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Abstract

We define and investigate general mixed-norm type sequence spaces, and
strengthen inequalities of Hardy-Littlewood, Hausdorff-Young, and others.

0. Introduction

Since the time of Hardy and Littlewood, mixed-norm and related spaces have
been used to study Taylor coefficients in function spaces on the unit disk, and
later to study multipliers between such spaces; for example, see [9], [2], [13], [3],
[5], [6], and the many references in those papers. Here, we define very general
mixed-norm spaces in Section 1, and investigate their interaction with multipliers
in Section 2; in particular, we generalise a result of Kellogg. In Section 3, we
prove mixed-norm containments involving Hp which strengthen results due to
Hardy-Littlewood, Flett, Hausdorff-Young, and Kellogg. Our results have also
found applications in the investigation of restricted solidity for function spaces
[4].

1. Preliminaries

Throughout this paper, D = {z ∈ C : |z| < 1}, dA(z) = π−1 dx dy (z = x+iy)
is normalised area measure, H(D) is the algebra of holomorphic functions in D.
We identify any function f ∈ H(D) with its Taylor sequence (an)∞n=0, and adopt
the conventions 1/∞ = 0, 1/0 = ∞, 0 ·∞ = 0, and x1/∞ = x0 = 1, for all x ≥ 0.
For any exponent 1 < p < ∞, p′ is the dual exponent p/(p − 1). In proofs, we
use C to denote any constant that does not affect the argument; it can change
from one instance to the next. If A and B are positive quantities, A <∼ B means
that A ≤ CB for some such C, and A ≈ B means that A <∼ B and B <∼ A.

Hp is the well-known Hardy space Hp on the unit disk and, for p, q ∈ (0,∞],
t ∈ (0,∞), we write f ∈ H(p, q, t) if f ∈ H(D) and ‖f‖H(p,q,t) < ∞, where

‖f‖H(p,q,t) ≡







(

∫ 1

0
Mp(r, f)q(1 − r)tq−1 dr

)1/q

, q < ∞,

sup0<r<1 (1 − r)t Mp(r, f), q = ∞.

As usual, Mp(r, f) denotes the Lp mean of f at radius 0 < r < 1. In particular,
we have the Bergman spaces Ap ≡ H(p, p, 1/p), 0 < p < ∞. Using fractional
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differentiation, we shall soon extend the definition of H(p, q, t) to all t ∈ R (and
all 0 < p, q ≤ ∞); the above definitions are, however, valid only for t > 0.

X and Y will always be sequence spaces, and λ a sequence. If a is a sequence,
an is its nth term; the same convention applies to all unsubscripted letters. We
say that λ is a multiplier from X to Y , denoted λ ∈ (X, Y ), if Tλa ≡ (λnan) ∈ Y
for all a ∈ X; we call Tλ a multiplier operator from X to Y . We often write
λX in place of TλX, and XY =

⋃

λ∈X λY . Fractional differentiation multipliers
Dt = ((n+1)t), t ∈ R, will be of particular interest; the associated operator will
also be denoted Dt. Flett [8] showed that DtH(p, q, s) = H(p, q, s + t), s, t > 0.
Thus we can define H(p, q, t), t ≤ 0, by H(p, q, t) = D−sH(p, q, s + t) for any
s > −t. Note that H(p,∞, 0) and Hp are not the same, e.g. f(z) = 1/(1 − z) ∈
H(1,∞, 0) \ H1, since f ′ ∈ H(1,∞, 1).

A vector space X is sized if it is equipped with a size function ‖ · ‖X : X →
[0,∞] satisfying the equation ‖αx‖X = |α|‖x‖X for all x ∈ X, α ∈ C (thus
‖0‖X = 0). Wherever we define a space X and a quantity ‖ · ‖X (above, and in
the remainder of this paper), ‖ · ‖X is a size function, as the reader may verify.
If X is sized, then DsX is sized by pulling back the size function. For the sake
of a definitive size function on H(p, q, t), t ≤ 0, let ‖f‖H(p,q,t) = ‖D1−tf‖H(p,q,1)

in this case.

