
DOUBLING FOR GENERAL SETS
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Abstract. We investigate doubling conditions defined in terms of measurable bounded sets and

find a simple characterization of quasisymmetrically thick Cantor sets on the line.

§0. Introduction

In this paper we look at two seemingly unrelated questions, which broadly put are the following:

1. If we use an arbitrary set E in place of a cube when defining the doubling condition for a
measure, what effect does this have on the class of measures which satisfy the doubling condition?

2. Given a subset E of R such that |E| > 0, when is it possible to find a quasisymmetric
function f which “kills” E (i.e. such that |f(E)| = 0)?

Surprisingly enough, we will show that there is a close connection between these two questions.
In the remainder of this introduction we describe these questions more precisely and end the
section by stating a theorem which gives a clear description of this connection. We begin with
the first question.

Doubling conditions for measures in Euclidean space are usually defined using nice open sets
such as cubes or balls; we are interested in studying what happens when the doubling condition
is defined using much more irregular bounded sets E. There are two basic problems that we
shall tackle. Firstly, we shall investigate whether doubling with respect to E is implied by, or
implies, doubling with respect to cubes. Secondly, we shall investigate whether “nearly optimal”
doubling with respect to E is implied by, or implies, “nearly optimal” doubling with respect to
cubes.

Thoughout this paper, Q0 is the centered unit cube (−1/2, 1/2)n ⊂ R
n, and E ⊂ R

n is a non-
empty bounded Borel measurable set. Since we are really interested in the family of all translated
dilates of E, rather than just E itself, we normalize E so that it contains the origin, lies in Q0,
and has diameter between 2−1 and

√
n. Whenever we have a set X with a distinguished “center”

point x ∈ X, and λ > 0, we denote by λX the concentric dilate of X by the factor λ (with respect
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to the center x). For any of our sets E that we are considering, we take 0 to be its “center”, so
that λE has its usual vector space meaning. However, when considering E ′ = fE, where f is
some specified bilipschitz mapping (usually an affine map), f0 is taken to be the center of E ′; in
particular, we always consider cubes and balls as having their usual centers. In any case, it should
always be clear from the context which point is the center of a given set. We use C in proofs of
theorems to refer to a generic constant that depends only on the allowed parameters; we shall
also write A <∼ B (or B >∼ A) if A ≤ CB for some such C, and we write A ≈ B if A <∼ B <∼ A.

We define doubling measures for E as follows: first, we say that two sets E1 and E2 are
neighboring copies of E (or simply that E2 is a neighbor of E1) if there exist λ > 0 and xi ∈ R

n

such that Ei = λE + xi and |x1 − x2| ≤ λ. More generally, if N > 0, we say that E1 and E2

are N -neighboring copies of E (or that E2 is an N -neighbor of E1), if there exist λ > 0 and
xi ∈ R

n such that Ei = λE + xi and |x1 − x2| ≤ Nλ. For any ε ≥ 0, D(E, ε) is the set of all
Borel measures µ such that µ(E) > 0 and

(0.1) (1 + ε)−1 ≤ µ(E1)

µ(E2)
≤ 1 + ε,

whenever E1, E2 are neighboring copies of E. When E = Q0, the unit cube, we will abbreviate
this set as D(ε). Note that by iteration, we get that if N is a positive integer and µ ∈ D(E, ε),
then the ratio µ(E1)/µ(E2) is at most (1 + ε)N for any N -neighboring copies of E. We call the
smallest ε for which (0.1) is valid, the E-doubling constant of µ (or simply the doubling constant
of µ if E = Q0). As we shall see in the next section, D(E, ε) is empty unless |E| > 0 (in which
case Lebesgue measure always lies in D(E, ε)), so we restrict our attention to sets E of positive
Lebesgue measure.

Doubling with respect to a general set E is always stronger than doubling with respect to
cubes, as revealed by the following theorem (which we prove in the next section).

Theorem 0.2. For all ε > 0 there exists δ = δ(ε, E) > 0 such that D(E, ε) ⊆ D(δ). Furthermore,
we can choose δ to tend to zero as ε tends to zero.

Corollary 0.3. D(E, 0) consists solely of multiples of Lebesgue measure.

Proof. By Theorem 0.2, D(E, 0) ⊆ D(0). It is clear that each measure in D(0) is a multiple of
Lebesgue measure. �

If we reverse the roles of E and Q0 in Theorem 0.2, both statements in the above theorem
may become false. Let us therefore introduce the following properties of sets E:

P1 : ∀ε > 0 ∃ δ = δ(ε, E) > 0 : D(ε) ⊆ D(E, δ).
P2 : ∀δ > 0 ∃ ε = ε(δ, E) > 0 : D(ε) ⊆ D(E, δ).

We write E ∈ Pi if E satisfies property Pi, i = 1, 2. A set E satisfies P1 if all measures which are
doubling with respect to cubes are doubling with respect to E, while E satisfies P2 if all measures
with a sufficiently small cube-doubling constant also have a small E-doubling constant. We shall
see that there are sets that satisfy both, neither, or just one of these properties (in fact all four
logical possibilities are realized).
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We now turn our attention to the second question mentioned above. Suppose that f : R → R

is quasisymmetric, i.e. f is an increasing homeomorphism and there is a real number λ ≥ 1 such
that

1

λ
≤ f(x + t) − f(x)

f(x) − f(x − t)
≤ λ,

for all x ∈ R and t > 0. If we wish to be more specific, we will refer to such a function as being
λ-quasisymmetric and we let QS(λ) denote the class of all λ-quasisymmetric functions defined
on [0, 1].

