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Data-based hydrodynamic modelling of a
fixed OWC wave energy converter

M. Rosati, T. Kelly, Demián G. Violini and J. V. Ringwood

Abstract—System identification (SI) techniques repre-
sent an alternative strategy to provide the hydrodynamic
model of oscillating water column (OWC) devices, com-
pared to relatively laborious, and potentially inaccurate,
model determination from first principles. In particular,
the assumption of small variations about equilibrium of
the water column, combined with difficulties in calculating
added mass, make the linear boundary-element modelling
of OWCs particularly challenging. With SI, the parameters
of the model are obtained, by minimizing a cost function,
from input-output data. Even though OWC modelling
typically features physics-based methods, such as linear
potential theory or computational fluid dynamics (CFD), SI
has already been successfully employed in the modelling
of other wave energy devices. The main advantage of SI
is its simplicity, as well as its potential validity range,
where the dynamic model is valid over the range for
which the identification data was recorded. This work aims
to develop a data-based hydrodynamic model of a single
chamber OWC wave energy converter by employing system
identification. Real wave tank (RWT) data of a scaled model
are gathered from the narrow tank experimental facility at
Dundalk Institute of Technology (DkIT). Particular atten-
tion is paid to the selection of suitable input signals for the
experimental campaign, in order to ensure that the model
is subjected to the entire range of equivalent frequencies,
and amplitudes, over which model validity is required.

Index Terms—hydrodynamic modelling, oscillating water
column, real wave tank, system identification, wave energy.

I. INTRODUCTION

THE global wave energy potential has been es-
timated by different authors [1]–[3], who report

around 16000 - 18500 TWh/year, and a slow variation
rate, around 500 TWh/decade on average [3]. This
makes wave energy a significant and relatively con-
stant source of renewable energy.

Wave energy converters (WECs) harness the wave
power, and one of the most promising devices is the so-
called oscillating water column (OWC), depicted in Fig.
1. Its simplicity of operation and the presence of few
moving components, all located above the water level,
are the main advantages of OWCs. The motion of a
water column, excited by incident waves, alternatively
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Fig. 1. Schematic representation of an OWC.

compresses and decompresses an air volume contained
inside a pneumatic chamber. The chamber is connected
to the atmosphere and, as a result, a bidirectional air
flow is generated. A power-take-off (PTO) mechanism,
namely a self-rectifying air turbine directly coupled
with an electric generator, converts pneumatic energy
to electricity, which is finally transferred to the power
grid. A comprehensive review of OWC devices and
air turbines is provided in [4]. Currently, besides the
high production and operational costs, the commercial
development of OWCs is hindered because of the lack
of an efficient control system, and, in relation to this, it
is imperative to note that the control problem is intrin-
sically characterized by modelling-related assumptions
and requirements.

System identification (SI) techniques [5] represent
an alternative strategy to provide the hydrodynamic
model of OWC devices, compared to the laborious
process of model determination from first principles,
in which, as a consequence of linear potential theory
(LPT) assumptions, the model is linearised around
its equilibrium point. In contrast to LPT, the main
advantage of SI, besides its simplicity, is its valid-
ity range, meaning that the dynamic model is valid
over the range for which the identification data have
been recorded. Ultimately, SI is a data-based modelling
approach in which the parameters of the model are
obtained from input-output data by minimizing a cost
function, related to the model fidelity. SI models can
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Fig. 2. Schematic representation of the SI loop.

be solely based on data (black-box models), or else
can make use of some physics-based information (grey-
box models) [6]. In either case, a suitable model and a
fitting criterion, which is needed in order to evaluate
the performance of the model, have to be chosen. The
parameters of the model are then identified by feed-
ing a numerical optimization algorithm with training,
or identification, data. Finally, the model is validated
against a separate set of validation data, meaning that
the capacity of the model to predict the behaviour of
the device, while working with a different data set, is
assessed. This procedure is summarized by the loop
shown in Fig. 2. An essential aspect to keep in mind is
that the validation data must be different from those
employed during the identification. Moreover, it has
to be noted that the choice of suitable input signal
is of primary importance for the parametric model to
perform well in the real sea environment. The range
of frequencies, and amplitudes, of the input signals
employed in the training phase should correspond to
the range of equivalent frequencies, and amplitudes,
over which model validity is required.

