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Abstract
Gallium-based drugs have been repurposed as antibacterial therapeutic candidates and have shown significant potential as 
an alternative treatment option against drug resistant pathogens. The activity of gallium (Ga3+) is a result of its chemical 
similarity to ferric iron (Fe3+) and substitution into iron-dependent pathways. Ga3+ is redox inactive in typical physiologi-
cal environments and therefore perturbs iron metabolism vital for bacterial growth. Gallium maltolate (GaM) is a well-
known water-soluble formulation of gallium, consisting of a central gallium cation coordinated to three maltolate ligands, 
[Ga(Maltol-1H)3]. This study implemented a label-free quantitative proteomic approach to observe the effect of GaM on the 
bacterial pathogen, Pseudomonas aeruginosa. The replacement of iron for gallium mimics an iron-limitation response, as 
shown by increased abundance of proteins associated with iron acquisition and storage. A decreased abundance of proteins 
associated with quorum-sensing and swarming motility was also identified. These processes are a fundamental component of 
bacterial virulence and dissemination and hence suggest a potential role for GaM in the treatment of P. aeruginosa infection.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0077​5-020-01831​-x) contains 
supplementary material, which is available to authorized users.

 *	 Kevin Kavanagh 
	 kevin.kavanagh@nuim.ie

1	 Department of Biology, SSPC Pharma Research Centre, 
Maynooth University, Maynooth, Co Kildare, Ireland

2	 Department of Chemistry, SSPC Pharma Research Centre, 
RCSI, 123 St. Stephens Green, Dublin 2, Ireland

http://crossmark.crossref.org/dialog/?doi=10.1007/s00775-020-01831-x&domain=pdf
https://doi.org/10.1007/s00775-020-01831-x


1154	 JBIC Journal of Biological Inorganic Chemistry (2020) 25:1153–1165

1 3

Graphic abstract

Keyword  Antimicrobial · Galleria · Gallium · Iron · Proteomics · Pseudomonas · Stress

Abbreviations
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Introduction

Antimicrobial resistance (AMR) is a growing concern 
globally and has become problematic for the treatment 
of Gram-negative infections [1]. The presence of an 
outer membrane in the bacterial envelope distinguishes 
Gram-negative from Gram-positive bacteria, and can con-
fer resistance by inhibiting the entry and/or retention of 
antimicrobial agents [2, 3]. A significant contributor to 

increased AMR incidences is the Gram-negative bacte-
rium Pseudomonas aeruginosa—a pathogen among immu-
nocompromised individuals that can cause urinary tract 
infections and bacteraemia in nosocomial and community-
based settings [4–6]. The presence of the pathogen is a 
particular threat for cystic fibrosis patients and often indi-
cates poor clinical outcome due to the ability to persist for 
long periods of time and drastically affect lung function 
[7, 8]. The adaptability and versatility of the pathogen is 
accounted for by a relatively large genome (5–7 Mb) that 
allows the expression of many virulence genes and regu-
latory enzymes involved in metabolism, efflux of organic 
compounds and resistance and enables the pathogen to 
withstand hostile environments [9, 10]. Moreover, Gram-
negative bacteria can increase expression of efflux systems 
and modify outer membrane proteins and/or drug targets 
(e.g. penicillin binding proteins) to render many broad-
spectrum antibiotics ineffective; frequent use of which can 
accelerate the development of these mechanisms [11–13].
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The advent of AMR necessitates the production of novel 
treatments with unique modes of action. Interference with 
bacterial iron metabolism has proven effective as an alter-
native method to eliminate infection since iron is a vital 
nutrient for the growth, survival and virulence of many 
bacteria [14–17]. A fully functioning immune system and 
iron sequestration (for redox homeostasis, respiration and 
DNA synthesis and repair) are protective strategies of the 
human body to limit access to pathogens [18–20]. Suc-
cessful pathogens such as P. aeruginosa can overcome 
this through multiple iron uptake systems. Pyochelin and 
pyoverdine are among two siderophores that act as iron 
scavengers whilst the Feo system utilises phenazines to 
reduce insoluble ferric iron (Fe3+) to soluble ferrous iron 
(Fe2+) that can readily diffuse into the cells [21–23].

