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a b s t r a c t 

This short communication proposes a strategy to induce complete synchronization in a complex net- 

work composed of a general class of nonlinear dynamical oscillators. To that end, we formulate complete 

synchronization as a robust stabilisation problem, and propose a multiple-input multiple-output feedback 

decoupling linearisation algorithm in combination with H ∞ 

-control, designed to achieve a stable synchro- 

nization even in the presence of model uncertainty. We illustrate the strategy via a case study, where a 

complex network composed of FitzHugh–Nagumo oscillators is considered. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Coupled dynamical systems are ubiquitous in nature and sci- 

nce, and have been the focus of substantial research within the 

onlinear systems community, specifically from scientists special- 

sing in the field of complex networks [1] . A particularly relevant 

family’ of network-coupled nonlinear systems, which has attracted 

 great deal of attention in the past decade, are complex net- 

orks of nonlinear oscillators (see, for instance, Pikovsky et al. [2] ). 

onlinear oscillators play a fundamental role in characterising and 

odelling an extensive variety of physical processes, ranging from 

he fields of power electronics [3] and energy conversion [4] , to 

euroscience [5] and physiology [6] . 

Within the research field of coupled nonlinear systems, the 

roblem of synchronization appears recursively: Since the semi- 

al study [7] , which formalises and characterises so-called chaos 

ynchronization, the feasibility of synchronizing network-coupled 

ystems has attracted the wider research community. As a con- 

equence, a number of techniques exist to analyse existence and 

tability of synchronization regimes/manifolds in coupled systems, 

ncluding, for instance, networks of periodically oscillating nodes, 

nd chaotic oscillators. These studies include, for example, Belykh 

t al. [8] , 9 ], Pecora and Carroll [10] , and analyse conditions on the

oupling between network nodes such that synchronization occurs. 
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Motivated by the inherent relevance of synchronization in a 

ide range of physical phenomena, researchers from the con- 

rol community recently started to bring mathematical tools from 

ontrol theory capable of externally achieving different states of 

ynchronization [11] , by means of an appropriate external (user- 

upplied) control input . 1 To date, a number of control techniques 

ave been presented in the literature concerning synchronization 

f coupled oscillators (see, for instance, Che et al. [12] , Gao et al.

13] , Jiang et al. [14] , Yu et al. [15] ), which intrinsically depend

oth upon the network configuration (i.e. topology), and the spe- 

ific synchronization objective. Commonly, these techniques relate 

o a single specific application study, hindering the scope of ap- 

lication of the proposed methods for a general class of network- 

oupled systems, hence limiting any results/conclusions to the spe- 

ific case study presented. A step towards a ‘general’ framework for 

omplete synchronization has been taken in López-Mancilla et al. 

16] , via a model-matching approach. Nonetheless, López-Mancilla 

t al. [16] inherently requires perfect knowledge of the dynamics 

f the network, which is virtually always unavailable in a realistic 

cenario, where unmodelled dynamics are ubiquitous. 

This short communication presents a framework to control 

omplete synchronization for a general class of network-coupled 

onlinear oscillators, under mild assumptions. To this end, we pro- 

ose a multiple-input multiple-output feedback decoupling lineari- 
1 Note that this is effectively different from references [8–10] , where the (inter- 

al) coupling dynamics are considered to provide conditions on synchronization. 

https://doi.org/10.1016/j.chaos.2021.110722
http://www.ScienceDirect.com
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3 Note that the terminology ‘master-slave’ is commonly used for networks with 
ation algorithm in combination with H ∞ 

-control theory, specifi- 

ally designed to achieve a robust stable synchronization. The pro- 

osed technique is illustrated via a case study, where complete 

ynchronization of a complex network of FitzHugh-Nagumo neu- 

ons in external electrical stimulation [17,18] is addressed. 

The remainder of this short communication is organised as 

ollows. Section 1.1 describes the notation utilised throughout 

his manuscript, while Section 2 formally introduces the prob- 

em of complete synchronization from a control perspective. 

ection 3 proposes a feedback decoupling strategy capable of 

chieving linear error dynamics, while Section 4 outlines the pro- 

osed robust controller. Finally, Section 5 presents a case study, 

hile Section 6 encompasses the main conclusions of this study. 

