SINGULAR MEASURES AND THE KEY OF G

STEPHEN M. BUCKLEY AND PAUL MACMANUS

0. Introduction

A non-zero Borel measure v is said to be doubling if there is a constant C' > 1 such that

v(I)
(/)

whenever I, J are adjacent intervals of the same length. We call the smallest C' = C,, for which
this condition holds, the doubling constant of v. A measure is a multiple of Lebesgue measure if
and only if its doubling constant is 1.

It was shown in [BHM] that if U C [0, 1]™ is open and |0U| = 0, then v, (U) — |U| whenever v,
is a sequence of probability measures on [0, 1] whose doubling constants tend to 1. In particular,
if U is an open subset of [0, 1] of full measure, then v, (U) — 1. We will show, amongst other
things, that there exists a G5 set G in [0, 1] of full measure, and a sequence v,, of measures whose
doubling constants tend to 1, yet v,(G) = 0 for all n. We can even choose the measures to be
“renormalizations” of a single measure v which “fit the gaps in G” as a key fits a lock.
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We wish to thank the referee for drawing our attention to the paper of Kakutani.

1. Definitions and basic results

There is an easy way, essentially due to Kahane [K], to generate doubling measures. Let Q
consist of all intervals on [0,1) of the form [m4=% (m + 1)47%), where m,k are non-negative
integers, and set Q(7) to be the subset of Q consisting of those intervals of length 477.

For any I € @) the four children are labeled Iy, I, I, I3, moving from left to right. Now consider

1, x el
H[(CL’) = -1, xze€l
0, otherwise.

The product [];co(1+ arHr) converges weak- to a doubling, probability measure i, provided
that sup;cofar| < 1. We call any such measure p a Kahane measure and write ||u|x =
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SUPrcg |ar|. Furthermore, the doubling constant C), tends to 1 as |u||x tends to 0; in fact,
if |||k < 1 — ¢, then there is a constant c., dependent only on €, such that C,, < 1 + c||u||x
whenever for some e > 0.

For our purposes it will be sufficient to consider Kahane measures for which all of the coefficients
ay at any given scale are equal and ||u|[x < 1 — € for some € > 0, which we assume to be fixed
from now on. We denote this class of measures by M., or simply M. Then every measure in M
is of the form H;;(l +a;R;) where R; = ZIEQ(j) Hy; it is convenient to introduce the notation
c;j(p) = aj. We will focus on those measures € M for which ¢;(p) — 0 as j — oo, and we label
these My. For p € M and n =0,1,2,... the measure pu,, € M henceforth denotes the element
of M with ¢;(pn) = ¢j4n(pt), 7 € N. The measures p,, are “renormalized” versions of y; in fact,
if S C [0,1) is a measurable set and fg is the periodic function with period 1 whose restriction to
[0, 1) is the characteristic function of S, then p,,(S) = fol fs(4™t) du(t). Given p € My, it follows
from the estimate in the last paragraph that the sequence of doubling constants (C,,, ) has limit
1. Thus every u € My is optimally doubling at small scales in the sense that v = p satisfies (1)
with C' = C},, whenever I, J are adjacent intervals with |I| = [J]| < 47".

The following result is a special case of a result of Kakutani [Kk, Corollary 1].

Theorem A. Let u,v € M, with a; = c;(pn), bj = ¢;(v), for all j € N. If (a; — b;)32, lies in
12, the class of square summable sequences, then u << v << u, otherwise i L v.

In fact, when v is Lebesgue measure and (a,) € (% above, more is true: p lies in the Mucken-
houpt class Ao, and in particular p has density lying in LP(]0,1]) for some p > 1; see [Bu] and
[FKP].!

Kakutani proves this result by careful analysis, but let us pause to prove the singularity part
of this result using the Lyapunov version of the Central Limit Theorem [Bi, Theorem 27.3] which
we now state.

Theorem B. Suppose that {X,,}°2 is a sequence of independent random variables, and that
the moments E(X,) = ey, BE(X, —e,)? =02 #0, and E|X,, — e,|> = 73 are finite for each n.