The semi-metallic element, gallium, shares chemical 
properties with iron that allow it to act as an iron mimetic 
in biological environments [15]. Transport of gallium in 
the blood closely resembles that of iron, whereby gallium 
forms a complex with the iron transporter transferrin, 
and with the aid of transferrin receptor 1, enters cells via 
endocytosis [24, 25]. Approximately 2/3 of transferrin is 
unbound in physiological conditions, leaving it vacant for 
the attachment of gallium (and other metals) [26, 27].

The medicinal application of gallium commenced with 
the use of gallium-based radiopharmaceuticals to detect 
and monitor cancerous tissue. The concentration of gal-
lium incorporated into cells is directly proportional to the 
metabolic and proliferative activity, hence these scans 
can reveal the severity of some cancers such as lympho-
mas [28, 29]. Use later expanded to the development of 
gallium-based complexes as potential anti-cancer drugs 
[29–31]. Gallium limits the availability of iron to malig-
nant cell lines [32–34] and compromises mitochondrial 
function through the stimulation of calcium efflux and 
consequent initiation of apoptosis [35]. Significantly, the 
gallium-based complex, tris(8-quinolinolato)gallium(III), 

KP46, (Fig. 1), has recently reached a phase I/II clinical 
trial as a potential anticancer agent [36].

The simple gallium salt, gallium nitrate, showed prom-
ising antineoplastic and antimicrobial activity as a first-
generation compound [37]. Gallium maltolate (GaM), a 
Ga(III) coordination complex of maltol, [Ga(Maltol-1H)3], 
first reported by Finnegan et al., as a neutral water-solu-
ble complex of “medical interest” is a second-generation 
gallium-based compound which has potentially enhanced 
bioavailability as an oral and topical treatment [26, 38–40].

More recently, the physiological and pathological require-
ments of iron in bacteria have sparked interest in the repur-
posing of gallium as an antimicrobial agent. The inability 
of bacterial cells to differentiate between iron and gallium 
results in the detrimental incorporation of gallium into the 
cell [41]. Gallium is unable to alternate from a trivalent to 
divalent form under normal physiological conditions and 
therefore disrupts bacterial iron metabolism and inhibits cell 
growth [38].

Studies on antineoplastic and antimicrobial applications 
of gallium have described similar modes of action whereby 
gallium interferes with iron-dependent ribonucleotide reduc-
tase enzymes to prevent DNA synthesis [16, 42–46]. Myette 
et al., explored the synergistic effect of gallium nitrate with 
ribonucleotide reductase inhibitors gemcitabine and hydrox-
yurea on leukemic cells and with the help of previous find-
ings, revealed the role of gallium in replacing iron in the M2 
subunit of ribonucleotide reductase to cease DNA synthesis 
and cell proliferation [42, 47, 48]. CCRF-CEM cells were 
highly susceptible to a combination of gallium nitrate and 
gemcitabine due to the suspected cytotoxic effect and incor-
poration of gallium into DNA, preventing strand elongation 
[42].

Treatment of Mycobacterium tuberculosis with gallium 
nitrate reduced ribonucleotide activity by a maximum of 
60%. The Ib class of ribonucleotide reductases in M. tuber-
culosis is vital for cell growth and a likely target of gallium 

Fig. 1   Chemical structures of 
KP46 (left) and GaM (right)
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[43, 49]. These findings were highly comparable with those 
shown in P. aeruginosa, where gallium was presumably tar-
geted by one class of ribonucleotide reductase enzyme [14].

Unsurprisingly, rapidly proliferating cancer cells demand 
more iron [50, 51] and therefore exposure to gallium 
increases concentration at these target sites [52, 53]. This 
is further enhanced in the cases of lymphomas and bladder 
cancer due to increased transferrin receptor 1 expression 
[54, 55].

