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Abstract—Recent developments in wave energy con-
verter (WEC) control include robust control strate-
gies, which admit a level of uncertainty in the model
description. Then, for the application of such control
methods, some knowledge of the uncertainty bounds is
initially required. As recently shown in the literature,
some approaches for uncertainty quantification can lead
to scenarios where, due to uncertainty quantification,
the passivity of the WEC model is not guaranteed
and, consequently, the optimisation required to capture
most of the available energy cannot be successfully
performed. Such approaches can generate significant
performance losses. Thus, in this study, a passivisation
methodology to extend the applicability of spectral
control approaches is presented. The benefit of the
presented approach, relative to previous results, is
shown with an application case.

Index Terms—Wave energy; Energy maximising con-
trol; WEC systems; Spectral Methods; Passivisation

I. Introduction
The operation of wave energy converters (WECs) in

realistic environments involves dynamics of the different
conversion stages and complex fluid-structure interactions,
posing considerable uncertainty in device modelling. In
particular, the fact that, in controlled WECs, the dynamic
range of motion is considerably exaggerated, adds a signif-
icant uncertainty source to the model description, mainly
when linearity assumptions, as generally used in the WEC
field, are challenged. Thus, efficiently handling of WEC
model uncertainty, due to non-linearity or other unmod-
elled dynamics, represents a key factor in the development
of effective control strategies. Conversely, neglecting such
system uncertainties negatively impacts on the resulting
control performance.

Sensitivity and robustness issues, due to a number
of different hydrodynamical sources, have been recently
reported in the literature for control of WEC systems
[1]–[5], with important consequences [6]. Robust energy
maximising control strategies, based on spectral methods
and moment-matching theory, are presented in [1] and
[2], respectively, assuming uncertainty in the model. Using
computational fluid dynamics (CFD), the estimation of
numerical uncertainty for a point absorber with a passive

controller is studied in [4]. Furthermore, in [3], using
the robust control strategy presented in [1], a complete
study of uncertainty estimation, is presented, particularly
focusing on passivity issues related to uncertainty quan-
tification. Similarly to [4], CFD-based simulations are also
used in [3] for uncertainty boundary estimation in the
application case. The interested reader is referred to [5]
for a further study related to uncertainty analysis.
For energy maximisation control problems, uncertainty

or non-linearity in the device model can occur, and even be
magnified, as the device motion is exaggerated by control
action. Thus, a clear modelling paradox [7] is established
between control objectives and models used for control
design. In addition, in terms of model uncertainty, the
selection of a suitable nominal model (NM) will also posi-
tively impact on the resulting control performance [3]. To
effectively articulate uncertainty and non-linearities, CFD
represents a fully non-linear hydrodynamic description of
WECs, based on solving the Navier-Stokes equations, for
the analysis of fluid behaviour.
Within this context, as shown in [3], where the re-

sults presented in [1] are implemented, with an added
uncertainty quantification study, critical passivity issues
can arise from the analysis and estimation of uncertainty
sets in WEC systems. However, even when the uncer-
tainty boundaries are determined from experimental or
high fidelity simulations, these boundaries can contain
cases where passivity is not fully satisfied. Thus, in [3],
to achieve the implementation of spectral-based control
methodologies, the spectral components that violate pas-
sivity requirements are removed. However, this spectral-
component suppression negatively impacts on the result-
ing performance, since the power sources related to those
neglected spectral components do not contribute to the
final performance.
Considering the passivity issues related to uncertainty

estimation procedures, a passivisation methodology is pre-
sented in this study. Furthermore, considering that ro-
bust methodologies based on spectral/pseudospectral and
moment-matching methods [1], [2] can lead to predom-
inantly conservative scenarios, a practical conservatism



relaxation is also employed to provide a degree of passivi-
sation design freedom. Thus, this study aims to extend
the applicability of existing energy maximising control
strategies in those cases where, due to the inexact esti-
mation of uncertainty region, there are obstacles for the
application of the control methods. In addition, based
on WEC motion data generated using CDF-based sim-
ulations, the presented passivisation procedure is shown
with an application case, highlighting the benefit of the
presented methodology, in contrast with existing results
available in the literature [3]. From a general perspective,
the presented passivisation method can deal with those
spectral components that would be excluded with stan-
dard approaches [1], [2].

The remainder of this paper is organised as follows. The
basics of WEC dynamics, and its corresponding objective
function, in terms of energy maximisation, is introduced in
Section II. The basics of spectral/pseudospectral methods
for the nominal and robust cases are briefly recalled in
Sections III-A and III-B, respectively. The main core
of the proposed methodology, with a discussion on the
selection of the NM from an uncertainty perspective, is
presented in Section IV. The application case is shown in
Section V. Finally, conclusions on the overall application
of the proposed methodology are provided in Section VI.