Let ∆k, k ≥ 0, be the multiplier given by the characteristic function of Ik,
where Ik is the kth dyadic block of integers, i.e. I0 = {0} and Ik = {2k−1, . . . , 2k−
1}, k ∈ N. Let Sk be the operator which selects and shifts to an initial position
the kth dyadic block of a sequence; thus Sk((an)∞n=0) equals (a0, . . . ) if k = 0, or
(a2k−1 , . . . , a2k−1, 0, 0, . . . ) if k > 0. If A, B are sequence spaces and B = (Bk) is
a sequence of sized spaces, the “mixed-norm” space A[B] consists of all sequences
λ such that each Skλ ∈ Bk, ‖Skλ‖Bk

< ∞, and (‖Skλ‖Bk
)∞k=0 ∈ A. If A is also

sized, then we give A[B] the size function ‖λ ‖A[B] = ‖ (‖Skλ‖Bk
)∞k=0 ‖A. We

mainly consider the special case Bk = B for all k, and then write A[B] in place of
A[B]. When all spaces are sized, we can iterate this construction “from the inside
outwards” to get for instance A[B[C]], where ‖λ ‖A[B[C]] = ‖ (‖Skλ‖B[C])

∞
k=0 ‖A.

We shall only be interested in spaces A[B] where ‖ · ‖A, ‖ · ‖B happen to be
shift-invariant, so we could have used ∆k in place of Sk in the above definition;
however, the natural iterated definition requires Sk. We shall not need to use
the completeness of mixed-norm spaces; we refer the interested reader to [10].

An important example is the space lq[lp]; we often use the more common
notations l(p, q) and ‖ · ‖p,q instead of lq[lp] and ‖ · ‖lq [lp]; similarly, l(p, q, r) ≡
lr[lq[lp]], etc.
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If 0 < p, q ≤ ∞, we write p 	 q = r, where 1/r = max{1/p − 1/q, 0} ∈
(0,∞]. The following is a result of Kellogg [12] when a, b, c, d ≥ 1; it follows

for all positive exponents, since (λn) ∈ (l(a, b), l(c, d)) if and only if (λ
1/t
n ) ∈

(l(at, bt), l(ct, dt)).

Lemma 1.1. If 0 < a, b, c, d ≤ ∞, then (l(a, b), l(c, d)) = l(c 	 a, d 	 b).

The following characterisation of H(p, q, t) hints at its natural connection with
mixed-norm spaces.

Lemma 1.2. Let t ∈ R, 0 < q ≤ ∞. If 1 < p < ∞ then

‖f‖H(p,q,t) ≈ ‖ (2−kt‖∆kf‖Hp) ‖lq ,(1.1)

H(p, q, t) = Dtlq[Hp].(1.2)

(1.1) is due to Mateljević and Pavlović [13] for t > 0; the case t ≤ 0 then
follows immediately. Equation (1.2), intuitively very similar to (1.1), will be
the key to proving Theorem 3.1. A version of (1.2) was proved in the case of
Ap = H(p, p, 1/p) in [6], and our more general proof is very similar.

Proof of Lemma 1.2. In view of the above remarks, it suffices to prove (1.2).
Proposition 3.7 of [5] says that for 1 < p < ∞, BV (the space of bounded
variation sequences) is a subset of (Hp, Hp), and thus also Hp ⊂ (BV, Hp).
Applying the Closed Graph Theorem to BV multipliers from Hp to itself, and to
Hp multipliers from BV to Hp, we see that all of these multipliers are bounded.
Applying the Uniform Boundedness Principle to the family {Tλ : ‖λ‖BV ≤ 1} of
multipliers from Hp to itself, it follows that ‖(anbn)‖Hp ≤ C‖(an)‖BV ·‖(bn)‖Hp .

