (b).
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is evident that the phase portrait in the second approxima-
tion dramatically differs from the phase portrait of the first
approximation. First of all, the equilibrium state of the centre-
type in Fig. 2(a) maps into the unstable focus, alias spiral [see
Fig. 3(a)]; this has been noticed already in Ref. 16. Secondly,
the equilibrium amplitude 0 in the second approximation is
greater than in the first approximation. Thirdly, on the tran-
sient trajectories of Fig. 3(a), soliton amplitudes do not return
back to their initial values (cf. asymptotics of transient trajec-
tories above the focus, when θ → ±∞). There are some other
important features which were missed in Ref. 16 because of
additional approximation of soliton or forcing by the Dirac
delta-function. In particular, when K < 1, there is a repulsive
regime clearly visible in the right lower corner of Fig. 3(a).

Similarly, there are differences in the phase portraits of
first and second approximation when K > 1. In particular, a
new equilibrium state of a stable focus appears below the
saddle [which is not visible in Fig. 3(b) due to rarefaction of
trajectories, but clearly implied as a separator between the
transient and captured trajectories]. Note that in Ref. 16, the
focus was mistakenly identified with the centre-type equilib-
rium state. This equilibrium state corresponds to the small-
amplitude soliton trapped by the negative forcing shown in
Fig. 1(b). Meanwhile, it is clear from the physical point of view
and confirmed through the analysis of dynamical system in the
second approximation that a positive forcing, such as shown in
Fig. 1(a), cannot trap and confine a soliton.

IV. THE KDVB-TYPE FORCING

In this section, we consider Eq. (2) with the different and
non-symmetric forcing function of the form

f (x) =
(

±1 − tanh
x

1f

)

sech2 x

1f
. (18)

Equation (2) with this forcing function can be derived from
the Korteweg–de Vries–Burgers (KdVB) equation and has the
exact solution for any parameter 1f in the form of a shock
wave24

u (x) = ε1f

(

1 ± tanh
x

1f
+ 1

2
sech2 x

1f

)

, (19)

whereas the forcing amplitude ε and speed V are determined
by the forcing width 1f

ε = 24β

α13
f

; V = c + 24β2

12
f

.

The forcing function (18) and its derivative f ′x are shown in
Fig. 4. In the same figure, one can see the exact solutions
(19) for the shock wave (black line in frame a) and “anti-shock
wave” (black line in frame b). As follows from the exact solu-
tions, a localised external force can produce a non-localised
perturbation for u(x) in the fKdV equation (1). Two different
forcing functions corresponding to the upper and lower signs
in Eq. (18) are mirror symmetric with respect to the vertical
axis; therefore, we illustrate below the solutions generated by

(a) (b)

FIG. 4. The forcing function with K = 2. Frame (a) pertains to the upper sign in
Eq. (18), and frame (b) pertains to the lower sign. Green lines (1) illustrate forcing
functions f(x) and red lines (2) its derivatives f ′(x). Blue lines 3 represent the KdV
solitons at the initial instant of time, and black lines 4 represent the exact solutions
of KdVB equation (19) in the forms of shock wave (in frame a) and “anti-shock
wave” (in frame b).

only one of them shown in Fig. 4(a), but for the sake of gen-
erality, below we present solutions for both signs in Eq. (18).
Note that the forcing function (18) of any sign always repre-
sents only a negative potential shifted from the centre either
to the right or to the left (see green lines 1 in the figure).

If the initial perturbation is chosen in the form of a KdV
soliton (3) and the amplitude of external force is small, ε � 1,
then we can apply again the asymptotic theory presented
in Sec. II to describe the evolution of a soliton under the
influence of external force (18). In this case, Eq. (8) after substi-
tution of soliton solution and the forcing function (18) reduces
to the following equation:

d

dT

(

2A2

3γ

)

= ± 10βε

12
f

∞
∫

−∞

A sech2
(γ8)sech4

(

8 + 9

1f

)

×
[

2 − e
± 2(8+9)

1f

]

d8. (20)

Introducing the parameters q = e28/1f and K = 2γ0Df/ ln

[(7 +
√
33)/4], where Df , as above, is the half-distance between

the extrema of forcing derivative f ′x (see Fig. 4) and skipping
Eq. (9) of the first approximation, we present the set of Eqs. (8)
and (10) in the second approximation on the parameter ε as

dγ

dT
= ∓320β

14
f

e2θ
∞

∫

0

qK+1

(

e2θ + qK
)2

q±1 − 2
(

q + 1
)4
dq, (21)

dθ

dT
= 1Vγ + 4βγ 3 ∓ 101V2

27βγK4

∞
∫

0

e2θ
(

1 + 2θ − K ln q
)

− qK

(

e2θ + qK
)2

× q±1 − 2
(

q + 1
)4

qK+1 dq, (22)

where the upper and lower signs correspond to the upper and
lower signs in the forcing function (18).