II. WEC model and Objective Function
A. WEC Model

WEC models, considered for the control problems, are
typically based on a linear hydrodynamic formulation,
known as Cummins equation. Under the assumption of an
inviscid fluid and irrotational and incompressible incident
flow, the equation of motion for a WEC, in terms of
Cummins equation [8], can be expressed as:

(M +m∞)ẍp(t) + ẋp(t) ∗ hr(t) + shxp(t) = fex(t) + fu(t), (1)

where ∗ denotes the convolution operator, xp(t), ẋp(t) =
v(t) and ẍp(t) are the WEC position, velocity, and acceler-
ation, respectively; M is the mass of the oscillating body,
and m∞ the added mass at infinite frequency; hr(t) is the
radiation force impulse response; and sh is hydrodynamic
stiffness, related to the buoyancy force. Additionally, in
Eq. (1), fex(t) is the wave excitation force, produced by the
action of incoming waves, and fu(t) represents the control
force applied through the power take-off (PTO) system.
The interested reader is referred to [9] for a comprehensive
description of WEC dynamics.

B. Energy Absorption: Objective Function
The useful absorbed energy over the time interval[

0 T
]
, T > 0 can be calculated as follows:

J ≡ E = −
∫ T

0
Pdt = −

∫ T

0
vᵀ(t)fu(t)dt. (2)

where E represents the absorbed energy, P the instanta-
neous power, and fu(t) and v(t) = ẋp(t) are defined in

Eq. (1). From a general perspective, the control problem
consists of obtaining the PTO control force fu(t) that
maximises the objective function J , defined in Eq. (2),
subject to the equation of motion, in Eq. (1), and a set of
physical constraints C.

III. Energy Maximising Control of WECs with
Spectral/Pseudospectral Methods

In this section, the basics of spectral/pseudospectral
methods are briefly discussed. The interested reader is
referred to [1] and [10] for a comprehensive discussion
on this family of energy maximising control methods.
Spectral/speudospectral methods are utilised to discretise,
in the spectral domain, the energy maximising problem
stated in Eq. (2). Thus, these methods approximate the
states, control variables, and inputs, in an N -dimensional
vector space, with a linear combination of orthogonal
basis functions Φ(t). Then, using spectral/speudospectral
methods, the nominal WEC force-to-velocity mapping,
Go, is described as an algebraic relationship, instead of the
integro-differential description stated in Eq. (1). Further-
more, the basis functions are chosen such that the force-
to-velocity mapping, Go, is defined as a block diagonal
matrix comprised with the real and imaginary parts of
the force-to-velocity frequency response [10].

A. Nominal Case

The application of spectral/pseudospectral approxima-
tions to the objective function J results in:

J ≈ JN =
∫ T

0
ûᵀΦᵀ(t)Φ(t)v̂ = −T2 ûᵀv̂, (3)

where the vectors ûᵀ and v̂ represent the spectrally dis-
cretised versions of the control input and device velocity,
respectively, i.e. v(t) ≈ Φ(t)v̂ and fu(t) ≈ Φ(t)û. Then,
the following algebraic equality is obtained:

JN = −T2 ûᵀGo(û + ê), (4)

with ê the spectral discretisation of fex(t) and v̂ =
Go (û + ê). Thus, Eq. (4) is a quadratic function in the
control variable û. In order to guarantee the existence of
a unique maximum value for the objective function of the
WEC, the system must be passive, i.e. its transfer function
should be positive real [11]. When the optimal solution
of the problem expressed in Eq. (4) is guaranteed, the
optimal control problem can be restated as:

û?
o ← max

∀ûo∈RN
JN

s.t. C
, (5)

where û?
o denotes the optimal solution of the optimisation

problem and C a set of constraints, generally defined in
terms of motion or actuator limits.



B. Robust Case
The spectral/pseudospectral methods discussed in Sec-

tion III-A are based on a precise description of the system.
To proceed with the robust approach [1], a real system is
described using the NM and an uncertainty set. The real
system can be defined using an additive perturbation, ∆a,
which takes the following form:

∆a =
N/2⊕
k=1

[
δR

k δI
k

−δI
k δR

k

]
, (6)

where ∆a ∈ Rn is a block diagonal matrix and the symbol⊕
denotes the direct sum of n matrices, i.e.