To prove the result, we need to show that the quantities 2−k‖∆kf‖Hp and
‖∆kD−1/pf‖Hp are uniformly comparable in size. To change one of these ex-
pressions to the other, we apply to f the multiplier ∆kD−1/p(2k/p), or its “in-
verse” ∆kD1/p(2−k/p). Both of these are in BV , with total variation at most
21+1/p. �

We end this section with an easy corollary of Lemma 1.2, which characterises
the monotonic sequences in H(p, q, t). This was done for Ap in [5]; we include a
proof for this more general situation for the sake of completeness.

Corollary 1.3. Suppose that an ≥ 0 for all n ≥ 0, and that t ∈ R, 1 < p < ∞,
0 < C < ∞, 0 < q ≤ ∞. If either

(i) (an) is monotonic, or
(ii) (an)n∈Ik

is monotonic and, for all n, m ∈ Ik, am ≤ Can,
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then

(an) ∈ H(p, q, t) ⇐⇒

{

(an) ∈ Dt+1/p+1/q−1 lq, q < ∞

(an) ∈ Dt+1/p−1 l∞, q = ∞

Proof. It is not hard to show that for all n ∈ Ik, ‖
∑

n≤m∈Ik
zm‖Hp <∼ 2k(p−1)/p.

One approach to justifying this is to write the sum as (z2k

− zn)/(z − 1) and
find upper bounds for this expression for z = eiθ in the ranges |θ| ≤ 2−k and
2−j−1 < |θ| ≤ 2−j , j = 0, . . . , k; we leave the details to the reader. Using
monotonicity and the equation

∑

n∈Ik

anzn = a2k−1

∑

n∈Ik

zn +
∑

2k−1<n∈Ik

(an − an−1)
∑

n≤m∈Ik

zm

we see that

‖
∑

n∈Ik

anzn‖Hp <∼ 2k(p−1)/p
(

ap
2k−1

+ ap
2k−1

)1/p
<∼ 2k(p−1)/p (a2k−1 + a2k−1) .

We now get one half of the equivalence by using Lemma 1.2 to deduce that

‖f‖q
H(p,q,t)

<∼ ‖ (2k(1−1/p−t)[a2k−1 + a2k−1])
∞
k=1 ‖lq .

The converse direction follows easily from Lemma 1.2 and the estimate

‖
∑

n∈Ik

anzn‖Hp ≥ C2k(p−1)/p min
n∈Ik

an.

This last inequality is immediate if one considers the real part of the left-hand
sum on the arc {z = eiθ : |θ| < 2−k}. �

2. Mixed norms and multipliers

For this section, it is useful to define the families l∗ = {lp : 0 < p ≤ ∞}
and Hl∗ = l∗ ∪ {Hp : 1 < p < ∞}. We say that a sequence space X is solidly
sized and that ‖ · ‖X is a solid size function if X is both solid and sized, and
‖(xn)‖X ≤ ‖(yn)‖X whenever (xn), (yn) ∈ X, and |xn| ≤ |yn| for all n ∈ N. If
Y, W are sized spaces, then we associate with (Y, W ) and Y W the size functions

‖λ‖(Y,W ) = sup {‖(λnyn)‖W : ‖y‖Y ≤ 1},

‖x‖Y W = inf {‖y‖Y ‖w‖W : (xn) = (ynwn), y ∈ Y, w ∈ W}.
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Using these size functions, we define the spaces (X, Z)[(Y, W )] and XZ[Y W ],
whenever Y, W are sized (and these new spaces are sized if X, Z are also sized).