.1. Notation and conventions 

R 

+ ( R 

−) denotes the set of non-negative (non-positive) real 

umbers. The symbol 0 stands for any zero element, dimensioned 

ccording to the context. The notation N q indicates the set of all 

ositive natural numbers up to q, i.e. N q = { 1 , 2 , . . . , q } . The sym-

ol I n denotes the identity element of the space of matrices C 

n ×n . 

he spectrum of a matrix A ∈ R 

n ×n , i.e. the set of its eigenvalues, is

enoted by λ(A ) . The superscript ᵀ denotes the transposition op- 

rator. Let v be an element of a vector space V defined over a 

eld K. The notation ‖ v ‖ denotes any norm of v ∈ V , where the

pecific norm is always clear from the context. H ∞ 

denotes the 

pace of complex-valued functions F (s ) , s ∈ C , which are analytic

nd bounded in the open right half-plane, while RH ∞ 

⊂ H ∞ 

de- 

otes the subspace of rational functions in H ∞ 

. The mapping σ̄ : 

 

n ×m → R 

+ denotes the maximum singular value operator. The 

ronecker product between M 1 ∈ R 

n ×m and M 2 ∈ R 

p×q is denoted 

y M 1 � M 2 ∈ R 

np×mq . 

. Preliminaries and problem statement 

From now on, we consider a complex network composed of N

oupled oscillators, commonly termed nodes , where each node is 

escribed by a nonlinear dynamical system � defined over an n - 

imensional state-space. We make this statement precise in the 

ollowing. Let each node i, with i ∈ N N , be defined in terms of

 continuous-time, finite-dimensional, single-input system �i , de- 

cribed, for t ∈ R 

+ , by the set of nonlinear differential equations 2 

i : ˙ x i = Ax i + Bg(x i )(u i + f i (x i , x )) , (1)

here x i (t) ∈ R 

n , A ∈ R 

n ×n , B ∈ R 

n , and the pair (A, B ) is assumed

o be controllable. The notation u i : R 

+ → R , t �→ u i (t) , indicates

he external control input acting on the i th node. The network 

tate-vector x (t) ∈ R 

nN is defined as x (t) = [ x 1 (t) , . . . , x N (t) ] . The 

onlinear mappings g : D x → R and f i : D x × D x → R , with D x ⊂
 

n and D x ⊂ R 

nN , are assumed to be sufficiently smooth, with 

(x i ) nonsingular for every x i (t) ∈ D x . 

emark 1. The nonlinear mapping f i accounts both for internal, 

nd coupling , dynamics, affecting each node com prising the com- 

lex network. Note that we do not make any assumption with re- 

pect to the coupling directionality. 

emark 2. Each node comprising the network, i.e. system (1) , is 

ssumed to be written in so-called normal form . This structure is 

otivated by the fact that a large number of well-known relevant 

ystems/oscillators can be either written in terms of (1) directly, 

r via a suitable diffeomorphism [19] , i.e. a nonlinear change of 

oordinates. This includes, for instance, Van der Pol and Duffing 
2 From now on, the dependence on t is dropped when clear from the context. 

d

w

i

2 
scillators, Chua’s circuit, Rössler’s system, Lorentz’s system, and 

he FitzHugh–Nagumo neuronal model. 

Before going any further, we write (1) using a more convenient 

otation, as 

i : ˙ x i = Ax i + Bg f i (x i , x ) + Bg(x i ) u i , (2)

here g f i (x i , x ) = g(x i ) f i (x i , x ) . We discuss the notion of complete

ynchronization in the following paragraphs. 

The problem of complete synchronization [11] consists of the 

ynchronization of the state-vector of a set of nodes, commonly 

alled slave nodes (or simply slaves ), to the dynamics of a set of 

eader or master nodes. 3 This problem is also commonly referred in 

he literature as consensus with a leader (see, for instance, Su and 

ang [20] ). Throughout this communication, we assume a net- 

ork composed of a single master node, i.e. the remainder N − 1 

odes are slaves, aiming to simplify the notation involved. Note 

hat the extension of the proposed framework to multiple master 

odes can be done straightforwardly. In particular, and without any 

oss of generality, we define node 1 as leader , i.e. �1 ≡ �l , so that

q. (2) can be re-written as, 

l : ˙ x l = Ax l + Bg f l (x l , x ) , 

�i : ˙ x i = Ax i + Bg f i (x i , x ) + Bg(x i ) u i , (3) 

or i ∈ { 2 , . . . , N} ⊂ N . 

emark 3. We assume that the leader node �l is not necessar- 

ly accessible, i.e. u 1 ≡ u l = 0 , ∀ t . In other words, we cannot affect

he dynamical behaviour of the master node directly. This scenario, 

hich is inherently more complex that its accessible counterpart, 

s a natural setting in many practical applications [2] . 

