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Abstract

We classify weights which map strong reverse Hölder weight classes to weak reverse Hölder
weight spaces under pointwise multiplication.

1. Introduction

In this paper, we classify those weights f for which fw satisfies a weak reverse Hölder
condition for every w satisfying some strong reverse Hölder condition (see Theorem 1.2). This
“weak-strong” problem and the corresponding “weak-weak” and “strong-strong” problems were
investigated in [1], where a simple necessary and sufficient condition on the weight f was found
in each of the latter two cases, but the first problem was only partially answered. This paper
rectifies the matter by giving a simple necessary and sufficient condition for f to satisfy a mixed
condition of this type.

We first introduce some terminology and notation. Throughout the paper, Ω is a fixed open
subset of Rn. By a weight on Ω, we mean any non-negative measurable function defined on Ω,
which is not identically zero. Since we are only concerned with integrals of weights throughout,
sets are always assumed to be measurable, and sets of measure zero do not concern us. A cube
Q is always assumed to have faces perpendicular to coordinate axes, and its sidelength will be
denoted by l(Q). If t > 0, tQ is the cube concentric with Q such that l(tQ) = t · l(Q). We say
that two cubes are adjacent if their closures intersect but their interiors are disjoint. For any
set E and weight w, we write |E| for the Lebesgue measure of E, w(E) =

∫

E
w, and

‖w‖
p,E

=

(

1

|E|

∫

E

wp(x) dx

)1/p

, p 6= 0

As usual, ‖w‖
∞,E

= ess sup
x∈E

w(x). Thus ‖w‖
p,E

is a monotonically increasing function of p. If

σ > 1 and σQ ⊆ Ω, we say that Q is “σ-dilatable”. We denote the Hardy-Littlewood maximal
operator by M and, for any 1 < p < ∞, we shall write p′ = p/(p − 1).

We shall be concerned with weights w ∈ Lp
loc(Ω) for which

∃K ∈ R : ‖w‖
p,Q

≤ K‖w‖
q,σQ

, for all σ′-dilatable Q (1.1)

for some 0 < q < p, 1 ≤ σ ≤ σ′. Weights satisfying such conditions have been studied by
many authors; some important advances are to be found in [6], [4], [2], [9], and [5]. For a more
thorough discussion of such weights, and of the statements made in the following paragraphs,
we refer the reader to [1].

Assuming that 0 < q < p, the class of weights satisfying (1.1) is denoted WRHΩ
p if 1 < σ ≤

σ′, RHΩ,loc
p if 1 = σ < σ′, and RHΩ

p if 1 = σ = σ′. These classes are independent of q, σ or
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σ′, as long as those parameters satisfy the defining equalities and inequalities. In the first two
cases, we say that w satisfies a strong reverse Hölder condition of order p on Ω, while in the last
case we say that w satisfies a weak reverse Hölder condition. For q = p/2, σ = 2, σ ′ = 4, the
smallest constant K for which (1.1) is true will be denoted WRHΩ

p (w), and will be referred to

as the “WRHΩ
p norm” of w. Similarly we define “norms” RHΩ,loc

p (w) and RHΩ
p (w) by choosing

(q, σ, σ′) = (p/2, 1, 4) and (q, σ, σ′) = (p/2, 1, 1) respectively. The values of q, σ, and σ′ used
have no significance — if they are changed, the new norms are equivalent to the old ones up to
a constant dependent only on these parameters and the dimension (of course, the choices σ = 1
and σ′ = 1 in the last two definitions cannot be varied).

WRHΩ
p , RHΩ,loc

p and RHΩ
p share some properties dependent only on p, so we temporarily

denote any one of these classes as Sp. Obviously, Sp ⊆ Sq if 0 < p < q, and it is easy to produce
examples to show that this containment is strict. Nevertheless, it is also true (see [2], [4] and
[9]) that Sp =

⋃

q>p Sq. In fact, if w ∈ Sp, then w ∈ Sp+ε for some ε > 0 dependent only on n,

p, and the Sp-norm of w; we can even choose ε so small that Sp+ε(w) ≤ 2Sp(w).

Strong reverse Hölder conditions are related to the Ap condition of Muckenhoupt (see [2]).
It follows that if w satisfies (1.1) for 1 = σ ≤ σ′, and some 0 < q < p, then w actually satisfies
(1.1) for all q ≥ −ε (and σ, σ′ unchanged). As before, the size of ε depends only upon n, p and
the norm of w in its weight class. This “improvement” is not possible for weak reverse Hölder
conditions — if w satisfies (1.1) for q < 0 < p and 1 < σ < σ′, it also satisfies (1.1) for σ = 1,
with the other parameters unchanged.

We now state the main theorem of this paper.

