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Towards efficient extremum-seeking control of
wave energy systems: possibilities and pitfalls

Diego Moens de Hase, Edoardo Pasta, Nicolás Faedo⋆, and John V. Ringwood

Abstract—Given its success in other renewable energy
domains, such a solar and wind, extremum-seeking control
(ESC) would seem to be a promising candidate for the
wave energy energy-maximising control domain. There are
many advantages to ESC, principal among them the lack
of a need for a mathematical system model, with effective
wave energy hydrodynamic modelling being particularly
challenging. However, a number of fundamental limita-
tions of ESC for wave energy converters (WECs) can be
found, with the panchromatic (stochastic) nature of the
wave excitation a key issue, resulting in potentially long
performance function evaluation times. This, combined
with the desire to perform intra-wave control adjustment,
creates a natural tension in the solution of the wave energy
ESC problem. Motivated by this, we examine, in this
paper, the fundamental opportunities and pitfalls of ESC
for the wave energy control problem, providing a concise
definition of WEC ESC and its characteristics. In particular,
we investigate the intrinsic limitations behind ESC for the
WEC control problem, and provide a potential set of future
directions aiming at alleviating such disadvantages and
directly contributing towards the development of efficient
model-free control systems for wave energy devices.

Index Terms—Wave energy, model-free control,
extremum-seeking, optimal control

I. INTRODUCTION

WAVE energy converters (WECs) intrinsically re-
quire advanced and tailored control system

technology to operate at maximum efficiency [1], [2]:
Energy extraction from ocean waves has to be optimal,
while intrinsically preserving the structural integrity of
the device. Successful achievement of this goal secures,
in turn, a competitive levelised cost of energy (LCoE),
supporting the future commercial viability and wide-
spread installation of WEC devices [1], [3].

The control problem for WECs naturally falls under
the umbrella of optimal control theory [4], where the
control objective is formulated in terms of a specific
performance function, i.e. energy absorption, which
needs to be maximised while respecting, at the same
time, the inherent limitations of device and actuator
components [2]. Regardless of the specific solution
method selected to compute such an optimal energy-
maximising control law, the definition of the optimal
control problem (OCP) is normally model-based, and
inherently depends upon the specification of a suitable
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control-oriented WEC model. Not only is the structure of
the model relevant for the definition of the associated
OCP, but also its associated complexity: Given that the
optimal control force needs to be computed in real-time,
there is clearly a limit to the computational complexity
of the WEC model employed within the control design
procedure, while there is also a limit to the (analytical)
complexity of mathematical models for which numerical
solution methods are effectively well-posed [2], [5], i.e.
where a globally optimal solution can be found. In
other words, there is an inherent trade-off between
accuracy and complexity, which need to be taken on
board from the very conception of any WEC controller
design procedure.

Hydrodynamic WEC models have their origin in the
Navier-Stokes equations, which provide a consistent
physical and mathematical description of the motion of
a fluid (or fluid-structure interaction) under the most
diverse conditions. Nonetheless, the level of complexity
of Navier-Stokes is well-beyond any acceptable degree
of complexity for control design, with consistent numer-
ical approximation methods requiring a computational
expense in the order of thousands of seconds per second
of simulation [6]. This motivates researchers to impose
simplifying standing assumptions, aiming at reducing
the degree of complexity behind the hydrodynamic
description of the WEC motion. These assumptions, in
turn, generate a great deal of uncertainty, both within
the final structure of the control-oriented model, and
the definition of the system parameters involved [7], [8],
even under fully linear modelling conditions (i.e. linear
potential flow theory [9]). The ubiquitous existence of
these sources of uncertainty can be problematic for WEC
control design: Due to the energy-maximising nature
of the design procedure, model-based WEC controllers
can be very sensitive to modelling inaccuracies/vari-
ations [10], hence potentially presenting a degraded
performance under realistic operating conditions.

Altogether, and even though both systematic model
reduction techniques [11], [12], and system identification
routines [13], [14] have been developed/applied to
compute suitable WEC control-oriented models for
specific input conditions, the ideal scenario would be to
avoid the use of a model at all, i.e. develop model-free control
systems for WECs. Within this context, a particularly
well known control strategy, which effectively fully
prescinds a model for design purposes, is extremum-
seeking control (ESC).

ESC is essentially a subset of adaptive control, which
can be traced back as far as 1922 [15], and denotes
a class of methods which are used to locate and
track a steady-state optimal performance online (see
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Section II for further details). This family of controllers
shares the fundamental advantage of not requiring
a model to achieve such an optimal regime, using
only output feedback from available measurements to
optimise the process operating condition. This, in turn,
directly facilitates real-time implementation of ESC in an
almost straightforward fashion, hence being especially
appealing for realistic scenarios. As such, ESC is tailored
for optimisation problems such as the WEC control
case, where the system is either complex to model (in
a control-oriented sense), or where different sources of
uncertainty preclude the determination of an accurate
offline prediction model. Note that, within an ideal
scenario, ESC strategies would perform as optimally as
a controller based upon a very precise (but potentially
complex) model, with the significant advantage of not
requiring explicit knowledge of the specific equations
governing the dynamics of the process.

