Bonseyes Al Pipeline—Bringing Al to You: End-to-end
integration of data, algorithms, and deployment tools

MIGUEL DE PRADO, Haute Ecole Arc Ingenierie; HES-SO/Integrated Systems Lab, ETH Zurich,
Switzerland

JING SU, School of Computer Science and Statistics, Trinity College Dublin, Ireland

RABIA SAEED, Haute Ecole Arc Ingenierie; HES-SO, Switzerland

LORENZO KELLER, Nviso, Switzerland

NOELIA VALLEZ, Universidad de Castilla—La Mancha, Spain

ANDREW ANDERSON and DAVID GREGG, School of Computer Science and Statistics, Trinity
College Dublin, Ireland

LUCA BENINI, Integrated Systems Lab, ETH Zurich, Switzerland

TIM LLEWELLYNN, Nviso, Switzerland

NABIL OUERHANI, Haute Ecole Arc Ingenierie; HES-SO, Switzerland

ROZENN DAHYOT, School of Computer Science & Statistics, Trinity College Dublin, Ireland
NURIA PAZQOS, Haute Ecole Arc Ingenierie; HES-SO, Switzerland

Next generation of embedded Information and Communication Technology (ICT) systems are interconnected
and collaborative systems able to perform autonomous tasks. The remarkable expansion of the embedded
ICT market, together with the rise and breakthroughs of Artificial Intelligence (AI), have put the focus on
the Edge as it stands as one of the keys for the next technological revolution: the seamless integration of
Al in our daily life. However, training and deployment of custom Al solutions on embedded devices require
a fine-grained integration of data, algorithms, and tools to achieve high accuracy and overcome functional
and non-functional requirements. Such integration requires a high level of expertise that becomes a real
bottleneck for small and medium enterprises wanting to deploy Al solutions on the Edge, which, ultimately,
slows down the adoption of Al on applications in our daily life.

In this work, we present a modular Al pipeline as an integrating framework to bring data, algorithms,
and deployment tools together. By removing the integration barriers and lowering the required expertise, we
can interconnect the different stages of particular tools and provide a modular end-to-end development of

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 732204 (Bonseyes). This work is supported by the Swiss State Secretariat for Education, Research and
Innovation (SERI) under contract number 16.0159.

Authors’ addresses: M. de Prado, Haute Ecole Arc Ingenierie; HES-SO /, Integrated Systems Lab, ETH Zurich, Switzerland;
email: miguel.deprado@he-arc.ch; J. Su, A. Anderson, D. Gregg, and R. Dahyot, School of Computer Science and Sta-
tistics, Trinity College Dublin, Ireland; emails: jing.su@tcd.ie, {andersan, david.gregg}@cs.tcd.ie, Rozenn.Dahyot@tcd.ie;
R. Saeed, N. Ouerhani, and N. Pazos, Haute Ecole Arc Ingenierie; HES-SO, Switzerland; emails: {rabia.saeed,
nabil.ouerhani, nuria.pazos}@he-arc.ch; L. Keller and T. Llewellynn, Nviso, Switzerland; emails: lorenzo.keller@nviso.ai,
tim.llewellynn@nviso.ch; N. Vallez, Universidad de Castilla—La Mancha, Spain; email: Noelia.Vallez@uclm.es; L. Benini,
Integrated Systems Lab, ETH Zurich, Switzerland; email: Ibenini@iis.ee.ethz.ch.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2577-6207/2020/08-ART26 $15.00

https://doi.org/10.1145/3403572

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

mailto:permissions@acm.org
https://doi.org/10.1145/3403572

26:2 M. de Prado et al.

Al products for embedded devices. Our Al pipeline consists of four modular main steps: (i) data ingestion,
(i) model training, (iii) deployment optimization, and (iv) the IoT hub integration. To show the effectiveness of
our pipeline, we provide examples of different Al applications during each of the steps. Besides, we integrate
our deployment framework, Low-Power Deep Neural Network (LPDNN), into the Al pipeline and present its
lightweight architecture and deployment capabilities for embedded devices. Finally, we demonstrate the re-
sults of the Al pipeline by showing the deployment of several Al applications such as keyword spotting, image
classification, and object detection on a set of well-known embedded platforms, where LPDNN consistently
outperforms all other popular deployment frameworks.

CCS Concepts: « Computer systems organization — Embedded systems; Redundancy; Robotics; « Net-
works — Network reliability;

Additional Key Words and Phrases: Al pipeline, deep learning, keyword spotting, fragmentation

ACM Reference format:

Miguel De Prado, Jing Su, Rabia Saeed, Lorenzo Keller, Noelia Vallez, Andrew Anderson, David Gregg, Luca
Benini, Tim Llewellynn, Nabil Ouerhani, Rozenn Dahyot, and Nuria Pazos. 2020. Bonseyes AI Pipeline—
Bringing Al to You: End-to-end integration of data, algorithms, and deployment tools. ACM Trans. Internet
Things 1, 4, Article 26 (August 2020), 25 pages.

https://doi.org/10.1145/3403572

1 INTRODUCTION

Embedded Information and Communication Technology (ICT) systems are experiencing a techno-
logical revolution [8]. Embedded ICT systems are interconnected and collaborative systems able
to perform smart and autonomous tasks and will soon pervade our daily life. The rapid spread
of the embedded ICT market and the remarkable breakthroughs in Artificial Intelligence (AI) are
leading to a new form of distributed computing systems where edge devices stand as one of the
keys for the spread of Al in our daily life [73].

The rapid adoption of Deep Learning techniques has prompted the emergence of several frame-
works for the training and deployment of neural networks. Frameworks such as Caffe [6], Tensor-
Flow [48], and PyTorch [42] have become the most popular training environments by providing
great flexibility and low complexity to design and train neural networks. These frameworks also
support the deployment of the trained networks, though such deployment is cloud-oriented, which
makes it impractical for resource-constrained devices operating on the Edge. Hence, a second gen-
eration of frameworks has come forth to cover such constrained requirements, e.g., TF Lite [49],
ArmCL [4], NCNN [37], TensoRT [50], and Core ML [21]. Such deployment frameworks offer
inference engines with meaningful compression and runtime optimizations to reduce the compu-
tational and memory requirements that neural networks demand and, thus, meet the specifications
for mobile and embedded applications.

Developing embedded Al solutions for Computer Vision [63] or Speech Recognition [60] implies
a significant engineering and organizational effort that requires large investments and develop-
ment. Although the above-mentioned Deep Learning frameworks are powerful tools, a successful
development of custom AI solutions on the Edge requires a fine-grained integration of data, al-
gorithms, and tools to train and deploy neural networks efficiently. Such integration requires a
high level of expertise to overcome both software and hardware requirements as well as the frag-
mentation of Al tools [11], e.g., massive and distributed computation for training while reduced
and constraint resources for inference, hardship in portability between frameworks, and so on. All
previous examples represent a real bottleneck for small and medium enterprises who would like to
deploy Al solutions on the resource-constrained devices. Only large companies, e.g., Google [25]
and Apple [16], can build end-to-end systems for the optimization of Deep Learning applications
and are taking the lead of the Al industry [31]; see Figure 1.

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

https://doi.org/10.1145/3403572

Bonseyes Al Pipeline—Bringing Al to You 26:3

MORE
DATA

MORE Systems of BETTER COMPANIE!
CUSTOMERS | artifioal mopers WITHEND (Y
Intelligence TO END
A SOLUTION

1 pey o Lﬂ ’

Fad]
ave BETTER 5 OTHER
"84 PRODUCTS g COMPANIES

Fig. 1. Al pipeline and data wall. Companies with end-to-end solutions outperform the ones unable to follow
the complete cyclic process.

As an alternative to monolithic and closed solutions, we form part of the Bonseyes project [59],
a European collaboration to facilitate Deep Learning to any stakeholder and reduce development
time. We propose an Al pipeline as a way to overcome the aforementioned technological barriers
where data, algorithms, and deployment tools are brought together to produce an end-to-end sys-
tem. We focus on the development of Al solutions for embedded devices, e.g., CPU Arm Cortex-A,
embedded GPU, or DSPs, that feature sufficient computational power to run such solutions but
need to be efficiently tailored to employ them in real-time applications. Our proposed Al pipeline
provides key benefits such as the reusability of custom and commercial tools thanks to its docker-
ized AP, and the flexibility to add new steps to the workflow. Thus, the contributions of our work
are the following:

— We present a modular Al pipeline as an integrating framework to bring data, algorithms, and
deployment tools together. By removing the integration barriers and lowering the required
expertise, we open up an opportunity for many stakeholders to take up Al custom solutions
for embedded devices.

—Our Al pipeline encourages the reusability of particular tools by interconnecting them on
different stages to provide a modular end-to-end development. The Al pipeline consists of
four main steps: (i) data ingestion, (ii) model training, (iii) deployment optimization, and
(iv) 10T hub integration, which we illustrate giving different examples of Al applications.

—We integrate deployment framework (Low Power Deep Neural Network (LPDNN)) into the
Al pipeline and present its lightweight architecture and deployment capabilities for embed-
ded devices. Further, we show the deployment of several Al applications such as keyword
spotting, image classification, and object detection on a set of embedded heterogeneous
platforms. Finally, we evaluate LPDNN against a range of popular deployment frameworks
where LPDNN consistently outperforms all other frameworks.

The article is organized as follows: in Section 2, we detail the state-of-the-art. In Section 3, the
Bonseyes Al pipeline architecture is introduced. Section 4 describes the data ingestion process.
Section 5 presents the training of neural networks. In Section 6, the deployment optimization is
detailed. Section 7 introduces IoT hub integration and, finally, in Sections 8 and 9, we present the
results and conclusions.

2 RELATED WORK

In this section, we introduce the state-of-the-art of Al pipelines and frameworks. We take a bottom-
up approach starting from those works that propose single services, e.g., training or deployment,
to then step up to those works presenting end-to-end solutions.

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

26:4 M. de Prado et al.

2.1 Deep Learning Platforms for High-Performance Computing (HPC)

Open-source Deep Learning frameworks have developed fast in recent years. These frameworks
bring much convenience to Al project development as they provide the tools to design and train
neural networks with available libraries and built-in optimizers, instead of coding from scratch.
Here, we present a list of popular frameworks oriented for high-performance computing (HPC)-
based Al applications.