In general, the size function ‖ · ‖(Y,W ) might take on infinite values even if
‖ · ‖W takes on only finite values. However if Y, W are complete quasi-normed
spaces (with their quasi-norms as size functions) on which the point evaluation
functionals are continuous, then the Closed Graph Theorem tells us that ‖·‖(Y,W )

takes on only finite values. In particular, this is the case when Y, W ∈ Hl∗.
We are now ready to state the main result of this section. As it is rather

abstract, we give some applications before the proof. Note that each of the
assumptions in this theorem is hereditary, i.e. X[Y ] satisfies the assumption if
both X and Y do; this allows us to use the theorem iteratively.

Theorem 2.1. Suppose that X, Z are solidly sized, that Y, W are sized, and
that

(2.1) ∃ C ∀ k ≥ 0 : ‖Tky‖Y ≤ C‖y‖Y ,

where Tk is the multiplier operator given by
∑k

j=0 ∆k. Then (X[Y ], Z[W ]) =

(X, Z)[(Y, W )], X[Y ]Z[W ] = XZ[Y W ], and the associated size functions are
also comparable in both cases.

All lp spaces are solidly sized, and satisfy (2.1) with C = 1. Thus Theorem
2.1 allows us to reduce Lemma 1.1 to the unmixed case a = b, c = d (in which
case, it is easy to prove), and to extend it to the case of an arbitrary number of
nestings. In fact, writing p⊕ q = s, with 1/s = 1/q + 1/p, we have the following
theorem.

Theorem 2.2. Suppose that j ∈ N and that pi, qi ∈ (0,∞] for all 1 ≤ i ≤ j.
Then

(l(p1, . . . , pj), l(q1, . . . , qj)) = l(q1 	 p1, . . . , qj 	 pj),(2.2)

l(p1, . . . , pj) l(q1, . . . , qj) = l(q1 ⊕ p1, . . . , qj ⊕ pj),(2.3)

and furthermore the associated size functions are comparable.

Proof. Since lp-type spaces satisfy all the assumptions of Theorem 2.1, (2.2)
follows inductively from Lemma 1.1 and Theorem 2.1. We similarly deduce (2.3)
once we establish it in the case j = 1. In this case, it is an easy application of
Hölder’s inequality for lp spaces (including the condition for sharpness of this
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inequality). The comparability of size functions follows from case j = 1 in which
case it is easy to establish (or follows from the Closed Graph Theorem). �

A special case of (2.2) (where all indices are at least 1, and pi = p, qi = q for
all 1 < i < j) is proved in [14], and the general case is conjectured to be true.

Hp spaces satisfy (2.1) for 1 < p < ∞, since BV ⊂ (Hp, Hp); see [5]. Thus,
using Theorem 2.1 and (1.2), we get (for any b, d ∈ (0,∞], s, t ∈ R):

(2.4) (H(a, b, s), H(c, d, t)) = Dt−sld	b[(Ha, Hc)], 1 < a, c < ∞,

This identity connects some known results on Ap and Hp multipliers, e.g. the
results on (Ap, Aq) and (Hp, Hq) in [11]. Also, (2.4) gives the simple relation
(Ap, Ap) = l∞[(Hp, Hp)] when 1 < p < ∞; these self-multipliers appear to be
known only for p = 1, 2 (see [6] for p = 1).

If D is a fixed sequence space, the D-dual XD of a sequence space X is defined,
as in [1], to be (X, D). In particular, the Köthe dual XK of X is (X, l1). Using
Theorem 2.1 inductively, we see that

(2.5) X1[. . . [Xn] . . . ]K = XK
1 [. . . [XK

n ] . . . ],

as long as these spaces satisfy the assumptions of Theorem 2.1. For instance,
(2.5) is true if Xn ∈ Hl∗ and Xi ∈ l∗, 1 ≤ i < n (the purely lp version of (2.5) is
proved in [14]). Note that the Köthe dual of X = Hp (or lp), 1 < p < ∞, equals

Hp′

(or lp
′

, respectively). Also we can replace the duals in (2.5) by D-duals, for
any sized space D satisfying D = D[D] and (2.1) (e.g. D = lp, p > 0).