Given that the original purpose of ESC is focussed
on the more general problem of optimisation (and not
tracking/regulation), many applications of ESC have
found their way into energy systems and, particularly,
renewable energy technologies: ESC is increasingly
being considered a ‘silver bullet’ in both solar and wind
energy. In both areas the objective is that of maximum
power point tracking, i.e. extraction of maximum fea-
sible energy from the target system in the absence of
accurate modelling of the inherent dynamics. Though
this performance objective is shared with the WEC OCP,
a number of fundamental differences between wind and
solar applications of ESC, and the WEC control case,
can be found, which are further discussed in this paper
in Section II.

To the best of our knowledge, ESC within the wave
energy context was first introduced in [16], followed
chronologically by [17]–[20]. The early paper of [16]
already spots a number of fundamental limitations of
the ESC WEC formulation, specifically in terms of the
evaluation of the associated performance function. As
discussed in detail in Section II, standard ESC methods
assume that the steady-state response of the process
in the optimal performance regime is constant. This is
clearly not the case for WEC control systems, which
are driven by a stochastic uncontrollable external force,
i.e. the wave excitation force.

Motivated by the above discussion, this paper at-
tempts to precisely identify both advantages and dis-
advantages of ESC control for the wave energy case,
making an explicit comparison with well-established
and state-of-the-art model-based control technology. In
other words, we aim to assess the feasibility of ESC for
the WEC application case, highlighting any potential
opportunities and pitfalls in their design and operation.
By doing so, we offer the reader a timely and thorough
discussion on ESC, together with a set of future potential
directions, aiming at alleviating the current limitations
found within the ESC literature in wave energy. We
remark that, ultimately, our principal aim with this
study is to directly contribute towards the development
of efficient model-free control systems for a general
class of wave energy devices.

The remainder of this paper is organised as follows.

Section II recalls the fundamentals of standard ESC
design, including a brief account of the application
of ESC within solar and wind energy technology. Sec-
tion III introduces the formal definition of the WEC OCP,
and provides a brief summary of state-of-the-art model-
based WEC controllers. Section IV is devoted to ESC for
the WEC control case, highlighting opportunities and
pitfalls within the available WEC ESC literature. Finally,
based on the analysis of Section IV, Section VI provides
a thorough discussion on the current fundamental
limitations of ESC for WECs, and offers a set of future
directions to alleviate the effects of such disadvantages.

II. EXTREMUM-SEEKING CONTROL

As briefly described in Section I, extremum-seeking
control is a subfield of adaptive control, which be
traced back to the work of Leblanc [15], in 1922, and
denotes a large class of online optimization methods
used for steady-state performance optimisation of a given
process. Such a performance measure is commonly
written in terms of a user-defined objective function, so
that, in essence, ESC methods target the problem of
maximising (equivalently minimising) such an objective,
via manipulation of one or more control inputs.

Though researchers showed a significant interest
in ESC in the ’50-’60s (see, for instance [21]–[23]),
the exponential growth in ESC development was not
until the year 2000, where the seminal game-changing
work of Krstić [24] put ESC back in the map. To
summarise, [24] provides the very first proof of stability
for the classic perturbation-based ESC scheme for a
general class of nonlinear systems, by employing tools
of averaging and singular perturbation analysis. We
refer the interested reader to [23], [25], [26], for further
information in the historical trace of ESC, in the context
of applied and theoretical control.

Regardless of the specific algorithms available to
approach the ESC problem, which might be significantly
different, the vast majority of the literature in ESC share
two fundamental features: ESC is formulated as a model-
free control methodology, i.e. these methods do not rely
upon access to a model for process optimisation, and
the maximisation of the objective is purely based upon
feedback from online measurements. A general scheme
for ESC is shown in Figure 1.

Remark 1: Though outside the scope of this study,
note that so-called ‘grey-box’ ESC algorithms [27] also
exist, where a-priori modelling knowledge about the
process can be incorporated to, for instance, improve
the convergence rate of the associated optimisation.
Examples of this type of ESC are found in [28], [29].

It is relevant to note that, in ESC, the feedback
control law is expressed in terms of a finite number of
parameters, which are determined to achieve optimal
performance. In other words, the objective function
(which is effectively a measure of the defined process
performance) is suitably parameterised. Commonly,
static feedback control laws are considered, though dy-
namic laws can also be included via similar procedures,
with an analogous set of assumptions to those listed in
Section II-A.
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Fig. 1: Generic schematic of an ESC control system.