—Google’s TensorFlow (TF) is a powerful framework that provides APIs in multiple lan-
guages. TF is built for numerical computation using dataflow graphs in which nodes rep-
resent mathematical operations, and graph edges represent multi-dimensional data arrays
[48].

— Caffe was developed by Berkeley Al Research (BAIR) and by community contributors [6].
As a pure C++ library, Caffe features expressive architecture, modularity design, and speed
of training and inference. Command line, Python, and Matlab interfaces are provided.

—PyTorch is a scientific framework based on Torch, a C-based library with its scripting lan-
guage Lua]JIT [52]. PyTorch can be used as a native library and use popular Python libraries
[42]. PyTorch employs dynamic computation graphs, which offers great flexibility.

—Microsoft Cognitive Toolkit (CNTK) is an open-source toolkit for commercial-grade dis-
tributed deep learning [19]. CNTK can be used as a library in Python, C#, or C++ programs.

— Apache MXNet is an open-source framework suited for flexible research prototyping and
production [36]. It features hybrid front-end, distributed training, and rich language bind-
ings.

—XKeras is a high-level neural networks API, written in Python and capable of running on top
of TensorFlow, CNTK, or Theano [30]. Keras is designed for easy and fast prototyping.

—ONNX is an open ecosystem that provides an open source format for Al models [2, 3].
ONNX greatly improves interoperability between different deep learning frameworks and
is becoming a standard for model exchange.

Our Al pipeline currently supports Caffe and PyTorch off-the-shelf and is compatible with any
of the other frameworks by packaging and integrating them in the second step of the pipeline.
Thus, we provide flexibility for the user to select the most suitable training framework.

2.2 Edge-Oriented Deep Learning Frameworks

HPC-oriented Deep Learning frameworks facilitate neural network training and deployment.
However, they are not efficient for deployment on resource-constrained devices. To address the
need of deployment optimization, a new set of frameworks has appeared to boost the runtime
performance of trained models.

—TensorFlow Lite is a framework tailored for on-device inference [49]. TF Lite does not sup-
port the training of neural network directly; users need to convert a trained TF model into
the TF Lite format. Thereafter, on-device inference can be carried out through a TF Lite
Interpreter.

—Caffe2 is a lightweight deep learning framework focusing the deployment of Al on mobile
devices [18]. Built on the original Caffe, it comes with C++ and Python API’s providing
speed and portability. Caffe2 is now a part of PyTorch [17].

— Android Neural Networks API (NNAPI) is a C API designed for deployment on Android
devices [15]. NNAPI works as a base layer of functionality, which is directly used by an
Android app. NNAPI supports and optimizes pre-trained models from TF or Caffe2.

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

Bonseyes Al Pipeline—Bringing Al to You 26:5

— Arm Compute Library (CL) is a framework that collects low-level functions optimized for
Arm CPUs and GPUs [4]. This library is built specially to accelerate image processing, com-
puter vision, and machine learning tasks.

—Intel OpenVINO toolkit is a comprehensive toolkit for quickly developing computer vision
applications [29]. It is designed to maximizing CNNs performance on Intel hardware.

—Tencent NCNN is a high-performance neural network inference framework optimized for
mobile platforms [37]. Currently, a selection of Tencent apps integrate NCNN and make it a
popular tool for phone app developers. Most commonly used CNN networks are supported.

— Alibaba Mobile Neural Network (MNN) is a lightweight inference engine [34]. MNN is built
to accelerate inference on mobile and embedded devices on i0S and Android. Tensorflow,
Caffe, and ONNX architectures are supported.

—Nvidia TensorRT is built on CUDA and it provides capabilities to optimize a trained model
for a data center, embedded devices, or autonomous driving platforms [50]. TensorRT is
widely compatible with neural network models trained in major frameworks.

—Tengine by Open Al Lab is a lite, high-performance, and modular inference engine for em-
bedded devices [47]. Most Convolutional network operators are supported. Caffe, ONNX,
Tensorflow, and MXNet models can be loaded directly by Tengine.

—Core MLis Apple’s tool to create or convert machine learning models for iOS apps [21]. Core
ML APIs enable on-device prediction with user data as well as on-device training. Besides,
it supports models from Caffe, Keras, and conversions from TensorFlow and MXNet [20].

Our Bonseyes Al pipeline relies on LPDNN for the deployment on emdebbed devices. LPDNN
provides optimized, portable, and light implementations for Al solutions across heterogeneous
platforms. Besides, it can integrate third-party libraries or inference engines into its architecture,
which makes it very flexible for custom platforms.

2.3 End-to-End Al Pipelines

In Sections 2.1 and 2.2, we have reviewed the frameworks for HPC- and edge-oriented Al-
applications. However, these frameworks are oriented for developers and not as off-the-shelf prod-
ucts for end users. In this section, we introduce the advances of Al as a Service (or Al pipeline).

The leaders in providing Al services are Google, Amazon, and Microsoft. Google Al Platform
[23] and AI Tools [24] offer a great convenience to build Al pipeline with TensorFlow as a back-
end. These platforms cover every step from data ingestion to model deployment, and they em-
power customer’s Al applications for production. Amazon SageMaker [13, 14] is an end-to-end Al
pipeline that features easy deployment of machine learning models on AWS at any scale. Microsoft
Azure [32] is an enterprise-grade service designed to accelerate thevmachine learning cycle. Azure
highlights a machine learning interpretability toolkit to explain model outputs during training
and inference phases [35]. Moreover, Azure has wide compatibility with open source frameworks.
Overall, these Al pipelines provide a fast solution to build up an AI application out of training
models, but their deployment is mainly based on the cloud.

Next, we look into AI pipelines that provide edge-oriented deployment. Microsoft Azure IoT
Edge [33] enables direct deployment of business logic on edge devices via Docker containers.
However, this service is clearly in public preview as many tools are under development and limited
to specific options. Amazon AWS IoT Greengrass [26] provides local inference on edge devices
while depending on its cloud for management. They provide support for a range of edge devices,
but the service is only available in a few regions [27] and under the amazon format.

Google Al Platform [23] also aims to edge deployment via TF Lite, which makes the pipeline
very competitive and complete. On the other hand, the pipeline lacks flexibility to use or integrate

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

26:6 M. de Prado et al.

external tool and constrains the user to employ theirs. This fact brings incompatibility issues with
user custom systems and drops in performance as we explain later in Section 8.2.3.

Apart from enterprise-level general purpose Al services, we also look into an edge-oriented Al
service for vision tasks. Eugene is created as a suite of machine intelligence services toward IoT
applications [75]. With components of data labeling, model training, deployment optimization,
and IoT integration, Eugene is an excellent example of Al service. The authors show how to tailor
deep neural networks to gain efficiency and introduce a scheduling algorithm to select the best
network depth at runtime. However, Eugene’s IoT service pipeline is limited in a few aspects. First,
the scheduler is designed to tune the depth of ResNet, which raises questions about how effective
this design works for other network architectures. Network reduction methods such as pruning
may work in Eugene’s pipeline but with significant refactoring. Besides, very little information is
available on the supported hardware platforms and the deployment inference engine. Neither did
the authors mention system integration or support issues, which can be crucial for the successful
deployment of Al service. Bonseyes comes in to address all these drawbacks. A detailed explanation
of our proposed Al pipeline is provided in the following sections.

3 BONSEYES Al PIPELINE ARCHITECTURE

We introduce the fragmentation and obsolescence of tools and propose the pipeline as a solution
to create end-to-end environments for deep learning solutions.

3.1 Fragmentation and Obsolescence of Tools

The rapid evolution of technology in the field of machine learning requires companies to update
their environments continuously. Being able to upgrade to the latest algorithm or technology is
critical to maintaining the leadership in their field. Besides, upgrading existing data processing
tools is a very demanding task. Differences in library versions, runtime environments, and formats
need to be handled. These challenges can consume a significant amount of time and introduce
hard-to-solve bugs. Moreover, companies are often interested in acquiring the off-the-shelf code
or complete pipelines to reduce their costs and to acquire advanced technology that they would
not be able to develop in-house. Integrating externally generated code is an even more challenging
task, as it is very likely that what is acquired is not compatible with the existing pipeline.

3.2 Pipeline as a Solution

One of the main objectives of the Bonseyes Al pipeline framework is to alleviate this problem and
link fragmented environments by defining a way to split the Al pipeline in reusable components,
define interfaces for interoperability, and provide a documented reference implementation of the
interfaces to accelerate development. The main goals of the pipeline are twofold; on one side, to
isolate the different parts of the pipeline along with their dependencies, and on the other hand,
to insert the glue code that combines them explicitly. The Bonseyes Al pipeline framework is
structured around three concepts:

—Tool: A software component that performs a specific function in the pipeline. An example
of a tool is a software that is capable of training a model from a training dataset.

— Artifact: The product of the execution of a tool, e.g., models, datasets. It can be an output
of the pipeline or an intermediate result that is processed by other tools.

—Workflow: A declarative pipeline description that lists the tools that need to be used and
the artifacts that need to be created. For example, a workflow may import a dataset and use
it to train a model.

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

Bonseyes Al Pipeline—Bringing Al to You 26:7

Docker Container

Glue (Python)

Artifact
HTTP API

Next Tool in Pipeline
Previous Tool in
Pipeline

Artifact
File Format

i

Fig. 2. Docker container including all submodules and interfaces.

Deployment loT Hub

Data Ingestion =—> Trainin e .
g s Optimization Integration

Fig. 3. Bonseyes Al Pipeline: Data ingestion, Training, Deployment Optimization, and loT Hub Integration.

The Al pipeline relies on Docker containers [9] to package all software dependencies needed to
run a tool; see Figure 2. Besides, a high-level HTTP API is defined to control the workflows and
tools. The Al pipeline provides a collection of standard formats that define on-disk serialization
and HTTP REST API for them. In addition, the user can define additional formats with different
interfaces to adapt to new designs.

3.3 End-to-End Al Pipeline

Based on the previous concepts, we propose an end-to-end Al pipeline to develop and deploy Deep
Neural Network solutions on embedded devices. We propose a modular Al pipeline architecture
which contains four modular main tasks: (i) Data ingestion, (ii) Model training, (iii) Deployment
on constraint environment, and (iv) IoT hub integration; see Figure 3. The four main tasks may be
decomposed into several steps that can be later accomplished by a set of tools. The number of tools
for each step is variable since it is possible to have several of them with the same purpose but using
different frameworks or dealing with data from various Al challenges such as image classification,
object detection, or keyword spotting (KWS). Moreover, some subtasks may also be optional. For
example, Data Partitioning may not be required if the raw data was already partitioned.