Chitambar [29] summarised the progress of human clini-
cal trials on a range of gallium compounds. FDA-approved 
gallium nitrate has been used for the treatment of Non-
Hodgkin’s lymphoma and bladder cancer, with minimal 
safety issues when administered with caution. The optimum 
dosing regimen involves intravenous infusion of the drug 
over a number of days [56]. Doses ranging between 100 and 
500 mg showed no adverse effects on healthy individuals 
[40] while additional studies revealed reductions in tumor 
mass and symptoms in a hepatocellular carcinoma patient 
[44]. Gallium-containing compounds have generally been 
well tolerated in human subjects although some side-effects 
including nausea, vomiting and anemia have been reported 
[57]. Alternatively, the use of gallium as an antimicrobial 
has shown promising results with no adverse toxicity as 
demonstrated in phase 1 clinical trials on CF patients with 
P. aeruginosa infection. Intravenous therapy improved lung 
function and was comparable with existing antibiotics [14].

The importance of iron and limited host supply opens a 
window of opportunity to target the nutritional demands of 
bacteria. This novel approach along with an abundance of 
literature documenting the therapeutic capability of gallium 
(and GaM), have encouraged these studies to obtain addi-
tional insight on the mode of action [16, 58–62].

The aim of the work presented here was to assess the 
ability of GaM to inhibit the growth of P. aeruginosa in 
vivo and in vitro and using label free mass spectrometry to 
uncover the response of this bacterium to this metal.

Methods

P. aeruginosa culture conditions

P. aeruginosa PAO1 was cultured for 24 h in nutrient broth 
(Oxoid, UK) at 37 °C in an orbital shaker (200 rpm). Stocks 
were kept on nutrient agar (Oxoid).

Gallium maltolate synthesis

GaM was synthesised as previously reported by Finnegan 
et al. [39].

Bacterial toxicity assays

P. aeruginosa PAO1 was cultured for 24 h in nutrient broth 
at 37 °C to the stationary phase and samples were diluted 
to 1/100 in nutrient broth (overnight growth produced cul-
tures with an optical density of approximately 1.0 at 600 nm 
(OD600) representing 3 × 108 CFU/ml of bacteria). Aliquots 
(100 µl) were added to serially diluted GaM (0.997–250 µg/
ml) and nutrient broth in a 96-well plate (Sarstedt, Ger-
many). Plates were incubated at 37 °C for 24 h and growth 
was measured at 600 nm.

Galleria mellonella larvae viability assays

Sixth instar larvae of the greater wax moth, Galleria mel-
lonella, (Livefoods Direct Ltd., Sheffield, UK) were stored 
at 15 °C prior to inoculation. Ten healthy larvae (i.e. no 
appearance of melanisation), weighing 250 ± 50 mg were 
selected and stored in 9 cm petri dishes containing wood 
shavings.

Bacterial cells were diluted in PBS to give concentra-
tions of 3 × 100, 3 × 101, 3 × 102, 3 × 103 CFUs/ml and 20 μl 
aliquots of bacterial suspension were injected into larvae via 
the last left pro-leg using U-100 insulin syringe (Terumo 
Europe, N.V., Belgium). Aliquots (20 µl) of 500 or 1000 µg/
ml GaM treatment and PBS as a control were injected into 
the last right pro-leg 30 min post bacterial infection. Larvae 
were incubated at 37 °C for all studies. Larval survival was 
based on the level of melanisation and/or response to touch.

Determination of hemocyte density

G. mellonella larvae were inoculated with 20 µl aliquots of 
500 and 1000 µg/ml GaM solutions or PBS and incubated 
at 37 °C. Larvae, (n = 3, per sample), were bled to extract 
a total of 90 µl of hemolymph. Hemolymph was diluted in 
100 µl sterile PBS and N-phenylthiourea to prevent melani-
sation in pre-chilled microcentrifuge tubes. Hemocyte den-
sity was calculated using a hemocytometer and determined 
as number of cells per ml.