Due to its inherent model-free nature, ESC can be ap-
plied in cases where, for instance, modelling resources
are limited to develop a sufficiently representative
model for process optimisation, as well as in cases
where fundamental difficulties (such as uncertainty)
might arise when trying to construct control-oriented
models. The latter clearly encompasses the wave energy
control case (see the discussion provided in Section I),
where constructing precise control-oriented models can
be a daunting task, even in the fully linear case.

A. Standard ESC formulation

We consider the formulation of ESC as in [24]. In
particular, let the continuous-time, finite-dimensional,
single-input single-output, nonlinear system be defined
as1,2

ẋ = f(x, u, d),

y = J (x),
(1)

where x is the state vector, u is the control input, d

represents an uncontrollable external force, y is the
plant output, and the mappings f and J are considered
to be sufficiently smooth. Note that J denotes the
performance (objective) function. Suppose a sufficiently
smooth feedback control law

u = α(x, θ), (2)

is known, parameterised in terms of a parameter (vector)
θ. The closed-loop system, which can be compactly
written as

ẋ = f(x, α(x, θ), d), (3)

has equilibria parameterised in terms of θ. The following
standing assumptions are now introduced and recalled
from [24].

1) There exists a smooth function l such that
f(x, α(x, θ), 0) = 0 if and only if x = l(θ).

2) For each θ, the equilibrium x = l(θ) of system (1) is
locally exponentially stable in the Lyapunov sense.

1The dependence on t is dropped when clear from the context.
2Note that the definition of ‘system’ provided herein is ‘loosely’

formulated, aiming to simplify the exposition. The interested reader is
referred to, for instance, [30], for a formal treatment of the definition
of a dynamical system.

3) There exists an optimal parameter θ⋆ such that
J

′

(l(θ⋆)) = 0 and J
′′

(l(θ⋆)) < 0.

The first assumption listed above explicitly specifies
that the equilibria of (1) are effectively parameterised
in terms of θ. The second assumption implies that
the control law (2) is robust with respect to its own
parameter θ, in the sense that it exponentially stabilises
any of the equlibria that θ may produce. The third and
last standing assumption is central in the ESC method:
The output equilibrium map y = J (l(θ)) has a maximum
at θ = θ⋆. So, in short, the objective of standard ESC
is to develop an output feedback mechanism which
maximises the steady-state value of y, without requiring
explicit knowledge of f , θ⋆ or l. We now introduce a
set of important remarks.

Remark 2: Note that the last assumption, i.e. Assump-
tion 3 above, states that the performance objective has
to be a convex function of the parameter θ. While this
can be easily guaranteed in the WEC case for relatively
simple controller parameterisations, it is not, in general,
trivial to ensure. This is further discussed in Section VI.

Remark 3: The evaluation of the objective function
in standard ESC is considered to be time-invariant.
In other words, the steady-state output of the plant
is assumed to be constant under optimal operating
conditions. While this is effectively consistent with
a number of applications, such as the case of solar
photovoltaic (PV) technology (see Section II-B), it is
a fundamental limitation for the wave energy case,
where the response of the system in an optimal regime
is effectively time-varying. Nonetheless, a number of
techniques exist to circumvent this issue, which we
further discuss in detail in Section IV.

Remark 4: ESC problems are virtually always formu-
lated in terms of an unconstrained optimisation form, i.e.
without state and input constraints. As a matter of fact,
note that neither state constraints, nor input limitations
on the performance function, can be generally imposed,
since the state-vector of the associated system is often
unknown, and the full influence of the process on the
performance objective is not necessarily available a
priori.

B. The role of ESC in wind and solar energy

As discussed in Sections I and II, though ESC is
one of the oldest feedback methods, its fundamental
purpose is not regulation, but optimisation. This is
exactly why many applications of ESC have found their
way into energy systems and, particularly, renewable
energy technologies. In particular, ESC is increasingly
being considered a ‘silver bullet’ in both solar and
wind energy. In these areas, the objective is that of
maximum power point tracking (MPPT), i.e. extraction
of maximum feasible energy from the target system
in the absence of accurate modelling of the inherent
dynamics. Note that this objective is consistent with
that of the WEC control problem, though a number of
fundamental differences arise, as further detailed in the
following paragraphs.

For wind energy conversion, MPPT is considered
to tune the set-point for the turbine speed which

31925-



4

optimises tip-speed ratio. For solar PV arrays, MPPT
is commonly considered to tune the duty cycles of the
DC/DC converters employed in the system, balancing
the current-voltage relationship to maximise its product.
The reader is referred to [31] and [32], [33] for further
detail on the specifics behind both solar and wind
energy conversion via ESC, respectively, including an
account of the current state-of-the-art.