Fragmentation quickly occurs between these tasks as each one needs and employs specific for-
mats to operate. Therein, artifacts come into play as they represent the way by which data can
be stored and exchanged between tools. Artifacts must follow a definition to standardize them for
each problem type. Hence, tools define their inputs and outputs according to these artifact defini-
tions. This fact makes tools with the same input and output definitions to be easily interchangeable
and leads to modularized and reusable pipelines.

The end-to-end pipeline can be executed following a workflow definition from collecting the
data until IoT hub integration. A workflow specifies the steps that are required to obtain the final
result. This step involves describing which tools are used and in which order, and how the output
artifacts of one tool are used to feed another one.

In the Bonseyes framework, four different DNN-based Al applications and their correspond-
ing artifact definitions are currently available for the most common Al challenges, although it is

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

26:8 M. de Prado et al.

Data Ingestion

- - Task

10T Hub Integration

i Raw Data Standard Edge Processing
MFCC 4l METEINE <4— Format <= ;::, Optimized
Processing Labelling Script Code Cloud Processing
Partitioning Archiving

l Datasets (Benchmark/

Train/ Test)
Training Deployment Optimization
................... Performance
Model Training Report
Task Accuracy Benchmarking LPDNN A
Exploratory Data Analysis =" Heterogeneous Platform

........... »] Target Benchmarkl
Visualization (TensorBoard)

Design Space Exploration

v \7 Code Generator
Accuracy

Model Report

Target Benchmark2

Fig. 4. Bonseyes Al Pipeline Architecture and functional units.

possible to add more if needed. These are image classification, face recognition, keyword spotting,
and object detection. In the following sections, we introduce and explain the four main steps of
the Bonseyes Al pipeline showing different Al applications on each step.

4 Al DATA INGESTION (1/4)

Data Ingestion is the first step in the AI pipeline; see Figure 4. It entails the complete process
from acquiring the raw data to have it prepared for model training. The first step of this process
involves parsing the raw data and representing it in a standardized format to be used in the next
steps according to the problem definition, i.e., classification, KWS, and the like. Thus, audio or
images are stored together with their annotations. This step is crucial since data is an essential
part of the Al pipeline and is shared across multiple stages. However, standardizing it is a tedious
task due to the variety of file formats and the lack of a consistent annotation representation. This
is the reason why the Bonseyes Al pipeline API provides a set of mechanisms to reduce the efforts
when importing new data. Collecting it from the internet or a local hard drive is already supported
by specifying only where the resource is located. Moreover, API also manages how the resulting
dataset artifact is stored.

After importing the data into the pipeline, a processing step may be carried out to prepare it
for model training. This process includes operations such as image resizing, normalization, or face
alignment, among others. This process can be accomplished by more than one step, which may
vary according to the data, the model to be trained, or even the application. Finally, the dataset
may also require to be partitioned into training, validation, and test sets depending on the needs.
This partitioning is not necessary if it was already done in the raw data, but a large number of
public datasets are stored in a single compressed file that requires further processing.

To illustrate this step of the Al pipeline further, we show an example of data ingestion
for a KWS application. Automatic Speech Recognition (ASR) is a classical Al challenge where
data, algorithms, and hardware must be brought together to perform well. Speech source with
regional accents has high phonetic variance even in the same word, and expressions in dialects
may exceed the standard transcription dictionary. These scenarios suppose a great challenge as
retraining a recognizer system with a large amount of real-user data becomes necessary before

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

Bonseyes Al Pipeline—Bringing Al to You 26:9

h‘”"}* i ‘-J =

i
) é,:s ’»

353 %3
©
Raw
Extracted
Labelled
Audio MFCL

Fig. 5. Keyword Spotting (KWS). Process of recognizing predefined words from a speech signal. The process
involves a feature extraction step before the signal is fed into a DNN model. The model then compares the
input to the predefined words and detects their presence [76].

deploying the system. Therefore, only stakeholders that can acquire custom data and train on
it can overcome such a challenge. Keyword Spotting, a particular case of ASR, is the process of
recognizing predefined words from a speech signal, which, in many cases, serves as a “wake-up”
signal to initiate a larger service; see Figure 5.

We have set the Al Data Ingestion step to download the complete Google Speech Commands
dataset [1] containing WAV files. The raw data is downloaded from the provider, parsed, and stan-
dardized into HDF5 format files to comply with reusability and compatibility. Because it is a labeled
dataset, we skip labeling in the pipeline. Finally, data are partitioned into training, validation, and
benchmarking sets. Regarding the training set, the import tool stores each WAV file together with
sample ID and class label in one data tensor. This single data tensor is used as input to the next
tool. Validation dataset and test dataset can be imported in the same way.

However, raw audio samples are difficult to process. A human’s voice is generated from vocal
cord vibrations, which varies with different sounds. Spectral features of speech signals are more
representative than sound waveform in speech recognition. A human’s cochlea is more capable of
discerning low-frequency signals than high-frequency signals. To model cochlea characteristics,
we apply the Mel scale over the power spectrum, and it shows higher resolution on low-frequency
bands. After discrete cosine transform of Mel log powers, we get Mel-frequency spectral coeffi-
cients (MFCCs). MFCC is a widely used audio feature format for speech recognition [74].

Given the flexibility and modularity of the Al pipeline, we have integrated the MFCC genera-
tion extraction process into the Data ingestion step as pre-processing option. This process employs
an audio feature generation tool, which produces MFCC features of each audio sample and saves
them together with the keyword labels in an HDF5 file. The audio feature generation has been
accomplished by leveraging the Librosa library [71]. Since audio files in the Google Speech Com-
mand dataset are recorded in 16kHz sampling rate, a moving frame of 128ms length and 32ms
stride generates 32 temporal windows in one second. We apply 40 frequency bands per frame, and
the output MFCC features of one-second long audio sample are in a 40 X 32 tensor. The generated
MFCC features (training set and test set) can also be reused for training and benchmarking tools
of new models.

5 TRAINING (2/4)

Training and accuracy benchmarking follows the data ingestion step of the Al pipeline. The train-
ing step usually consists of a tool that requires a training dataset (and usually a validation dataset)
and produces a model. Since data are standardized, the same training tool can be used with dif-
ferent datasets from the same problem type. On the other hand, the benchmarking tool requires a

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

26:10 M. de Prado et al.

test dataset and a trained model to produce an accuracy report as output. Visualization tools are
often used at this point to help the training process.

In general, an Al pipeline may require a different training framework, another versions of the
same one or even several configurations to solve different Al challenges. These differences often
lead to software configuration problems when a user tries to solve several Al challenges in the
same machine. In this respect, the main benefit of using the Bonseyes Al pipeline for training is
the encapsulation of all the needed software and dependencies inside the Docker container that
runs the tool. Thus, it is possible to have tools with different deep learning frameworks or different
configurations without interfering with each other since they run in an isolated environment.
Nonetheless, training procedures are defined in separate training tools to facilitate tools reusability
and modularity. Bonseyes includes off-the-shelf Caffe and PyTorch frameworks, but any other
framework could also be included.

The flexibility of the dockerized training pipeline allows us to create additional tools that per-
form model optimizations during training, such as quantization or sparsification. In this case, the
new model can be trained from scratch using these optimizations or using a pre-trained model
with a new training dataset to optimize and adapt the final model.

To describe this step of the Al pipeline further, we detail an example of training for a KWS
application on Caffe. Two different KWS neural network architectures have been created to cross-
compare accuracy, memory usage, and inference time—Convolutional Neural Network (CNN) and
Depth-wise Separable CNN (DS-CNN). Since the Long Short-Term Memory (LSTM) -based models
do not show a significant advantage of accuracy over DS-CNN, memory footprint, and inference
latency [76], we only develop two types of CNN models in this article. In the following sections,
we introduce the training configuration that we have followed, the networks architectures that we
have developed and a final optimization step: a Neural Architecture Search.

5.1 Training Configurations

All training tools generate both the training model and the solver definition files automatically.
We have trained the CNN and DS-CNN models using Bonseyes-Caffe [5]. These tools import the
output generated in the MFCC generation step using the training dataset where the extracted
MEFCC features and labels are packed all together into an HDF5 file. Training is carried out with a
multinomial logistic loss and Adam optimizer [66] over a batch of 100 MFCC samples (since our
input sample size is 40 X 32, we opt to use a relatively big batch size). The batch size and number
of iterations are specified in the workflow files that control the execution of the tools. Each model
is trained for 40K iterations following a multi-step training strategy. The initial learning rate is
5% 107, With every step of 10K iterations, the learning rate drops to 30% of the previous step.

Further, a benchmarking tool has been built to validate the trained models. This tool takes two
inputs: the MFCC features generated from the test dataset (HDF5 file) and the trained model. The
inference is performed, and the predicted classes are compared with the provided ground truth,
and the results are stored in a JSON file.

5.2 Network Architectures

To build a KWS model with a small footprint, we have started off by modeling from a 6-layer
convolutional neural network. The CNN architecture contains six convolution layers, one average
pooling layer, and one output layer. More specifically, each convolution layer is followed by one
batch normalization layer [64], one scale layer, and one ReLU layer [72]. Output features of the
pooling layer are flattened to one dimension before connecting with the output layer. CNN model
architecture is explained per layer in Table 1. We can see that the first convolution layer uses a
non-square kernel of size 4 X 10. This kernel maps on 4 rows and 10 columns of an MFCC input

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

Bonseyes Al Pipeline—Bringing Al to You 26:11

Table 1. Initial Architectures of CNN and DS-CNN Networks

Model conv1* conv2* conv3 conv4 conv5 conv6é ~ TOP-1 MFP,,; Size (KB)
CNN 4x10,100 3x3,100 3X3,100 3Xx3,100 3x3,100 3x3,100 94.2% 581.1 1,832
DS-CNN 4 x10,100 33,100 3x3,100 3Xx3,100 3Xx3,100 3X3,100 90.6% 69.9 1,017

Filter shape is defined as ky, X k,,, M where kj, and k., are kernel height and kernel width, and M is the number of output
channels. * conv1 has stride shape 1 X 2 and convZ2 has stride shape 2 x 2. All other convolutional layers have stride shape
1x1.

image, which, in turn, refers to 4 frequency bands and 10 sampling windows. A 4 X 10 kernel has
an advantage of capturing power variation in a longer period and narrower frequency bands. This
setting complies with Ref. [76]. In the following convolution layers (Conv2 ~ Convé), 3 X 3 square
kernels are applied.