Theorem 1.2. Let Sp be either RHΩ
p or RHΩ,loc

p . Suppose also that f is a weight and 0 <

p, q ≤ ∞. If f · Sp ⊆ WRHΩ
q , then q ≤ p. Furthermore,

(i) if 0 < q ≤ p < ∞, then f · Sp ⊂ WRHΩ
q if and only if f ∈

⋂

r<s
WRHΩ

r , where

s = pq/(p − q) (s = ∞ if p = q);
(ii) if 0 < q ≤ ∞, then f · S∞ ⊂ WRHΩ

q if and only if f ∈ WRHΩ
q .

In either case, if w ∈ Sp, then WRHΩ
q (fw) is dependent only upon n, p, q, and the norms of

f and w in their respective weight classes.

Note that f · Sp ⊆ WRHΩ
q implies that f · 1 ∈ WRHΩ

q . This gives the “only if” direction
of the theorem when p = ∞, but not when p < ∞. In [1], an iteration argument gave more
information for the corresponding unmixed problems (the next step was to consider f ·f q/p); in
fact, this iteration alone sufficed for the strong-strong problem. We cannot, of course, employ
such a method here. As we shall see in section 3, bridging the gap between the index q and all
indices less than s is what requires most of our effort.

2. A pair of lemmas

We first need some notation: if R > 0, σ > 1, then for any weight w and cube Q, E(R, Q) ≡
E(R, Q; w, σ) denotes the set {x ∈ Q | w(x) ≥ R‖w‖

1,σQ
}.

Our first lemma gives several conditions equivalent to WRHΩ
p . This lemma will have a

familiar feel to it for those conversant with the literature on reverse Hölder classes. For example,
the RHΩ

p analogue of the equivalence of (i) and (ii) was proven by Coifman and C. Fefferman in
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[2] where inequalities related to the RHΩ
p version of (iii) are also examined (see also [3]). The

equivalence of (i) and (ii) for WRHΩ
p is due to Sawyer ([7]).

Note that in this lemma, the constants C, ε and t in (ii)–(iv) are determined by n, p, σ, σ′,
and WRHΩ

p (w) alone. Also, analogues of the lemma for RHΩ,loc
p and RHΩ

p can be proved in
almost exactly the same manner.

Lemma 2.1. Suppose that w is a weight, 1 < σ ≤ σ′, and 1 < p. Then the following are
equivalent.

(i) w ∈ WRHΩ
p ;

(ii) there exist ε > 1/p′, C > 0 such that
w(E)

w(σQ)
≤ C

( |E|
|Q|

)ε

, for all subsets E of σ′-

dilatable cubes Q;

(iii) there exist t > p− 1, C > 0 such that
w(E(R, Q))

w(σQ)
≤ CR−t, for all σ′-dilatable cubes Q

and all R > 1;

(iv) there exist t > p, C > 0 such that
|E(R, Q)|

|Q| ≤ CR−t, for all σ′-dilatable cubes Q and

all R > 1.

Proof. Suppose that w ∈ WRHΩ
p and so w ∈ WRHΩ

s for some s > p. If E is a subset of a
σ′-dilatable cube Q, then

w(E)

|Q| = ‖wχ
E‖1,Q

≤ ‖w‖
s,Q

‖χE‖s′,Q
≤ K‖w‖

1,σQ

( |E|
|Q|

)1/s′

and so
w(E)

w(σQ)
≤ C

( |E|
|Q|

)1/s′

Thus (i) implies (ii) with ε = 1/s′ > 1/p′.

Next we show that (ii) implies (iii). Fixing a σ′-dilatable cube Q, we normalise so that
w(σQ) = |Q| = 1. Upper bounds for w(E(R, Q)) can be improved using (ii) as follows:

w(E(R, Q)) ≤ A =⇒ |E(R, Q)| ≤ A/R =⇒ w(E(R, Q)) ≤ C(A/R)ε. (2.2)

Starting with the trivial estimate w(E(R, Q)) ≤ 1, and iterating (2.2), we get that w(E(R, Q)) ≤
(C/Rε)

sk , where sk =
∑k−1

j=0 εj . Letting k → ∞, we see that w(E(R, Q)) ≤ C1/(1−ε)/Rt, where

t = ε/(1 − ε) > p − 1 since ε > 1/p′.

(iv) follows immediately from (iii) using the first implication in (2.2), so let us finish by
showing that (iv) implies (i). We fix a σ′-dilatable cube Q and normalise so that ‖w‖

1,σQ
= 1.