The inherent synergy between ESC and both solar and
wind energy control problems relies upon the fact that
the formulation of both optimal performance objectives
is, in general, consistent with the assumptions posed
in Section II-A, particularly in the sense of having a
constant steady-state response in the optimal regime
(see Remark 3). As further discussed in Section IV, this
is one of the fundamental differences with the case of
WECs, where the optimal steady-state output response
is, effectively, time-varying due to the stochastic nature
of the driving wave resource.

III. THE WAVE ENERGY CONTROL PROBLEM

As informally discussed in Section I, the wave energy
control design entails an energy-maximisation criterion,
where the objective is to maximise the absorbed energy
from ocean waves over a time interval T , which can
be generally cast as an optimal control problem (OCP),
with an objective (performance) function3

1

T

∫

T

fPTO(τ)ż(τ)dτ =
1

T

∫

T

P (τ)dτ, (4)

where P is the useful instantaneous power, and fPTO

and z denote the control (PTO) force (to be optimally
designed), and the displacement of the WEC, respec-
tively. Given that the unconstrained energy-maximising
optimal control law often implies unrealistic device
motion and excessively high PTO (control) forces (see
[2], [35]), constraints on both the displacement and
velocity of the WEC, z and ż, and the exerted control
force fPTO, have to be considered within the optimal
control design, to guarantee the integrity of the device.
This set of constraints can be compactly written as

C :
{

|z| ≤ Zmax, |ż| ≤ Żmax, |fPTO| ≤ Fmax, (5)

with t ∈ T , and where
{

Zmax, Żmax, Fmax

}

⊂ ❘+.

If we assume that the WEC dynamical model is given
by a set of differential equations as in (1), with x the
state-vector characterising the WEC behaviour, fPTO

the control (PTO) force in place of u, and fe the wave
excitation force as the uncontrollable external signal d,
the constrained energy-maximising OCP can be written
as

f
opt
PTO = argmax

fPTO

1

T

∫

T

fPTO(τ)ż(τ)dτ,

s.t.:

WEC dynamics (1),

Constraint set (5).

(6)

3Note that we consider the WEC control problem for a single
degree-of-freedom (DoF) device, for simplicity of exposition, though
similar arguments can be made for multi-DoF and array cases (see,
for instance, [12], [34]).

Remark 5: In order to solve the OCP defined in
(6), full knowledge of the wave excitation force is
required for the time-interval T , i.e. solving (6) im-
plicitly requires instantaneous and future values of wave
excitation to achieve true optimality. Such estimates of fe

are commonly computed via estimation and forecasting
strategies, respectively. The reader is referred to [36],
[37] for further detail on input-unknown estimation and
forecasting techniques applied within the WEC field.

A. A brief overview of solution methods

Using a rather ‘generic’ categorisation, model-based
wave energy control systems can be divided into two
different families of controllers (see [38]): optimal-
control-based, and impedance-matching-based strate-
gies. In the case of the former family of controllers,
the energy-maximising control objective is fully treated
as an OCP (i.e. as in (6)), where both input and state
variables are often discretised using different criteria,
aiming to map the infinite-dimensional problem into
a computationally (numerically) tractable nonlinear
program, i.e. (6) is solved via direct optimal control
methods (see [4]). In contrast, impedance-matching-
based controllers do not rely on numerical routines,
but are mostly based on the fundamental principle
behind maximum power transfer in electric circuits: the
impedance-matching principle [35], [39].

To provide a very brief account of optimal-control-
based controllers, which directly attempt to maximise
time-averaged power extraction from ocean waves, we
note that most of the available strategies are inspired
by the underlying theory behind model predictive
control (MPC), with [40] one of the pioneering study
in the field. More advanced direct optimal controllers
are now available in the WEC literature, entailing
tailored parameterisation of system and control vari-
ables, with enhanced computational efficiency. Among
these strategies, one can find controllers based upon
spectral methods [41], pseudospectral optimal control
[42], differential flatness [43], and moment-based theory
[44]–[46]. A detailed account of the state-of-the-art of
optimal-control-based controllers can be found in [2],
[5].

Remark 6: An immediate advantage of optimal-control-
based controllers is that optimal constraint handling
becomes straightforward, i.e. one can translate physical
limits on device motion and PTO force in terms of
the set of state and input constraints in (5). A clear
disadvantage is that the real-time capabilities of these
strategies depend on a number of factors, primarily
the discretisation technique utilised to parameterise the
state and input variables, and the hardware available
for its implementation.

On the other hand, impedance-matching-based con-
trollers attempt to provide a (physically implementable)
realisation of the anti-causal impedance-matching con-
dition for maximum power transfer. Such an approxi-
mation is commonly obtained in terms of linear time-
invariant (LTI) structures, aiming at prioritising sim-
plicity of implementation over ‘true’ optimality [35].
Note that, in general, this family of strategies does
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not observe any state nor input constraints, so that a
different (additional) mechanism is often required in
the loop to guarantee safety limitations. Examples of
impedance-matching-based controllers can be found in
[35], [38].