Proof of Theorem 2.1. For both of our conclusions, showing that the spaces are
equal is similar to, but somewhat easier than, showing that the size functions
are comparable, so we prove only the size function inequalities.

We write X1, Y1 and X[Y ]1 for the closed unit balls of X, Y, Z, respectively,
i.e. the set of all sequences in those spaces whose size function value is at most 1.
We also write Y k

1 for the collection of all y ∈ Y1 such that yn = 0 for all n ≥ 2k−1

(all n > 0 if k = 0). Then X[Y ]1 consists precisely of the set of sequences a
such that Sk(a) = xkyk, where (xj) ∈ X1, and yk ∈ Y k

1 for all k ≥ 0 (we could
also assume that ‖yk‖Y ∈ {0, 1}, and xk ≥ 0, but we do not need to do so). It
follows that if λ ∈ (X, Z)[(Y, W )], then

‖λ‖(X[Y ],Z[W ]) = sup
a∈X[Y ]1

‖ (‖Sk(λa)‖W ) ‖Z

= sup
x∈X1,yk∈Y k

1

‖ (|xk| · ‖Sk(λ)yk‖W ) ‖Z

≤ sup
x∈X1

‖ (|xk| · ‖Sk(λ)‖(Y,W )) ‖Z = ‖λ‖(X,Z)[(Y,W )].
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For the reverse direction, we need to reverse the one inequality above. Since
Skλ has zero coefficients beyond position 2k−1, (2.1) enables us to do precisely
this (of course, the inequality inherits C as a constant of comparability).

We next prove that X[Y ]Z[W ] and XZ[Y W ] have comparable size functions.
Let a ∈ XZ[Y W ] and assume that N = ‖a‖XZ[Y W ] < ∞. Then Ska = bkck,

where ‖(bk)‖XZ = N , and each ck is in the closed unit ball of Y W . Letting
ε > 0 be arbitrary, we can, by suitable scaling, write b = xz where ‖x‖X , ‖z‖Z ≤
(1 + ε)N1/2, and we can write each ck as ykwk, where ‖yk‖Y , ‖wk‖W ≤ 1 + ε.
Thus a = de, where Skd = xkyk, Ske = zkwk. Since ε > 0 is arbitrary, it is easy
to deduce one half of the result. The reverse inequality is easier, so we omit the
proof. �

As the reader may check from the proof, Theorem 2.1 remains valid if we
replace Y and W by Y = (Yk) and W = (Wk), where each of the spaces Yk

and Wk are sized and Y = Yk satisfies (2.1) with a constant independent of
k. Naturally, the spaces (Y, W ) and Y W in the statement of this more general
result are to be replaced by sequences of spaces whose kth members are (Yk, Wk)
and YkWk, respectively.

3. Containments involving Hp and mixed norm spaces

The following is the main result of this section; it improves inequalities of
Hardy-Littlewood, Flett, Hausdorff-Young, and Kellogg.

Theorem 3.1. Let 1 < p ≤ 2, and define X0 = Y0 = Hp, Z0 = lp
′

, Xm =
lp[Xm−1], Ym = l2[Ym−1], Zm = l2[Zm−1], for all m > 0. Then

. . . ⊂ Xm ⊂ Xm−1 ⊂ . . . ⊂ X1 ⊂ Hp ⊂ Y1 ⊂ . . . ⊂ Ym−1 ⊂ Ym ⊂ . . .
∩ ∩ ∩ ∩
lp

′

⊃ Z1 ⊃ . . . ⊃ Zm−1 ⊃ Zm ⊃ . . .

Furthermore, every containment is proper if p < 2.