Letting Ek = {x ∈ Q | 2k−1 < w(x) ≤ 2k} for k > 0, it follows from (iv) that |Ek|/|Q| ≤
C2−(k−1)t and so

1

|Q|

∫

Q

wp ≤ 1 +
∞
∑

k=1

2kp |Ek|
|Q| ≤ 1 + C ′

∞
∑

k=1

2−k(t−p) ≤ C ′′. �
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It is known ([3, theorem IV.2.16]) that, if f is any locally integrable function such that Mf is
finite a.e. and 0 < α < 1, then (Mf)α is an A1 weight (and all A1 weights are essentially of this
type). It follows that if p > 0 then (Mf)α ∈ RHR

n

p for all 0 < α < 1/p; also, RHR
n

p ((Mf)α)
is bounded by a constant dependent only on α, p and n. The following useful technical lemma
shows that, in certain circumstances, we can patch together a sequence of such weights to
produce another RHR

n

p weight. In this lemma and the following discussion, we write A <∼ B
if A and B are two quantities for which A ≤ CB, where C is some constant independent of k,
and the choices of Qk and Ek. Also, A ≈ B means that A <∼ B <∼ A.

Lemma 2.3. Suppose that σ > 1, p, α > 0 and α < 1/p. Suppose also that Ek is a subset of
a cube Qk and has non-zero measure, for all integers k in some interval I. Then in either of
the following two (mutually exclusive) cases, there exists a weight w ∈ RHR

n

p and constants ck

such that w(x) ≈ ck(Mχ
Ek

(x))α for x ∈ Qk\σQk+1 and all k ∈ I:

(i) the cubes σQk are pairwise disjoint,
(ii) σQk+1 ⊂ Qk\Ek.

Proof. We first prove (i). In this case, Qk\σQk+1 = Qk, so the ordering of the cubes is
irrelevant. Let us choose σ1 ∈ (1, σ) and write U =

⋃

k∈I

σQk, V =
⋃

k∈I

σ1Qk. We define

w(x) =

{

ck(Mχ
Ek

)α, x ∈ σQk

1, x /∈ U,

choosing the constants ck so that w(x) ≈ 1 on the annular regions σQk\σ1Qk (note that Mχ
Ek

is essentially constant on this annulus).

We need to show that ‖w‖
p,Q

<∼ ‖w‖
p/2,Q

for all cubes Q. This is obvious if Q ⊂ U ,

since then Q ⊂ σQk for some k, and w ∈ RHσQk
p by construction. We now show that

‖w‖
p,Q

<∼ 1 <∼ ‖w‖
p/2,Q

for all Q 6⊂ U . First note that if Q intersects σ1Qk, then Q ∩
(σQk\σ1Qk) includes a cube Pk of sidelength comparable to that of Qk. Since w(x) ≈ 1 for
x ∈ Pk,

∫

Q∩σQk

wp/2 ≥
∫

Pk

wp/2 ≈ |Pk| ≈ |Q ∩ σQk|. (2.4)

Since w(x) ≈ 1 for x ∈ Q\V , it follows easily from (2.4) that 1 <∼ ‖w‖
p/2,Q

. The second

inequality follows in a similar fashion:

∫

Q∩σQk

wp ≤
∫

σQk

wp ≈
∫

Pk

wp ≈ |Pk| ≈ |Q ∩ σQk|,

since w ∈ RHσQk
p and so wp dx is a doubling measure on σQk (see [2]).

Let us now prove (ii) for I = R (and so
⋃

k∈Z
Qk = Rn). We first choose σ1, σ2, σ3 such

that 1 < σ3 < σ2 < σ1 < σ. For any constant ck > 0, we note that wk(x) = ck(Mχ
Ek

(x))α ∈
RHR

n

p , and that wk is essentially constant on σ1Qk+1 (since σQk+1 and Ek are disjoint) and
on σ1Qk\σ3Qk (since Ek ⊆ Qk). We choose c0 = 1, say, and then define ck inductively for
positive and negative k, in such a way that wk(x) ≈ rwk−1(y) for all x, y ∈ σ1Qk\σ3Qk, where
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r ∈ (0, 1) is to be specified shortly. We now define w(x) = wk(x) for all x ∈ σ2Qk\σ2Qk+1, and
all k.

We need to show that ‖w‖
p,Q

<∼ ‖w‖
p/2,Q

for all cubes Q. We first show that there exists

C > 0 (independent of r) such that

∀ j ∈ Z :

∫

σ2Qj\σ2Qj+1

wp ≤ Crp

∫

σ2Qj−1\σ2Qj

wp. (2.5)

To see this, we choose cubes {Rk}∞k=−∞ such that Rk ⊂ σ2Qk\σ3Qk and l(Rk) ≈ l(Qk). Since

wj , wj−1 ∈ RHR
n

p , we get

∫

σ2Qj\σ2Qj+1

wp ≤
∫

σ2Qj

wp
j ≈

∫

Rj

wp
j

≈ rp

∫

Rj

wp
j−1 ≤ rp

∫

σ2Qj−1

wp
j−1

≈ rp

∫

Rj−1

wp
j−1 ≤ rp

∫

σ2Qj−1\σ2Qj

wp,

as required. We now fix r ∈ (0, 1) so small that Crp < 1/2 in (2.5).