B. Robust optimal control to approach inaccurate modelling

As discussed in Section I, one of the key moti-
vations to develop model-free controllers recognises
the inherent complexity behind precise hydrodynamic
modelling. Even in the fully linear case, i.e. under
potential flow theory, a significant number of modelling
inaccuracies arise almost naturally, including structured
(e.g. parametric [7]) and unstructured (e.g. radiation
subsystem mismatch [47]) uncertainty. This motivated
a handful of researchers to approach the OCP (6) in a
robust sense.

Examples of energy-maximising robust control ap-
proaches, i.e. controllers which can solve the OCP (6)
robustly, include [48], [49]. Note that, as per design
specifications, robust control approaches are, in gen-
eral, conservative by definition. Since specifying exact
bounds on the hydrodynamic modelling uncertainty
is far from trivial (though some encouraging results
have been recently presented [50]), robust design is
commonly performed using ‘sufficiently large’ uncer-
tainty sets4, such that the designer is somewhat sure
that every possible source of inaccuracy is effectively
considered within the control design procedure. This,
almost inevitably, results in controllers which optimise
for a worst-case scenario, hence inherently having a
conservative performance.

IV. ESC IN WAVE ENERGY: ADVANTAGES AND

PITFALLS

To the best of our knowledge, ESC found its way
to the wave energy application for the first time in
[16], where a continuous-time perturbation-based ESC
is presented. Subsequent key studies, applying different
variations of ESC, are (in chronological order) [17], [18],
[19], and [20]. These strategies are described in the
following paragraphs, along with the advantages and
fundamental issues characteristic of ESC methods for
the wave energy application. Before getting into these
details, it is important to note that the totality of the
studies mentioned above consider a PTO control force
parameterised in terms of either device velocity, or both
velocity and displacement of the device, i.e.

fPTO(z, θP) = θPż, or fPTO(z, θPI) = θPI

[

ż

z

]

, (7)

with θP ∈ ❘ and θ
⊺

PI ∈ ❘2. Note that, if we consider
velocity as the ‘nominal’ output of the WEC system
(1), the first equation in (7) represents a standard
proportional (P) controller, while the second structure
is of a proportional-integral (PI) control nature.

4Note that this is a vague definition for the purpose of simplicity
of exposition. The interested reader is referred to, for instance, [51]
for a formal treatment of robust optimisation.

A. ESC algorithms considered for WECs

With respect to the specific solution methods adopted
in the WEC literature to address the ESC control loop
(presented in Figure 1), the pioneering study of [16]
considers a continuous-time perturbation-based ESC,
in spirit of that described in the seminal work [24].
The chronologically subsequent study [17] follows a
similar trail, though the perturbation-based algorithm
of [17] is developed in an exclusively discrete-time
setting. The same approach has been followed later in
the development of one of the solutions proposed in
[20], where the classical continuous-time perturbation-
based ESC has been adopted to successfully find the two
optimal parameters of a reactive control law fPTO(z, θPI).

A different approach is taken in [18], [19], where the
discrete-time ESC solution algorithm is directly tackled
in terms of numerical optimisation techniques, via so-
called ‘flower pollination’ (see [52]). The proposed tech-
nique is applied on a reactive PI control law formulation,
and it is compared with a standard perturbation-based
ESC, showing how the flower pollination algorithm can
apparently result in an improvement in convergence
rate for their case study. This meta-heuristic optimiza-
tion algorithm is based on the concept of ’flowers’
composed by ’pollens’, similarly to the individuals
inside the generations of the more known genetic
algorithm. The performance of each of these pollens
in terms of objective function is evaluated in series,
by changing the pair of parameters related to the
control law every 20 [s]. Once all the members of
the flower have been evaluated, a new population
is generated by means of both cross-pollination and
self-pollination processes. We do note, although, that
there seems to be an underlying conflict between two
main assumptions/directives taken in the study: while
the objective function is evaluated using steady-state
motion values (ostensibly considering full knowledge
of the Fourier series associated with the excitation
input), the control parameters are varied periodically
in a discontinuous fashion, directly generating a ’new’
transient behaviour, which naturally conflicts with the
steady-state evaluation of the associated cost, unless
the integration time is assumed to be sufficiently long.