We first discuss the containments above that can be found in the literature
once we recast them in the light of (1.2). This recasting is really the crucial
step in the proof of the containments, which then follow by easy induction argu-
ments. First, the containment X1 ⊂ Hp is equivalent by (1.2) to the statement
D−tH(p, p, t) ⊂ Hp, for any t > 0, which in turn follows from a result of Flett [8,
Theorem 5]. Similarly, (1.2) allows us to rewrite Hp ⊂ Y1 as Hp ⊂ D−1H(p, 2, 1);
this containment is due to Hardy and Littlewood (see [3, Lemma D]). The imbed-

ding Hp ⊂ lp
′

is the well-known Hausdorff-Young Theorem [7, Theorem 6.1]); it
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was strengthened by Kellogg [12] who showed that Hp ⊂ Z1 = l(p′, 2). We re-
cently discovered that Ramanujan and Tanović-Miller [14] proved that Hp ⊂ Zm,
m > 0, but our proof is much shorter and very different. The other Hp imbed-

dings appear to be new.

The fact that Z∞ ≡
⋂

m Zm is not equal to Hp, p < 2, is proved in a non-
constructive manner in [14]. By our theorem, Z∞ contains

⋃

m Ym, and so the
example of a sequence in Y1 \ Hp in our proof suffices to show that Z∞ 6= Hp.

Proof. The containments X1 ⊂ Hp ⊂ Y1 were proved above; induction readily
gives Xm ⊂ Xm−1 and Ym−1 ⊂ Ym, for all m ∈ N. The Hausdorff-Young
Theorem implies that Ym ⊂ Zm. The containment Zm ⊂ Zm−1 is elementary.

It is left to show that these containments are proper if 1 < p < 2.

We first consider Hp ⊂ Y1. By Theorem 5.11 of [7], Hp ⊂ H(2, p, 1/p −
1/2) ≡ D1/p−1/2l(2, p). By direct calculation, λ ≡ (n1/p−1(log n)−1/p)∞n=2 /∈
D1/p−1/2l(2, p), and so λ /∈ Hp. However λ ∈ H(p, 2, 0) = l2[Hp], according to
Corollary 1.3, and so Y1 6= Hp.

To deduce inductively that Ym \ Ym−1 is non-empty, first note that the se-
quence of Taylor polynomials of every f ∈ Xm is norm-convergent to f ; this was

proved by Zhu [15] for m = 0, and follows inductively for all m ∈ N. Suppose
that the containment Ym−1 ⊂ Ym is proper for m = i. By density of the Taylor
polynomials, we can find for each j ∈ N, polynomials fj of degree nj such that
‖fj‖Xi

= 1 but ‖fj‖Xi−1
≥ 2j . We choose integers 0 < k1 < k2 < . . . , so large

that 2kj > nj for each j, and let f(z) =
∑∞

j=1 j−1z2kj
fj(z). Then f ∈ Xi\Xi+1,

as required.

Next, f(z) ≡
∑∞

n=1 n−1/pz2n

∈ H2, and so f ∈ Hp, but clearly f /∈ lp[Hp].
The proof that the containment Xm ⊂ Xm−1 is proper for all m follows as before.

It is well-known that the containment Hp ⊂ lp
′

is proper (it follows for in-

stance from the fact that lacunary sequences are in Hp if and only if they in
H2), and it is easy to deduce that Ym \Zm is non-empty (again using the norm-
convergence of Taylor polynomials). Similarly, the fact that each Zm \ Zm−1

is non-empty follows from the case m = 1. To prove this case, note that
∑∞

k=2 k−1/2z2k

∈ lp
′

\ l(p′, 2). �

Applying duality with respect to the bilinear form < x, y >=
∑∞

n=0 xnyn (or
equivalently, Köthe duality) in the above theorem, we get that

l(p′, 2, . . . , 2) ⊂ l2 [ l2 [· · · l2 [Hp] · · · ] ] ⊂ Hp ⊂ lp [ lp [· · · lp [Hp] · · · ] ], 2 ≤ p < ∞.
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The above containments and those in the theorem all imply corresponding norm
inequalities by the Closed Graph Theorem, but we need large constants of com-
parability if the mixed norms have many levels.