Let
n 1/2 n 1/3
Sp = <Z 0'1~2> , tn, = <Z 7'23) .
i=1 i=1

If lim, oo tn/sn, = 0, then Y, = Y1 (X, — e;)/sn converges in distribution to the standard
normal distribution.

In this paragraph we employ the notation of Theorem A. The functions R,, are independent as
random variables on [0, 1] with respect to v, and so the functions f,, = log[(1+a,R,)/(1+b,R,)]

IThese references only say that u lies in dyadic Aso but, since u is a doubling measure, this implies that
wE Aso.
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are also independent. A little calculation with the power series expansion for log(1 + ¢) gives

_ (an—bn)2 3
—b )2
E, n_n252:@‘n7n b |3
3 _ 3_|an_bn|3 1+b$z 4
E)\fn—en|° =7, = 5 (l_b%>2+0(\an—bn\ ).
Thus if s,,t, are as in Theorem B, lim, .. |a, — b,| = 0, and (a, — b,)3%,; ¢ [?, then

/50 la; —b;i]® and s2/ 3" (a; — b;)? are bounded above and below by positive, finite con-
stants that are independent of n. It is then routine to deduce that lim, . t,/s, = 0; one
simply splits the sum at a point beyond which |a,, — b,| is very small and uses the estimate
|- lle < || - ||122/3|| : ||l1°/°3 Thus Theorem B is applicable in the case X,, = f,. Since > e
is much larger than s, for large n, it follows that Y,, tends to —oo in r-measure and thus
I, (14 a,R,)/(1+ b,R,) converges in v-measure to the zero function. Set {Pn} to be the
partial products of this infinite product. We have just seen that this sequence of functions con-
verges to zero in v-measure. However, Py(z) = u(In(z))/v(In(x)), where Iy (x) is the unique
element of Q(N) containing = and so, by the Radon-Nikodym theorem, { Py} converges v-a.e.
to the Radon-Nikodym derivative of p with respect to v. Consequently, the Radon-Nikodym
derivative is zero v-a.e., and so u L v whenever (a; — b;) ¢ I?

We are mainly interested in Theorem A when v is Lebesgue measure. In this case if the sequence
(cj(w)) has limit zero but does not lie in {2, then p is a singular measure which is optimal doubling
at small scales. The mere existence of such a measure may seem a little surprising and was only
recently established (using different techniques) by Cantén [C] and Smith [S].

There is an obvious bijection, A, between Q and the set of finite sequences whose terms lie in
{0,1,2,3}. We will refer to A(I) as the address of I. The jth term in the address is A;(I). For
I € Q, we let E(I) consist of the union of the intervals J € Q for which Ag;(J) = A;([) for all
j. So the odd terms in A(J) are arbitrary and the even terms are specified. If I € Q(j), E(I)
consists of 47 elements of Q(2j5). For n =0,1,2,... and I € Q, T,,(I) consists of those intervals
J € Q for which A,4;(J) = A;(I) for all j. So the first n terms of J are arbitrary and the
remainder are specified. When I € Q(j), T,,(I) consists of 4™ elements of Q(j + n). Note that
if I and J are disjoint, then E(I) and E(J) are disjoint, as are T,,(I) and T},(J). For any set B
that is a union of disjoint elements I of Q, we define F(B) to be the union of the F(I), and we
define T}, (B) similarly. It is easy to check that |E(B)| = |B| and that |T,,(B)| = |B].

Let X; be the collection of subsets of [0, 1) that are unions of elements of Q(j). Any set B € ¥,
is said to be j-indifferent if whenever B O I € Q(m) and J is one of the three elements of Q(m)
for which A(J) and A(I) differ only in the jth place, then J C B. Equivalently if S(B) is the
set of sequences of length m given by A(I) for each I € Q(m), I C B, then B is j-indifferent
precisely if S(B) is measurable with respect to the o-algebra generated by the sets

SkJ = {(az)ﬁl Dap = l}, 1<k<m,k 7é RS {0, 1,2,3}.