Finally, [20] presents a ‘suite’ of ESC algorithms to
tackle the wave energy control case, and this is the most
complete study (and best comparison paper) available
in the literature to date. In particular, apart from the
aforementioned classic perturbation-based ESC [24], the
authors explored the use of continuous-time solutions
like sliding mode ESC [53], [54] and self-driving ESC
[55], and the application of discrete-time algorithms as
relay ESC [56] and least-squares ESC [57]. We do note
that the different algorithms discussed in this section
have been applied in the optimization of the parameters
of both proportional and proportional-integral control
formulations described in (7). The results presented in
[20] show that each of the proposed ESC approaches,
apart from the self-driving ESC, is able to converge
to the optimal parameters corresponding with both
control structures. According to [20], the best results in
terms of convergence and oscillations in the final steady-
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state conditions are obtained by the sliding mode ESC
and the perturbation-based ESC. In contrast, the two
discrete algorithms (relay and least-squares) are affected
by larger (convergence) oscillations. Nonetheless, both
of these discrete techniques are able to converge robustly
to variations in sea conditions, having the advantage of
requiring a small set of parameters to be tuned in the
design phase, hence simplifying final implementation.

B. Opportunities for ESC in wave energy

Though, after the discussion provided in Section I,
the advantages/opportunities of ESC might seem to be
almost obvious to the reader at this point, we dedicate
this brief section to highlight the main advantages
of ESC for the WEC case. These are, ultimately, the
main motivations behind an attempt to move towards
efficient ESC technology for wave energy systems.

The first (and core) advantage of ESC for WECs is
the lack of need for a dynamical model to compute the
control solution. This is a feature that all the studies
listed in Section IV share, regardless of the specific ESC
solution, and is indeed the most appealing aspect of
this family of techniques; it is well-known that precise
hydrodynamic modelling can be a daunting task, even
in the simplest linear (small oscillation) setting. Though
model reduction [11] and system identification [13],
[14] methods have been successfully developed/applied
in the wave energy field, to compute control-oriented
dynamical structures, these models are often representa-
tive under specific input wave conditions, hence require
adjustment as a function of any change in sea-state.

The second advantage of ESC is its simplicity of
implementation. In contrast to many optimal-control-
based strategies attempting to solve the OCP (6) via
direct optimal control techniques, real-time control
is achievable in almost any off-the-shelf hardware
platform with ESC, with a relatively modest effort,
both in terms of design and calibration. This is a major
advantage with respect to the family of optimal-control-
based controllers described in Section III-B, which often
struggle to achieve real-time performance even under
linear modelling settings (see [2]).

C. Pitfalls of ESC in the wave energy field

Within this section, we summarise the main chal-
lenges for ESC in the wave energy control case from a
critical point of view, documenting, for each case, which
strategies/techniques have been considered among the
ESC WEC literature to fully/partially circumvent some
of these limitations.

1) On the definition of the control objective: The first
fundamental issue in applying ESC control for wave
energy systems was already documented in the early
work of Hals et. al. [16]: The steady-state response
output mapping of the WEC in optimal regime is
inherently time-varying. In other words, the perfor-
mance of the system, evaluated in the spirit of (4), is
inherently related to a time-varying behavior, which
limits the application of ESC theory, as recalled in
Section II-A. Before getting into the details on how
the wave energy literature addresses/circumvents this

fundamental issue, we illustrate the nature of this
problem in terms of the following simple approach,
so that the reader can appreciate the roots of this issue.
Suppose that our WEC system, controlled via a PI
structure (see equation (7)), is subject to a realistic (i.e.
irregular) sea-state, characterised by a given peak period
Tp. Since evaluating (4) for future times in a model-free
setting is out of the question, one might be simply
tempted to ‘look back’ in time for a certain number of
wave periods to evaluate the (raw) objective function in
(4), and hope this effectively reduces the variability
of the performance by extracting the fundamental
(stochastic) characteristics of such a mapping. This
practice will, in general, render a non-convex function
of the parameters θPI, unless we look back within the
corresponding integration window for a sufficiently large
period of time. This is illustrated in Figure 2, where
the evaluation of the objective function (4) for a PI
controller acting on a full-scale spherical point absorber
WEC is presented, for 10, 100, and 1000 peak periods,
respectively.

Hals et. al. [16] attempt to circumvent this issue
by proposing a measure that represents the absorbed
useful power, which stays relatively constant, even in
spite of variations of the incident wave power level. In
particular, [16] suggests low-pass filtering of the useful
instantaneous power P , to then compute its ratio with a
squared low-pass filtered version of the wave excitation
force. With such a strategy, ≈ 100 periods are required
in order to achieve acceptable performance, which is
already a significant improvement with respect to the
raw evaluation presented in Figure 2. Nonetheless, note
that [16] uses knowledge of the wave excitation force
to adapt the control objective, hence an unknown input
observer would be required to implement this technique
in a realistic scenario.

For the case of the perturbation-based ESC designed
in [17], the authors do not directly address this issue,
and essentially integrate the objective function (4) for
a sufficiently long period time. In particular, for their
specific device (which is not full-scale), the evaluation of
the performance function is performed using an average
of ≈ 200 peak wave periods.