Given any cube Q, there exists k ∈ Z for which Q ⊂ σ2Qk−1 but Q 6⊂ σ2Qk. If Q ⊂
σ2Qk−1\σ3Qk, the desired Hölder inequality is immediate since then w(x) ≈ wk−1(x) for x ∈ Q.
Otherwise we note that Q ∩ (σ2Qk\σ3Qk) includes a cube Pk of sidelength comparable to that
of Qk. Thus,

∫

Q∩σ2Qk

wp/2 ≥
∫

Pk

wp/2 ≈
∫

Pk

w
p/2
k−1 ≈

∫

σ2Qk

w
p/2
k−1 ≥

∫

Q∩σ2Qk

w
p/2
k−1, (2.6)

and
∫

σ2Qk\σ2Qk+1

wp ≤
∫

σ2Qk

wp
k ≈

∫

Pk

wp
k ≈

∫

Pk

wp
k−1 (2.7)

It follows from (2.5), (2.7), and our choice of r that

∫

Q∩σ2Qk

wp <∼





∞
∑

j=0

2−j





∫

Pk

wp
k−1 ≤ 2

∫

Q∩σ2Qk

wp
k−1. (2.8)

Finally (2.6) and (2.8) imply

‖w‖
p,Q

<∼ ‖wk−1‖p,Q
<∼ ‖wk−1‖p/2,Q

<∼ ‖w‖
p/2,Q

,

which finishes the proof of (ii) (for I = R). The case I 6= R can be handled by a few easy
modifications to the above proof, so we omit the details. �

Let us pause to show the importance of the assumption σ > 1 in Lemma 2.3. If we instead
assume that σ = 1, leaving the other assumptions unchanged, the lemma is false in either of the
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two cases. In the following counterexamples, “w is approximately constant on a set Sk ⊂ R”
means that w(x) <∼ w(y) for almost all x, y ∈ Sk.

For the case of pairwise disjoint cubes, let n = 1, Qk = (k, k +1), and Ek = (k, k+2−k), for
all k ≥ 1. Suppose that a weight w with the required properties exists. Then w is approximately
constant on (k − 1/2, k) and on (k, k + 2−k). Also wp dx is a doubling measure and so w is
approximately constant on Ak = (k − 1/2, k + 2−k), for all k ≥ 1. Since Ak and Ak+1 are
approximately the same length, and each is contained in the 5-dilate of the other, we can use
doubling again to get that w(Ak) ≈ w(Ak+1), and so w is approximately constant on Ak∪Ak+1.
This contradicts the fact that, for large k, the approximate value of w on (k, k + 2−k) must be
much larger than its approximate value on (k + 1/2, k + 1), since the same is true of Mχ

Ek
.

In the nested cubes case, let n = 1, Qk = (−2−k, 2−k), and Ek = (2−k−1, 2−k−1 + 4−k−1),
and suppose that such a weight w exists. By considering Mχ

Ek−1
and Mχ

Ek
respectively, we

see that w is approximately constant on Ek−1 and on (3 · 2−k−2, 2−k). Hence, by doubling, it is
approximately constant on Ak = (3 ·2−k−2, 2−k +4−k). Again by doubling, w is approximately
constant on Ak ∪Ak+1, which contradicts the behaviour of Mχ

Ek
on (2−k−1, 2−k) ⊂ Qk\Qk+1.

3. Proof of Theorem 1.2

In view of the last statement in Theorem 1.2, we shall use C throughout this proof to refer
to any constant dependent only upon n, p, q, and the norms of the relevant weights in the
weight classes from which they are chosen (C may also depend on additional parameters such
as t, ε which, in turn, depend only on the aforementioned parameters).

We first show that the inclusion f ·Sp ⊂ WRHΩ
q leads to a contradiction if p < q. It suffices

to assume Sp = RHΩ
p . Let x0 be a point in the Lebesgue set of f q such that f q(x0) > 0. If

Ak = {x ∈ Rn | 2−k−1 < |x| ≤ 2−k}, the family of annuli F = {Ak}∞k=1 is regular in the sense
of Stein [8, section I.1.8], and so there exists k0 > 0 such that

∀ k ≥ k0 :
1

|Ak|

∫

Ak

fq(x0 + y) dy > f q(x0)/2.

We may also assume k0 to be large enough that {x : |x − x0| < 2−k0σ′} ⊂ Ω. Choosing α so
that n/q < α < n/p, we have w(x) ≡ |x − x0|−α ∈ RHR

n

p . However,

∫

{|x−x0|≤2−k0}

(fw)q =

∞
∑

k=k0

∫

Ak+x0

(fw)q ≥ C

(

∞
∑

k=k0

2(αq−n)k

)

fq(x0) = ∞

and so fw /∈ WRHΩ
q .

The proofs for part (ii) and the “if” direction in (i) were stated in [1], and their proofs are
essentially the same as the corresponding proofs for the “strong-strong” case which are given
there. Since their proofs are short, we include them here for completeness.