Using the structure posed in (3) , the problem of inducing com- 

lete synchronization can be now stated, from a control perspec- 

ive, as follows. Let e i = x l − x i , e i (t) ∈ R 

n , be the synchronization

rror associated with node i . Design the control input u i : R 

+ → R ,

 �→ u i (t) , such that 

lim 

→ + ∞ 

‖ x l − x i ‖ = lim 

t→ + ∞ 

‖ e i ‖ = 0 , (4) 

or all i ∈ { 2 , . . . , N} ⊂ N , and any norm in R 

n . 

emark 4. Condition (4) can be alternatively seen from a dynam- 

cal ‘viewpoint’: complete synchronization can be achieved as long 

s the zero equilibrium of system E i : ˙ e i = ˙ x l − ˙ x i is asymptotically 

table ∀ i . 

. Feedback linearisation 

Following Remark 4 , the objective is to propose a general 

ramework capable of computing a control law u i such that the 

ero equilibrium of the synchronization error system E i has strong 

tability properties. To achieve this, we take two different ‘steps’, 

.e. we decompose our control strategy into two parts. The first 

tep towards complete synchronization, proposed in this commu- 

ication, is based on the concept of feedback linearisation [19] . To 

ake this precise, note that the error system E i can be written as 

˙ 
 i = Ae i + B 

(
g f l (x l , x ) − g f i (x i , x ) 

)
− Bg(x i ) u i . (5) 

ased on the dynamical Eq. (5) , we now propose u i : R 

+ → R to

e defined as 

 i = g −1 (x i ) 
(
g f l (x l , x ) − g f i (x i , x ) − νi 

)
, (6) 
irected coupling, and that complete synchronization can equally occur in networks 

ith mutually coupled nodes. Also note that we use the term ‘master’ and ‘leader’ 

nterchangeably. 



N. Faedo, D. García-Violini and J.V. Ringwood Chaos, Solitons and Fractals 144 (2021) 110722 

Fig. 1. Schematic illustration of the closed-loop system for complete synchroniza- 

tion. 
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Fig. 2. Multiplicative uncertainty structure. 
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here νi : R 

+ → R , t �→ νi (t) . Note that the inverse mapping g −1 

s always well-defined by assumption (see Section 2 ). With the 

roposed controller u i (6) , the synchronization error system (5) can 

e written, in closed-loop, as 

 i : ˙ e i = Ae i + Bνi , (7) 

here E i is linear in e i , with external input νi . Note that (7) is com-

letely decoupled from the network dynamics. 

emark 5. The input νi provides an additional degree-of-freedom, 

hich is used in this communication to achieve complete syn- 

hronization in a robust sense. This is specifically discussed in 

ection 4 . 

emark 6. System (7) is controllable. The latter property is a di- 

ect consequence of the controllability associated with the Jacobian 

inearisation of system (1) about the zero equilibrium. 

Following Eq. (7) , let the network synchronization error state- 

ector e : R 

+ → R 

n (N−1) be written as e (t) = [ e 2 (t ) , . . . , e N (t ) ] , 

nd let v (t) = [ ν2 (t ) , . . . , νN (t ) ] ∈ R 

N−1 . Applying the control law 

roposed in (6) to each slave node, the closed-loop complex net- 

ork can be compactly written as 

 : ˙ e = ( I N−1 � A ) e + ( I N−1 � B ) v , (8) 

here v is to be designed such as system E has strong stability 

roperties. This is specifically addressed in Section 4 , using a ro- 

ust H ∞ 

-approach. 

. Robust synchronization 

Following the feedback linearisation procedure described in 

ection 3 , we now propose a robust controller K ∞ 

(s ) ∈ RH ∞ 

such

hat (8) has strong stability properties. 

emark 7. The selection of a robust control technique can be dire- 

ly motivated as follows: the feedback linearisation procedure, de- 

cribed in Section 3 , depends upon precise knowledge of the net- 

ork dynamics (3) , which is not necessarily available in a realis- 

ic scenario. To overcome this issue, arising due to the potentially 

inexact’ feedback linearisation via (6) , the linearised error system 

8) is assumed to be uncertain . This uncertainty is formally intro- 

uced in the following paragraphs. 