The numerical-optimisation-based ESC presented in
[18], [19] assumes full knowledge of the wave excitation
force signal, i.e. past, instantaneous, and future values
are assumed to be available, directly limiting the
application of this technique in realistic scenarios. In
particular, it is assumed that the Fourier expansion of
the wave excitation signal is known with an arbitrarily
degree of accuracy. In other words, by assuming full
knowledge of fe, [18], [19] turn the evaluation of (4)
into a deterministic problem, ‘removing’ any stochastic
behaviour in the nature of the wave input. However,
we note that the study proposed by the authors is,
to the best of our knowledge, the first attempt to
incorporate an additional (second) objective into the
overall objective function, by also considering the
minimisation of the power peak-to-average ratio.

Finally, a more sophisticated approach to circumvent
the issue related to the evaluation of (4) is presented
in [20], where a combination of two main techniques
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Fig. 2: Raw evaluation of the performance objective (4) ‘looking back’ 10 (left), 100 (center), and 1000 (right), peak
wave periods, respectively.
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Fig. 3: Performance evaluation mapping for the WEC ESC study [20], including a low pass filter (LPF), a moving
average operator, and a logaritmic function. Figure adpated from [20].

is utilised. First, in the spirit of the ESC theoretical
design presented in [58] for steady-state performance
optimization of general nonlinear plants with arbitrary
periodic steady-state outputs, a moving-average filter
is incorporated into the ESC loop, in addition to a
standard low-pass filter (as also considered in [16]).
Nonetheless, given that the nature of the sea-state is
purely stochastic, and the wave excitation input can
only be considered to be a T -periodic signal in practice
only for a sufficiently large period T , the authors of
[20] incorporate an additional element into the loop,
following the steps performed in [59], [60], namely a
logarithmic evaluation of the performance objective.
This drastically reduces the sensitivity of the controller
response, by rendering the steady-state performance
objective almost constant even if only a few past peak
wave periods are considered in the evaluation of (4).
In particular, [20] uses only two peak wave periods
to obtain satisfactory performance, which is a major
improvement from the ‘raw’ evaluation approach pre-
sented in Figure 2. The interaction between components
in the ESC loop of [20] is presented in Figure 3, along
with a representation of the performance evaluation at
different stages.

D. On the parameterisation of the control law

The origin of the second fundamental issue in ESC
control lies in the inherent non-causality of the energy-

maximising control solution for WECs, i.e. the optimal
feedback controller is anti-causal (see also [61]), hence
the parametric control law (7) computed via extremum-
seeking, is inherently suboptimal with respect to solving
the OCP (6) with full knowledge of instantaneous and
future values of the external uncontrollable input (i.e.
the wave excitation force).

To further elaborate on this, consider for a moment
the case of a WEC described by linear potential flow
theory, i.e. a WEC system represented by an LTI operator
G. In a feedback setting, and without considering
state/input constraints, it is relatively straightforward
to show (see, for instance, [35], [61], [62]) that there
exists an optimal input-output response T opt, which
can be fully characterised in terms of G. The mapping
T opt is what is called an ideal filter (see [63]), and hence
is non-causal and zero-phase. With a PI controller (as
in (7)), which has only two design degrees-of-freedom
given by the vector θ

⊺

PI ∈ ❘2, it is only possible to
interpolate the optimal condition T opt(ω) at a single
frequency point, e.g. at the frequency characterising
the peak period of the wave excitation input. This is
schematically illustrated in the Bode plot of Figure 4,
where the optimal input-output mapping T opt for a
full-scale CorPower-like device (see [44]) is presented
(solid-black), along with the frequency response of the
input-output mapping obtained with a PI controller
(dashed-grey), interpolating the corresponding optimal
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condition at a selected peak period of Tp ≈ 6.5 [s]. Note
that the PI solution is inherently narrow-banded, and
presents acceptable performance in the neighborhood
of the selected interpolation point only.
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Fig. 4: Optimal input-output frequency response T opt(ω)
(solid-black) for a CorPower-like device, along with
the input-output response arising from a PI controller
(dashed-grey), tuned to interpolate T opt(ω) at a specific
frequency of interest.

In other words, the ESC strategies found in the
WEC literature are, at their essence, model-free adap-
tive PI controllers, which converge to parameter val-
ues which interpolate the optimal energy-maximising
condition at a single point in frequency. While this
might be sufficient to have satisfactory performance in
narrow-banded seas, optimal-control-based controllers
can operate in fully broad-banded seas, being able
to optimally extract energy considering the complete
power spectrum of the wave elevation. Furthermore,
even within the family of impedance-matching-based
controllers, described in Section III-B, there exist model-
based solutions that can approximate the maximum-
power transfer condition in a broad-banded sense [35].

E. On the handling of state and input limitations

Given the inherent model-free nature of ESC, han-
dling of constraints is not straightforward, as it is in
model-based direct optimal controllers (see Remark 6).
To the best of our knowledge, to date, none of the
available WEC ESC algorithms consider either state
or input constraints. Note that this is not a minor
issue, since WECs under optimal control conditions
tend to present large motion (see [2], [64], induced
by the controller itself in the pursuit of maximum
energy extraction. We discuss potential opportunities
and solutions to this fundamental issue in Section VI.