There is a nice 1-1 correspondence between quasisymmetric functions and doubling measures
on R. Namely, if µ ∈ D(ε), then the function f defined by f(x) − f(0) =

∫ x

0
dµ is (1 + ε)-

quasisymmetric. Conversely, if f is λ-quasisymmetric and the measure µ is defined by µ([a, b]) =
f(b) − f(a) for intervals [a, b], then µ ∈ D(λ − 1). Throughout this paper we will make use of
this correspondence without referring to it explicitly. The basic question that we consider is the
following: Given a set E ⊂ [0, 1] with |E| > 0 when is it possible to find a λ-quasisymmetric
function f such that f(E) = 0? Furthermore, for which sets E is it possible to find such f with
λ arbitrarily close to 1? We restrict our attention to Cantor sets. Since only sets with empty
interior have a chance to be killed by a quasisymmetric mapping, this restriction is not as severe
as it might seem at first glance.

By a Cantor set, we shall mean a compact set K ⊂ [0, 1] which is the intersection of the nested
compact sets Ki, where K0 = [0, 1] and Ki is defined by deleting an open interval of length ci|I|
from the middle of every component I of Ki−1, and 0 < ci ≤ 1/2 for all i > 0. Thus there is a
bijection between our class of Cantor sets and the set of sequences with values in (0, 1/2], and the
usual Cantor set corresponds to the case ci = 1/3; we write (ci) = SEQ(K). Note that 0 ∈ K for
each such Cantor set K but K 6⊂ Q0 = [−1/2, 1/2], so by our formalism we should really replace
K by K ′ = {x : 2x ∈ K} when discussing doubling with respect to a Cantor set. However, the
normalization of Cantor sets employed here is so standard, that we shall stick with it.

We subdivide Cantor sets into two main classes, TC and FC (thin and fat Cantor sets):
K ∈ TC if |K| = 0 and otherwise K ∈ FC. We further partition FC into the subclasses MFC,
FFC, V FC (minimally fat, fairly fat, and very fat), defined as follows:

• K ∈ MFC if |K| > 0 but, for every λ > 1, there exists f ∈ QS(λ) such that |f(K)| = 0.
• K ∈ FFC if there exists 1 < λ1 < λ2 such that K is non-null for all f ∈ QS(λ1), but

|f(K)| = 0 for some f ∈ QS(λ2).
• K ∈ V FC if it is non-null for all quasisymmetric functions f .

Thus, K is minimally fat if K can be killed by λ-quasisymmetric f with λ arbitrarily close to
1, K is fairly fat if K can only be killed by a λ-quasisymmetric function with sufficiently large λ
and K is very fat if K cannot be killed by any quasisymmetric function.

We are now ready to state the main result advertised at the beginning of this section.

Theorem 0.4. Suppose that K is a fat Cantor set (i.e. |K| > 0) and that (ci) = SEQ(K).

(a) K ∈ MFC ⇔ (ci) /∈ ⋃0<r<1 lr ⇔ K ∈ P c
1 ∩ P c

2 .
(b) K ∈ FFC ⇔ ∃ 0 < r < s < 1 : (ci) ∈ ls \ lr ⇔ K ∈ P c

1 ∩ P2.
(c) K ∈ V FC ⇔ (ci) ∈

⋂

0<r lr ⇔ K ∈ P1 ∩ P2.
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Thus, Theorem 0.4 says that our subclasses of fat Cantor sets can be characterized very neatly,

either by simple summability criteria on (ci) or in terms of membership status with respect to

P1 and P2. The characterization in terms of (ci) makes it easy to produce examples of each type

of Cantor set. For instance,

ci = 1/(2i log2(i + 2)) ⇒ K ∈ MFC,

ci = 1/2i2 ⇒ K ∈ FFC,

ci = 1/2i! ⇒ K ∈ V FC.

Note that the 2’s above are simply designed to ensure that ci ≤ 1/2 in each instance.

Theorem 0.4 bears some similarity to the work of Wu [W] who characterised the “very thin”

Cantor sets, i.e. those Cantor sets which are null sets for every doubling measure. More closely

related is the work of Staples and Ward [SW], who considered the problem of characterizing very

fat Cantor sets in terms of summability criteria on (ci). They considered a slightly larger class

of Cantor-like sets which also have the property that they cannot be killed by quasisymmetric

mappings and referred to such sets as being quasisymmetrically thick. In particular, they showed

that the middle condition in (c) implies that K ∈ V FC and also that the reverse implication

holds for a restricted class of quasisymmetrically thick sets which does not include any of the sets

in V FC. In fact, they asked whether the Cantor set K with ci = 1/(i+1)2 is quasisymmetrically

thick. Theorem 0.4 gives a negative answer to their question.

Section 1 contains some basic results, including a proof of Theorem 0.2. In Section 2, we

reformulate properties P1 and P2. Section 3 contains a proof of Theorem 0.4. In Section 4 we

look at some examples. Finally, we consider various extensions and related results in Section 5.