The set of Eqs. (21) and (22) does not have equilibrium
states for relatively small width of the forcing K ≤ 3 as shown
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(a) (b)

FIG. 5. The phase portraits of the dynamical system (21) and (22) with K = 2
[frame (a)] and K = 3.5 [frame (b)].

in Fig. 5(a). In the phase plane, there are either transient trajec-
tories or bouncing trajectories in this case. If the forcing width
increases and becomes greater than K > 3, then the equilib-
rium state of a stable focus appears, which corresponds to the
trapped KdV soliton of a small amplitude within the potential
well as shown in Fig. 5(b). However, when the forcing width
further increases and becomes greater than K > 5, then the
equilibrium state disappears again, and the phase portrait of
the system (21) and (22) becomes qualitatively similar to that
shown in Fig. 2(b).

V. THE GARDNER-TYPE FORCING

Consider now the forcing function in the form

f(x) = 1
[

1 + B cosh
(

x/1f

)]3
, (23)

where B and 1f are constant parameters. Its derivative is

f ′x(x) = −
3B(1 + B)3 sinh

(

x/1f

)

1f

[

1 + B cosh
(

x/1f

)]4
. (24)

For any parameters ε and 1f , this forcing provides the exact
solution to the fKdV Eq. (2) in the form of Gardner soliton (see,
e.g., Ref. 25):

u (x) =
Af

1 + B cosh
(

x/1f

) , (25)

where Af = 6β/α12
f and V = c + β/12

f . The parameters B and

1f determine the amplitude of external force ε by means of
the formula

ε = − 12β2(B − 1)

α(B + 1)21f
4
. (26)

Real nonsingular soliton solutions exist only for B > 0 and
B < −1. When B ranges from 0 to 1, we have a family of soli-
tons varying from a KdV soliton, when B → 1−, to a table-top
soliton, when B → 0+. When 1 ≤ B < ∞, we obtain a family
of bell-shaped solitons of positive polarity, and when −∞ <

B < −1, we obtain a family of bell-shaped solitons of neg-
ative polarity (see, e.g., Ref. 25). The half-width of forcing

FIG. 6. The dependence of parameter K characterising the relative width of forc-
ing (23) as a function of parameter B. Horizontal line 4 shows the asymptotic value
of K = ln 3/4 ≈ 0.275 when B → ±∞.

(23), i.e., half-distance between the extrema of function f ′x, is
determined by the parameter B

Df = 1f ln





1 ± R ±
√

2
(

R + R2 − 42B2
)

6B



, (27)

where R =
√
1 + 48B2, upper signs pertain to B > 0, and lower

signs pertain to B < 0. Figure 6 shows the parameter K = γ0Df

as the function of B.
In the interval −∞ < B < −1, the forcing is narrow, K < 1

(see line 1 in Fig. 6), and the function f(x) is positive [see green
line 1 in Fig. 7(a)]. In the interval 1 < B < ∞, the forcing is nar-
row too (see line 3 in Fig. 6), but the function f(x) is negative
[see green line 1 in Fig. 11(a)]. In the interval 0 < B < 1 (see line
2 in Fig. 6), the forcing can be both wide, K > 1, when B is very
close to zero, and narrow, K < 1, in the rest of this interval; the
forcing function is positive within the entire interval 0 < B ≤ 1
(see green lines 1 in Fig. 9). Note that as follows from Eq. (26),
the amplitude of forcing vanishes when B → ±∞, and we have
a KdV soliton of arbitrary amplitude freely moving without
external action. When B → −1−, the forcing width becomes
zero, but its amplitude goes to infinity; the forcing looks like
the Dirac δ-function.

When B → 0+, the forcing becomes infinitely wide. These
two limiting cases have been studied in Ref. 16, and our pur-
pose here is to study the situations when K is of the order of
unity.