Even if the application of SI in wave energy is
relatively recent, SI has already been successfully em-
ployed in WEC modelling [7]–[10]. In two joint pub-
lications [7], [8], SI is used in order to derive a force-
to-position model, with a force being the PTO force,
and a wave-to-position model of a WEC by using
three discrete time parametric structures. Two of the
three model structures, namely the autoregressive with
exogenous input (ARX) model and the Kolmogorov-
Gabor polynomial (KGP) model, are linear in the pa-

Fig. 3. Schematic representation of the model considered in this
work.

rameters, whereas the multi-layer perceptron (MLP)
artificial neural network (ANN), is nonlinear. The data
are gathered from numerical wave tank (NWT) exper-
iments, which are built by means of an open source
computational fluid dynamics (CFD) software. In [9],
the wave-to-force and the force-to-position models
of a WEC are identified, in the frequency domain,
by using a linear black-box model, and a nonlinear
Hammerstain-Wiener model. Note that the output in
the wave-to-force model is the excitation force, whereas
the input in the force-to-position model is the PTO
force. In a recent paper [10], a linear force-to-position
model for a three-body hinged-barge WEC is identified
by using real wave tank (RWT) data and, similarly to
the previous cases, the input is the PTO force. The
authors identify a parametric model for the transfer
function (TF) of the system by following three different
strategies. The first approach is carried out in the
frequency domain, whereas the other two utilize time
domain identification techniques.

In this work, system identification is employed in or-
der to model an OWC device and derive a linear black-
box model (Fig. 3), which is somewhat similar to the
wave-to-position model sought in [7], [8]. Nonlinear SI
models are not considered, since the results reported in
[7]–[9] have shown no significant improvements with
respect to linear models. On the left side of Fig. 3,
the input of the model is the free surface elevation
(FSE), namely the water elevation associated with an
undisturbed (by a device) wave. On the right side of
Fig. 3, the output of the model is the height of the water
column measured at its centroid. In other words, the
wave-to-position model in Fig. 3 is a mapping between
FSE and the displacement of the water column. To this
end, the time traces of the free surface elevation, η(t),
and the water column displacement, y(t), are recorded
and sampled during RWT experiments, where a scaled
fixed OWC model is tested in irregular waves (IWs)
and in regular waves (RWs). The two data sets are
then separately employed in order to derive separate
models of the type depicted in Fig. 3. Despite the
fact that, normally, regular wave analysis precedes
irregular wave analysis, in this work the order has
been reversed, due to the fact that regular wave case is
somewhat more complex, due to the absence of knowl-
edge of some key parameters, namely η(t). Therefore,
this work focuses on the irregular wave case as the
central focus of the system identification procedure,
with the regular wave case mainly providing a source
of model validation. In the literature, a somewhat dia-
metrically opposite work is carried out in [11], where
an OWC model is derived from first principles and
tested against RWT data collected from an OWC device
subjected to regular and irregular waves.

The remaining of this paper is organised as follow.
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Fig. 4. Schematic representation of the narrow tank at DkIT.

Fig. 5. Narrow tank at DkIT.

Section II contains the details about the testing facility
and the experimental campaign. In section III, the para-
metric models for the irregular wave case are identified
and validated. Section IV is dedicated to data-based
modelling in the regular wave case. In section V, the
models for the irregular and regular waves are briefly
discussed. Finally, conclusions are drawn in section VI.

II. REAL WAVE TANK DATA GATHERING

A. Testing facility

The narrow tank (Fig. 5) at Dundalk Institute of
Technology (DkIT), schematically illustrated in Fig. 4, is
used in order to gather the RWT experimental data. On
the left side of Fig. 4, the tank is equipped with a flap-
type wave generator. On the right side, an absorption
beach is positioned in order to minimise wave reflec-
tions from the beach towards the model. Since there
is only one direction of wave propagation, the wave
motion is basically two-dimensional. The tank has a
length of 18 m, a width of 350 mm, a depth of 1 m, a
freeboard of 200 mm and a probe-to-probe distance, dpp
(Fig. 4), of approximately 3 m, even though its precise
value is unknown. During an experimental run, the
displacement of the water column, y(t), is recorded at
its centroid by means of a wave probe, as shown in
Fig. 4. In order to record the FSE, η(t), at the same
location where y(t) is measured, the experiment has
to be identically repeated in the absence of the OWC
model in the tank. Particular attention has been paid
in order to ensure that η(t) (for the absent OWC case)