§1. Basic results

In order to prove Theorem 0.2, we fix µ ∈ D(E, ε) and define the function Fδ(x) = µ(δE + x)

for any δ > 0. This function has the following nice properties (note that (ii) implies that D(E, ε)

is empty if |E| = 0).

Lemma 1.1. Suppose that s > 0 and that Q is a cube of sidelength l > 0.

(i) (1 + ε)−1Fs(x) ≤ Fs(y) ≤ (1 + ε)Fs(x) whenever |x − y| ≤ s.

(ii) If 0 < s < 1, then
∫

(1−s)Q
Fls ≤ µ(Q)|lsE| ≤

∫

(1+s)Q
Fls.

Proof. Part (i) follows from the doubling property; a short computation using Fubini’s Theorem

suffices to prove (ii). �

Proof of Theorem 0.2. Fix δ > 0. Choose 0 < s < 1 so that
(1 + s)n

(1 − s)n
= 1+δ/2. Suppose that Q1

and Q2 are neighboring copies of Q0. From Lemma 1.1 (ii) we see that µ(Q1)|sE| ≤
∫

(1+s)Q1

Fs
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and that
∫

(1−s)Q2

Fs ≤ µ(Q2)|sE|. Thus,

µ(Q1) ≤
(∫

(1+s)Q1

Fs
∫

(1−s)Q2

Fs

)

µ(Q2) ≤
|(1 + s)Q1|
|(1 − s)Q2|

(

−
∫

(1+s)Q1

Fs

−
∫

(1−s)Q2

Fs

)

µ(Q2)

≤ (1 + δ/2)

(

−
∫

(1+s)Q1

Fs

−
∫

(1−s)Q2

Fs

)

µ(Q2).

It follows easily from Lemma 1.1 (i) that the ratio of integrals in this last term is bounded
by (1 + ε)M , where M depends only on n and s. By symmetry, we also get the inequality
µ(Q2) ≤ (1 + δ/2)(1 + ε)Mµ(Q1). Consequently, µ ∈ D(δ), provided that ε > 0 is small enough.
This proves the second claim of the theorem and a slight modification of the proof gives the first
claim as well. �

We have now proven the easy part, that doubling for general sets is stronger than doubling
for cubes. The remainder of the paper is devoted to the converse problem: when do P1 and P2

hold? The next proposition is well-known, so we omit the simple proof (which essentially reduces
to the fact that every open set contains a little cube).

Proposition 1.2. If E ⊂ Q0 contains an open subset then E ∈ P1.

Thus, P1 is of interest only when E has empty interior. However, the obvious proof provides
rather crude estimates that are insufficient to prove that any open set (other than a cube) satisfies
P2. Korey [Ko] showed that balls satisfy P2. We shall further investigate which open sets satisfy
P2 in Sections 2 and 4.

Finally in this section, we state a version of the well-known Whitney decomposition, as given in
[S]. By the Whitney cubes of a domain Ω, denoted by W(Ω), we shall always mean the collection
of such cubes with A = 10.

Lemma 1.3. Given A ≥ 1, there is C = C(A, n) such that if Ω is a proper subdomain of R
n,

then Ω =
⋃

j Qj, where the Qj are disjoint cubes satisfying

(i) 5A ≤ dist(Qj , ∂Ω)/ diamQj ≤ 15A.
(ii)

∑

j χAQj
≤ CχΩ (where χS denotes the characteristic function of a set S).

§2. P1 and P2: Generalities

In this section, we shall find conditions that are necessary and sufficient for E to have properties
P1 or P2; these conditions, although not explicitly geometric, reformulate our problems in a way
that greatly facilitates our later investigation and in particular, the proof of Theorem 0.4. We
begin with a localization result.

Lemma 2.1. There is a constant C, depending only on n, such that if µ ∈ D(ε) with µ(Q0) =
|Q0|, then there exists ν ∈ D(Cε) which equals µ on Q0, and equals Lebesgue measure on (2Q0)

c.
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Proof. We denote by WI the Whitney decomposition of the interior of Q0 and by WO the Whitney
decomposition of the exterior of Q0. We define a “partner” function from WO to WI by the rule
p(Q) = Q′ if Q′ is the nearest cube in WI to Q whose sidelength equals, or is as close as possible
to, that of Q; there might be several such cubes Q′ in which case any one of them suffices as the
definition of p(Q).

Now let ν coincide with µ on Q0 and be given elsewhere by dν(x) = w(x) dx, where the weight
w is defined on Qc

0 by

w(x) =

{

w0(x), x ∈ 2Q0 \ Q0,

1, x ∈ (2Q0)
c.

where w0(x) = µ(p(Q))/|p(Q)| for all x ∈ Q ∈ WO. We leave to the reader the routine verification
that ν has the required properties—the only non-trivial part is to check that the doubling constant
of ν is controlled in the desired manner, and this ultimately follows from the fact that if Q1 and
Q2 are adjoining cubes in WO, then their partners are comparable in size and each partner is
contained in a fixed dilate of the other. �

Let us define

∆(E, ε) = sup
µ1,µ2∈D(ε)

µ2(E)

µ2(Q0)

(

µ1(E)

µ1(Q0)

)−1

With this notation in hand, we are ready to characterize the classes P1, P2.