DS-CNN was introduced by Ref. [62], and we also apply it for KWS. DS-CNN improves the
execution of standard CNN as it reduces the number of multiplication operations by dividing a
standard convolution into two parts: depth-wise and point-wise convolution. In this study, we
substitute the standard convolutional layer from the CNN model by depthwise separable convo-
lutions. Thus, a DS-CNN model has one basic convolution layer (Conv), five depthwise separable
convolution layers (DS_Conv), one average pooling layer, and one output layer. Both parts of the
DS_Conv layer, depthwise convolution, and pointwise convolution are followed by one normal-
ization layer, one scale layer, and one ReLU layer. The first convolution layer is Conv instead of
DS_Conv. This setting follows the original MobileNet [62], and it helps to extract a 2D structure
from the input.

5.3 Neural Architecture Search

Although the manually designed CNN network achieves 94.2% prediction accuracy (Table 1), it is
not guaranteed to be the best choice for deployment. Applications on embedded devices are sensi-
tive to energy consumption, and a KWS model is required to respond with low latency. The exact
inference latency needs to be gauged on the hardware test, but we can hold an assumption that a
model with a smaller number of floating point operations (FP,,s) will be faster and be more energy
efficient. Joint optimization of model accuracy and FP,,s is challenging because these two metrics
cannot be implemented in one loss function. A solution of model selection comes from Neural Ar-
chitecture Search (NAS). NAS is a process of automating network architecture engineering [58].
Alternatively speaking, NAS offers a method to automatically explore high-dimensional network
hyperparameter space and populate network candidates with good prediction accuracy.

Elsken et al. categorized the tasks of NAS in three folds, including search space, search strategy,
and performance estimation strategy [58]. In this work, we have applied the popular search strat-
egy Tree-structured Parzen Estimator (TPE) [54]. The performance estimation strategy that we
have followed is a multinomial logistic loss function, and we have used Microsoft NNI library [55]
for the NAS experiment. The main challenge comes from search space setup as the number of pos-
sibilities grows exponentially. We first explore optimization parameters (including learning rate,
batch size, weight decay strategy, and training iterations), and then we freeze a set of optimiza-
tion settings to explore the target network parameters: kernel height kj, kernel width k,,, and
output channel number M of each convolution layer. When the network parameter search space
is explored, a selection of CNN architectures is available. These architectures are populated in a
two-dimensional space of model accuracy and FP,,s. We use Pareto frontier [70] to select candi-
date architectures. If one candidate architecture is on Pareto frontier, it means no other candidate
can be more accurate without paying a higher computational cost, and vice versa. We’ve created

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

26:12 M. de Prado et al.

[1l == [-_ 1l —
g E W W,
il I'Na] -
Object Scene Face Image Speech
detection Segmentation Recognition Classification Recognition

Fig. 6. Al application types.

\\
! \
! i i H
! i
~ - AI_APP -'

] [DETECTION :
1
1
1
1
1
1
B

U

/l

Fig. 7. Low-power Deep Neural Network (LPDNN) framework. LPDNN enables the deployment and opti-
mization of Al applications on heterogeneous embedded platforms such as CPU, GPU, and ASIC.

an integrated solution of neural architecture search and Pareto frontier selection for the aim of
performance-oriented model selection. More details can be found in Ref. [53].

6 DEPLOYMENT OPTIMIZATION (3/4)

After training a Deep Neural Network (DNN), the next step in the Bonseyes Al pipeline is the
deployment of such DNN on embedded devices. The support and optimization for the deployment
of DNNs rely on LPDNN. LPDNN is an enabling deployment framework that provides the tools
and capabilities to generate portable and efficient implementations of DNNs for constrained and
autonomous applications such as Healthcare Auxiliary, Consumer Emotional Agent, and Auto-
motive Safety and Assistant. The main goal of LPDNN is to provide a set of Al applications, e.g.,
object detection, image classification, speech recognition (see Figure 6), which can be deployed
and optimized across heterogeneous platforms, e.g., CPU, GPU, FPGA, DSP, ASIC (see Figure 7).
In this work, we integrate LPDNN into the Al pipeline and present its lightweight architecture and
deployment capabilities for embedded devices. Further, we show the deployment of KWS, image
classification, and object detection applications on a set of embedded platforms while comparing
to other deployment frameworks.

6.1 LPDNN Architecture

One of the main issues of Al systems is the hardship to replicate results across different systems
[12]. To solve that issue, LPDNN features a full development flow for Al solutions on embedded
devices by providing platform support, sample models, optimization tools, integration of external
libraries, and benchmarking at several levels of abstraction; see Figure 8. LPDNN’s full develop-
ment flow makes the Al solution very reliable and easy to replicate across systems. Next, we ex-
plain LPDNN architecture by describing the concept of AI applications and the LPDNN Inference
Engine.

6.1.1 Al Applications. Al applications are the result of LPDNN’s optimization process and the
higher level of abstraction for the deployment of DNN on a target platform. They contain all

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

Bonseyes Al Pipeline—Bringing Al to You 26:13

Al App
Demo App (e.g. Object

J
Detection, Scene Classification, —
Face Recoginition, Keyword O S
Spotting) or any Al App from

Bonseyes Al Marketplace or
self developed Al App

Deep Learning
Software Components

LPDNN Inference Engine,
Drivers and Support
Operating System and Drivers Lbrariesallow b u_se e
: hardware acceleration
Environment basedon = i Alanisand to easil
Debian distributions PP . Y
develop Al solutions

CPU DSP VPU GPU
Multi-Core Digital HEZZ;C:,%ET’:::;US Vector Graphics
Central Signal HARDWARE Processing Processing
Processing Units Processors Units Units

Fig. 8. LPDNN full stack. LPDNN provides a complete development flow for Al solutions for embedded de-
vices by providing platform support, sample models, optimization tools, and integration of external libraries.

the necessary elements or modules for the execution of DNN. The minimum number of modules
that an Al application may contain are two: pre-processing and inference engine modules. More
modules can be included to extend the capabilities of the Al application, e.g., connection of several
neural networks in a chain fashion.

Furthermore, Al applications contain a hierarchical but flexible architecture that allows new
modules to be integrated within the LPDNN framework through an extendable and straightfor-
ward APL For instance, LPDNN supports the integration of 3rd-party self-contained inference
engines for Al applications. The AI application could select as a backend LPDNN Inference En-
gine (LNE) or any other external inference engine integrated into LPDNN, e.g., Renesas e-Al [46],
TI-DL [51]. The inclusion of external engines also benefits LPDNN as certain embedded platforms
provide their own specific and optimized framework to deploy DNNs on them.

6.1.2 LPDNN Inference Engine. In the heart of LPDNN lies the Inference Engine (LNE), initially
introduced in Ref. [56], which is a code generator developed within the Bonseyes project to ac-
celerate the deployment of neural networks on resource-constrained environments [56]. LNE can
generate code for the range of DNN models and across a span of heterogeneous platforms. LNE
supports a wide range of neural network models as it provides direct compatibility with Caffe [6].
In addition, LNE supports ONNX format [3], which allows models trained on any framework to be
incorporated into LPDNN providing they can export to ONNX, e.g., PyTorch or TensorFlow. The
network model (Caffe, ONNX) is converted to an internal computation graph in a unified format.
At this point, several steps such as graph analysis for network compression and memory allocation
optimization are performed. LNE provides a plugin-based architecture where a dependency-free
inference core is complemented and built together with a set of plugins (acceleration libraries)
to produce optimized code for Al applications given a target platform; see Figure 9. Thus, each
layer is assigned an implementation among the available computing libraries. Finally, layout con-
versions are performed in the code generation process to assure the compatibility of the network
execution. More details of LNE are provided in Section 6.2.

6.1.3 Heterogeneous Computing Support. One of the main factors for LPDNN’s adoption is per-
formance portability across the wide span of hardware platforms. The plugin-based architecture
maintains a small and portable core while supporting a wide range of heterogeneous platforms,

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

26:14 M. de Prado et al.

Network —_— L cnn.h —f
Weights Code B
Caffe/ Onnx Gen #
Tool — cnn.c — e

CPU-Vanilla

ARM-CL

triNNity

CPU

GPU
Winograd Dsp

OpenCL - Cuda

BLAS FPGA

Fig. 9. LPDNN Inference Engine (LNE) [56]. Plugins can be included for specific layers, which allow a broad
design space exploration suited for the target platform and performance specifications.

including CPU, GPU, DSP, and FPGA. One of the objectives of Bonseyes is to provide full support
for reference platforms by providing:

—Board Support Package (BSP) containing OS images, drivers, and toolchains for several het-
erogeneous platforms.

— A dockerized [9] and stable environment, which increases the reliability by encouraging
the replication of results across platforms and environments.

— Optimization tools and computing libraries for a variety of computing embedded platforms
that can be used by LNE to accelerate the execution of neural networks.

6.2 Inference Optimizations

LPDNN contains several optimization tools and methods to generate efficient and light implemen-
tations for resource-constrained devices.

6.2.1 Network Compression. LNE supports folding of batch normalization and scale layers into
the previous convolution or fully connected layer [22] at compilation time. This optimization pro-
vides a reduction in memory size, as the weights of the folded layers are merged, and an accel-
eration during the inference as the execution of the folded layers are skipped. In addition, some
plugins in LNE support fusion of activation layers into the previous convolution at runtime. Fus-
ing activation layers halves the number of memory accesses for a data tensor passing through the
combination of convolution + activation layer.

6.2.2 Memory Optimization. LNE analyzes the computation graph for memory usage and op-
timizes the overall allocation by sharing the same memory between layers that are not active con-
currently (similar to temporary-variables allocation techniques used in compilers). Besides, LNE
enables, when possible, in-place computation: layers share the same memory for input and output
tensors.