and y(t) are measured at the same location. Further-
more, it should be noted that the acquisition system
and the wave maker are entirely isolated from each
other, hence the data acquisition and the generation
of excitation waves do not start at the same moment.
Therefore, before using the data for OWC modelling,
the time traces of the input need to be temporarily
aligned with those of the output. To this end, the FSE
measurements gathered from the up-wave probe (Fig.
4) during the two experiments are cross-correlated in
order to estimate the time delay. The capability of the
tank to reproduce a pseudo-random wave elevation
time series, i.e. the tank repeatability, has already been
assessed in previous work [12]. The 1:50 scaled fixed
OWC model is made in marine plywood and scaled
in accordance with Froude scaling [13]. The internal
width of the chamber, equal to the width of the water
column, is 288 mm. An iris valve, which simulates the
effect of a turbine by creating an orifice with a variable
diameter, is mounted at the top of the pneumatic
chamber, and the diameter of its pupil is set, for the
purpose of this work, at 30 mm.

In general, in any OWC model, the air spring effect
due to air compressibility does not scale correctly if
the air volume is scaled geometrically, i.e. scaled by
the cube of the scaling factor. This implies that, when
the pneumatic chamber is relatively small, the effects
of air compressibility are usually negligible. In [14],
the effects of air compressibility in OWCs are dis-
cussed and three possible thermodynamic models are
analysed and compared. Furthermore, despite the fact
that the behaviour of an oscillating water column can
be quite complex, the water column mainly displaces
vertically as a piston. This piston-like mode of motion
is known as the pumping mode, which is also the
main mode responsible for power production in OWC
devices. Ultimately, in this work, the effects of air
compressibility are neglected because the air volume
is relatively small and, moreover, the pumping mode
is assumed to be the only active mode of the water
column.

A more comprehensive description of the narrow
tank and the OWC model can be found in [13].

B. Experimental campaign

During the experimental campaign, the OWC model
is tested under irregular and regular waves, so, ulti-
mately, two separate data sets are collected. The time
traces of the water column displacement, y(k), and the
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Fig. 6. Bretschneider spectra.

TABLE I
BRETSCHNEIDER SPECTRA

Si(f) Te (s) Hs (mm)

S1(f) 0.85 4

S2(f) 1.12 75

S3(f) 2.23 75

free surface elevation, η(k), are sampled and recorded
over time instants, k, by means of the National Instru-
ment LabVIEW software.

1) Irregular waves: The data collected during the
experiments in irregular waves comprise three sets of
input-output data, which have been originally gener-
ated in a previous study [15]. The OWC model is tested
under three sea states, which correspond to different
Bretschneider spectra (Fig. 6), named S1(f), S2(f) and
S3(f). The wave maker utilises an inbuilt function in
order to generate a time sequence of waves, whose
spectrum matches the target Bretschneider spectrum.
A generic Bretschneider spectrum can be expressed as
a function of the frequency, f , as:

Si(f) =
5

16
H2

s

f−5

T 4
e

exp

[

−
5

4
(Tef)

−4

]

, i = 1, 2, 3. (1)

Table I reports the mean period, Te, and the significant
wave height, Hs, of the three spectra employed in
this work. For each spectrum, y(k) is recorded for 30
minutes and sampled at a frequency of acquisition, Fs,
of 128 Hz. Then, after removing the OWC model from
the wave tank, the experiment is identically repeated
in order to separately record η(k) where the OWC was
positioned. For the sake of simplicity, the three sets
of input-output data, which are recorded during the
experiments with the spectra S1(f), S2(f) and S3(f),
are respectively called D1, D2 and D3. Note that each
spectrum covers a different range of frequencies, and
amplitudes, over which the OWC device is tested.
The most significant spectrum is S3(f) because, in this
case, the frequencies of the exciting waves lie within
the resonant band of the pumping mode, which is

the frequency band in which the uncontrolled device
is designed to operate, in order to maximise power
extraction [16], [17]. However, it is worth providing
an insight into the behaviour of the device over the
frequency range of S2(f) and S3(f), since a hypothet-
ical control system may change the frequency band in
which the device optimally operates.