Theorem 2.2.

(i) E ∈ P1 if and only if ∆(E, t) < ∞ for all t > 0.
(ii) E ∈ P2 if and only if ∆(E, t) → 1 as t → 0+.

Proof. We first prove (ii). Assuming ∆(E, t) → 1 as t → 0+, we wish to show that E ∈ P2. We
fix δ > 0, choose r, t > 0 so small that ∆(E, t) < (1+r) <

√
1 + δ, and let ε ≡ min{t,

√
1 + δ−1}.

Given any µ ∈ D(ε), we shall show that µ ∈ D(E, δ).

Let E1 and E2 be neighboring copies of E. There are affine maps τi that take E to Ei, i = 1, 2,
and Ei ⊆ Qi where the cubes Qi = τi(Q0) are neighboring copies of Q0. Since µ ∈ D(ε), we
know that

(2.3) (1 + ε)−1 ≤ µ(Q1)

µ(Q2)
≤ 1 + ε.

We define µi ∈ D(ε) to be the pullbacks of µ with respect to the maps τi, so that

µi(E)

µi(Q0)
=

µ(Ei)

µ(Qi)

Now, applying the estimate ∆(E, t) < 1 + r to µi, and using (2.3), we deduce that

(1 + r)−1(1 + ε)−1 ≤ µ(E2)

µ(E1)
≤ (1 + r)(1 + ε)
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It follows that µ ∈ D(E, δ) as required.

For the converse direction, assume that E ∈ P2. Then given δ > 0, we choose t so that
µ ∈ D(t) ⇒ µ ∈ D(E, δ). By rescaling, we can assume that µ(Q0) = |Q0| and, appealing to
Lemma 2.1, we can also assume that µ equals Lebesgue measure on (2Q0)

c.

Clearly, there exists a 3-neighbor E1 of E, such that E1 ⊆ (2Q0)
c. Since µ is an element of

D(E, δ), we can then apply the doubling property iteratively to obtain

µ(E)

|E| ∈ [(1 + δ)−3, (1 + δ)3],

which gives that ∆(E, t) → 1 as t → 0+, as desired.

We omit the proof of (i), as it is similar to that of (ii). �

As a first application of Theorem 2.2, we show that open sets automatically satisfy P2 unless
their boundary has positive measure (as already mentioned, all open sets satisfy P1).

Theorem 2.4. If U ⊂ Q0 is open, and |∂U | = 0 then U ∈ P2.

Proof. It suffices to show that ∆(U, t) → 1 as t → 0+. Let us fix 0 < δ < 1, and let Dk denote
the class of all dyadic (closed) cubes of sidelength 2−k. For every k > 0, let Uk be the union
of all Q ∈ Dk, Q ⊂ U , and let U ′

k be the union of all Q ∈ Dk which intersect U but are not
contained in U . Clearly (Uk) is a nested increasing sequence of sets whose union is U , and (U ′

k)
is a nested decreasing sequence of sets whose intersection is ∂U . Since |∂U | = 0, we must have
|U ′

k| → 0 as k → ∞. Let us therefore fix k so large that |U ′
k| < δ|U |/8, and choose ε > 0 so small

that (1 + ε)k < 1 + δ/2 and (1 − ε)k > 1 − δ/2.

If µ has a very small doubling constant for cubes, then the µ-measure of the double-dilate of a
cube must be almost exactly 2n times the µ-measure of the cube itself (since we can tile the larger
cube using 2n smaller cubes). Thus there exists 0 < t < 1 such that 2nµ(Q1)/µ(Q2) ∈ [1−ε, 1+ε]
whenever µ ∈ D(t), Q1 ⊂ Q2 are cubes, and the sidelength of Q2 is double that of Q1.

Let µ ∈ D(t) be normalized so that µ(Q0) = 1. Iterating our last estimate, we see that

µ(Q)/|Q| ∈ [(1 − ε)k, (1 + ε)k], for every Q ∈ Dk.

Since Uk and U ′
k are unions of dyadic cubes of size 2−k, we see that

1 − δ/2 < (1 − ε)k < µ(Uk)/|Uk| < (1 + ε)k < 1 + δ/2

and that
µ(U ′

k) < (1 + δ/2)|U ′
k| < δ(1 + δ/2)|U |/8 < δ|U |/4.

Since Uk ⊂ U ⊂ Uk ∪ U ′
k, it readily follows that µ(U)/|U | ∈ (1 − δ, 1 + δ), as required. �

§3. Proof of Theorem 0.4

Throughout this section, Dk is the 4-adic subintervals of [0, 1] of length 4−k. We start by
recalling a well-known method of constructing doubling measures. This type of construction
originated with Kahane, see [Ka], although this particular lemma is not mentioned there. The
proof of the lemma is straightforward and follows by much the same method used in Section 3
of [Ka].
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Lemma 3.1. Fix ε > 0 and let {fk}∞k=0 be a sequence of positive functions on [0, 1] with the
following properties:

(1) Each fj is constant on each element of Dj.
(2) If I and J are two adjacent elements of Dj having the same parent (i.e., contained in the

same element of Dj−1), then

1

1 + ε
≤ fj |I

fj|J
≤ 1 + ε.