P. aeruginosa protein extraction and purification

P. aeruginosa cultures grown overnight to the stationary 
phase were split (50/50) and re-grown in fresh media sup-
plemented with GaM (500 µg/ml and 1000 µg/ml) at 37 °C 
for an additional 6 h (at which stage early stationary phase 
was reached, Fig S1B). Proteins were extracted using 6 M 
urea, 2 M thiourea and a selection of protease inhibitors 
(PMSF (50 mM), aprotinin, leupeptin, pepstatin A, and 
TLCK (1 mg/ml), Sigma). Cell debris was pelleted by cen-
trifugation at 9000×g for 5 min. Proteins were quantified via 
the Bradford protein assay and acetone precipitated (100 µg) 
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overnight at  − 20 °C. The acetone was removed and pro-
teins were re-suspended in 25 µl of resuspension buffer (6 M 
Urea, 2 M Thiourea, 0.1 M Tris–HCl (pH 8.0) dissolved in 
deionised water). The Qubit™ protein quantification system 
(Invitrogen) was used to quantify 2 µl aliquots of protein 
samples. Ammonium bicarbonate (50 mM) was added to the 
remaining samples and proteins were reduced with 0.5 M 
dithiothreitol (DTT) (Sigma-Aldrich) at 56 °C for 20 min 
and alkylated with 0.5 M iodoacetamide (IAA) (Sigma-
Aldrich) in the dark at room temperature for 15 min. Proteins 
were digested with Sequence Grade Trypsin (0.5 µg/ml) 
(Promega) and incubated overnight at 37 °C. Trifluoroacetic 
acid (1 µl of 100%) (Sigma-Aldrich) was added to inhibit 
tryptic digestion. Following 5 min incubation at room tem-
perature, samples were centrifuged at 13,000×g for 10 min. 
Peptides were purified using C-18 spin columns (Pierce) 
to yield a total of approximately 30 µg of protein and dried 
in a SpeedyVac concentrator (Thermo Scientific Savant 
DNA120) at 39 °C for 2 h. Samples were resuspended in 2% 
acetonitrile and 0.05% trifluoroacetic acid and sonicated in a 
water bath for 5 min followed by centrifugation at 15,500×g 
for 5 min. The supernatant was extracted and used for mass 
spectrometry.

Mass spectrometry

Digested P. aeruginosa protein samples (0.75 µg) were 
loaded onto a QExactive Mass Spectrometer (ThermoFisher 
Scientific) connected to a Dionex Ultimate™ 3000 (RSLC-
nano) chromatography system. Purified hemolymph proteins 
were loaded in the same manner. An acetonitrile gradient 
was used to separate peptides in a BioBasic™ C18 Pico-
Frit™ column (100 mm in length, 75 mm inner diameter) 
using a 65 min reverse phase gradient at a flow rate of 
250 nL/min. The mass spectrometer was operating in an 
automatic dependent switching mode to acquire all data. A 
high resolution MS scan (300–2000 Dalton) was performed 
using the Orbitrap to select the 15 most intense ions prior 
to MS/MS.

Protein identification and LFQ normalisation of MS/MS 
data was carried out using MaxQuant version 1.6.6.0 (https​
://maxqu​ant.org/) following established procedures outlined 
previously [63]. The Andromeda search engine in MaxQuant 
matched MS/MS data against a UniProt-SWISS-PROT data-
base for P. aeruginosa PAO1 [64].

The mass spectrometry proteomics data have been depos-
ited to the ProteomeXchange Consortium via the PRIDE [65] 
partner repository with the dataset identifier PXD019265.

Data analysis

General procedures for data processing and graphic genera-
tion were performed on Perseus v.1.6.6.0 (https​://maxqu​ant.

org/) as described by Deslyper et al. [66]. Proteins not identi-
fied in at least two out of the three replicates were removed. 
Imputation of the data replaced missing values with values 
that mimic low abundance proteins randomly selected from 
a distribution specified by a downshift of 1.8 times the mean 
standard deviation (SD) of all measured values and a width 
of 0.3. Two sample t tests were carried out with a cut-off of 
p < 0.05. For additional analysis, protein names and func-
tions were obtained from searching the Uniprot ID from the 
Uniprot Knowledgebase (www.unipr​ot.org).

Results

Analysis of the in vitro and in vivo effect of GaM 
against P. aeruginosa

The growth of P. aeruginosa PAO1 when exposed to a range 
of GaM concentrations in vitro, was measured after 24 h 
at 37 °C (Fig. 2). A concentration of 62.5 μg/ml inhibited 
growth by approximately 50% and the maximum concentra-
tion used (250 μg/ml) inhibited growth by 70%.