6.2.3 Optimized Plugins. Acceleration libraries can be included as plugins in LNE for specific
layers to accelerate the inference by calling optimized primitives of the library, e.g., BLAS, ARM-
CL [4], NNPACK [38] cuDNN. Besides, several libraries can be combined or tuned to boost the
performance of the neural network execution. Certain computing processors may provide better
performance for specific tasks depending on the model architecture, data type, and layout. Thanks
to LNE’s flexibility, it is possible to select in what type of processor to deploy each layer and what
backend to use; see Figure 10. Therefore, we find a design exploration problem—named Network
Deployment Exploration—when we aim to optimize metrics such as accuracy, latency, or memory.

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

Bonseyes Al Pipeline—Bringing Al to You

Latency, Memory, Accuracy ?
°

/‘m‘»'

(ollel®
‘ ‘A
0

N

'Q

>
L

Fig. 10. Design space. Optimization can be
achieved by deploying each layer on different
processing systems based on their capabilities
regarding latency, memory, or accuracy. Colors
match Figure 7.

26:15

Episodes
2000

E 1500
o
£
= 1000
=
Q
5 500
£

0 i

0 100 200 300 400 500 600 700 800 900 1000
Fig. 11. RL optimization [57]. In the first stage (500

episodes), the agent searches through the design
space to learn about the environment. In the second
stage, the agent starts slowly selecting those imple-
mentations that yield a faster inference.

6.2.4 Network Deployment Exploration. To solve this space exploration problem, we propose
an automatic exploration framework called QS-DNN, which has been previously introduced in
Ref. [57]. QS-DNN implements a learning-based approach, based on Reinforcement Learning [68],
where an agent explores through the design space, e.g., network deployment across heterogeneous
computing processors, and empirically finds an optimal implementation by selecting optimal layer
configuration as well as cross-layer optimizations. The network deployment space can be defined
as a set of states S, i.e., layer representations. The agent explores such space by employing a set
of actions A, i.e., layer implementations, with the final aim of learning a combination of primi-
tives (from LNE’s acceleration libraries), that speeds up the performance of the DNN on a given
platform; see Figure 11. QS-DNN has been integrated into LPDNN and is tightly coupled with LNE.

6.2.5 Network Quantization. Neural networks can be further compressed and optimized
through approximation [65]. A quantization exploration tool has been integrated within LPDNN,
which analyzes the sensitivity of each layer to reduced-numerical precision, e.g., int8 [43]. The
tool yields a set of quantization parameters (scale values) that are applied to the weight and out-
put tensors of each layer to minimize the loss in accuracy when using quantized methods. Thanks
to LPDNN’s benchmark architecture, it is possible to obtain latency measure per layer as well as
the accuracy of the network for specific quantization parameters.

6.3 Deployment of Al Applications

To demonstrate LPDNN’s optimizations and capabilities, we compare LPDNN with several de-
ployment frameworks for KWS, image classification, and object detection applications on a set of
embedded platforms. The reader is referred to Section 8.2.3 for the analytical results of the follow-
ing comparison scenarios.

6.3.1 LPDNN vs. Caffe (KWS). KWS applications are often used as a “wake-up” signal for larger
systems due to their low energy consumption, which makes them affordable for always-on modes.
Based on this motivation, we focus on deploying the KWS models on a single core of a multi-core
CPU platform while leaving available other cores for more consuming tasks or powered-off if not
needed. We have chosen the Nvidia Jetson Nano [39], which features a quad-core ARM Cortex A-
57. Since the KWS models have been trained on Caffe—see Section 5—we compare the deployment
of LPDNN against Caffe for such models.

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

26:16 M. de Prado et al.

6.3.2 LPDNN vs. PyTorch (Object Detection). Object detection applications must detect, identify,
and localize multiple subjects in the input image. In this work, we show a body-pose estimation
model, a case of object detection, where the model has to identify and estimate the skeleton of
the people. We take two pre-trained resnet-based models, which have been initially trained by
the work of Ref. [67] on PyTorch. We export the model to ONNX and import it in LPDNN where
we can leverage LPDNN’s optimization and, thus, compare PyTorch deployment with LPDNN’s.
As body-pose estimation is a very computationally intensive task, we evaluate a heterogeneous
implementation for which we propose a last generation automotive platform, the Nvidia Jetson
Xavier, which features 8-core ARM v8.2 and a 512-core Volta GPU [40].

6.3.3 Comparison with Embedded Deployment Frameworks (Image Classification). We further
compare LPDNN with state-of-the-art deployment frameworks, which provide inference engines
for resource-constrained devices. Image classification is a classical Al application where an image
needs to be classified according to its content. We show the deployment of a representative range
of models for the ImageNet challenge [28] on two embedded platforms: The Raspberry 3b+ [44]
and Raspberry 4b [45] featuring a quad-core ARM Cortex-A53 and Cortex-A72, respectively. We
especially evaluate several network topologies for resource-constrained devices, e.g., Mobilenets,
Squeezenet, but also reasonably large networks like Resnet50, which allows us to show how the
inference engines adapt to the requirements of each network on the selected target platform. We
evaluate the following deployment frameworks: (i) Caffe-SSD [7], (ii) ArmCL-DEV20191107 [4], (iii)
MNN-0.2.1.5 [34], (iv) NCNN-20191113 [37], (v) Tengine-DEV20190906 [47), (vi) TFLite-2.0.0 [49], and
(vii) LPDNN-20191101.

7 10T HUB INTEGRATION (4/4)

IoT hub integration is the last step of the AI pipeline. The rise and spread of highly distributed
embedded systems bring about scalability issues in the deployment and integration of such sys-
tems. Generally, Al applications run on systems that are part of a broader application and service
ecosystem that support a value chain. The inclusion of Al enabled systems into an IoT ecosys-
tem is of particular interest when it comes to resource-constrained systems to alleviate computing
and memory demands. The heterogeneous nature of IoT and embedded devices not only in terms
of HW capabilities, i.e., computation, memory, and power consumption, but also in terms of SW
support supposes a great challenge to build a global ecosystem. Further, several other problems,
such as security and privacy, need to be addressed in a distributed platform where information is
continuously shared.

7.1 loT Scenarios

The IoT hub integration in the AI pipeline backs two main scenarios that are relevant for low-
power and autonomous environments, e.g., command voice in medical health care, pedestrian
detection in automotive, and so on—

—Edge-processing: Data are processed on the embedded device, and results are retrieved
and stored in the cloud for further processing and exploitation; see Figure 12(a).

—Cloud-processing: Part of the computation steps in the embedded system is delegated to
server- or cloud-based Al engines. This scenario can be of great interest for constrained
systems when their resources are not able to offer enough computational power to execute
Al algorithms; see Figure 12(b).

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

Bonseyes Al Pipeline—Bringing Al to You 26:17

(A) 4.Send (B) 5. Store/
5. Store/ Results Process/
Process/ Visualize
Visualize results

results'i

2. Send results 2.Send image/
audio to FIWARE

to FIWARE
‘&DNN @
(e v}

1. Acquire image/ audio 1. Acquire image/ audio
&run LPDNN

T LPDNN

Fig. 12. Bonseyes loT tools. Bonseyes relies on the FIWARE platform [10] for the implementation of the
integration pipeline. It backs two main scenarios—(A) Edge-processing and (B) Cloud-processing.

7.2 Bonseyes loT Tools

Bonseyes relies on the FIWARE platform [10] for the implementation of the IoT hub integration.
Both edge-processing and cloud-processing scenarios are supported by the use of a set of FIWARE
Generic Enablers not only to exchange data between different enablers but also to manage embed-
ded systems as IoT agents. Also, the second scenario requires the use of Kurento Media Server to
seamlessly transfer media contents from the embedded platforms to the cloud computing infras-
tructure.

7.2.1 FIWARE. 1t is an open-source community, which provides a rich set of APIs to facilitate
the connection to IoT devices, user interaction, and process of data. IWARE offers a rich library
of components, called Generic Enablers (GE), which provide reference implementations that allow
users to develop new applications. GEs provide the general-purpose functions such as data context
management, [oT service enablement, advance web-based Ul, security, interface to networks, the
architecture of application/services ecosystem, and cloud hosting.

7.2.2 Kurento Media Server. Kurento is a Stream-Oriented GE providing a media server and a
set of APIs to help the development of web-based media applications for browsers or smartphones.
It offers ready-made bricks of media processing algorithms such as computer vision, augmented
reality, and speech analysis.

In this work, we have focused on the edge processing scenario, since the selected embedded
platforms in Section 6 are fairly able to process data directly on the Edge. Hence, we have created
a dedicated media module in Kurento, which calls LPDNN’s Al application and stores the results.

8 RESULTS AND DISCUSSION
In this section, we introduce the results of the Al pipeline and detail the outcome of the Train-

ing and Deployment steps. We give examples of different Al applications while we analyze and
demonstrate the effectiveness and benefits of the Bonseyes Al pipeline for embedded systems.

8.1 Training

Table 2 shows benchmark scores of CNN models and DS-CNN models trained with Bonseyes-Caffe
[5] for the KWS application shown in Section 5. The test set contains 2,567 audio samples, which
are recorded from totally different speakers of the training samples. After 40K iterations training,
the CNN model marks 94.23% accuracy on the test set, and the model size is 1.8 MB. DS-CNN
model marks 90.65% accuracy, and the model size is 1 MB. With current hyper-parameter settings,

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

26:18 M. de Prado et al.

Table 2. KWS Trained Models: Benchmark of the Models on Test Set

Model Acc | Sparsity | Size (KB) || Model Acc | Sparsity | Size (KB)
CNN 94.23% 0% 1832 DS-CNN 90.65% 0% 1017
CNN + Q 94.04% 0% 918 DS-CNN + Q 90.62% 0% 511
CNN + S 93.69% | 39.6% 1832 DS-CNN + S 89.96% | 27.9% 1017
CNN+Q+5|94.27% | 39.8% 918 DS-CNN + O+ S| 90.19% | 27.7% 511

Q: Quantization (16-bit), S: Sparsity.

DS-CNN is 4% less accurate than CNN, but its model size is about half of CNN. According to Zhang
et al. [76], DS-CNN has the potential to be more accurate, and we will refine this model.

In this work, we have decided to build small footprint KWS models to ease the deployment on
embedded devices. As introduced in Section 5, we can apply quantization (Q) and sparsification (S)
functions to obtain a further compression in the models. On both CNN and DS-CNN, Q and S have
a minor disadvantage (<0.7% loss) on test accuracy. Moreover, 16-bit fixed-point quantization can
save half memory space and reduced bandwidth requirements at runtime. An S model may also
leverage the amount of zeroes in its matrices and obtain benefits in memory and computation
when it is deployed. Finally, we also observe that a Q+S model is more accurate than an S model
as quantization may act as a regularizer and slightly increase the accuracy.