To be precise, we propose the design and synthesis of 4 K ∞ 

fol- 

owing robust control theory, particularly based upon the results 

resented in Gahinet and Apkarian [21] and Chilali and Gahinet 

22] , for linear time invariant (LTI) H ∞ 

-control synthesis with pole 

lacement. The closed-loop system (8) is schematically illustrated, 

rom a traditional robust control perspective, in Fig. 1 , where the 

onlinear system � (representing the full network dynamics), the 

eedback linearisation path, and the feedback controller K ∞ 

, are 

xplicitly shown. 
4 From now on, we drop the dependence on s when clear from the context. 

a

n

3 
Following Remark 7 , the control approach considered in this 

ection prioritises the robust stabilisation of (8) , while perfor- 

ance specifications are addressed using a set of additional con- 

traints within an LMI-based optimisation problem, following [22] . 

n particular, the control problem is solved via ‘standard’ H ∞ 

- 

esign, guaranteeing robust stability of system (8) , while the 

losed-loop transient response (i.e. performance) is addressed by 

dding a set of LMI constraints for closed-loop pole clustering. 

emark 8. The robust control design problem, as addressed in 

his short communication, is significantly simpler than a standard 

ixed-sensitivity problem, in which a set of weighting functions is 

sed to handle both nominal and robust performance. This practice 

ncreases both the order of the designed system, and the number 

f singular values involved in the corresponding optimisation pro- 

edure. In contrast, the design approach presented in this section 

eeks to reduce design complexity, while also increasing the sta- 

ility margin of the closed-loop system [22] . 

Within this framework, the system in (8) , describing the lin- 

arised dynamics of the synchronization error, can be generalised 

n terms of a family of models G, by means of an unstructured un- 

ertainty set � ⊂ H ∞ 

, defined as: 

= { �(s ) ∈ H ∞ 

: ‖ 

�(s ) ‖ ∞ 

< 1 } . (9) 

et G 0 (s ) = (s I n (N−1) − (I N−1 � A )) −1 (I N−1 � B ) be the nominal

LTI) error system. In particular, using a multiplicative uncertainty 

cheme, the family of models G can be expressed as: 

 = { ( I + �(s ) W �(s ) ) G 0 (s ) , �(s ) ∈ �} , (10) 

here the stable, causal and minimal system W �, with degree n �, 

s the so-called uncertainty weight , which describes the dynami- 

al behaviour of �. Note that W � is always defined such that the 

nequality σ̄ (W �(jω)) > σ̄ (�(jω)) holds, for all ω ∈ R . The ex- 

ression in Eqs. (10) is schematically depicted in Fig. 2 , where the 

isturbance vector is such that y �(s ) ∈ C 

n (N−1) . 

emark 9. The definition of the family of models G in (10) , via 

 �, can be achieved using different methods, according to the 

pecifics of the complex network (3) . This includes both exhaus- 

ive numerical simulation, or experimental testing (if available). 

Based on the family of models G, we now propose a modifica- 

ion of the classical LMI-based design method for H ∞ 

-controllers 

which arises from the well-known bounded-real lemma [23] ), by 

ncluding a set of LMI-based constraints, aiming to handle the lo- 

ation of the closed-loop eigenvalues [22] . To achieve this objec- 

ive, the so-called closed-loop linear fractional transformation (LFT) 

tructure: 

u �

e 

]
 ︷︷ ︸ 

z 

= 

[
0 W �(s ) 
I G 0 (s ) 

]
︸ ︷︷ ︸ 

M 

[
y �
v 

]
︸ ︷︷ ︸ 

w 

. (11) 

n particular, let the LFT-interconnection F l (M, K ∞ 

) be defined 

24] as, 

 cl = F l (M, K ∞ 

) = W �K ∞ 

(I N−1 − G 0 K ∞ 

) −1 , (12)

nd let A cl ∈ R 

n cl ×n cl , with n cl = 2 ( n (N − 1) + n �) , denote the dy- 

amic matrix associated with the closed-loop transfer function 
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Fig. 3. Schematic illustration of the network topology. The green circle indicates 

the leader node. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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sponding with the nominal model G 0 is denoted using a dashed line. 