Larvae of G. mellonella were administered GaM doses 
of 125, 250, 500 and 1000 μg/ml in order to measure toxic-
ity in the host. Larvae administered GaM showed no reduc-
tion in viability (Fig S2) and there was an increase in the 
hemocyte (immune cell) density at 24 h in those larvae 
that received a dose of 500 or 1000 μg /ml (Fig S3). The 
ability of GaM to act in the host and prolong survival of 
larvae infected with P. aeruginosa was assessed. Treatment 
of larvae infected with 3 × 102 and 3 × 103 CFUs of P. aer-
uginosa (doses that result in 100% mortality at 24 h) with 
doses of 500 and 1000 µg/ml GaM 30 min post-infection 
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Fig. 2   Growth of P. aeruginosa treated with GaM in vitro. Cultures 
grown overnight were subjected to GaM and incubated at 37 °C and 
evaluated after 24 h. All values are the mean ± S.E of eight samples
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significantly increased larval survival at 24 h. Treatment 
of larvae infected with 3 × 102 CFUs P. aeruginosa with 
a dose of 1000 µg/ml GaM post infection gave 95 ± 5% 
survival at 24 h. Furthermore larvae infected with 3 × 103 
CFUs of P. aeruginosa and administered a dose of 1000 µg/
ml post-infection showed 90 ± 10% survival at 24  h, 
(Fig. 3).

Proteomic analysis of the response of P. aeruginosa 
following exposure to GaM

Proteomic analysis allows a comparison of alterations in 
the whole proteome of an organism in response to a stress 
or treatment and can be used as a tool to identify potential 
modes of action of compounds on cells or whole organ-
isms. The effect of GaM on P. aeruginosa was analysed 
via label-free quantitative mass spectrometry and visual 
representation of acquired data allowed for the identifi-
cation of proteins and their associated pathways affected 
by GaM.

To investigate the proteomic response of P. aeruginosa 
to GaM in vitro, LFQ proteomics was performed on whole 
cell lysates. P. aeruginosa was grown in the presence of 
GaM (500 and 1000 μg/ml) for 6 h to the early stationary 
phase. An exposure time of 6 h was chosen to ensure ade-
quate incorporation of the compound into the cell in order 
to elicit a pronounced proteomic change.

A total of 2606 proteins were initially identified and 
1748 remained after filtering out contaminants and 

peptides identified by site from the initial data matrix. 
A total of 1673 proteins were present in all samples, 56 
of which were exclusive to both treatment samples and 
6 were exclusive to control samples (Dataset S3). Post-
imputation, 389 were deemed statistically significant and 
differentially abundant (SSDA), ANOVA p < 0.05) with a 
fold change of > 1.5 (Dataset S1).

A distinct difference between the proteomes of treated 
and control samples can be observed in the principal 
component analysis (PCA; Fig. 4) of filtered proteins. 
The overlap between 500 µg/ml and 1000 µg/ml treat-
ment samples indicates the limited effect of increasing 
concentrations of GaM on the P. aeruginosa proteome. 
Three replicates of treatment and control samples were 
resolved through hierarchal clustering of z-score normal-
ised intensity values for all SSDA proteins, (n = 389), and 
visualised via a heatmap (Fig S4). The heatmap generated 
on Perseus statistical software grouped proteins based on 
similar median expression trends and identified two major 
protein clusters, A and B, representing three replicates in 
each sample group (Dataset S2).