Manually designed CNN and DS-CNN models achieved over 90% prediction accuracy on KWS
(Table 1). However, these models contain much redundancy and suppose a challenge for perfor-
mance on embedded devices. We propose the Neural Architecture Search method to explore KWS
models with reduced model size and FP,;. Twelve CNN models are spotted through NAS and
Pareto-optimal selection [53] and three models are presented in Table 4. In kws1, we can see that
kernel sizes of conv2 to convé are no longer fixed at 3 X 3 but vary from 1 X 1 to 5 X 5. Output
channels are all below 50. All these modifications reduce MFP,s from 581.1 to 223.4 and improve
TOP-1 accuracy from 94.2% to 95.1%. Further model size reduction is found in kws3 and kws9 by
the price of a minor drop in accuracy. Another observation is that 4 X 10 kernels of the first con-
volution layer are no longer needed for an accurate KWS model. These rectangular kernels were
designed to cover a longer temporal sequence than frequency bands from MFCC features [76]. As
MFCC features were generated with 128ms frame length in this study, much longer than 40ms in
literature, CNN with only square kernels is capable of delivering accurate KWS models.

Overall, we can see that NAS discovers obsolete network sub-structures introduced by manual
network design. We leverage the advantages of DS-CNN and adapt CNN architectures in Table 4
to DS-CNN version (Table 5). Three new DS-CNN architectures are coined and are trained in 300K
iterations. Each DS-CNN model achieves higher prediction accuracy than the seed DS-CNN model.
In the meantime, the MFP,,; are only 11.9, 9.7, and 7.0, respectively. ds_kws9reports the minimum
computational load in this study.

8.2 Deployment Optimization

Following the description of Section 6.3, we employ LPDNN’s tools to optimize the deploy-
ment of Al applications on the embedded platforms, and we compare it with several well-known
deployment frameworks. To ensure a fair comparison across the frameworks, we have enabled
all the optimizations as provided by each vendor of the framework. All benchmarks have been
performed identically: calculating the average of 10 inferences after an initial (discarded) warm-
up run. In addition, we have set the platforms in performance mode, which sets the clocks to the
highest frequency. To ensure that the platform does not overheat, triggering thermal throttling,
we have monitored the platforms and sampled the OS registers each second.

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

Bonseyes Al Pipeline—Bringing Al to You 26:19

~
=]

w

o

@
S
w

@
S

el

W«

IS
S
~

w
S

Inference time (ms)
aoN
5 3

H

o
@

Convl Conv2 Conv3 Conv4 Conv5 Convé

. ‘I ‘I Il || || Il h II I Il I

W1 KW1_DS Kw3 KW3_DS Kw9 KW9_DS

Improvement over Gemm F32
n

MCAFFE mGEMM NNPACK ARMCL mARM_BONSEYES mQS-DNN
Gemm F32 M Gemm U8 M Winograd F32

(a) Inference time using FP32 operations. Caffe’s
time is given in black. Other colors represent the
deployment of LPDNN employing a single library.
On green, QS-DNN’s solution after having learned
an optimized combination of primitives.

(b) Quantization analysis for KWS1. Speedup of
GEMM int8 primitives over GEMM F32 and com-
parison with Winograd F32 for each layer of the
network.

Fig. 13. LPDNN vs. Caffe (KWS). Inference time using single-thread operations on the Nvidia Jetson Nano
(CPU) (the lower, the better).

8.2.1 LPDNN vs. Caffe (KWS). We compare the deployment of the trained KWS models from
Tables 4 and 5 between Caffe and LPDNN on the Nvidia Jetson Nano platform. Caffe has been
installed natively on the platform using Openblas as the backend. On the LPDNN side, we employ
LNE coupled with an RL-based search (QS-DNN) to find an optimized solution for the deployment
on the target platform. Figure 13(a) shows the results of the deployment when processing a one-
second audio input using a single-thread and 32-bit floating-point operations on the CPU.

Overall, we can see that while Caffe takes, from largest to smallest, between 50 ms and 24 ms to
process a single KWS network while LPDNN employs between 21 ms and 7 ms. Caffe-Openblas
featuring general-matrix multiplication (GEMM) only outperforms LPDNN-GEMM on KWSI1.
Nonetheless, QS-DNN’s capability to learn an optimized combination of libraries makes LPDNN
significantly outperform Caffe on every network, being up to x3.5 faster. Regarding LPDNN’s ac-
celeration libraries, it is noted that no single library outperforms all other libraries across all net-
works. QS-DNN, however, always outperforms all individual libraries across all networks. Hence,
it is possible to prove that QS-DNN adapts to each specific use case and supposes a powerful tool
for LPDNN’s optimized deployment.

Networks can be further compressed through quantization by employing primitives featuring
reduced-numerical precision, as explained in Section 6.2.5. Figure 13(b) illustrates an analysis of
KWS1’s layers using int8 primitives from armCL. We observe that GEMM int8 generally—but not
always—outperforms its FP32 counterpart. The overall improvement of having KWS1 full int8
accounts for 52% over GEMM FP32, as Conv4—Conv6 are the most computationally intensive lay-
ers, and 1/4 of the memory size with only 1% drop in accuracy. However, this improvement is
shadowed by efficient convolution primitives such as Winograd [69], whose F32 implementation
outperforms GEMM FP32 by 88%. Based on these results, we state that the use of quantization on
Jetson Nano devices provides a tradeoff between latency and memory consumption for the KWS
application.

8.2.2 LPDNN vs. PyTorch (Object Detection). We compare the deployment of the (resnet-based)
body-pose estimation models presented in Section 6.3.2 between PyTorch and LPDNN on the
Nvidia Xavier platform. We have installed PyTorch natively on the platform using the latest release
provided by Nvidia [41]. We perform a first experiment deploying the models on the Arm CPU of
the platform and employing single-thread and 32-bit floating-point operations. PyTorch uses the
ATen library based on c++11, while LPDNN employs QS-DNN coupled to LNE to find an optimized

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

26:20 M. de Prado et al.

®
o

__ 6000 _
m %
£ 5000 I
@ 4000 o 0
£ E
+ 3000 s 40
(] [
£ 2000 g
g 8 20
K] 1000 [
£ —_ - £,
Resnet18 Resnet50 Resnet18 Resnet50
WPyTorch ELPDNN WFP32 MWFP16 MFP32 Mixed Precision
(a) CPU deployment using single-thread FP32. (b) GPU deployment using FP32 and FP16.

Fig. 14. LPDNN vs. PyTorch (Object detection). Inference time of the (resnet-based) body-pose estimation
models on the Nvidia Jetson Xavier.

combination of primitives. Figure 14(a) presents the deployment results, and we can observe that
LPDNN amply outperforms PyTorch on the CPU, being up to x15 faster for the resnet18-based
model.

As PyTorch is mainly a training framework, we assume that CPU has not been largely optimized
in favor of GPU deployment. Hence, we perform a second experiment on the GPU employing the
same backend, CUDA-10, in both frameworks. As it can be in Figure 14(b), LPDNN outperforms
PyTorch on both networks performing up to 28% faster. Further, we analyze the performance of
half-precision to speed up the inference and reduce memory footprint. PyTorch employing FP16
out-of-the-box turns out to be slower than FP32. This might be due to a direct conversion from
FP32 to FP16, and, as Ref. [61] suggests, this conversion needs to be carefully carried out to keep
performance up. In LPDNN, by contrast, we set QS-DNN to automatically learn what data type
performs better and give an optimized combination of primitives for LNE. Thus, we achieve up to
65% improvement on Resnet18 when leveraging mixed precision.

8.2.3 Comparison with Embedded Deployment Frameworks (Image Classification). To demon-
strate the capabilities of LPDNN further, we compare it with a range of embedded deployment
frameworks on the RPI3b+ and RPI4b! for the ImageNet challenge as stated in Section 6.3.3. We
have built all the deployment frameworks natively and enabled all the optimizations as provided by
each vendor. To further guarantee a fair comparison, we have chosen five representative networks
that are used across all deployment frameworks: Alexnet, Resnet50-V1, Googlenet-V1, Squeezenet-
V1.1, and Mobilenet-V2-1.0-224. The reference networks are taken from Caffe repository, which we
assume as the reference framework, and are imported into each of the tested frameworks directly
if supported by the framework, or via an official conversion tool (provided by the framework?). All
inferences are performed using a single-thread and 32-bit floating-point operation on the CPU.

Figure 15 presents the results of the reference networks across the range of deployment frame-
works on the RPI3 and RPI4. We show the relative speedup of each framework with respect to
Caffe (reference) for which we display the absolute time in milliseconds. We can easily observe
two general trends. (i) Certain frameworks perform very well on a single network but drastically
drop performance on other networks, e.g., MNN, Tengine. (ii) The deployment of some networks
has been remarkably optimized, e.g., several frameworks achieve over 4x improvement over the
reference in Mobilenet-V2, while generally, no framework accomplishes a comparable speed-up in
other network topologies, e.g., Googlenet, Squeezenet.

1Both platforms have been flashed with 64-bit Debian OS images.
2With exception of TF Lite. We convert Caffe to TF via MMDNN and ONNX. From TF to TF Lite, we use the official
converter.

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

Bonseyes Al Pipeline—Bringing Al to You 26:21

55

5.0
£45 Q35
©
040 u 3.0
535
330 3308 25 1353 621
225 1368 383 n. 2 0 l 569 158
el
220 1570 1427 3
215
Y10 & & 10

0.0 - L] -

Alexnet Googlenet Resnet50 Squeezenet-V1 Mobilenet-V2 Alexnet Googlenet Resnet50 Squezenet-V1 Mobilenet-V2
WCAFFE mARMCL mMNN NCNN ®TENGINE mTFLITE mLPDNN B CAFFE mARMCL = MNN NCNN MTENGINE mTFLITE mLPDNN
(a) RPI3 (b) RP14

Fig. 15. Comparison with embedded deployment frameworks (Image classification). Inference results of the
range of deployment frameworks for the reference networks on the RPI3 and RPI4. The bars represent the
relative speedup over Caffe, which displays the absolute time in milliseconds.