2) Regular waves: As for the irregular wave case, the
experiments in regular waves have been conducted as
part of previous work [13], where the OWC model
has been tested under different monochromatic waves.
To this end, the wave maker generates a sequence of
identical waves, meaning that they all have the same
frequency and amplitude, of the type:

Awcos(ωt+ φ). (2)

In equation (2), Aw is the wave amplitude in meters, φ
is the phase of the wave in radians and ω = 2πf is the
angular frequency in rad/s. Each experiment runs until
reaching steady-state conditions, then y(k) is recorded
for 90 seconds with Fs = 32 Hz. Ultimately, sixty
different regular wave trains, given by the combination
of six amplitudes and ten frequencies, are tested. The
amplitudes range from 5 to 30 mm with increments of
5 mm, whereas the range of frequencies spans from 0.4
to 1.3 Hz with increments of 0.1 Hz. Note that, in the
regular wave case, the time traces of the FSE, η(k), have
not been recorded. However, in spite of the fact that
knowledge of the empirical input data is incomplete,
the amplitude, Aw, and frequency, f , of the tested
monochromatic waves are known. This information is
sufficient in order to establish a modelling procedure
for the regular wave case.

III. SYSTEM IDENTIFICATION IN IRREGULAR WAVES

A. Methodology

In the irregular wave case, SI is carried out by follow-
ing two distinct approaches, which are schematically
represented in Fig. 7. In both cases, a linear polynomial
ARX model, whose unknown parameters are ai and bi,
is chosen as the SI model:

y(k) = −

na
∑

i=1

aiy(k − i) +

nb
∑

i=0

biu(k − nd − i). (3)

In equation (3), y(k) and u(k) are the k-th samples of
the output and input respectively, the terms na and nb

are the orders of the ARX model, with nd the input
delay. In this work, the values of na, nb and nd are
determined from a procedure described later on in this
section. The number of unknowns in the ARX model
of equation (3) is na + nb + 1.

In order to compare the performance of the models
in the identification and validation phases, the normal-
ized root mean squared error (NRMSE) is chosen as the
error metric:

NRMSE =

√

∑

k |y(k)− ŷ(k)|2
∑

k |y(k)|
2

, (4)

where y(k) is the measured value of the output, and
ŷ(k) is the model prediction.
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Fig. 7. First approach (above) and second approach (below) for the
data set D1.

In order to determine the orders na, nb and nd, a
sequence of systematic trials, with incremental changes
in na, nb and nd, has been implemented. At the end of
each trial, the performance of the model is evaluated
on the basis of the NRMSE. As already stated, the
number of unknowns depends on the model orders
and, generally, the NRMSE decreases as the number
of model parameters increases. Therefore, a trade-off
between model accuracy and model complexity has to
be made; hence, to this end, the principle of parsimony
is adopted. This principle potentially helps to set the
variables in order to find a “parsimonious model”,
which is a model whose complexity ideally matches the
problem complexity. To this end, consideration will be
given to the complexity of the solution (in terms of the
number of model parameters), as well as the model
error metric, in the spirit of [18]. Ultimately, in this
work, na = 4, nb = 2 and the value of the input delay is
set equal to -4. Note that a negative value of nd implies
that the ARX model is noncausal, meaning that both
past and future values of the input are utilized in order
to predict the output value, y(k). In contrast, if nd > 0,
the ARX model is causal, where the output prediction
only relies on past values of the input. Herein, the
choice of a negative value for nd is justified by the fact
that, due to pressure wave propagation phenomena,
the relationship between η(k) and y(k) is noncausal.
Indeed, since pressure waves propagate faster than
ocean waves, the device can somewhat perceive the
presence of an incoming excitation wave in advance.

The unknown parameters of the ARX model, ai
and bi, are found by solving a relatively simple least-
squares optimization problem, which is derived, by
applying some formulae (as done in [5], [8]), from
equation (3).

1) First approach: The input-output time traces D1,
namely η1(k) and y1(k), are split into two parts, named
D1a and D1b . Then, the data set D1a is used in order to
identify an ARX model, M1a , which is finally validated
against the data D1b . Similarly, M1b is identified by
using D1b , and validated against D1a . This procedure
is schematically shown in Fig. 7. The same approach
is also repeated with D2 and D3, and, ultimately, six
parametric models are identified and validated.