Assume again that the amplitude of external force is small
ε � 1 and the initial perturbation has the form of KdV soliton
(3) moving with the initial velocity υ0 = V. This gives γ01f =
1/2. After substitution of function f ′x(x) from Eq. (24) and soli-
ton solution (3) into Eqs. (8) and (10) and denoting p = e8/1f ,
we obtain in the second approximation the following set of
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(a) (b)

FIG. 7. Green lines 1 represent the forcing function f(x) as per Eq. (23), red lines
2 represent its derivatives f ′(x), and blue lines 3 show the initial KdV soliton (3).
In frame (a), K = 0.274, B = −221.23; in frame (b), K = 0.25, B = −6.08.

equations:

dγ

dT
= 48(B2 − 1)1V2

βB3
e2θ

∞
∫

0

p3
(

p2 − 1
)

dp
(

e2θ + p
)2 (

p2 + 2p/B + 1
)4
, (28)

dθ

dT
= 1Vγ + 4βγ 3 − 241V2

βγ

B2 − 1

B3

∞
∫

0

e2θ
(

1 + 2θ − lnp
)

− p
(

e2θ + p
)2

×
p3

(

p2 − 1
)

dp
(

p2 + 2p/B + 1
)4
. (29)

Below, we describe the changes in the phase portraits of the
dynamical system (28) and (29) when the parameter B varies
from minus to plus infinity. When this parameter is negative,
−∞ < B < −1, the forcing is narrow K < 1 and positive (see
lines 1 in Fig. 7). Such forcing with a hump cannot trap a soli-
ton; therefore, there is only one equilibrium state, the unstable
focus (alias the unstable spiral), which implies that a soliton
placed at this state escapes it under the action of infinitely
small perturbations (see Fig. 8). The only difference between
the portraits shown in Figs. 8(a) and 8(b) is that there are no
transient trajectories in the latter figure below the equilibrium
point, but instead the bouncing trajectories appear in the right
lower corner.

(a) (b)

FIG. 8. Phase portraits of the dynamical system (28) and (29) for K = 0.274
(frame a) and K = 0.25 (frame b).

(a) (b)

FIG. 9. Green lines 1 represent the forcing function f(x) as per Eq. (23), red lines
2 are its derivatives f ′(x), and blue lines 3 are the initial KdV soliton (3). In frame
(a), K = 2, B = 0.012; in frame (b), K = 0.5, B = 0.49.

When the parameter B varies in the range 0 < B ≤ 1, the
forcing can be both wide, K > 1, and narrow, K < 1, but in both
cases, the potential function is positive (see lines 1 in Fig. 9).
Again, due to the positive hump-type forcing incapable of
trapping a soliton, the only one equilibrium state on the phase
plane is possible, the unstable focus. The typical phase por-
traits in this case are qualitatively similar both for the wide
and narrow forcing [cf. Figs. 10(a) and 10(b) for K = 2, B = 0.012
and K = 0.5, B = 0.49, respectively].

When B > 1, the forcing is narrow 0.275 < K < 1, but now
negative (see lines 1 in Fig. 11). Such forcing with a well can
trap a soliton of a very small amplitude in the certain inter-
vals of parameter B. In the interval 1 ≤ B < B1(≈ 1.06), there is
only one unstable equilibrium state of a saddle type; the typi-
cal phase portrait is shown in Fig. 12(a). Then, in the interval
B1 < B < B2(≈ 1.5), there is an equilibrium state of the sta-
ble focus type; the corresponding phase portrait is shown in
frame (b). In the next interval B2 ≤ B < B3(≈ 7), the equilib-
rium state disappears, and the typical phase portrait is shown
in frame (c). In the interval B3 < B < B4(≈ 55), an equilibrium
state of the stable focus type appears again; the correspond-
ing phase portrait is shown in frame (d). At last, in the interval
B > B4, the unstable equilibrium state of a saddle type like in
the frame (a) arises again [see frame (e)]. In the latter case,

(a) (b)

FIG. 10. Phase portraits of the dynamical system (28) and (29) for K = 2 [frame
(a)] and K = 0.5 [frame (b)].