(3) If I and J are two adjacent elements of Dj with different parents, then

fj |I
fj |J

=
fj−1|I
fj−1|J

.

(4) f0 is identically 1.
(5) If I ∈ Dj−1, then

∫

I
fj =

∫

I
fj−1.

Then the measures µj on [0, 1] defined by dµj = fj dx are probability measures with doubling
constant Cε, where C is a universal constant. Furthermore, these measures converge, in the
weak-∗ sense, to a probability measure µ which is doubling with constant Cε.

Proof of Theorem 0.4.

Recall that we are assuming that |K| > 0, which is well-known to be equivalent to (ci) ∈ l1.
We first show that the left-hand conditions in (a), (b), and (c) are equivalent to the center
conditions. As MFC, FFC, and VFC partition the fat Cantor sets, it is enough to prove the
following implications:

1. (ci) ∈ ls for some 0 < s < 1 ⇒ K ∈ FFC ∪ V FC
2. (ci) ∈ ls for all 0 < s < 1 ⇒ K ∈ V FC.
3. (ci) 6∈ ls for all 0 < s < 1 ⇒ K ∈ MFC.
4. (ci) 6∈ ls for some 0 < s < 1 ⇒ K ∈ MFC ∪ FFC.

To begin with we assume that (ci) ∈ ls for some 0 < s < 1. We will show that there
exists an ε = ε(s) > 0 such that µ(K) > 0 for all µ ∈ D(ε). Moreover, we show that we
can take ε → ∞ as s tends to 0. To this end assume that µ ∈ D(ε), where ε = ε(s) is a
positive number to be specified later. Suppose also that I is an interval and that J is the
concentric open subinterval of I whose length is λ|I|. Since translate-doubling for cubes gives
us control over dilate-doubling for cubes, we see that µ(J)/µ(I) ≤ (1 + ε′)|J |/|I| if λ = 1/2,
where 1 > ε′ > 0 and ε′ tends to 0 as ε → 0. Iterating this inequality for λ = 1/2, we get that
µ(J) ≤ (1 + ε′)kµ(I)/2k if λ = 2−k. Straightforward estimation now gives us that, for arbitrary
0 < λ ≤ 1/2, µ(J)/µ(I) ≤ (1 + ε′)(|J |/|I|)α, where 0 < α < 1 and α tends to 1 as ε → 0. In
the case where I is a component of Ki−1, and J is the concentric open subinterval of I of length
ci|I|, we therefore deduce that µ(Ki)/µ(Ki−1) ≥ 1 − Ccα

i ≡ di. For large enough i, di < 1
2 and

so µ(K) > 0 if
∑∞

k=1 cα
i < ∞. Hence, we need only choose ε > 0 small enough so that α > s and

we are done. Moreover, if (ci) ∈ ls for all 0 < s < 1, then we get µ(K) > 0 regardless of the size
of ε. Thus we have proven parts 1 and 2 above.

Now suppose that (ci) /∈ ls for all 0 < s < 1. Fix 0 < ε < 1/10. We will show that there is a
universal constant C and measure µ ∈ D(Cε) for which µ(K) = 0, i.e. K ∈ MFC.
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Denote by G the collection of components of [0, 1] \ K. These are the “gaps” in the Cantor
set K. For each A ∈ G there exists n such that A is contained in Kn but not in Kn+1. In

other words, the gap A first appears at level n + 1. We set Ã to be the component of Kn that
contains A. We will refer to this interval as the parent of A. Define Gk to be those elements A
of G for which |Ã| ≥ 10(4−k). The constraint ci ≤ 1/2 guarantees that the elements of Gk are
at least a distance 5(4−k)/2 apart. Consequently, the union of any two adjacent elements of Dk

can intersect at most one of the gaps A in Gk. Now consider the subset Ak of Gk consisting of
those A for which |A| ≤ (1/5)4−k. We will refer to these as the active gaps. The active gaps
have relatively small length compared to the elements of Dk and have parents that are relatively
long compared to the elements of Dk. Next, we divide up the elements of Dk. Set

Zk = {I ∈ Dk : I intersects no element of Ak}
Wk = {I ∈ Dk : I intersects some element of Ak}

As mentioned above, the union of any two adjacent elements of Dk can intersect at most one of
the gaps Gk. Consequently,

i) Every interval in Wk actually only intersects one element of Ak

ii) If two elements of Wk are adjacent, then their common endpoint lies in an element of Ak.

We are now ready to build the measure. Set f0 to be 1 on [0, 1]. Let us assume that {fj}k
j=0

satisfies the hypotheses of Lemma 3.1 with ε replaced by 3ε. In our definition of fk+1 we need
to be careful to ensure that condition (3) in the lemma is satisfied. Suppose that I ∈ Wk.
We let fk+1 have value (1 + ε)fk on any child that intersects an element of Ak. The condition
|A| ≤ (1/5)4−k guarantees that there are at most two such children. We then assign the values
fk or (1− ε)fk to the remaining children so as to ensure that

∫

I
fk+1 =

∫

I
fk. Now suppose that

I ∈ Zk. For M ∈ Dk+1, take σ(M) to be 1, 0, or − 1 depending on whether fk+1 differs from
fk by a factor of 1 + ε, 1, or 1 − ε on M . Let L be the leftmost child of I, J be the lefthand
neighbour of I, and M be the lefthand neighbour of L. If J ∈ Zk, we define fk+1 on L to be fk.
Otherwise we set fk+1 = (1+σ(M)ε)fk on L. We define fk+1 analogously on the rightmost child
of I. As above, we assign the values fk or (1 − ε)fk to the remaining children so as to ensure
that

∫

I
fk+1 =

∫

I
fk.