The point of this definition is that if B is j-indifferent, then p(B) does not depend on the c;(1u).
In particular, if B € ¥,,, then E(B) is j-indifferent for all odd numbers j and all even j > 2m,
and T, (B) is j-indifferent for all j < n and all j > n + m.
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2. Construction of y and G
Our main result is as follows.

Theorem 1. There exists a measure u € Mg on the interval [0,1) and a Gs set G contained in
[0,1) which have the following properties:

(a) p([0,1)) =1, |G| =1 and u(G) = 0.

(b) pn(G) =1 for all odd n € N and p,(G) =0 for all even n € N.

Taking v,, = p2,, we immediately get

Corollary 2. There exists a Gs set G in [0,1] of full measure and a sequence v,, of probability
measures on [0, 1] whose doubling constants tend to 1 and for which v,(G) =0 for all n.

The oscillatory behaviour of p,, (G) described in Theorem 1(b) is all the more remarkable since
the measures u,, are renormalized versions of a single measure p whose doubling constants are
tending to one. The idea is to construct G from sets that are indifferent at odd levels n (and
thus treat such p, like Lebesgue measure), but which are concentrated in areas where p,, is small
whenever n is even.

Proof of Theorem 1. Let b be any number strictly between 0 and 1. Define vy to be the element
of M whose coefficients are all 27%. This measure is singular with respect to Lebesgue measure.
It follows that for sufficiently large ny, there exists Ay € 3,, for which |[Agx| > 1 — bk and
vp(Ag) < b*. We can assume that the nj are increasing to oo.

Divide the natural numbers into consecutive blocks Bi, Bg,... of length 2nq,2no,.... Set
a; = 2~% whenever j is an even number in block By, and 0 otherwise. Define u € Mg by the
equations ¢;(u) = a;.

Now let my = 2ny + -+ 4+ 2ng_q1 for k > 1 and m; = 0. Thus my is the total length of the
blocks By, ...By_1. Define Hy to be T),, (E(Ax)). Then Hy € ¥,,, +2n, and is j-indifferent for
all 7 except even numbers larger than my and no larger than my + 2ng, i.e., all even numbers
in Br. Remove the endpoints of the intervals that make up Hjy to get an open set Ug. The
sets Uy and Hy, differ only by a countable number of points. Thus any doubling measure gives
them the same measure (doubling measures on the line are non-atomic). Set G., = U;—,, Uk
and G =) °_, G,,. This set G is a Gy set.

We have |Hy| = |Ag| > 1 — b for all k, hence |G,,| = 1 for all m, and |G| = 1. If n is odd and
Jj is even, then ¢;(p,) = 0. But Hy, is j-indifferent for all odd j, so it follows that p,(Hy) = |Hx|.
As a result, u,(G) = 1 whenever n is odd.

The set Hy, is j-indifferent for all j except even j in By and ¢;(u) = 27% for these exceptional
integers. Thus u(Hy) = vi(Ar) < b*. Consequently, u(G,,) < b™(1 —b)~! for all m, and so
1(G) = 0.

Suppose n—m is even. Then ¢;(py) = ¢;(1m) for “most” values of j in the sense that for each k
the number of places where the coefficients of size 2% do not match up is bounded independently
of k, indeed by n —m. It follows readily from Theorem A that p, << pm, << p,. In particular,
tn(G) =0 for all even n. O

Finally, we note two facts about the relationship between u,, and p.,,. First, if n —m is odd,
then one of n,m is odd and the other is even. Thus one of the measures gives full measure to G,
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while the other gives G zero measure. In particular, pu,, L p,,. Secondly, when n — m is even,
the absolute continuity mentioned in the last paragraph of the proof can be strengthened: there
exists a constant C, dependent only on n — m, such that C =1y, (E) < pn(E) < Cum(E). It
suffices to prove this last estimate for £ € Q, in which case the estimate follows from the fact,
that ¢;(in) = ¢j(pm) for “most” values of j. We leave the details to the reader.
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