Finally, we discuss some spaces that can be rewritten as spaces of the form
DtA[B]. If 0 < p ≤ ∞, 0 < q < ∞, a > 1/p, and b ∈ R, let S(p, q, a, b) be the
space of all sequences a for which

‖a‖S(p,q,a,b) ≡ |a0| + ‖ (n−a(

n
∑

j=1

(jb|aj |)
q)1/q) ‖lp < ∞.

This definition also makes sense for q = ∞ when we make the obvious adjust-
ment, and for a = 0 if p = ∞. As a sample use of such spaces, we mention
[9], where Holland and Twomey showed that areally mean s-valent functions lie
in Xp = S(p, 2, 2/p, 1/2) if and only if they lie in Hp, and one gets one-way
containments for more general functions. The following theorem indicates in
particular, that Xp is just a disguised form of the space D1/p−1/2l(2, p).

Proposition 3.2. Suppose that 0 < p, q ≤ ∞, b ∈ R, and that a > 1/p (or a ≥ 0
if p = ∞). Then S(p, q, a, b) = Drl(q, p), where r = a − b − 1/p. Furthermore,
there exists a constant C dependent only on p, q, and a such that

1/C ≤
‖x‖S(p,q,a,b)

‖x‖Drl(q,p)
≤ C.

Proof. Without loss of generality, we may assume that b = 0 (since we may
replace (xn) by (yn) = (nbyn), if necessary). We prove the result for q < ∞;
the case q = ∞ requires only minor adjustments. Let (xn) be a sequence, tn =
(
∑n

j=1 |xj |
q)1/q, and sk = (

∑

j∈Ik
|xj |

q)1/q. We first show that S(p, q, a, b) ⊂

Drl(q, p), so let (xn) ∈ S(p, q, a, 0). If n ∈ Ik+1, then sk ≤ tn and so, assuming
for now that p < ∞, we have

∞
∑

k=1

2k(−ap+1)sp
k

<∼

∞
∑

n=1

n−aptpn,

Thus (an) ∈ Da−1/pl(q, p), as required. In the case p = ∞, we similarly have

‖(2−aksk)‖l∞ ≤ ‖(n−atn)‖l∞ .
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Conversely, suppose that (an) ∈ Drl(q, p). Now tqn ≤
∑k

j=1 sq
j for all n ∈ Ik.

Assuming for now that p < ∞, and fixing ε ∈ (0, ap − 1), we have

S ≡
∞
∑

n=1

n−aptpn <∼

∞
∑

k=1

2−kap
∑

n∈Ik





k
∑

j=1

sq
j





p/q

≤
∞
∑

k=1

2k(1−ap)





k
∑

j=1

sq
j





p/q

<∼

∞
∑

k=1

2k(1−ap)
k

∑

j=1

2ε(k−j)sp
j (by Holder’s inequality)

=

∞
∑

j=1

2−jεsp
j

∞
∑

k=j

2k(1−ap+ε) <∼

∞
∑

j=1

2j(1−ap)sp
j ,

as required. For the case p = ∞, let us assume that ‖(an)‖Dal(q,p) = N < ∞.

Then ‖2−kask‖l∞ ≤ N , and so ‖(n−atn)‖q
l∞

<∼ ‖(2−kaq
∑k

j=1 sq
j)‖l∞ . It is not

hard to see that this last quantity is at most CN q, as required.
The last statement of the theorem follows from the above estimates. �

A related family of spaces of the form DtA[B] (discussed, for example, in
[10]) are the spaces w0

q of sequences strongly (C, 1)-summable to zero with index

q > 0, i.e. (an) ∈ w0
q if and only if limn→∞ n−1

∑n
i=1 |ai|

q = 0. We can show, as

in the above proof, that w0
q = D1/qc0[l

q].
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