It is clear that {fj}k+1
j=0 satisfies all of the hypotheses of Lemma 3.1 with ε replaced by 3ε (since

(1 + ε)/(1 − ε) < 1 + 3ε), except perhaps for (3) being valid when j = k + 1. To this end, let L
and M be adjacent elements of Dk+1 with different parents, I, J respectively. There are three
cases to consider. If I, J ∈ Zk, then fk+1 = fk on L and on M , by definition. If I ∈ Zk and
J ∈ Wk, then fk+1 = (1 + σ(M)ε)fk on M , by definition of σ, and so fk+1 = (1 + σ(M)ε)fk

on L. If I ∈ Wk and J ∈ Wk, then L and M both intersect an element of Ak, by (ii) above.
Thus fk+1 = (1 + ε)fk on L and on M . These are all the possible cases, and (3) holds for each.
Hence, by induction, we obtain {fj}∞j=0 satisfying the hypotheses of Lemma 3.1 with ε replaced
by 3ε. The measures dµj = fj dx converge in the weak-∗ sense to a probability measure µ which
is doubling with constant 1 + Cε. We will show that µ(K) = 0. In fact, we will prove that there
exists a positive constant α such that

(3.2) µ(Kn+1) ≤ (1 − α(cn)1−ε/2)µ(Kn)

for every n ≥ 1. This clearly yields µ(K) = 0.
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Let A ∈ G whose parent is a component of Kn. Then |A| = cn|Ã|. If we can show that

µ(A) ≥ α

( |A|
|Ã|

)1−ε/2

µ(Ã),

then we immediately obtain (3.2). The preceding inequality follows easily from the doubling of
µ whenever cn ≥ 1/100. Thus we only need to consider the case cn ≤ 1/100. The gap A is

active for all k satisfying 5|A| ≤ 4−k ≤ |Ã|/10. Set s to be the minimum such k and t to be
the maximum such k. Now choose an interval J in Dt which intersects A and take I to be the
element of Ds that contains J . The lengths of J and A and I and Ã are comparable. As µ is
doubling, we see that it is enough to prove that

µ(J) ≥
( |J |
|I|

)1−ε/2

µ(I).

Note that µ(I) = µs(I) and that µ(J) = µt(J). As the gap A is active for s ≤ k ≤ t and as J
intersects A we must have

µk+1(J) = (1 + ε)µk(J) for s ≤ k ≤ t − 1.

So,

µ(J) = µt(J) = (1 + ε)t−sµs(J) = (1 + ε)t−s |J |
|I| µs(I)

= (1 + ε)t−s |J |
|I| µ(I) =

(

1 + ε

4

)t−s

µ(I)

≥
(

(

1

4

)t−s
)1−ε/2

µ(I) =

( |J |
|I|

)1−ε/2

µ(I).

This completes the proof that K ∈ MFC when (ci) /∈ ls for all 0 < s < 1.

To conclude the first half of the proof we must show that if (ci) /∈ lr for some 0 < r < 1, then
K ∈ MFC ∪ FFC. The estimates are now somewhat different (in particular, ε is now close to,
but less than, 1, and the doubling constant is some fnuction of ε), but the proof is nevertheless
obtained easily by modifying the above argument, so we leave the details to the reader.

For the second half of the proof we need to show that the left-hand conditions in (a), (b), and
(c) are equivalent to the right-hand conditions.

We note first of all that if µ(K) = 0, then µ is automatically disqualified from being doubling
with respect to K. It follows easily that K ∈ MFC ⇒ K ∈ P c

1 ∩ P c
2 and K ∈ FFC ⇒ K ∈ P c

1 .
Once again appealing to the fact that MFC, FFC, and V FC partition the fat Cantor sets, we
see that the second half of the proof will be complete if we show that K ∈ V FC ⇒ K ∈ P1 and
K ∈ V FC ∪ FFC ⇒ K ∈ P2. Actually, we give a careful proof of the second statement and
leave the similar, but simpler proof of the first statement to the reader.
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So, assume that K ∈ V FC ∪ FFC. By Theorem 2.2 it suffices to show that ∆(K, t) → 1 as
t → 0+. Let ε > 0 and µ ∈ D(t), normalized so that µ([0, 1]) = 1. We need to show that

(3.3) (1 + ε)−1 <
µ(K)

|K| < 1 + ε

if t is small enough.

Since K ∈ V FC ∪FFC, we know by the first half of the proof that there exists an α < 1 such

that
∞
∑

i=1

cα
i < ∞. A simple induction argument shows that by choosing t small enough we may

guarantee that

(3.4)
µ(I)

µ(J)
≤ C1

( |I|
|J |

)α

,

where C1 ≥ 1 and I, J are any intervals with I ⊂ J . Now choose N so large that

(3.5)

∞
∏

i=N+1

(1 − C1c
α
i ) >

1√
1 + ε

,

and hence

(3.6)
∞
∏

i=N+1

(1 − ci) >
1√

1 + ε
.