The volcano plot displays 1748 filtered proteins with 
altered abundance levels of treated samples relative to 
controls. Among the top SSDA proteins increased in 
abundance in P. aeruginosa treated with 1000 µg/ml GaM 
in comparison to non-treated control samples include 
arsC-encoded protein-tyrosine-phosphatase (37.99-fold), 
arsenic-responsive ArsR protein (15.13-fold) FMN_red 
domain-containing protein associated with oxida-
tion–reduction (8.98-fold), methylated-DNA–protein-
cysteine methyltransferase associated with DNA-repair 
(8.5-fold), heme oxygenase HemO (7.6-fold), biotin syn-
thase (7.14-fold), co-chaperone protein HscB homolog 
for maturation of iron-sulfur cluster-containing proteins 
(4.83-fold) and hemin degrading factor (4.19-fold). SSDA 
proteins decreased in abundance in GaM-treated samples 
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Fig. 3   Survival of G. mellonella larvae inoculated with P. aeruginosa 
and a single 20 μl dose of GaM (500 µg/ml (green) and 1000 µg/ml 
(blue)). Larvae (n = 10, per group) were inoculated with 3 × 102 and 
3 × 103 CFUs of P. aeruginosa prior to GaM administration. Con-
trol groups include infected larvae injected with PBS. Larvae were 
observed after 24 h at 37 °C. Mean values ± S.E. were obtained from 
three independent experiments

Fig. 4   Principal component analysis (PCA) of untreated P. aer-
uginosa (black), P. aeruginosa treated with 500  µg/ml (green) and 
1000  µg/ml (blue) GaM. A contrast is shown between both treated 
groups and untreated controls
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relative to the control group include elastase ( 16.35-fold) 
and protease A ( 11.83-fold) quorum-sensing enzymes, 
anaerobic and virulence activator-modulator AnvM 
( 9.75-fold), dihydrolipoyl dehydrogenase involved in 
pathogenesis and cell redox ( 7.07-fold) and Type 4 fim-
brial biogenesis protein PilY2 ( 4.6-fold), (Fig. 5).

The STRING database was used to identify biological 
pathways and protein networks between SSDA proteins 
increased and decreased in abundance versus control 
samples. Pathways associated with stress response, DNA 
damage/repair, iron-sulfur clusters and heme storage were 
upregulated in GaM-treated P. aeruginosa (Fig. 6a). Quo-
rum sensing, flagellar motility and cell-redox pathways 
were downregulated (Fig. 6b).

Discussion

The survival of virtually all bacterial pathogens is heavily 
dependent upon the presence of iron within their host and 
an ability to access this metal [67]. GaM targets this weak-
ness to disrupt iron metabolism. Although numerous studies 
have described mechanisms of action [26, 41, 58, 61, 68], 
little is known about the proteomic response of bacteria to 
GaM. Analysis of protein expression changes in P. aerugi-
nosa in response to GaM can further inform potential modes 
of action.

P. aeruginosa was susceptible to GaM in vitro and 70% 
growth inhibition was achieved at a concentration of 250 µg/
ml. This study utilised G. mellonella larvae as an efficient 
in vivo model to further validate the efficacy of GaM within 

Fig. 5   Volcano plot represent-
ing differentially abundant 
proteins in P. aeruginosa treated 
with 1000 µg/ml GaM for 6 h. 
The distribution of quantified 
proteins is based on significance 
( log10 p value) versus the fold 
change (Log2 LFQ intensity dif-
ference). Statistically significant 
(p value < 0.05) proteins are 
located above the horizontal 
line. Expression transcripts with 
relative fold changes of > 1.5 
are shown with increased 
expression to the right (red) 
and decreased expression to the 
left (blue) of the vertical lines. 
SSDA proteins are annotated

Fig. 6   Network analysis of pro-
teins increased and decreased 
in abundance in P. aerugi-
nosa treated with 1000 µg/ml 
GaM. Data obtained from the 
STRING database using gene 
lists from SSDA proteins from 
pair wise t tests (p < 0.05) shows 
interactions among individual 
proteins and associated path-
ways (highlighted in colour). a 
Protein pathways upregulated in 
GaM-treated P. aeruginosa. b 
Protein pathways downregulated 
in GaM-treated P. aeruginosa 
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a host. The insect immune system is similar to the mam-
malian innate immune response: the cuticle and skin are 
physical barriers against pathogens; blood-like hemolymph 
circulates hemocytes (immune cells) for phagocytosis and 
superoxide production, much like mammalian neutrophils 
[63, 69]. Despite lacking an adaptive immune response, G. 
mellonella larvae have been widely used in toxicity assays to 
elucidate the efficacy of both conventional and novel drugs 
and have provided comparable results to those from mam-
malian studies [69, 70]. The assessment of G. mellonella 
larvae viability revealed that GaM has growth-inhibiting 
activity in vivo and maintains larval survival for up to 24 h, 
thereafter survival rates declined. Larvae challenged with 
lethal concentrations of P. aeruginosa prior to GaM admin-
istration showed significantly increased survival in compari-
son to controls at 24 h. Furthermore, GaM demonstrated 
no toxic effects in vivo as larvae inoculated with varying 
concentrations of GaM showed 100% survival with no signs 
of melanisation for up to 24 h. To identify whether GaM 
induced an immunomodulatory effect, larval immune cells 
(hemocytes) were extracted and enumerated. Administra-
tion of GaM increased production of hemocytes, which may 
enhance antibacterial activity within the larvae. Determina-
tion of hemocyte density is a common criterion assessed in 
many G. mellonella studies and inoculation of antimicrobial 
agents has been shown to induce immune priming responses 
[71–74].