We first consider (ii). If f · S∞ ⊂ WRHΩ
q then f · 1 ∈ WRHΩ

q . Conversely, if f ∈ WRHΩ
q ,

w ∈ RHΩ
∞ ⊆ S∞, and Q is σ′-dilatable, then

‖fw‖
q,Q

≤ ‖f‖
q,Q

‖w‖
∞,Q

≤ C‖f‖
ε/2,σQ

‖w‖
∞,Q

≤ C‖fw‖
ε,σQ

‖w‖−1
−ε,σQ‖w‖

∞,Q
≤ C‖fw‖

ε,σQ
,
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as long as ε > 0 is sufficiently small. Thus fw ∈ WRHΩ
q .

As for the “if” part of (i), we first consider the case q < p. Fix 1 < σ < σ′ and suppose that

f ∈
⋂

r<s
WRHΩ

r , w ∈ RHΩ,loc
p . Thus w ∈ RHΩ,loc

tq for some t > p/q. Choose 0 < ε < q small

enough that ‖w‖
tq,Q

≤ C‖w‖
−ε,Q

for all σ′-dilatable Q. Since t > p/q, it follows that t′q < s,

and so using Hölder and reverse Hölder inequalities we get

‖fw‖
q,Q

≤ ‖w‖
tq,Q

‖f‖
t′q,Q

≤ C‖w‖
−ε,Q

‖f‖
ε/2,σQ

≤ C‖w‖
−ε,Q

‖fw‖
ε,σQ

‖w‖−1
−ε,σQ

≤ C‖fw‖
q,σQ

.

The case p = q now follows easily: if w ∈ RHΩ,loc
p , then w ∈ RHΩ,loc

t for some t > q, and

f · w ∈ WRHΩ
p since f ∈ WRHΩ

tp/(t−p).

It remains only to prove the main part of the theorem: the “only if” direction of (i). Here,
we can assume that q < p, since this case immediately implies the case q = p. Furthermore, if
the result is true for a particular choice of parameters (p, q), it is also true for the parameters
(p/t, q/t) for any t > 0. To see this, note that f · RHΩ

p ⊂ WRHΩ
q if and only if f t · RHΩ

p/t ⊂
WRHΩ

q/t, and f ∈ ⋂r<s WRHΩ
r if and only if f t ∈ ⋂r<u WRHΩ

r , where u = (p/t)(q/t)/(p/t −
q/t). This observation enables us to assume without loss of generality that 1 < p′ < q < p (and
so s > 1). Note also that we may assume f = f · 1 ∈ WRHΩ

q ⊂ WRHΩ
p′ .

Let us pause to motivate and outline the rest of the proof. First note that Lemma 2.1 says
roughly that f is a weak reverse Hölder weight if and only if the subset of a cube Q where f is
very big is uniformly controlled by the average size of f on 2Q. If f is not in the required reverse
Hölder class, this fact is equivalent to the existence of a sequence (referred to as a “T-sequence”
below, as it is given by a sequence of triples) of cubes Qk and subsets Ek on which the type
of control of Lemma 2.1(iv) is only true with constants C = Ck → ∞ (k → ∞). Our first step
is then to prove the result in the “Special Case” where we assume RHΩ

p (fw) is bounded by a

constant dependent on WRHΩ
q (w), but otherwise independent of w. An appropriate positive

power of Mχ
Ek

gives a sequence of weights wk such that RHΩ
p (wk) is uniformly bounded. wk

has the desirable property on Qk of being big where f is big, and small where f is small.
Consequently, we shall see that WRHΩ

p (fwk) is an unbounded sequence of numbers, finishing
this case.

Although the Special Case is completely contained in the later cases, proceeding in this
manner aids clarity since we shall be able to reduce most of the subsequent cases to situations
where a similar argument will clearly work. In order to eliminate the control assumption and
prove the full-strength result, the obvious plan is to patch together the weights wk so as to
create a single weight w ∈ RHΩ

p for which fw cannot be in WRHΩ
q (because examination of its

values on Qk gives a sequence of lower bounds for WRHΩ
q (fw) which tend to infinity as k does).

This plan has a snag: the cubes and subsets may have arbitrary sizes and overlaps to begin
with, and so the weights wk might not be suitable for being patched together. Consequently,
we split the argument into various cases, in each of which we make successive changes to our
T-sequence to create new T-sequences with more desirable properties until eventually we can
patch the associated weights together, or arrive at a contradiction through other means.
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Suppose, for the purposes of contradiction, that f /∈ WRHΩ
r1

for some 1 < r1 < s. Let us
fix r2 ∈ (r1, s) and suppose that 1 < σ < σ′. We define a T-sequence for f (with parameters σ,
σ′) to be any sequence of triples {(Qk, Ek, Rk)}∞k=1 where Qk is a σ′-dilatable cube, Ek ⊆ Qk,

∀k : f(x) ≥ Rk‖f‖1,σQk
on Ek (3.1)

and
∀k : |Ek|/|Qk| > kR−r2

k . (3.2)

Since f /∈ WRHΩ
r1

, Lemma 2.1 implies the existence of a T-sequence (for any 1 < σ < σ′): we
simply choose Ek = E(Rk, Qk; f, σ) for an appropriate sequence of counterexamples to 2.1(iv).
It immediately follows from (3.2) that Rk > 1, and that Rk → ∞ (k → ∞). Also note that any
subsequence of a T-sequence is also a T-sequence (a “T-subsequence”).