Since KN is the union of intervals whose lengths are bounded below, we may also choose t so
small that

(3.7)
1√

1 + ε
<

µ(KN )

|KN | <
√

1 + ε.

Now note that (3.4) implies that
µ(Ki+1)

µ(Ki)
≥ 1 − C1c

α
i

for all i and hence by (3.5), 1 >
µ(K)

µ(KN )
>

1√
1 + ε

and similarly, by (3.6), 1 >
|K|
|KN | >

1√
1 + ε

.

Finally, using (3.7) we get (3.3), as desired. �

§4. Examples

We can now show that all four logical possibilities involving P1 and P2 can occur. Theorem
0.4 shows that there are compact sets satisfying P1 ∩ P2, P c

1 ∩ P2, and P c
1 ∩ P c

2 . Finally, the
(0, 1)-complement of a minimally fat Cantor set lies in P1 ∩ P c

2 as follows from Theorem 2.2 and
the following paragraph.
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The above characterization of Cantor sets K also allows us to completely solve the associated

question of whether or not U ≡ (0, 1) \ K ∈ P2 (since U is open, we automatically know that
U ∈ P1). Specifically, U /∈ P2 if and only if K ∈ MFC. To see this, note that if K is a fat Cantor

set, then it is clear from Theorem 2.2 and the fact that K and U partition [0, 1] that K ∈ P2 if
and only if U ∈ P2. On the other hand, if K is thin then Theorem 2.4 shows that U ∈ P2.

The following table summarizes when various types of Cantor sets K and their (0, 1)-
complements U satisfy P1 or P2 (“Y” and “N” indicate respectively that the property is or

is not satisfied; “–” indicates that the set has Lebesgue measure zero and so is not of interest).

TC MFC FFC VFC

K U K U K U K U

P1 – Y N Y N Y Y Y

P2 – Y N N Y Y Y Y

Having seen the examples above, it might seem reasonable to hope that the question of whether

or not a given set satisfies P1 or P2 could be decided using a criterion depending only on the
boundary. For example, one might guess from the above table and Theorem 0.4 that an open

set E lies in P c
2 if and only if ∂E is a set of positive Lebesgue measure that is a null set for a

doubling measure of arbitrary small cube-doubling constant. This guess is however wrong, and
the following class of examples show that knowing ∂E alone cannot determine whether or not

E ∈ P2.

Given a Cantor set K as above, we partition its (0, 1)-complement U into three pieces, N ∪
L ∪ H, where N is an countable set (and so null for all doubling measures on the line), and L
and H are open sets (the Laurel and Hardy sets). The components of L and H are intermingled

in such a way that ∂L = ∂H (when considered as subsets of the topological space (0, 1)), but if
K is minimally fat then L ∈ P2 and H /∈ P2. To define L and H, let us write U as a union of

components Ui,k = (ai,k, bi,k), i ∈ N, k = 1, . . . , 2i−1, where Ui,k is one of the new components of
U added at the ith stage of the construction of U . We then define H =

⋃

Hi,k and L =
⋃

Li,k,
where Li,k = (ai,k, ci,k), Hi,k = (ci,k, bi,k), and ci,k = ai,k+3−i(bi,k−ai,k) (N is, of course, the set
of all points ci,k). The later-stage components of the Laurel set are much thinner than those of

the Hardy set. We leave it as an exercise to the reader to verify that, because
∑

k |Li,k| decreases
so quickly as i increases the set L always satisfies P2 (hint: look at the proof of Theorem 2.4, and

use as approximating intervals the component intervals of L which are added prior to the i0th
stage of the construction, for some arbitrary i0). If H also satisfies P2, it follows from Theorem

2.2 that U satisfies P2. Thus H does not satisfy P2 if K is minimally fat.

§5. Further results

First in this section, we discuss variants of the classes D(E, ε) of doubling measures. We define
BL to be the class of all mappings from R

n to itself that fix the origin and satisfy the bilipschitz

condition |x − y|/2 ≤ |f(x) − f(y)| ≤ 2|x − y|, for all x, y ∈ Q0. If S is a subset of BL, we
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denote by DS(E, ε) the class of all Borel measures in D(E, ε) satisfying the following additional
conditions:

(1 + ε)−1 ≤ µ(gE′)

|gE′|

(

µ(E′)

|E′|

)−1

≤ 1 + ε,

whenever E′ = λE + x, g(z) = AfA−1z, Az = λz + x, λ > 0, x ∈ R
n, f ∈ S. When E = Q0 we

will abreviate this set set as DS(ε). We also define LBL to be the class of linear maps x 7→ Bx
that lie in BL. Notice that the functions g above are recentered and rescaled versions of f that
satisfy the same bilipschitz condition. To better understand this condition, the reader may wish
to consider S = {x 7→ 2x}.

Our somewhat abstract setup includes some rather interesting special cases—for example, we
could choose S to consist of all rotations around the origin, or all dilations by factors between
1 and 2. The choice of 2 as the bound on the bilipschitz constant for functions in BL is not
significant; any bilipschitz bound is sufficient to get the same results (of course the constants
involved would then also depend on this bound).