Table 3. Inference Comparison in Milliseconds between TF Lite and
LPDNN Taking TF Original Networks

DNN RPI3 RPI4
LPDNN | TF Lite | LPDNN | TF Lite
Mobilenet-V2 (from TF Lite) 217 246 105 119
Googlenet (from TF) 429 839 216 430
Resnet50 (from TF) 1,172 2,024 667 981

These two trends confirm the importance of selecting several network topologies to have a
sound estimation of the frameworks and how they can adapt to each structure. ArmCL and LPDNN
are the frameworks that provide the most stable performance improvements. From these two,
LPDNN obtains the highest speedups and outperforms all other frameworks across networks and
target platforms, performing over 2X better than the average and 5x better than the worst per-
forming framework. LPDNN’s high performance can be explained by the abundant number of
optimized primitives that LPDNN contains and its ability to learn a combination of primitives for
each network. The stability across the two platforms proves that LPDNN is robust and can adapt
to different architectures while retaining high performance.

TF Lite exception. We have benchmarked all frameworks, taking the networks from Caffe as
reference. TF Lite is the only framework that neither supports nor provides an official conversion
tool for Caffe networks and, hence, we have employed MMDNN and ONNX for the conversion
to TF. From TF to TF Lite, we use the official converter. We argue that this conversion, although
providing correct output classifications results, might be the cause of the low performance of TF
Lite. Therefore, we offer a new benchmark comparing TF Lite with LPDNN, taking three networks
from TF repositories instead. We take Mobilenet-V2 from TF Lite repository and Googlenet-V1 and
Resnet50-V1 from the original TF, as they are not available in TF Lite directly. We convert all of
them from TF to LPDNN via ONNX and the last two from TF to TF Lite via TF Lite official converter.
Table 3 depicts the results of such benchmarks on the RPI3 and RPI4.

We can remark that the native TF Lite network, Mobilenet-V2, performs notably well, achieving
almost the performance of LPDNN. However, we can already see that the original networks from
standard TF, converted to TF Lite, drop in performance, being up to 2.5x slower than LPDNN.
This point denotes the lack of proper support in TensorFlow for other formats, e.g., Caffe, ONNX,
TF, as it appears that TF Lite only performs well when the networks have been written in a spe-

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

26:22 M. de Prado et al.

cific format, i.e., TF Lite format, or contains a specific architecture, e.g., Mobilenet. This fact sup-
poses a constraint for users wanting to employ custom models, as they would either have poor
performance when executing non TF Lite networks or have TF framework a fixed dependency.
Nevertheless, LPDNN also outperforms TF Lite using TF original models. We can thus prove
LPDNN’s flexibility and support for other network’s formats and its domain over the range of
embedded-oriented deployment frameworks.

9 CONCLUSION AND FUTURE WORK

Nowadays, training and deployment of custom Al solutions on embedded and IoT devices poses
many issues as it requires a fine-grained integration of data, algorithms, and tools. These barriers
prevent the massive spread of Al applications in our daily life as only end-to-end systems can over-
come these hurdles and achieve accurate and fast solutions. In this work, we present a modular
end-to-end Al pipeline architecture, which brings data, algorithms, and deployment tools together
to facilitate the production and porting of Al solution for embedded devices. We ease the integra-
tion and lower the required expertise by providing key benefits such as the reusability of tools
thanks to a dockerized AP, and the flexibility to add new steps to the workflow. Thus, we propose
a pipeline with four main steps: (i) data ingestion, (ii) model training, (iii) deployment optimization,
and (iv) the IoT hub integration.

We have demonstrated the effectiveness of the Al pipeline by providing several examples of Al
applications in each of the steps and show the significance of a tight integration of the pipeline
steps toward having an efficient and competitive implementation. Thus, we are able to create a data
ingestion step for the Google speech commands dataset seamlessly and train two families of CNN
and DS-CNN networks achieving up to 95.1% and 92.6%. Further, we have presented the lightweight
architecture and deployment capabilities of our deployment framework, LPDNN, and demonstrate
that it outperforms all other popular deployment frameworks on a set of Al applications and across
a range of embedded platforms.

As future work, we envision to fully optimize and deploy trained models on very low-power
devices that can be employed for applications such as healthcare sensing, wearable systems, or a
car-driving assistant.

APPENDIX
A NEURAL NETWORK ARCHITECTURES

Table 4. Pareto Optimal CNN Architectures for KWS [53]

Model convl conv2 conv3 conv4 conv5 conv6 TOP-1 M FP,,s Size (KB)
seed 4x10,100 3x3,100 3x3,100 3x3,100 3x3,100 3Xx3,100 94.2% 581.1 1832
kwsl 3 Xx3,40 3x3,30 1x1,30 5X5,50 5X550 5X5,50 951% 223.4 707.0
kws3 5% 5,50 1x1,30 5x%5,40 3x3,20 5x5/30 3x3,50 941% 87.6 282.1
kws9 5% 5,50 1x1,20 1Xx1,50 3X3,20 5x5,20 3x3,40 934% 37.7 125.3

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

Bonseyes Al Pipeline—Bringing Al to You 26:23

Table 5. Optimized DS-CNN Architectures Based on CNN Models

Model convl conv2 conv3 conv4 conv5 convé TOP-1 M FP,,s Size (KB)
seed 4x10,100 3X3,100 3x3,100 3x3,100 3x3,100 3x3,100 90.6% 69.9 1017

ds_kwsl 3% 3,40 3x3,30 1x1,30 5X5,50 5X550 5X5/50 92.6% 11.9 61.5
ds_kws3 5x5,50 1x1,30 5X%5,40 3Xx3,20 5x5,30 3xX3,50 91.2% 9.7 48.4
ds_kws9 5x5,50 1x1,20 1x1,50 3X3,20 5x5,20 3x3,40 91.3% 7.0 39.0
ACKNOWLEDGMENTS
The opinions expressed and arguments employed herein do not necessarily reflect the official views
of these funding bodies.
REFERENCES

[1] 2017. Google Speech Commands Dataset. Retrieved from https://ai.googleblog.com/2017/08/launching-speech-

commands-dataset.html.

[2] 2017. The ONNX Project. Retrieved from https://github.com/onnx/onnx.

[3] 2017. Open Neural Network Exchange (ONNX). Retrieved from https://onnx.ai/.

[4] 2018. Arm Compute Library. Retrieved from https://developer.arm.com/ip-products/processors/machine-learning/

compute-library.

[5] 2018. Bonseyes Official Caffe 1.0 Version. Retrieved from https://github.com/bonseyes/caffe-jacinto.

[6] 2018. Caffe. Retrieved from http://caffe.berkeleyvision.org/.

[7] 2018. Caffe-SSD. Retrieved from https://github.com/weiliu89/caffe.

[8] 2018. Discover the Power of Artificial Intelligence to Drive ICT Innovation. Retrieved from https://news.itu.int/

discover-the-power-of-artificial-intelligence-to-drive-ict-innovation- in-the-first-issue- of- the-itu-journal/.

[9] 2018. Docker. Retrieved from http://www.docker.com.
[10] 2018. FI-ware Project. Retrieved from https://www.fiware.org/.
[11] 2018. Machine Learning Fragmentation Is Slowing Us Down: There Is a Solution. Retrieved from https://www.

cmswire.com/digital-experience/machine-learning-fragmentation-is-slowing-us-down-there-is-a-solution/.
[12] 2018. Scientists Can’t Replicate Al Studies. That’s Bad News. Retrieved from https://futurism.com/scientists-cant-
replicate-ai-studies.
[13] 2019. Amazon Machine Learning on AWS. Retrieved from https://aws.amazon.com/machine-learning.
[14] 2019. Amazon SageMaker. Retrieved from https://aws.amazon.com/sagemaker/.
[15] 2019. Android Neural Networks API (NNAPI). Retrieved from https://developer.android.com/ndk/guides/
neuralnetworks.
[16] 2019. Apple AL Retrieved from https://www.zdnet.com/article/apple-says-artificial-intelligence-and-machine-
learning-critical-area-as-it-promotes-ai- chief/.
[17] 2019. CAFFE2. Retrieved from https://caffe2.ai/.
[18] 2019. CAFFE2FB. Retrieved from https://research.fb.com/downloads/caffe2/.
[19] 2019. CNTK: The Microsoft Cognitive Toolkit. Retrieved from https://docs.microsoft.com/en-us/cognitive-toolkit.
[20] 2019. Converting Trained Models to Core ML. Retrieved from https://developer.apple.com/documentation/coreml/
converting_trained_models_to_core_ml
[21] 2019. Core ML: Integrate Machine Learning Models Into Your App. Retrieved from https://developer.apple.com/
documentation/coreml.
[22] 2019. Folding of Bnorm Into Convolution. Retrieved from https://tehnokv.com/posts/fusing-batchnorm-and-conv/.
[23] 2019. Google AI Platform. Retrieved from https://cloud.google.com/ai-platform/.
[24] 2019. Google Al Tools. Retrieved from https://ai.google/tools/.
[25] 2019. Google ML. Retrieved from https://cloud.google.com/products/machine-learning;.
[26] 2019. Greengrass. Retrieved from https://aws.amazon.com/greengrass/.
[27] 2019. Greengrass Region. Retrieved from https://aws.amazon.com/about-aws/global-infrastructure/regional-
product-services/.

[28] 2019. ImageNet. Retrieved from http://www.image-net.org.
[29] 2019. Intel OpenVINO Toolkit. Retrieved from https://docs.openvinotoolkit.org.
[30] 2019. Keras: The Python Deep Learning Library. Retrieved from https://keras.io.