We shall often replace Ek by E′
k, some other subset of Qk for which (3.1) is valid and

which has some additional desirable property P . When we make such a change, there will
always be some ε > 0 for which |E ′

k|/|Ek| ≥ ε > 0, for all k. Thus, if N > 1/ε, then
{(QNk, E′

Nk, RNk)}∞k=1 is a T-sequence with property P , assuming that P is preserved by the
taking of a subsequence. In such a case, we may therefore assume that the original T-sequence
we chose had this extra property (thus avoiding the creation of many new names below for
derived T-sequences). Similarly, we may replace Qk by Q′

k ⊃ Qk if the following conditions are
true:

(i) |Qk|/|Q′
k| ≥ ε for some ε > 0,

(ii) (3.1) remains valid if we replace (Qk, Rk, σ) by (Q′
k, δRk, ν), for some δ > 0, ν > 1.

We shall use the term “subsequence argument” in future to refer to any arguments where we
alter Qk or Ek as above.

As the previous paragraph indicates, the “k” factor on the right-hand side of (3.2) is merely
a convenience to simplify subsequence arguments: it could be eliminated as long as one still
assumed that Rk → ∞. In fact in each case when we have finished constructing new T-sequences
with more desirable properties, our final step before constructing a weight will generally be
either to replace Ek by a subset of itself or to decrease Rk so that |Ek|/|Qk| = R−r2

k (note that
(3.1) remains true under either of these two operations).

We now finish the proof of (i) under the control assumption that, for fixed n, p, q, and f ,
WRHΩ

q (wf) is bounded by a constant dependent only on RHΩ
p (w), the case we shall refer to

as the Special Case. Let {(Qk, Ek, Rk)} be a T-sequence for f . We write σ1 =
√

σ and choose
E′

k ⊂ Ek so that ak ≡ |E′
k|/|Qk| = R−r2

k . Since x 7→ px/(p + x) is strictly increasing on (0,∞)
and r2 < s, we can choose δ > 0 so small that pr2/(p + r2(1 + δ)−2) < ps/(p + s) = q. If
wk = (Mχ

E′

k
)1/p(1+δ), then {RHR

n

p (wk)}∞k=1 is a bounded sequence.

By Hölder’s inequality and the boundedness of M on L1+δ, we get

‖wk‖p,σ1Qk
≤ ‖wk‖(1+δ)2p,σ1Qk

= ‖Mχ
E′

k
‖1/p(1+δ)
1+δ,σ1Qk

≤ Ca
1/p(1+δ)2

k ,

and, since f ∈ WRHΩ
p′ ,

‖fwk‖1,σ1Qk
≤ ‖f‖

p′,σ1Qk
‖wk‖p,σ1Qk

≤ Ca
1/p(1+δ)2

k ‖f‖
1,σQk

.
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Let us write ρk = Rka
−1/p(1+δ)2

k = R
(p+r2(1+δ)−2)/p
k , so 1 < ρk → ∞ (k → ∞). Since

fwk > Rk‖f‖1,σQk
on E′

k,

ρk ≤ C
minE′

k
fwk

‖fwk‖1,σ1Qk

.

Therefore, E(Cρk, Qk; fwk, σ1) ⊃ E′
k and so

∀k :
|E(Cρk, Qk; fwk, σ1)|

|Qk|
≥ ak = ρ

−pr2/(p+r2(1+δ)−2)
k > ρ−q

k . (3.3)

It follows that {WRHΩ
q (fwk)} cannot be a bounded sequence since 2.1(iv) and the comments

preceding that lemma would then imply that Rq|E(R, Q; fwk, σ1)|/|Q| tends to zero as R → ∞,
uniformly over all cubes Q and all k. Since {WRHΩ

q (fwk)} is unbounded but {RHΩ
p (wk)}∞k=1

is bounded, we have arrived at a contradiction to our control assumption.