Proposition 5.1. If U is an open set and S ⊂ BL, the following statements are equivalent:

(i) µ ∈ D(U, ε1) for some ε1 > 0;
(ii) µ ∈ D(ε2) for some ε2 > 0;
(iii) µ ∈ DS(U, ε3) for some ε3 > 0;
(iv) µ ∈ DS(ε4) for some ε4 > 0.

Furthermore, the constants εi depend only on each other, and the set U .

Proof. We first note that the implications (iii)⇒(i) and (iv)⇒(ii) hold trivially. Furthermore, (i)
and (ii) are equivalent by Theorem 0.2 and Proposition 1.2. It therefore suffices to show that (ii)
implies (iii) and (iv).

Fixing U , we note that plain cube doubling gives quantitative control over dilates of cubes by
factors between one and two, because we can tile 2Q with 2n copies of a cube Q. Iterating this
inequality, we get that µ(2kQ) ≤ Ckµ(Q). Two neighboring copies of U contain cubes of the
same size which have the same µ-measure up to a fixed factor C (since they are N -neighboring
copies of Q0 for some N = N(U)), and are contained in neighboring cubes of the same size that
are larger than the interior cubes by some bounded factor (the bound depends only on U). It
therefore follows that the µ-measures of the neighboring copies of U are comparable. Bilipschitz
images of U are controlled in exactly the same fashion. This shows that (ii) implies (iii) and
taking U = Q0, we get (ii) implies (iv) as well. �

Obviously, Theorem 0.2 tells us that any of these new doubling conditions with respect to
E ⊂ R

n and S ⊂ BL implies translate-doubling for cubes (with the cube constant tending to
zero as the E-constant tends to zero). As before, we can therefore ask what pairs (E, S) are such
that the opposite implications hold true. To be more precise, we generalize P1, P2 in the obvious
way:

PS
1

: ∀ε > 0 ∃ δ = δ(ε, E) > 0 : D(ε) ⊆ DS(E, δ).

PS
2

: ∀δ > 0 ∃ ε = ε(δ, E) > 0 : D(ε) ⊆ DS(E, δ).
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A set E satisfies P S
1 if all measures which are doubling with respect to cubes are (E, S)-doubling,

while E satisfies P S
2 if all measures with a sufficiently small cube-doubling constant also have a

small (E, S)-doubling constant. As before, we also treat P S
i as the set of all sets E satisfying the

condition P S
i , allowing us to write such things as “E ∈ P S

i .”

We now show that P1 = P BL
1 and that P2 = P LBL

2 . We do not know if it is true that P2 = P BL
2

(although we suspect that this is false).

Proposition 5.2. P1 = P S
1 for every S ⊂ BL. P2 = P S

2 for every S ⊂ LBL.

Proof. Let us fix E ∈ P1, ε > 0, and µε ∈ D(ε). Also let f ∈ BL and g(z) = AfA−1z, where
Az = λz + x, λ > 0, and x ∈ R

n. Defining the pullback measure µ′(U) = µ(gU), it is easy to see
that µ′ ∈ D(ε′) for some ε′ dependent on ε. Thus µ′ ∈ D(E, δ) for some δ > 0 (independent of f
and A). Since A is an arbitrary affine map and f ∈ BL is arbitrary, it follows from Theorem 2.2
that E ∈ P BL

1 , which implies the first statement of our result.

The above argument does not work for P S
2 , S = BL, but it does if S ⊂ LBL, since any

f ∈ LBL gives rise to a function g which sends congruent cubes to congruent parallelpipeds.
Applying the method of Theorem 2.4 to a decomposition of cube into parallelpipeds, we see that
the measure µ ∈ D(ε) gives rise to µ′ ∈ D(ε′) where ε′ → 0+(ε → 0+). The rest of the proof is
easy. �

Even though the properties P S
i are independent of S ⊂ LBL, it is not difficult to construct an

individual measure µ which is doubling with respect to a pair (E, S) when S = S1, but not when
S = S2 (of course E cannot satisfy P1). For a very simple example exhibiting rather extreme
behaviour of this type, let E = E1 × (0, 1), where E1 is a minimally fat Cantor set, and let
µ = m × µ2, where m is Lebesgue measure on the line and µ2 is a doubling measure on the line
which has E1 as a null set. Then µ is (E, S)-doubling for S = ∅ (with zero doubling constant),
but is not (E, S)-doubling if S includes a right-angle rotation about the origin.

Finally, let us briefly comment on “asymptotic doubling.” Some papers, notably [Ko], concern
themselves with asymptotic doubling, which means that the doubling constant ε in (0.1) can be
taken to be very small at very small scales (i.e. when the associated scaling factor λ is very small).
The proof of Theorem 0.2 can readily be modified to prove that asymptotic doubling with respect
to any bounded set E implies asymptotic doubling with respect to cubes. Furthermore if P3 is
the set of all E such that asymptotic doubling with respect to cubes implies asymptotic doubling
with respect to E, it is easy to see that P2 ⊂ P3. Thus, for example, Theorem 2.4 implies that
if U ⊂ Q0 is open, |∂U | = 0, then U ∈ P3.
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