Quantitative mass spectrometry identified a distinct dif-
ference between the proteomes of GaM-treated P. aerugi-
nosa cells versus control cells. Protein-tyrosine-phosphatase 
was one of the most highly upregulated proteins (37.99-
fold), and although the consequence of this is uncertain, the 
roles of this protein in the cell stress response/resistance, 
secretion of polysaccharides and biofilm formation have 
been proposed [75–78]. Indication of a cell stress response 
was seen through increases in oxidation–reduction via 
the FMN_red domain-containing protein (8.98-fold) and 
DNA repair protein methylated-DNA—protein-cysteine 
S-methyltransferase (8.5-fold), which catalyzes cysteine 
methylation [79]. The methylation process signals for the 
repair of mutations in the genome induced by drug toxic-
ity and stress [80–82]. Additional counteraction of GaM-
induced DNA damage occurred as part of an SOS response 
via upregulation of UvrABC system protein B (2.3-fold). 
This component of the UvrABC repair system scans and 
cleaves abnormalities within DNA [83–85]. Furthermore, 
upregulation of the heme oxygenase (HemO) component 
of the heme acquisition system (7.6-fold), biotin synthase 
(that catalyzes biotin production through sulfur insertion; 
7.14-fold) and co-chaperone HscB protein homolog asso-
ciated with maturation of iron-sulfur clusters (4.83-fold) 
are possibly indicative of cellular mechanisms employed to 
counteract inadequate iron supplies in the cell [21, 86–90]. 

Interestingly, proteomic studies on the response of P. aerugi-
nosa to iron-limited conditions also showed upregulation of 
heme acquisition components (such as HemO) [91], whereas 
a previous study utilised gallium porphyrins to disrupt heme 
uptake pathways and inhibit growth in P. aeruginosa [92]. 
Hemoproteins like haemoglobin provide an additional 
source of iron and can be degraded and liberated via HemO 
in the heme acquisition pathway [92, 93]. With the excep-
tion of IscU, iron-limitation also resulted in upregulation of 
iron-sulfur cluster proteins HscAB, IscR and IscX [91]. In 
contrast, GaM induced expression of the iron storage pro-
tein bacterioferritin B (1.95-fold) and TCA cycle compo-
nent malate synthase GlcB (2.21-fold), both of which were 
downregulated in iron-limited conditions [91]. Upregulation 
of isocitrate lyase AceE (1.71-fold) and cysteine biosynthe-
sis protein sulfate adenylyltransferase subunit 2 (1.63-fold; 
encoded by cysD) following GaM exposure coincided with 
the effects of iron-limitation [91].