Chaos 29, 013117 (2019); doi: 10.1063/1.5063561 29, 013117-7

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

(a) (b)

FIG. 11. Green lines 1 are the forcing functions f(x) as per Eq. (23), red lines 2
are their derivatives f ′(x), and blue lines 3 are the initial KdV solitons (3). In frame
(a), K = 0.3, B = 5.5; in frame (b), K = 0.283, B = 17.

forcing amplitude becomes very small (it asymptotically van-
ishes when B → ∞); therefore, it is incapable of retaining a
soliton.

VI. A PERIODIC FORCING

Consider now soliton dynamics in the nonstationary
external field periodically varying in time and space. A sim-
ilar problem has been studied in Refs. 17 and 26–28. As has
been shown in those papers, a periodic forcing can lead to
both dynamic and chaotic regimes of wave motion. Here, we
consider a model of forcing which generalises the model stud-
ied in Ref. 17 and admits exact solutions. In contrast with Ref.
17, we do not use here again the approximation of either soli-
ton or external forcing by the Dirac delta-function and study
only the dynamic behavior of a soliton in a periodically varying
forcing.

Let us assume that in Eq. (1), the forcing function has the
form

f(x, t) = σF(t)sech2

[

x −
∫

S(t)dt

1f

]

, (30)

where F(t) and S(t) are arbitrary functions of their argument
and σ is a real parameter.

As has been shown in Ref. 23, the fKdV equation (1) with
such forcing function has the exact solution for any parame-
ters ε and 1f in the form of a soliton moving with the variable
velocity S(t)

u(x, t) = 12β

α12
f

sech2

[

x −
∫

S(t)dt

1f

]

, (31)

where σ = 12β/

(

εα12
f

)

and S(t) = c + 4β/12
f − F(t).

Let us choose, in particular,

F(t) = εα

12β
12

f

(

1 + Ṽ sin εωt
)

, (32)

where Ṽ and ω are arbitrary real parameters; then solution
(31) represents a soliton moving with the mean velocity V as
per Eq. (11) and periodically varying component proportional

to Ṽ cos (εωt)

Vtot = c + 4β

12
f

−
εα12

f

12β

(

1 + Ṽ sin εωt
)

. (33)

With the choice of F(t) as above, the forcing function has
the same shape as in Fig. 1, but now the amplitude of forc-
ing function f(x, t) periodically varies in time and the forcing
moves with periodically varying speed. Note that in Ref. 17, the
authors considered variation of only forcing phase, whereas in
our case, both the forcing amplitude and phase vary in time.

If ε � 1 is a small parameter as above and the initial per-
turbation has the form of a KdV soliton (3), then from the
slightly modified asymptotic theory described in Sec. III, we
obtain very similar equations for the first- and second-order
approximations. To show this, let us make the transformation
of independent variables in Eq. (1) x̂ = x −

∫

S(t)dt, t̂ = t, then
Eq. (1) reduces to the form similar to Eq. (2) (the symbol ˆ is
further omitted)

∂u

∂t
+ [c − S(t)]

∂u

∂x
+ αu

∂u

∂x
+ β

∂3u

∂x3
= ε

df(x)

dx
. (34)

FIG. 12. Phase portraits of the system (28) and (29) in the different intervals of parameter B ≥ 1 corresponding to the narrow forcing (0.275 < K < 0.397), of a negative
polarity. The portraits were generated for the following parameters: frame (a): B = 1.05, K = 0.392; frame (b): B = 1.2, K = 0.379; frame (c): B = 3, K = 0.32; frame (d):
B = 10, K = 0.288; frame (e): B = 60, K = 0.277.
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In the presence of small external perturbation, solitary wave
solution (3) gradually varies and its amplitude, half-width γ −1,
and velocity become slow functions of time T = εt, so that the
soliton phase can be determined as in Sec. II: 8 = x − 9(T) [cf.
Eq. (4)], but with the periodically varying speed

υ(T) = αA(T)

3
− 4β

12
f

+ εα

12β
12

f

(

1 + Ṽ sinωT
)

. (35)

The time dependence of soliton amplitude follows from the
energy balance equation (7). Then carrying out the asymptotic
analysis up to the second order on the parameter ε, we even-
tually obtain the set of equations similar to Eqs. (12) and (17)
with the only modifications caused by the periodic factor in
front of integrals

dγ

dT
= 2εα

3β

(

1 + Ṽ sinωT
)

e2θ
∞

∫

0

qK
(

e2θ + qK
)2

q − 1
(

q + 1
)3
dq, (36)

dθ

dT
= 1V(T)γ + 4βγ 3 − εα

3βγ

(

1 + Ṽ sinωT
)

×
∞

∫

0

e2θ
(

1 + 2θ − K ln q
)

− qK

(

e2θ + qK
)2

q − 1
(

q + 1
)3
qKdq, (37)

where now

1V(T) = c − Vtot = − 4β

12
f

+ εα

12β
12

f

(

1 + Ṽ sinωT
)

.