We now wish to create a single weight w so as to eliminate the control assumption. Let
S = {σQk}∞k=1. If the cubes in S are pairwise disjoint for any σ > 1, Lemma 2.3(i) produces
such a weight by patching together the weights wk above. Suppose therefore that the cubes
in S are not pairwise disjoint. We call σQj isolated (with respect to S) if σQj intersects only
finitely many other cubes in S. If S has infinitely many isolated cubes, we can construct a
pairwise disjoint subsequence (let k1 be the index of the first isolated cube, and inductively
let kj+1 be the first index larger than kj of an isolated cube which does not intersect any of
the previous cubes in the subsequence). Lemma 2.3(i) can then be applied to the associated
T-subsequence.

Thus we may assume that there are only finitely many isolated cubes in S, and that the
same is true for any subsequence of S. We may in fact assume that the cubes σQk are pairwise
intersecting. To justify the latter assumption, we need to prove that there is a subsequence
{σQkj

}∞j=1 of S with this property. To see this, let k1 be the index of the first non-isolated cube.
Eliminating σQk1

and all cubes which do not intersect σQk1
, we are left with a subsequence

which we will name {Pk}. There are only finitely many isolated cubes in this subsequence, so
suppose that Pl is the first non-isolated cube. We let k2 be the index in the original sequence of
the cube Pl, and then eliminate from this subsequence Pl and all cubes which do not intersect
it. Continuing this process, we get the required subsequence.

We now divide the problem into three main cases, characterised by whether l(Qk) remains
roughly constant, tends to 0, or tends to ∞ (by taking a subsequence, we can always get one
of these types). We assume that σ′ = 10, σ = 2 and σ1 =

√
σ throughout.

Case 1: {l(Qk)} is bounded above and below.
Since the cubes {2Qk} are pairwise intersecting, it follows that {Qk} is compactly supported

in Ω. By choosing a subsequence if necessary, we can assume that the vertices of Qk converge
to the corresponding vertices of some fixed cube Q∞. Choosing t ∈ (1, 2) so close to 1 that
f(σtQ∞)/2 ≤ f(σQ∞) ≤ 2f((σ/t)Q∞), we may assume that (1/t)Q∞ ⊂ Qk ⊂ tQ∞ for all k.
By a subsequence argument, we may assume that all our cubes Qk are the same 5-dilatable
cube Q = tQ∞. We may also assume that Rk+1/Rk > 41/r2 for all k, and normalise f so
that ‖f‖

1,σQ
= 1. Let E′

k ⊂ Ek be such that |E′
k|/|Q| = R−r2

k , and let Dk = E′
k\
⋃

j>k E′
j
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(so that |Dk| > |E′
k|/2). We choose δ > 0 so small that pr2/(p + r2(1 + δ)−3) < q. Letting

r3 = r2(1 + δ)−2, and v =
∞
∑

k=1

Rr3

k
χ

Dk
, we note that w = (Mv)1/p(1+δ) ∈ RHΩ

p . Also,

‖w‖
p,σ1Q

≤ ‖w‖
p(1+δ)2,σ1Q

= ‖Mv‖1/p(1+δ)
1+δ,σ1Q ≤ C‖v‖1/p(1+δ)

1+δ,σ1Q ≤ C

Since fw > R
1+r3/p(1+δ)
k ≡ ρk on Dk, it follows as in the Special Case that

2|E(Cρk, Q; fw, σ1)|/|Q| ≥ 2|Dk|/|Q| > R−r2

k = ρ
−r2p/(p+r2(1+δ)−3)
k > ρ−q

k .

Lemma 2.1 now gives the required contradiction.

Case 2: l(Qk) → 0 (k → ∞).
Clearly, we may assume that l(Qk+1) < l(Qk)/100. Although σ = 2, we may actually

assume that the cubes {σ2Qk} are pairwise intersecting, where σ2 = 11/10. This is because a
T-sequence with parameters σ, σ′ has a subsequence which is a T-sequence with parameters
σ2, σ′ (simply decrease each Rk by a factor σn/σn

2 , and recover (3.2) by taking the subsequence
consisting of every Nth triple for appropriately large N). As before, one can extract either a
pairwise disjoint or a pairwise intersecting subsequence of the associated subsequence of {σ2Qk};
we have, of course, already handled the former case.

Since the cubes {σ2Qk} are now assumed to be pairwise intersecting, it follows that σ3Qk ⊃
2(σ3Qk+1), where σ3 = 6/5. Also, {(σ3QNk, ENk, RNk)}∞k=1 is a T-sequence with parameters
σ/σ3 and σ′/σ3, where N is any integer greater than σn

3 . Thus if we take σ/σ3 and σ′/σ3 as
the parameters of our original T-sequence, we may assume that 2Qk+1 ⊂ Qk, for all k ≥ 1.