2) Second approach: An ARX model, M1, is identified
using the data set D1, and validated against both D2

and D3. This approach is summarized in Fig 7. Finally,
the same procedure is carried out by working with
D2 and D3. Note that, in contrast to a traditional SI
procedure, for this approach, the range of frequencies,
and amplitudes, of the input signals employed in

TABLE II
APPROACH 1 TRAINING

M1a
M1b

M2a
M2b

M3a
M3b

94.09 94.08 96.18 96.18 97.34 97.37

TABLE III
APPROACH 2 TRAINING

M1 M2 M3

94.08 96.18 97.34

the validation phase is different from the range of
frequencies, and amplitudes, over which the model is
validated. Therefore, the second approach represents
a cross-validation exercise where unsuitable training
data are deliberately chosen and, as a consequence,
poor validation performance is expected.

B. Model identification

Tables II and III report the percentage values of the
fidelity of the models, defined as 100(1 − NRMSE),
with respect to their corresponding identification data.
These values remain, as expected, firmly consistent in
relation to the data set employed for the identification.
For instance, the fidelity of the models M1, M1a and
M1b , whose identification data are respectively D1,
D1a and D1b , is always about 94.08%. Moreover, it is
interesting to note that the model fidelity reflects the
signal-to-noise ratio of the identification data. Indeed,
the experimental data D3, which have the highest
signal-to-noise-ratio, produces a model with the high-
est fidelity, namely M3. This consideration becomes
intuitive when the values in Table III are compared to
the peaks of the spectra in Fig. 6.

C. Model validation

In the first approach, the parametric models are
validated, by means of the 1-step-ahead, 5-step-ahead
and 10-step-ahead predictions of the output, by using
the corresponding validation data. For clarity sake, in
a generic k-step-ahead prediction, the i-th output value
is computed by using previously measured outputs up
to time instant i − k and relevant inputs up to time
instant i. For instance, Fig. 8 compares the predicted
output, ŷ(t), of the model M3b to the measured output,
y(t), of the validation data D3a . Table IV reports the
model fidelity with respect to validation data (VD),
for the three types of output prediction. Note that the
model performance remains consistent throughout the
validation phase. First of all, the a-group and b-group
of models always provide similar results. For instance,
in the 5-step-ahead prediction of M2a and M2b , the
model fidelity is, respectively, 84.82% and 85.57%. Sec-
ondly, the model fidelity unsurprisingly decreases as
the number of steps ahead of the prediction increases.
Finally, the fidelity of M1a (and M1b ) is always the
lowest, whereas the fidelity of M3a (and M3b ) is the
best in all cases.

52181-



6

Fig. 8. From left to right, comparison between the measured output, y(t), and the 1-step-ahead, 5-step-ahead and 10-step-ahead predicted
output, ŷ(t), related to the validation of model M3b

.

TABLE IV
APPROACH 1 VALIDATION

Model VD 1-step-ahead 5-step-ahead 10-step-ahead

M1a
D1b

93.91 81.69 60.46

M1b
D1a

93.91 81.69 59.91

M2a
D2b

95.93 84.82 67.90

M2b
D2a

95.92 85.57 69.27

M3a
D3b

97.32 92.49 84.41

M3b
D3a

97.33 92.60 84.76

TABLE V
APPROACH 2 VALIDATION

Model D1 D2 D3

M1 - 87.44 91.71

M2 84.01 - 92.74

M3 83.82 87.14 -

Since the second approach is just a study case, only
the 1-step-ahead prediction is employed for validation,
and the model fidelity is reported in Table V. As ex-
pected, for the reasons already explained above, valida-
tion provides poorer results with respect to those of the
1-step-ahead prediction in Table IV and, furthermore,
some unexpected outcomes are found. In particular,
model M2 validates better against data D3 rather than
against data D1. However, in Fig. 6, since the frequency
range of S2(f) basically overlaps the frequency range
of S1(f), M2 would be expected to validate better
against D1. A similar consideration can be given to
model M1, which performs better on D3 rather than
on D2. Arguably, these unforeseen results may be
explained by considering the signal-to-noise ratio of
the data. Indeed, it is likely that the relatively low
signal-to-noise ratio of D1 and D2 negatively affects
the model validation performance. In any case, since
the second approach is somewhat far from being the
best practice in SI, and since investigating these results
is not the main scope of this work, no further in-depth
analysis has been conducted.