There are no analytical solutions to this set of equations,
but it can be solved numerically, and a qualitative char-
acter of solutions can be illustrated by means of three-
dimensional phase space, where the third coordinate is the
T-axis. Few typical phase trajectories are shown in Fig. 13
for the positive and negative forcing functions (cf. with the
phase plane shown in Fig. 3). Due to oscillations of forcing
functions, the phase trajectories revolve around the unstable
(frame a) or stable (frame b) focus-type equilibria and displace
along the T-axis. Trajectories in frame (a) eventually become
parallel to the T-axis; this corresponds to solitary waves
escaping from the forcing and uniformly moving with the
constant amplitudes and speeds. Trajectories in frame (b), in
contrast, eventually converge to the equilibrium point cor-
responding to the solitary wave trapped by the negative
forcing. Such solitary wave ultimately moves synchronously
with the forcing having periodically varying amplitude and
speed.

VII. RESULTS OF NUMERICAL STUDY

To validate the theoretical results obtained on the basis
of asymptotic theory, we undertook direct numerical calcula-
tions within the framework of original forced KdV equation
(1) with the different shapes of forcing f(x, t). Below, we
present the most typical examples for the Gardner-type forc-
ing considered in Sec. V. In other cases, the results obtained
were qualitatively similar to presented here. Numerical

(a) (b)

FIG. 13. The phase space θ ,0, T of the non-stationary dynamical system (36) and (37).
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FIG. 14. Generation of solitons (blue lines) by wide forcing (red lines) in the case
of Gardner-type forcing (only a fragment of the spatial domain of total length
4000 is shown). The numerical solution of Eq. (1) was obtained with the following
parameters: α = 1, α1 = −0.5, β = 6, B = 0.012.

solutions were obtained by means of the finite-difference
code described in Ref. 29 and realised in Fortran.

First of all, it was confirmed that in all cases when the
forcing is of positive polarity, there is no trapped soliton mov-
ing synchronously with the forcing. Even when a KdV soliton
was placed initially at the centre of the hump-type forcing,
it eventually escaped from the forcing and moved indepen-
dently. A hump-type narrow forcing was capable to retain a
KdV soliton only for a while in agreement with the analyti-
cal prediction—see the phase planes shown in Figs. 3(a), 8, and
10(b). In the case of a wide forcing, the situation becomes more
complicated and leads to the permanent generation of soli-
tary waves at the rear slope of the forcing. Below, we describe
in detail soliton interaction with the wide and narrow forcing
using as an example the Gardner-type forcing.

FIG. 15. Three oscillations of initial KdV soliton (blue line at t = 0) and its subse-
quent separation from the forcing zone at t > 1040. The Gardner-type forcing is
shown by red line at t = 0; the dashed vertical line shows the position of forcing
maximum. The numerical solution was obtained with the following parameters of
Eq. (1): α = 1, α1 = −0.125, β = 6, B = 0.85, and L = 4000.

We considered solutions for B > 0 starting from small
B = 0.012 when the forcing represents a 5-shaped pulse as
shown in Fig. 9(a). According to the asymptotic theory, such
forcing leads to the unstable node/spiral on the phase plane
[see Fig. 10(a)], which corresponds to the generation of soli-
tons escaping from the forcing zone and moving to the right.
However, when a soliton emerging from a small perturba-
tion escapes from the forcing zone, another soliton is created,
and the process is repeated many times. Moreover, because
the forcing is wide for such parameter B, several solitons can
coexist within the forcing zone; then, some of them leave this
zone, while new solitons are generated on the left slope of
the forcing function. This was indeed observed, and results
obtained are shown in Fig. 14.