We may further assume, by induction, that l(Qk) decreases fast enough that |Ek\2Qk+1| ≥
|Ek|/2. Replacing Ek by Ek\2Qk+1, a subsequence argument gives us a new T-sequence; thus
we may assume that Ek and 2Qk+1 are disjoint. As before, we now choose a subset E ′

k of

Ek such that |E′
k|/|Qk| = R−r2

k . We apply Lemma 2.3(ii) to produce a weight w such that

w(x) ≈ ck

(

Mχ
E′

k
(x)
)1/p(1+δ)

for x ∈ Qk\2Qk+1. Clearly, Qk contains a cube Pk disjoint

from 2Qk+1 and of sidelength at least l(Qk)/3. Let us write σ4 =
√

σ/σ3. Using the doubling
property of wp, we see that

‖w‖
p,σ4Qk

≤ C‖w‖
p,Pk

≤ C

∥

∥

∥

∥

ck

(

Mχ
E′

k

)1/p(1+δ)
∥

∥

∥

∥ p,Pk

≤ Cck‖Mχ
E′

k
‖1/p(1+δ)
1+δ,Pk

≤ Cck (|E′
k|/|Qk|)1/p(1+δ)2

.

This case can now be finished as in the Special Case.

Case 3: l(Qk) → ∞ (k → ∞).
As in Case 2, we may assume that 2Qk ⊂ Qk+1 for all k ≥ 1 if we change the parameters

of the T-sequence to σ/σ3 and σ′/σ3. We write σ4 =
√

σ/σ3. If, for all k ≥ 1, |Ek+1\2Qk| ≥
|Ek+1|/2, we simply apply Lemma 2.3(ii), as in Case 2. If we cannot make such an assumption,
even by taking a subsequence, there must exist k0 such that for k ≥ k0, |Ek\2Qk0

| < |Ek|/2.
Replacing Ek by Ek ∩ 2Qk0

, a subsequence argument allows us to assume that Ek ⊂ Q1, for
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all k ≥ 1; in particular |Ek| is bounded above. By again taking a subsequence, we may assume
that {|Ek|} is either bounded away from 0, or has limit 0.

Subcase 3a: |Ek| ≥ ε > 0 for all k.
We normalise f so that ‖f‖

1,σQ1
= 1. Since h(t) = |E(t, Q1; f, σ)| is decreasing and upper

semicontinuous on (0,∞), there exists t0 > 0 such that

h(t) ≥ ε, t ≤ t0

h(t) < ε, t > t0.

Writing E = E(t0, Q1; f, σ), we have t0 = inf
x∈E

f(x) ≥ inf
x∈Ek

f(x) for all k, and so by a subse-

quence argument, we may assume that Ek = E for all k. Letting w(x) = (Mχ
E(x))

1/p(1+δ)
,

we see that
‖w‖

p,σ4Qk
≤ Ca

1/p(1+δ)2

k , where ak = |E|/|Qk|.

We replace Rk by R′
k = a

−1/r2

k , noting that {R′
k} is a sequence tending to infinity and that

R′
k ≤ Rk (so (3.1) remains true when we replace Rk by R′

k). The proof is finished as in the
Special Case (w, E, and R′

k play the roles of wk, E′
k and Rk respectively).

Subcase 3b: |Ek| → 0 (k → ∞).
Here we may assume that |Ek+1| < |Ek|/4 for all k. Let us choose δ > 0 so small that

pr2/(p + r2(1 + δ)−3) < q. We define Dk = Ek\
⋃

j>k Ej, v =
∑∞

k=1 (|Q1|/|Dk|)1/(1+δ)2 χ
Dk

,

and w = (Mv)1/p(1+δ). Clearly |Dk| ≥ 2|Ek|/3 and so |Dk| > 3|Dk+1|. We write ak = |Dk|/|Qk|
and replace Rk by R′

k = a
−1/r2

k ; again R′
k < Rk (for k > 1) and R′

k → ∞ (k → ∞). Therefore

‖w‖p(1+δ)2

p,σ4Qk
≤ ‖v‖1+δ

1+δ,σ4Qk
≤ C





1

|Qk|

∞
∑

j=1

|Q1|1/(1+δ)|Dj |δ/(1+δ)





≤ C
|Q1|
|Qk|

( |D1|
|Q1|

)δ/(1+δ)

≤ C
|Q1|
|Qk|

.

If x ∈ Dk, we get as before that

f(x)w(x) > R′
k (|Q1|/|Dk|)1/p(1+δ)3 ‖f‖

1,σ3Qk

≥ CR′
k (|Q1|/|Dk|)1/p(1+δ)3

(|Qk|/|Q1|)1/p(1+δ)2 ‖fw‖
1,σ4Qk

≥ CR′
k (|Qk|/|Dk|)1/p(1+δ)3 ‖fw‖

1,σ4Qk
.

Letting ρk = R′
ka

−1/p(1+δ)3

k = a
−[p+r2(1+δ)−3]/pr2

k , we see that for k ≥ 2,

|E(Cρk, Qk; fw, σ4)| ≥ ak = ρ
−pr2/(p+r2(1+δ)−3)
k ≥ ρ−q

k .

Lemma 2.1 now gives the required contradiction. �
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