Exposure of P. aeruginosa to GaM downregulated quo-
rum-sensing (QS), an important cell-to-cell communication 
system that relies upon a range of signalling molecules that 
enable bacteria to coordinate the expression of virulence 
genes in response to cell density [94]. The las and rhl sys-
tems and their respective transcriptional activators, LasR 
and RhlR, are regulated via N-acyl homoserine lactone sig-
nalling molecules [95]. These systems mediate a multitude 
of virulence factors responsible for tissue damage, nutrient 
acquisition, evasion of host immunity and enhanced dissemi-
nation of infection [96]. These include lasA (protease A) and 
lasB (elastase), both of which showed significant decreases 
in abundance ( 11.83-fold and  16.35-fold, respectively) in 
GaM-treated P. aeruginosa. The alternative QS system, 
Pseudomonas quinolone signal (PQS) system, employs 
alkyl quinolone signals mediated by pqsB and pqsC genes 
[97]. The latter gene, which encodes the 2-heptyl-4(1H)-
quinolone synthase subunit PqsC protein and is respon-
sible for the synthesis of quinolone signalling molecules 
2-heptyl-4(1H)-quinolone and 2-heptyl-3(1H)-quinolone 
[98], was decreased in abundance by 2.54-fold (also shown 
on STRING analysis). Inhibition of PQS genes has been 
linked to reduced biofilm, elastase, pyocyanin and sidero-
phore virulence factor synthesis [99, 100]. Repression of 
the transcriptional regulator pvdS and hence biosynthesis 
of pyoverdine has been suggested as one mode of action 
adopted by GaM in disrupting iron metabolism [14]. Direct 
inhibition of pyoverdine synthesis was not explicitly identi-
fied in this study, however, the association between QS and 
pyoverdine regulation has previously been outlined [101, 
102]. LasR plays roles in the regulation of lasA and lasB 
genes and has been shown to mediate pyoverdine biosyn-
thesis [102, 103]. It has been proposed that cell density can 
play a role in siderophore regulation in the Gram-negative 
pathogen, Vibrio vulnificus [104]. This idea has also been 
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explored in Burkholderia cepacia, Vibro harveyi and P. aer-
uginosa [104] and may provide a link between QS inhibition 
and the suppression of iron uptake via GaM therapy.

The invasive nature and success of P. aeruginosa in colo-
nising diverse environments is accounted for by twitching/
swarming motilities [105, 106], that are modulated by QS 
pathways with the aid of flagellar movement, to sense and 
move towards favourable environments [107, 108]. A num-
ber of regulatory genes are required in flagellar biosynthesis 
including the anti-sigma-28 factor protein (encoded by flgM) 
that regulates expression of the B-type flagellin (encoded by 
fliC) [109], and flgG-encoded flagellar basal-body rod pro-
tein FlgG which mediates flagellar rod assembly [110, 111]. 
Downregulation of flagellar basal-body rod protein FlgG, the 
anti-sigma-28 factor protein and B-type flagellin occurred 
following GaM treated with fold decreases of − 2.1, − 1.96 
and − 2.09, respectively, and are also presented on the 
STRING network analysis (Fig. 6). In addition, the type 4 
fimbrial biogenesis protein PilY2, is a surface sensor and 
showed a − 4.6-fold decrease in abundance in GaM-treated 
P. aeruginosa. Comparisons of iron-limitation and GaM 
treatment have shown inconsistencies in twitching motil-
ity in Pseudomonas strains. Studies by [91] correlate with 
research showing iron-rich environments promote biofilm-
forming phenotypes, whereas iron deficiency upregulates 
twitching motility in P. aeruginosa [91, 112]. Iron limitation 
in Pseudomonas fluorescens reduces expression of flagellar 
motor proteins FliN (fold change (log2) − 1.96) and FliG 
(fold change (log2) − 1.75) and flagellar M-ring protein FliF 
(fold change (log2) − 1.74) as examples [113].

While the anti-Pseudomonal activity of GaM is well 
characterised, the potency of the complex in terms of its 
MIC80 value, (> 250 μg/ml), is rather low when compared 
to some existing antibacterial drugs [114–117]. Synergistic 
combination therapy with GaM may therefore be more ben-
eficial, particularly for the treatment of resistant pathogens. 
A novel proteomic approach was utilised here to shed light 
on an alternative mechanism of action- the disruption of iron 
metabolism and attenuation of virulence through reduced 
QS and swarming ability. There is ample evidence of the 
physiological links between iron and QS pathways in bac-
teria [118–121] and the exploitation of QS as a drug target 
is well established [122–125]. The development of novel or 
re-purposed compounds are imperative to combat AMR in 
clinically relevant bacteria and the results presented here 
indicate that GaM is active in vitro and in vivo for the treat-
ment of recalcitrant P. aeruginosa infection.
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