As one can see from this figure, the initial small-amplitude
bell-shaped soliton at t = 0 starts to grow, but at the same
time, another perturbation generates on the left slope of the
forcing function. Very quickly, the number of solitons within
the forcing reaches three, then one of them leaves the forcing
zone at t = 140, and, simultaneously, one more small soliton
is generated at the left slope of forcing. Then, the second
soliton leaves the forcing zone at t = 280 and the process
repeats. Thus, the forcing acts as a generator of infinite series
of random-amplitude solitons. The details of this and all sub-
sequent processes can been seen in the videos available at the
website.30

When the forcing is relatively narrow, it can retain for a
while only one soliton, which after a few oscillations within
the forcing zone eventually escapes and freely moves ahead.
This is illustrated by Fig. 15. In this figure, one can see at t = 0
the KdV soliton (blue line) and the forcing (slightly taller pulse
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FIG. 16. Generation of a soliton (blue lines) by the negative forcing (red lines)
from a random numerical noise.

shown by red line). In the coordinate frame where the forcing
is in the rest, the KdV soliton moves to the left first attain-
ing the maximal deviation from the centre at t ≈ 60, then it
moves to the right attaining the maximal deviation from the
centre at t ≈ 280, and then it moves again to the left, and so on.
However, after three oscillations back and forth, it leaves the
forcing zone after t = 1040 and freely moves further as shown
in the figure at t = 2400.

The situation is different when B > 1 and the forcing is
negative (see Fig. 12). Among numerous situations arising in
this case, we shall describe here the most typical scenarios
occurring at B = 12.5 and corresponding to the phase plane
shown in Fig. 12(d). In this case, there is a stable equilibrium
state of the node type, which means that a soliton can emerge
from small perturbations under the influence of a forcing. This
was observed in numerical study with the zero initial con-
dition as shown in Fig. 16 at t = 0 (all subsequent numerical
calculations were obtained with the following parameters in
Eq. (1): α = 6, α1 = 465.75, β = 1, B = 12.5, and the total length
of computational domain L = 1500). From a random numeri-
cal noise, a perturbation grows within the forcing zone and
becomes well visible at t = 0.1. Then, it continues growing and
developing into a soliton; this process is accompanied by the

FIG. 17. Formation of a stationary soliton (blue line at t = 150) by the negative
forcing (red lines) from a small-amplitude KdV soliton at t = 0. The initial soliton
was slightly shifted to the right from the centre of forcing well.

emission of a quasi-linear wave train. Ultimately, the wave
train disappears, moving to the left and dispersing, whereas
a soliton remains stable after being captured at the centre of
the forcing in accordance with the theoretical prediction.

A similar situation occurs when, for the initial condition, a
small-amplitude soliton is placed within the forcing well. The
soliton quickly evolves into the stationary soliton captured in
the centre of forcing and emits a quasi-linear dispersive wave
train (see Fig. 17).

If, however, the amplitude of the initial soliton placed
within the forcing zone is big, then the soliton splits under

FIG. 18. Formation of the stationary soliton (blue line at t = 150) by the negative
forcing (red lines) from the big-amplitude KdV soliton at t = 0. The initial soliton
was slightly shifted to the right from the forcing centre.
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FIG. 19. Interaction of the external KdV soliton approaching from the right with
the negative forcing (red lines).

the action of forcing, so that one of its portions evolves into
the stationary soliton captured in the centre of the forcing
well, whereas another portion forms a soliton with different
parameters freely moving with its own speed outside of the
forcing zone. This process is accompanied by a quasi-linear
dispersive wave train (see Fig. 18). Such splitting and forming
of a secondary soliton is beyond the range of applicability of
the asymptotic theory.

In the case when a KdV soliton was placed initially out-
side of the forcing zone, we observed in numerical study both
the reflection from the forcing and transition through the
forcing, as the asymptotic theory predicts for the moderate
and big amplitude KdV solitons. Figure 19 illustrates the pro-
cess of soliton reflection when it approaches the forcing from
the right; this corresponds to the reflecting regime shown
in Fig. 12(d) on the right of the node. Because the forcing is
attractive, it generates a stationary soliton from a noise, as was
described above and shown in Fig. 16. Therefore, the exter-
nal soliton shown in Fig. 19 actually interacts with the forcing
carrying a trapped stationary soliton. It is clearly seen in this
figure that while the external soliton approaches the forcing,
a small-amplitude trapped soliton forms by t = 10. Then, the

FIG. 20. Interaction of an external KdV soliton approaching from the left with the
negative forcing (red lines).

external soliton interacts with the forcing and soliton inside it
and reflects back with a greater amplitude.