t

g

g

g

w  

R

s

h

l  

c

5

f

f

m  

d

o

n

l

W

S

t

u

n

f

i  

l

f

f

t

d

f

D
t

 cl (s ) . The proposed H ∞ 

-control design can be now stated in terms

f the following convex optimisation problem: 

min 

 ∞ ∈ RH ∞ 
‖ 

F l (M, K ∞ 

) ‖ ∞ 

= γ , s.t. : λ(A cl ) ⊂ D, (13) 

here D is a suitable selected LMI region. 5 Note that the control 

olution computed via (13) guarantees stability and well-posedness 

f the closed-loop structure of (11) . Moreover, the following robust 

tabilisation condition 

 

T cl ‖ ∞ 

= ‖ 

F l (M, K ∞ 

) ‖ ∞ 

< γ , (14) 

s always satisfied, via the design objective (13) . 

emark 10. The optimisation procedure stated in (13) , explicitly 

onsidered to compute K ∞ 

, can be efficiently solved using state-of- 

he-art LMI solvers, such as those described in, for instance, Sturm 

25] . 

. Case study 

We now present a case study, addressing induced complete 

ynchronization of a network of coupled FitzHugh–Nagumo os- 

illators. The FitzHugh–Nagumo model, commonly used to rep- 

esent membrane voltage dynamics in neurons, is a simplified 

two-dimensional) form of the well-known Hodgkin–Huxley neu- 

on model (see [5] ). To be specific, the FitzHugh–Nagumo system, 

haracterising each i th node of the network, can be written, in 

tate-space, in terms of the following set of differential equations: 

i : 

{
˙ x i 1 = ε(x i 2 − δx i 1 ) , 
˙ x i 2 = −x i 1 − x i 2 (x i 2 − 1)(x i 2 − ξ ) + u i , 

(15) 

here x i 1 (t) ∈ R is a recovery variable, x i 2 (t) ∈ R represents the

embrane voltage, and u i represents the (externally supplied) con- 

rol input. Eq. (15) is capable of exhibiting 6 structurally stable os- 

illations (i.e. limit cycles) by suitable tuning of the parameters 

 ξ , ε, δ} ⊂ R . 

With respect to the network topology, we consider four linearly 

oupled nodes, i.e. one leader and three slaves, where the corre- 

ponding coupling dynamics are of a linear nature. The interactions 

etween nodes, arising from a ‘ring’ structure, are schematically 

epicted in Fig. 3 , and formally discussed in the following. In par- 

icular, the dynamics of the considered network can be described, 

n accordance to Eq. (3) , by 

 = 

[
−εδ ε
−1 −ξ

]
, B = 

[
0 

1 

]
, (16) 
5 See [22] for a formal definition of LMI region. 
6 A comprehensive assessment of the dynamics of (15) as a function of its pa- 

ameters can be found in Ringkvist and Zhou [26] . 

i  

s

s

b

t

4 
ogether with the set of mappings 

g f l (x l , x ) = 

˜ g f (x l ) + η(x l2 − x 22 ) + η(x l2 − x 42 ) , 

 f 2 (x l , x ) = 

˜ g f (x 2 ) + η(x 22 − x l2 ) + η(x 22 − x 32 ) , 

 f 3 (x l , x ) = 

˜ g f (x 3 ) + η(x 32 − x 22 ) + η(x 32 − x 42 ) , 

 f 4 (x l , x ) = 

˜ g f (x 4 ) + η(x 42 − x l2 ) + η(x 42 − x 32 ) , 

(17) 

here ˜ g f (x i ) = −x 3 
i 1 

+ (1 + ξ ) x 2 
i 1 

, and g(x i ) = 1 , for all x i (t) ∈
 

2 . The constant value η ∈ R represents the so-called coupling 

trength . For this application case, the set of parameters { ξ , ε, δ} 
as been selected such as (15) exhibits structurally stable oscil- 

ations, following [26] . Specifically, ξ = −0 . 5 and ε = δ = 0 . 5 . The

oupling strength is set to η = 0 . 02 . 

.1. Controller design 

The mappings described in (17) can be used to compute the 

eedback linearising strategy presented in Section 3 , which directly 

acilitates the linearised structure presented in (8) . The nominal 

odel G 0 (s ) , used to design the stabilising control law v via H ∞ 

-

esign, can be hence directly obtained from Eqs. (16) , i.e. in terms 

f the matrices A and B associated with each FitzHugh-Nagumo 

ode. In addition, the family of models G is defined using the fol- 

owing multiplicative uncertainty weight, 

 �(s ) = I 6 �
0 . 1 s + 0 . 2 

2 
30 

s + 1 

. (18) 

uch a weight function is computed following Remark 9 , assuming 

hat the exact value of the parameter ξ is not available, i.e. ξ is 

ncertain. In particular, we consider ±10% of uncertainty about its 

ominal value ξ0 = −0 . 5 . 