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html
https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html
https://github.com/onnx/onnx
https://onnx.ai/
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://github.com/bonseyes/caffe-jacinto
http://caffe.berkeleyvision.org/
https://github.com/weiliu89/caffe
https://news.itu.int/discover-the-power-of-artificial-intelligence-to-drive-ict-innovation-in-the-first-issue-of-the-itu-journal/
https://news.itu.int/discover-the-power-of-artificial-intelligence-to-drive-ict-innovation-in-the-first-issue-of-the-itu-journal/
http://www.docker.com
https://www.fiware.org/
https://www.cmswire.com/digital-experience/machine-learning-fragmentation-is-slowing-us-down-there-is-a-solution/
https://www.cmswire.com/digital-experience/machine-learning-fragmentation-is-slowing-us-down-there-is-a-solution/
https://futurism.com/scientists-cant-replicate-ai-studies
https://futurism.com/scientists-cant-replicate-ai-studies
https://aws.amazon.com/machine-learning
https://aws.amazon.com/sagemaker/
https://developer.android.com/ndk/guides/neuralnetworks
https://developer.android.com/ndk/guides/neuralnetworks
https://www.zdnet.com/article/apple-says-artificial-intelligence-and-machine-learning-critical-area-as-it-promotes-ai-chief/
https://www.zdnet.com/article/apple-says-artificial-intelligence-and-machine-learning-critical-area-as-it-promotes-ai-chief/
https://caffe2.ai/
https://research.fb.com/downloads/caffe2/
https://docs.microsoft.com/en-us/cognitive-toolkit
https://developer.apple.com/documentation/coreml/converting_trained_models_to_core_ml
https://developer.apple.com/documentation/coreml/converting_trained_models_to_core_ml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://tehnokv.com/posts/fusing-batchnorm-and-conv/
https://cloud.google.com/ai-platform/
https://ai.google/tools/
https://cloud.google.com/products/machine-learning/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
http://www.image-net.org
https://docs.openvinotoolkit.org
https://keras.io

26:24 M. de Prado et al.

[31]
[32]
[33]
[34]
[35]

[36]
[37]

[38]
[39]

[57]
[58]
[59]

[60]

[61]

[62]

[63]

2019. Lead in AL Retrieved from https://www.forbes.com/sites/danielaraya/2019/01/01/who-will-lead-in-the-age-of-
artificial-intelligence/#4f3a15aa6£95.

2019. Microsoft Azure. Retrieved from https://azure.microsoft.com/en-us/services/machine-learning/.

2019. Microsoft Azure IoT Edge. Retrieved from https://azure.microsoft.com/en-in/services/iot-edge/.

2019. Mobile Neural Network (MNN): A Lightweight Deep Neural Network Inference Engine. Retrieved from
https://github.com/alibaba/MNN.

2019. Model Interpretability in Azure Machine Learning Service. Retrieved from https://docs.microsoft.com/en-us/
azure/machine-learning/service/how-to-machine-learning-interpretability.

2019. MXNet: A Flexible and Efficient Library for Deep Learning. Retrieved from https://mxnet.apache.org.

2019. NCNN: A High-Performance Neural Network Inference Framework Optimized for the Mobile Plat-
form.Retrieved from https://github.com/Tencent/ncnn.

2019. NNPACK. Retrieved from https://github.com/Maratyszcza/NNPACK.

2019. Nvidia Jetson Nano. Retrieved from https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-nano/.

2019. Nvidia Jetson Xavier. Retrieved from https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit.
2019. Nvidia Realeased of PyTorch. Retrieved from https://docs.nvidia.com/deeplearning/frameworks/pytorch-
release-notes/overview.html#overview.

2019. PyTorch: From Research to Production. Retrieved from https://pytorch.org.

2019. Quantization Analysis Tool. Retrieved from https://github.com/BUG1989/caffe-int8-convert-tools.

2019. Raspberry Pi3. Retrieved from https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.

2019. Raspberry Pi4. Retrieved from https://www.raspberrypi.org/products/raspberry-pi-4-model-b/.

2019. Renesas e-Al Retrieved from https://www.renesas.com/eu/en/solutions/key-technology/e-aihtml.

2019. Tengine: A Lite, High-performance, and Modular Inference Engine for Embedded Device. Retrieved from
https://github.com/OAID/Tengine.

2019. TensorFlow: An End-to-end Open Source Machine Learning Platform. Retrieved from https://www.tensorflow.
org.

2019. TensorFlow Lite: Deploy Machine Learning Models on Mobile and IoT Devices. Retrieved from https://www.
tensorflow.org/lite.

2019. TensorRT. Retrieved from https://developer.nvidia.com/tensorrt.

2019. TI-DL. Retrieved from https://training.ti.com/texas-instruments-deep-learning-tidl-overview.

2019. Torch: A Scientific Computing Framework for LuaJIT. Retrieved from http://torch.ch.

Andrew Anderson, Jing Su, Rozenn Dahyot, and David Gregg. 2019. Performance-oriented neural architecture search.
In Proceedings of the 2019 International Conference on High Performance Computing and Simulation. IEEE.

James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balazs Kégl. 2011. Algorithms for hyper-parameter optimiza-
tion. In Advances in Neural Information Processing Systems. 2546-2554.

Microsoft NNI contributors. 2019. An Open Source AutoML Toolkit for Neural Architecture Search and Hyper-
parameter Tuning. Retrieved May 27, 2019 from https://github.com/Microsoft/nni.

Miguel de Prado, Maurizio Denna, Luca Benini, and Nuria Pazos. 2018. QUENN: QUantization engine for low-
power neural networks. In Proceedings of the 15th ACM International Conference on Computing Frontiers. ACM,
36-44.

Miguel de Prado, Nuria Pazos, and Luca Benini. 2018. Learning to infer: RL-based search for DNN primitive selection
on heterogeneous embedded systems. arXiv preprint arXiv:1811.07315 (2018).

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2018. Neural architecture search: A survey. arXiv e-prints,
Article arXiv:1808.05377 (Aug 2018), arXiv:1808.05377 pages. arxiv:stat.ML/1808.05377

T. Llewellynn et al. 2017. BONSEYES: Platform for open development of systems of artificial intelligence. In Proceed-
ings of the Computing Frontiers Conference. ACM, 299-304.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech recognition with deep recurrent neural
networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE,
6645-6649.

Nhut-Minh Ho and Weng-Fai Wong. 2017. Exploiting half precision arithmetic in Nvidia GPUs. In Proceedings of the
2017 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1-7.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. 2017. MobileNets: Efficient convolutional neural networks for mobile vision applications. CoRR
abs/1704.04861 (2017).

Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel Pazhayampallil, Mykhaylo Andriluka, Pranav
Rajpurkar, Toki Migimatsu, Royce Cheng-Yue, et al. 2015. An empirical evaluation of deep learning on highway
driving. arXiv preprint arXiv:1504.01716 (2015).

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

https://www.forbes.com/sites/danielaraya/2019/01/01/who-will-lead-in-the-age-of-artificial-intelligence/#4f3a15aa6f95
https://www.forbes.com/sites/danielaraya/2019/01/01/who-will-lead-in-the-age-of-artificial-intelligence/#4f3a15aa6f95
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-in/services/iot-edge/
https://github.com/alibaba/MNN
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-machine-learning-interpretability
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-machine-learning-interpretability
https://mxnet.apache.org
https://github.com/Tencent/ncnn
https://github.com/Maratyszcza/NNPACK
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/overview.html#overview
https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/overview.html#overview
https://pytorch.org
https://github.com/BUG1989/caffe-int8-convert-tools
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.renesas.com/eu/en/solutions/key-technology/e-ai.html
https://github.com/OAID/Tengine
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://developer.nvidia.com/tensorrt
https://training.ti.com/texas-instruments-deep-learning-tidl-overview
http://torch.ch
https://github.com/Microsoft/nni

Bonseyes Al Pipeline—Bringing Al to You 26:25

[64]

[65]

[66]

(70]
(71]

(72]

(73]

(74]

[75]

[76]

Sergey loffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing in-
ternal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning—Volume 37 (ICML’15).
JMLR.org, 448-456. http://dl.acm.org/citation.cfm?id=3045118.3045167.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. 2015. Compression of deep
convolutional neural networks for fast and low power mobile applications. arXiv preprint arXiv:1511.06530 (2015).
Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In Proceedings of the 3rd
International Conference on Learning Representations (ICLR’15).

Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi. 2019. PifPaf: Composite fields for human pose estimation. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Yuxi Li. 2017. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274 (2017).

Partha Maji, Andrew Mundy, Ganesh Dasika, Jesse Beu, Matthew Mattina, and Robert Mullins. 2019. Efficient wino-
grad or cook-toom convolution kernel implementation on widely used mobile CPUs. arXiv preprint arXiv:1903.01521
(2019).

Vijay K. Mathur. 1991. How well do we know pareto optimality? The Journal of Economic Education 22, 2 (1991),
172-178. http://www.jstor.org/stable/1182422.

B. McFee, C. Raffel, D. Liang, D. PW. Ellis, M. McVicar, E. Battenberg, and O. Nieto. 2015. librosa: Audio and music
signal analysis in Python. In Proceedings of the 14th Python in Science Conference, K. Huff and J. Bergstra (Eds.). 18-25.
Vinod Nair and Geoffrey E. Hinton. 2010. Rectified linear units improve restricted boltzmann machines. In Proceedings
of the 27th International Conference on Machine Learning (ICML’10). Omnipress, 807-814. http://dl.acm.org/citation.
cfm?id=3104322.3104425.

Muhammad Shafique, Theocharis Theocharides, Christos-Savvas Bouganis, Muhammad Abdullah Hanif, Faiq Khalid,
Rehan Hafiz, and Semeen Rehman. 2018. An overview of next-generation architectures for machine learning:
Roadmap, opportunities and challenges in the IoT era. In Proceedings of the 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 827-832.

G. Tzanetakis and P. Cook. 2002. Musical genre classification of audio signals. IEEE Transactions on Speech and Audio
Processing 10, 5 (July 2002), 293-302. DOI : https://doi.org/10.1109/TSA.2002.800560

S. Yao, Y. Hao, Y. Zhao, A. Piao, H. Shao, D. Liu, S. Liu, S. Hu, D. Weerakoon, K. Jayarajah, A. Misra, and T. Abdelzaher.
2019. Eugene: Towards deep intelligence as a service. In Proceedings of the 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS). 1630-1640. DOI : https://doi.org/10.1109/ICDCS.2019.00162

Y. Zhang, N. Suda, L. Lai, and V. Chandra. 2018. Hello edge: Keyword spotting on microcontrollers. ArXiv e-prints
(Feb. 2018). arxiv:cs.SD/1711.07128.

Received June 2019; revised May 2020; accepted May 2020

ACM Transactions on Internet of Things, Vol. 1, No. 4, Article 26. Publication date: August 2020.

http://dl.acm.org/citation.cfm?id=3045118.3045167
http://www.jstor.org/stable/1182422
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://dl.acm.org/citation.cfm?id=3104322.3104425
https://doi.org/10.1109/TSA.2002.800560
https://doi.org/10.1109/ICDCS.2019.00162