A similar phenomenon occurs when a soliton approaches
the forcing from the left as shown in Fig. 20. In this figure,
one can see again that a stationary soliton emerges within the
forcing from a noise, while the external soliton approaches the
forcing. Then, the external soliton interacts with the forcing
carrying the trapped stationary soliton and reflects back with
a smaller amplitude emitting a small-amplitude wave in front
of it. This corresponds to the reflecting regime shown in the
phase plane of Fig. 12(d)—see the phase trajectories on the left
of the node.

If the amplitude of external soliton is relatively big, then
after reflection from the forcing, it breaks into several soli-
tons as shown in Fig. 21. The amplitudes of secondary solitons
are noticeably less than the amplitude of the initial soliton;
this agrees with the phase trajectories shown on the left from
the node in the phase plane of Fig. 12(d). The process of soli-
ton breakdown onto secondary solitary waves after reflection
from the forcing is not described by the asymptotic theory in
its current form.

When the amplitude of an external KdV soliton is too big,
then the soliton simply passes through the forcing zone con-
taining a stationary soliton and emits quasi-linear wave train.
After that, the soliton freely moves ahead as shown in Fig. 22.
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FIG. 21. Breakdown of an incident external KdV soliton into three solitons after
reflection from the negative forcing (red lines).

FIG. 22. Transition of an incident external KdV soliton through the negative
forcing (red lines).

This agrees with the transient phase trajectories shown above
the node in the phase plane of Fig. 12(d).

VIII. CONCLUSION

In this paper, we have revised the asymptotic theory
developed by Grimshaw and Pelinovsky with co-authors in
the series of papers16–20 to describe the dynamics of solitary
waves in the KdV-like equations. In those papers, only limit-
ing cases were studied, either when the forcing is infinitely
narrow in comparison with the initial KdV soliton and can
be approximated by the Dirac δ-function, or vice versa, when
the initial KdV soliton is very narrow (approximated by the δ-
function) in comparison with the forcing of KdV-soliton shape.
In our paper, we consider an arbitrary relationship between
the width of the initial KdV soliton and external forcing. We
present several examples of forced KdV equation which admit
exact analytical solutions both stationary and non-stationary.

In the case of small-amplitude forcing, we have pre-
sented the asymptotic analysis based on equations derived
in the papers cited above and have shown that, in many
cases, solutions of approximate equations can be solved ana-
lytically, albeit the solutions look very cumbersome. In the
limiting cases of very narrow or very wide forcing, our results
converge to those obtained in the papers by Grimshaw and
Pelinovsky.16 In the meantime, we show that there are some
physically interesting regimes which were missed in their
papers due to approximations of soliton and forcing by the δ-
function. In particular, the equilibrium state of a stable focus
in Fig. 3(b) was mistakenly identified as a centre. Physically,
this implies that a soliton could oscillate with an arbitrary
amplitude around the centre, whereas, in fact, the soliton
quickly approaches a stable state moving synchronously with
the forcing. Secondly, the repulsive regimes, when external
solitary waves reflect from the forcing, were missed in that
paper. Such regimes are clearly seen in the right lower cor-
ners of the phase plane shown in Figs. 3(a), 8(b), and 10(a) and
10(b), as well as illustrated in Figs. 19 and 20. One of the most
interesting regimes discovered in this paper is the permanent
generation of solitary waves with random amplitudes on a rear
slope of a wide forcing as shown in Fig. 14. This effect deserves
further study which will be undertaken in the near future.

The results obtained are important in view of their
applications to physical phenomena occurring when exter-
nal perturbations generate pressure fields capable of exciting
and supporting solitary waves. This may happen, for exam-
ple, when moving atmospheric pressure generates surface
waves, or a slow-moving ship generates internal waves, or
when atmospheric waves are generated behind high obstacles
(for example, mountain ridges or other elevations). A simi-
lar phenomenon can occur in the oceans when currents flow
around underwater obstacles and generate surface and inter-
nal waves. The results obtained are applicable to other areas
of physics, such as plasma physics and Bose–Einstein con-
densate, where the highly universal forced Korteweg–de Vries
equation is used.
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