To successfully ‘cover’ the parametric uncertainty in ξ via a 

amily of models G, a 20% of uncertainty (with respect to the nom- 

nal model G 0 ) is considered for ω < 2 [rad/s], while a significantly

arger uncertainty bound is required for higher values of ω. The 

amily G is shown in Fig. 4 , where the maximum singular value 

or any element in G is contained in the shadowed grey-area. Note 

hat the magnitude corresponding with the nominal model G 0 is 

enoted using a dashed line. 

For this case study, the LMI region, considered to 

ully characterise the closed-loop dynamics, is defined as 

 = { z ∈ C : � (z) ∈ [ −100 , −2] } . The stabilising controller K ∞ 

is 

hen directly computed via the optimisation problem (13) , obtain- 

ng a performance level γ = 0 . 4 < 1 . Fig. 5 presents the maximum

ingular value of T cl , and the corresponding performance γ , using 

olid and dotted lines, respectively. Note that the closed-loop 

ehaviour satisfies both the design objective σ̄ (T cl (jω)) < γ , and 

he well-known stability condition ‖ �(s ) ‖ ∞ 

< ‖ W �(s ) ‖ ∞ 

< 

1 
γ . 
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Fig. 5. Maximum singular value of the closed-loop transfer function T cl (solid line) 

and control performance γ (dotted line). 

Fig. 6. Time-traces of the state-vector of each slave (node 1 to 3, dotted), and 

leader node (solid). After the proposed controller is applied ( t ≈ 35 [s]), complete 

synchronization is successfully achieved. 
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Fig. 7. Time-traces of the state-vector of each synchronization error system when: 

no uncertainty is present in the simulation model (dotted); the parameter ξ fea- 

tures a 10% of uncertainty in the simulation model, i.e. ξ = 0 . 9 ξ0 (dashed). 
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.2. Controller results 

Considering the control design procedure detailed in 

ection 5.1 , the time-traces of the controlled complex net- 

ork are shown in Fig. 6 , switching from open- to closed-loop 

hen t ≈ 35 [s]. Note that, different sets of state-trajectories can 

e appreciated in the open-loop regime, complete synchronization 

s not achieved until after the proposed control strategy is applied. 

n particular, at t ≈ 35 [s], the control loop is closed, and the 

tate-vector x i (t) ∈ R 

2 of each slave node (dotted) synchronises 

ith the state-vector of the master node (solid) by virtue of the 

xternally applied control force, i.e. complete synchronization is 

uccessfully induced by the controller. 

Finally, and to briefly showcase the robustness features of the 

roposed control technique, Fig. 7 illustrates the time-traces corre- 

ponding with the state-vector of the error system e i (t) ∈ R 

2 for 

ach node, both when the nominal model is considered for sim- 

lation (dotted), i.e. the controller achieves nominal performance, 

nd when the model used for simulation features a −10% of uncer- 

ainty in ξ , i.e. ξ = 0 . 9 ξ0 . It can be readily appreciated that, after

he proposed controller is applied, the error dynamics are stable 

ven under the presence of parametric uncertainty (and, hence, an 

nexact linearisation procedure), facilitated through the robust con- 

rol design procedure. 

. Conclusions 

This short communication presents a framework to control 

omplete synchronization for a general class of network-coupled 

onlinear oscillators, i.e. to induce synchronization by means of a 
5 
uitable user-supplied external control force , under mild assump- 

ions. To this end, we propose a multiple-input multiple-output 

eedback decoupling linearisation algorithm, used to express the 

losed-loop synchronization error dynamics in terms of a linear 

perator. Motivated by the fact that feedback linearisation relies on 

recise knowledge of the network dynamics, which might not be 

vailable in realistic scenarios, we propose a robust control scheme 

ased on H ∞ 

-control synthesis and pole placement, capable of 

chieving complete synchronization even in the presence of mod- 

lling uncertainty. We explicitly illustrate the capabilities of the 

echnique for a complex network of FitzHugh–Nagumo neurons. 
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