IV. MODELLING IN REGULAR WAVES

A. Methodology

In the regular wave case, the identification method is
focussed on the frequency domain, in order to derive
some models of the transfer function (TF) of the sys-
tem. In general, SI offers a wide range of modelling
approaches in the frequency domain and, in partic-
ular, one of these methods consists of identifying a
parametric model of the TF. In short, the input-output
data of the system are used in order to derive the
empirical frequency response function (FRF), namely
the amplitude response and the phase response of the
empirical transfer function, H(jω). Then, a suitable
parametric TF model and a criterion of fit are chosen,
and, finally, the parameters are optimized on the basis
of the fit criterion. However, the procedure adopted
in this work is somewhat unusual because, since the
time traces of the free surface elevation are missing,
the empirical FRF is partially unknown.

Despite the incomplete knowledge of the input sig-
nals, thanks to the fact that the work is carried out for
regular waves, it is still possible to find the empirical
amplitude response, |H(jω)|. Indeed, in the regular
wave case, the input is a simple sinusoid whose am-
plitude, Aw, and frequency, f , are known. Moreover,
the displacement of the water column, i.e. the output
signal, is also a sinusoid, whose frequency is equal
to the input frequency. In other words, in the regular
wave case, and for the specific model sought here,
the input-output signals are sinusoids with the same
frequency but possibly different amplitude. Therefore,
|H(jω)| is merely calculated as the ratio AOWC/Aw,
where AOWC is the amplitude of the output. This ratio
is computed for all the sixty input-output couples, and,
ultimately, the points (circles) in Fig. 9 are found. As
clarified by the use of different colors, these points
are equally spilt, according to the input amplitude,
into six separate sets of ten points each. Then, the
ten points of each set are linearly interpolated, and
six empirical amplitude responses, designated |Hi(jω)|,
are obtained. Note that, in the case in which Aw =
5 mm, the amplitude response has a steeper trend
with respect to that of the other cases. Arguably, this
unrealistic behaviour of the system is solely due to the
fact that, when the input amplitude is relatively small,
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Fig. 9. Empirical amplitude response, |Hi(jω)|.

TABLE VI
ESTIMATION OF Nzi AND Npi

Ĥi(jω) Aw (mm) Nzi Npi

Ĥ1 5 7 14

Ĥ2 10 5 12

Ĥ3 15 5 10

Ĥ4 20 4 9

Ĥ5 25 3 10

Ĥ6 30 3 9

the output signal has a low signal-to-noise ratio and, as
a consequence, the empirical measurements are noisy
and not totally trustworthy.

In the remaining of this section, a modelling proce-
dure is carried out as schematically shown in Fig. 10.
This SI technique aims to find a family of TF models
with consistent orders, by only relying on the empirical
amplitude response as the identification data. As in
the irregular wave case, the model performances are
compared by using the NRMSE.

B. Rough models

In the first step of the identification procedure, a
family of TF models with gains, gi, poles, pi, and zeros,
zi, has been chosen:

Ĥi(jω) = gi
(zi + jω)Nzi

(pi + jω)Npi

, i = 1, 2, . . . 6. (5)

This particular TF model is adopted in order to roughly
estimate the number of poles, Npi

, and zeros, Nzi ,
of the six transfer functions. In equation (5), gi, pi,
zi, Npi

and Nzi are all free parameters of the model,
whose values are optimized by solving six separate
data-fitting problems, in the least-squares sense. The
main results are shown in Table VI, which reports the
values of Nzi and Npi

.