V. REVIEW OF ES ALGORITHMS APPLIED IN WEC
CONTROL

As mentioned in Section IV-A, different ES algorithms
have been applied in the wave energy field.

VI. DISCUSSION AND FUTURE DIRECTIONS

The wave energy control problem falls under the um-
brella of optimal control theory, where the performance
objective departs from traditional tracking/regulation,
and directly relates to maximum energy absorption.
Solving the associated OCP requires a number of
features that can render the problem infeasible for real-
time application. In particular, the computation of precise
control-oriented WEC models, capable of displaying
high degrees of accuracy without exceeding a level
of ‘allowed’ computational/analytical complexity (for
which an optimal control input can be effectively
computed in real-time), is far from being trivial. Though
a family of robust control approaches, which are capable
of optimising energy-absorption under the inherent
presence of hydrodynamic modelling uncertainty, have
been recently introduced in the literature of WEC
control, quantifying exact bounds for these modelling
inaccuracies is not straightforward, and hence these
robust solutions are inevitably designed to be conser-
vative.

In the light of this, and even though novel modelling
and optimal control advances are consistently being
presented within the wider marine and control litera-
ture, there is certainly an appetite for having model-free
control solutions available to WEC community, which
avoid the potential minefield of going through the
complex world of hydrodynamic modelling for energy-
maximising control design, synthesis, and implementa-
tion.

Within this context, ESC arises as a potential solution,
having the following two fundamental and important
advantages: control design can be performed without
the requirement of having a model; and implementation
is straightforward, hence being especially appealing for
real-time implementation.

Despite these appealing advantages, ESC comes with
its own pitfalls, some of which have been addressed
(at least partially) in the WEC control literature. The
first issue relates to the time-varying nature of the
WEC response under optimal control conditions, which
defies the underlying assumptions of standard ESC.
Nonetheless, feasible solutions are arising to circumvent
this issue, with [20] offering the most sophisticated
strategy to date. The second issue relates to the relatively
simplistic controller parameterisation utilised within
the WEC application so far, which only includes P
and PI control structures, in contrast to their model-
based counterparts, which can include a wide variety of
complex parameterisations when solving the associated
OCP via direct optimal control (see Section III). This
can be potentially resolved, retaining the model-free
characteristic of ESC, by considering dynamic control
laws instead of simply static output feedback. The
downside of following this path is that there is, in
general, no guarantee that a specific dynamic controller
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renders 1) a stable closed-loop response for every
possible θ, and 2) a convex objective function of its
parameters, which are both standing assumptions for
ESC. In other words, one has to put specific conditions
in the structure of the dynamic controller such that
1) the closed-loop is internally stable, and 2) the
performance objective is effectively convex. While 1)
could be tackled by, for instance, ensuring passivity of
the dynamic controller, guaranteeing 2) is not straight-
forward in general, and needs to be addressed for each
specific potential controller structure. Finally, the last
fundamental issue relates to constraint handling, which
appears to be completely ignored so far in the literature
of ESC WEC control. We note that a suboptimal, yet
simple to implement, approach would be to add soft
constraints in the objective function (4) to penalise 1)
control energy, i.e. a term proportional to f2

PTO, and 2)
motion energy, i.e. a term proportional to z2 and/or
ż2. This, however, would only guarantee constraint
handling in an ‘average sense’, since the weighting
terms used to add these soft constraints are virtually
always considered to be constant in time, and hence
are tuned offline. Further methods worth exploring
for constraint handling in ESC are those reported in
[65], where a set of (convex inequality) constraints on
the WEC system parameters are handled via explicitly
augmenting the performance function with penalty
functions. Alternatively, a projection-based method is
proposed in [66], which represents another promising
option for the WEC case.

In summary, we conclude that the current state-
of-the-art ESC design within the wave energy case
might not yet be a ‘silver bullet’, as in the case of
solar PV and wind energy extraction. Even though it
presents significant advantages with respect to model-
based controllers, the current parameterisations are
probably too simplistic to successfully operate in broad-
banded seas at a comparable level of performance, and
constraint handling without availability of a dynamical
entity to predict the WEC motion is not straightforward,
which compromises the optimality of ESC under safety
limitations. Nonetheless, more complex parameterisa-
tions, with guarantees of closed-loop stability and a
convex performance objective, can lead to improved
results in terms of energy absorption, while the addition
of soft constraints can partially solve the problem of
constraint handling. Proposing solutions to these two
issues can potentially fully turn the scales in favor of
ESC, effectively transforming this model-free control
technique into the ‘holy grail’ of wave energy control
systems.
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