C. Models with inconsistent orders

The estimates of Nzi and Npi
are utilized in order

to define a second family of TF models, Ĥ
′

i (jω), which

TABLE VII
FIDELITY OF Ĥ

′

i
(jω) AND Ĥ

′′

i
(jω)

ID Aw (mm) Ĥ
′

i
(jω) Ĥ

′′

i
(jω)

|H1(jω)| 5 96.38 87.39

|H2(jω)| 10 99.35 97.95

|H3(jω)| 15 99.84 99.74

|H4(jω)| 20 99.82 99.80

|H5(jω)| 25 99.47 99.46

|H6(jω)| 30 99.68 99.68

has the following form:

Ĥ
′

i (jω) = gi

∏Nzi

n=1(zi,n − bi,n(jω))
∏Npi

m=1(pi,m − di,m(jω))
, i = 1, 2, . . . 6. (6)

In equation (6), zi,n and pi,m are respectively the n-
th zero and the m-th pole of the i-th transfer func-
tion, whereas, similarly, bi,n and di,m are additional
parameters of Ĥ

′

i (jω). As done in section IV-B, the free
parameters of Ĥ

′

i (jω) are found by solving separate
least-squares optimization problems and, ultimately,
six TF models are identified. Table VII reports the
model fidelity with respect to the identification data
(ID), whereas Fig. 11 shows the comparison between
the empirical data, |Hi(jω)|, and the model response,
|Ĥ

′

i (jω)|, for i = 1, 3, 6. Since Nzi and Npi
are not

constant (Table VI), the TF models of this family are
denoted as models with inconsistent orders.

D. Models with consistent orders

Since the identification data are gathered from the
same OWC device, there is no particular a-priori reason
why the orders of the TFs should change. Therefore,
the final step of the identification procedure aims to
find a family of models with consistent orders.

In order to equalize the TF orders, the number of
zeros, and the number of poles, must be the same for
all the six transfer functions. To this end, a suitable
value for Nzi , and Npi

, may be chosen by calculating
a sort of mean value:

Nz =

∑5

i=2 Nzi

5
= 4, Np =

∑5

i=2 Npi

5
= 10. (7)

Note that, in Table VI, the number of zeros, as well
as the number of poles, does not vary much, with the
only exceptions being Nz1 = 7 and Np1

= 14. As al-
ready anticipated, these peculiar results are more likely
due to the poor signal-to-noise ratio of the empirical
measurements, rather than to the real behaviour of the
system. This is the reason why, in equation (7), Nz1 and
Np1

are not taken into account.
The family of TF models with consistent orders,

named Ĥ
′′

i (jω), is trivially derived from equation (6) by
imposing Nzi = Nz and Npi

= Np. As in the previous
cases, the unknown parameters of the six transfer
functions are determined by solving the corresponding
least-squares optimization problems. The fidelity of the
models is reported in Table VII, whereas Fig. 12 shows
the comparison between the empirical data, |Hi(jω)|,
and the model response, |Ĥ

′′

i (jω)|, for i = 1, 3, 6.
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Fig. 10. Schematic representation of the modelling procedure in the regular wave case.

Fig. 11. Models with inconsistent orders: empirical amplitude re-

sponse, |Hi(jω)|, and model amplitude response, |Ĥ
′

i
(jω)|.

Fig. 12. Models with consistent orders: empirical amplitude re-

sponse, |Hi(jω)|, and model amplitude response, |Ĥ
′′

i
(jω)|.

E. Model performance evaluation

Table VII shows the comparison between the fidelity
of the TF models Ĥ

′

i (jω) and Ĥ
′′

i (jω). Despite the fact
that the Ĥ

′

i (jω) models perform slightly better than
the Ĥ

′′

i (jω) model set, the performances of the two
models is comparable in almost all cases. As expected,
since Nz1 and Np1

are not utilized in equation (7), the
fidelity of the Ĥ

′

1(jω) and Ĥ
′′

1 (jω) models is notably
different. However, for the reasons already explained
above, this result has neither significant meaning nor
real importance.

In order to provide more comprehensive insight into
the outcomes of section IV, it is useful to focus on
a single set of results, for instance the case Aw =

Fig. 13. Empirical amplitude response, |H6(jω)|, and amplitude

response of the models, |Ĥ
′

6
(jω)| and |Ĥ

′′

6
(jω)|.

Fig. 14. Phase response of the model Ĥ
′′

6
(jω), and empirical phase

response provided by the experimental data D3 of the irregular wave
case.

30 mm. First of all, Fig. 13 compares the empirical
amplitude response to the amplitude response pro-
vided by Ĥ

′

6(jω) and Ĥ
′′

6 (jω), and, ultimately, it is
almost impossible to appreciate any difference between
|Ĥ

′

6(jω)| and |Ĥ
′′

6 (jω)|. Secondly, in Fig. 14, the phase
response of the model Ĥ

′′

6 (jω) is compared to the
empirical phase response, calculated by using the data
set D3 for the irregular wave case. Since the empirical
phase response is unknown in the regular wave case,
this figure provides an alternative source of validation
for the phase response. Finally, for the seek of com-
pleteness, Fig. 15 shows the pole/zero map for the
transfer function Ĥ

′′

6 (jω).

V. MODEL DISCUSSION

Despite the the fact that the ARX models, found
in section III, and the models with consistent orders,
identified in section IV, are derived from different sea
state conditions (irregular and regular waves), it might
be worth comparing the model orders. Ultimately, the
number of poles (na = 4) and zeros (nb = 2) of the ARX
models is relatively small, especially when compared
to the case of the models with consistent orders. As a
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Fig. 15. Poles and zeros of Ĥ
′′

6
(jω).

Fig. 16. Amplitude response of the ARX model M3b
.

matter of fact, na and nb are respectively smaller than
Np and Nz in equation (7).

Figure 16 shows the amplitude response of the ARX
model M3b . The amplitude response of M3b is notably
flatter and lower than the amplitude responses of the
consistent models found for the regular waves (Fig.
12). Arguably, although this was not done for the
current work, it may be possible to obtain the ampli-
tude response of M3b with regular input signals. To
this end, the range of regular frequencies, and regular
amplitudes, should cover, up to a reasonable extent,
the range of irregular frequencies, and irregular ampli-
tudes, of the considered wave spectrum. For instance,
the corresponding spectrum of model M3b is S3(f)
(Fig. 6).

VI. CONCLUSION

In this work, data-based modelling techniques have
been successfully employed in order to derive some
wave-to-position models of an OWC device in IWs
and RWs. In both cases, the results confirm that SI
is able to provide accurate and simple models of
OWC devices, providing that, during the experimental
campaign, suitable input signals are chosen; otherwise,
poor performance can be expected (Table V). The re-
sults in this paper correspond to a small-scale model
operating in a controlled wave tank. However, believe
the identification procedure can be extended to full-
scale devices as follows:

• Full-scale devices can be simulated with high fi-
delity in, for example, CFD, which is an already

.

Fig. 17. Force-to-position model of a fixed OWC device.

established route to the determination of data-
based parametric models [8].

• For ocean-based devices, an up-wave measure-
ment, with a wave propagation model, is required
to provide the input signal u(k) in equation (3),
using real irregular waves.

The use of regular wave excitation for system identifi-
cation, as documented in Section IV, is limited in ocean
environments, unless the wave spectrum is narrow
banded, approximating regular waves. However, even
then, a selection of monochromatic (narrow banded)
seas is required for complete identification of the sys-
tem dynamics.

Despite the fact that this work does not focus on
control strategies for OWCs, it is worth providing
some consideration, since SI models may be potentially
combined with data-driven control techniques in order
to tackle the control problem of the PTO force. To this
end, instead of considering a wave-to-position model
(Fig. 3), a more comprehensive force-to-position model
(Fig. 17), which includes the contribution of the PTO
force and excitation force to the input force, could be
adopted. Moreover, in order to keep a hypothetical
control strategy relatively simple, it is important to
refrain from using unnecessarily complex models. For
instance, in relation to the outcomes reported in Ta-
ble VII, the models with consistent orders should be
preferred to the models with inconsistent orders.

In principle, for a given OWC device and deploy-
ment site, it may be possible to identify a linear ARX
model for each of the most likely sea states, i.e. the sea
states in which the device is expected to work. Such
a modelling approach, which leads to a multi-linear
ARX model, would require a switching/interpolation
mechanism based on the sea state and, moreover, a
method for estimating the sea state itself.

Finally, regarding real wave tank data gathering,
there is still room for improvement. In particular, if
the recorded data have a low signal-to-noise ratio, the
model performance may be negatively affected (Table
III), or the data may be severely corrupted by noise
(|H1(jω)| in Fig. 9). Therefore, if waves with relatively
small amplitudes need to be tested, the signal-to-noise
ratio of the recorded data has to be improved.
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