⊕n
i=1 Ai =

diag{A1, A2, · · · , An}. Then, objective function JN , de-
fined for the nominal case in Eq. (4), is redefined for the
robust case as:

JN = −T2 ûᵀ (Go + ∆a) (û + ê). (7)

Particularly, for the Fourier basis,

g(jωk) = go(jωk) + δk ⇔ δk = g(jωk)− go(jωk),

where δk ∈ C represents the uncertainty level at the
frequency ωk with δR

k = Re{δk} and δI
k = Im{δk}.

Using the feasibility condition defined in [1] (in
Eq. (16)), and defining the best worst-case performance
(WCP) solution as the input that minimises the per-
formance degradation when the system under study is
affected by a bounded uncertainty set ∆a, the robust
control problem statement can be defined as:

û?
r ← max

ûr∈RN
min

∆a∈U
JN

s.t. C
. (8)

Eq. (8) describes a minimax problem, where U indi-
cates the set of all possible uncertainties. The problem
in Eq. (8), originally presented in [1], can be solved
using general purpose optimisation toolboxes for minimax
problems. It should be noted that, for the application
of the control strategy presented in [1], the passivity
of the complete family of models, is assumed, which is
indicated in [1] as a feasibility condition. However, when
the uncertainty bounds are estimated from experimen-
tal (or simulated) data, the passivity condition is not
necessarily fulfilled for all the spectral components ωk,
for two reasons. Firstly, due to practical issues, such as
numerical errors or non-linear behaviour, the location of
some spectral components may violate the passivity of the
system. Consequently, due to the obtained experimental
data, the nominal description of the model will not satisfy
the passivity requirement. Secondly, due to the uncertainty
quantification procedure, some boundaries can be, at least
partially contained in the left-hand plane (LHP), which
generates a passivity violation. Thus, in both cases, the
control approach presented in [1] cannot be applied, as
discussed in [3].

Fig. 1. (a) passivisation of the NM (b) passivisation of the uncer-
tainty set.

IV. Practical issues: Passivisation and NM

As discussed in Section III-B, there are practical issues
that can arise from an uncertainty quantification process,
and, consequently, critical implementation obstacles are
obtained. Within this framework, two potential scenarios
are possible. The first scenario is when the obtained nom-
inal representation of the WEC system does not fulfil the
passivity condition. The second scenario is obtained when
the uncertainty structure, quantified using the geometrical
structures suggested in [1] and [2], does not satisfy the fea-
sibility condition in [1], for at least one (or more) spectral
component. To deal with these two scenarios, the proposed
methodology is described in Sections IV-A1 and IV-A2,
while a brief discussion about practical issues that arise
from the NM definition, is provided in Section IV-B, from
the perspective of control-oriented models and uncertainty
quantification.

A. Passivisation Methodology

To overcome the issues articulated in Sections III-B and
IV, two main practical considerations are examined in this
section. The proposed procedure is essentially described
in Figs. 1(a) and (b), where the two situations covered
in this study, detailed in Sections IV-A1 and IV-A2, are
depicted. It is important to take into account that the
presented methodology, must be finally validated using
the experimental data. Thus, the proposed method, which
indirectly aims to relax the intrinsic conservatism of the
aforementioned control strategies [1], [2], requires final
validation, based on simulations.
1) NM Rectification: The first situation results when

the defined NM is, at least, partially contained in the
LHP, as shown in Fig. 1(a), indicated by red dots. In
this case, the presented model rectification methodology
proposes to shift the spectral components contained in the
LHP to the right-half plane (RHP), to fulfil the passivity
requirement. Then, for a particular spectral component,
this rectification procedure, which essentially redefines the
real part of the NM, Rk

o , related to the k − th spectral
component, ωk, can be described by:

R̃o
k =

{
Ro

k if Ro
k > 0

ε if Ro
k ≤ 0 , (9)



which, by way of example, is indicated using the green
dots in Fig. 1(a), for ωk ∈ {ωj} with j = i+1, . . . , i+4. In
addition, as indicated for Eq. (9), an infinitesimal margin
0 < ε, required for numerical reasons in the computation
of the control input, is also considered in Eq. (9).
2) Uncertainty Boundaries Correction: The second sit-

uation, which, as described before, is obtained when the
uncertainty structures are not entirely contained in the
RHP, is depicted in Fig. 1(b) for a given spectral com-
ponent, ωj , using circular boundaries. It is important
to note that the essence of the presented passivisation
methodology is described, without loss of generality, in
Fig. 1(b), even though a circular boundary case is used in
Fig. 1(b). Thus, the presented passivisation methodology
aims to rectify those uncertainty areas, which violate
the passivity condition, forcing these regions to be fully
contained in the RHP, while the uncertainty geometry is
preserved. This passivisation procedure can be described,
for the circular case, as:

C̃k ←
{

ρ̃k = ρ̄k if ρ̄k > |R̃o
k|

ρ̃k = R̃o
k − ε if ρ̄k ≤ |R̃o

k|
, (10)

where each radius ρ̄k, related to a spectral component
ωk, which does not satisfy the passivity condition for the
complete family of models, is corrected, preserving its
center and structure, using a radius ρ̃k. Then, a rectified
uncertainty structure C̃k, which fully guarantees passivity,
is obtained. In Fig. 1(b), by way of example, the passivi-
sation procedure, applied to a circular uncertainty region,
defined by the spectral component ωj and its radius ρ̄R

j ,
indicated with a red circle, is shown. Thus, the resulting
rectified uncertainty region is indicated in Fig. 1(b), using
a green circle and a radius ρ̄r

j , where, similarly to Eq. (9),
an infinitesimal margin 0 < ε has been also considered in
Eq. (10).

B. Practical Considerations in the NM Definition
The definition of a suitable control-oriented NM repre-

sents a key driver for achieving satisfactory performance
levels in general control problems. In general paramet-
ric model-based robust control strategies, the initial un-
certainty reduction is targeted at the definition of the
empirical-transfer function estimated (ETFE), used for
the computation of the NM. With the aim of reducing the
associated uncertainty level, the circles of minimum radius,
that contain all experiments for each spectral component,
are considered in [3], and also in the application case of
this study, in Section V.

V. Application Case
The considered numerical CFD setup, also used in [3],

is detailed in Figs. 2(a) and 2(b), where the WEC and
tank (side view) dimensions are detailed, respectively. The
mass of the WEC system is 43.67 kg. Further details of
the numerical setup can be found in [3]. Fully non-linear
hydrodynamic simulation of the device is implemented

using the open-source CFD toolbox OpenFOAM [12]. The
application case is addressed in different stages, as shown
in the following.

Fig. 2. Schematic of the (a) WEC structure and (b) numerical wave
tank (side view).

A. WEC System Characterisation: NM
In a first experimental stage, a description of the WEC

system is obtained. Thus, a set of chirp-up experiments,
each one indicated in this study using the index i, is
performed. It is important to note that, in these tests, the
device motion is solely driven by the control force fu(t);
i.e. fex(t) = 0. The amplitude of each control force signal,
f i

u(t), is contained in Ai ∈ {10, 20, 40, 50, 60} N, and a
linear frequency variation rate from 1 to 20 rad

s is used,
while, to minimise reflection effects in the numerical wave
tank, a 25 s time-length is employed for each experiment.
Thus, while each chirp-up control force signal, f i

u(t), is ap-
plied, the corresponding WEC velocity, vi(t), is measured
as the output of the system. Then, the force-to-velocity
mapping, required for the controller computation [9], is
obtained. Thus, a set of ETFEs is computed as follows:

Gi(ω) = V i(ω)
F i

u(ω)
, with ω ∈ Ω ⊆ [1, 20], (11)

where V i(ω) and F i
u(ω) denote the Fourier transform of

f i
u(t) and vi(t), respectively, and Ω the frequency domain.

B. Wave Excitation Force
In the second experimental stage, wave excitation force

tests are run in the CFD environment, where the WEC
is exposed to irregular incident waves, taken from a
JONSWAP spectrum with a significant wave height of
Hs = 0.1 m, peak period Tp = 1.94 s, and steepness
parameter λ = 3.3. This simulation condition repre-
sents a scaled version of a realistic operation scenario
in the full scale device. To obtain a measure of the
wave excitation force, fex(t), a fixed-body experiment is
run [3]. Thus, a Fourier set of basis functions, given by
Φ(t) =

[
cos(ω1t) sin(ω1t) · · · cos(ω63t) sin(ω63t)

]
,

where the frequency vector, ωk = 0.0642k + 2.3446 with
k = 1, 2, . . . , 63, is empirically determined to achieve
over a 95% accuracy in the spectral wave excitation force
approximation, f̃ex(t), while keeping a low level of burden.



Fig. 3. (a) Experimental and approximated wave excitation force.
(b) PSD of the CFD-based and synthetic fex(t) signals.

The obtained wave excitation force, fex(t), and its approx-
imation, f̃ex(t), are shown in Fig. 3(a) using dotted-blue
and solid-orange lines, respectively. In addition, the power
spectral density (PSD) of fex(t) is shown in Fig. 3(b),
using a deep-blue-solid line. Considering the CFD-based
fex(t), synthetically generated wave excitation force sig-
nals are employed to extend the statistical consistency
of the results presented in Section V-E. The PSD of
synthetically generated wave excitation force signals, are
shown using light-blue-solid lines in Fig. 3(b).

C. NM Definition and Uncertainty Quantification
As in [3], the NM, used for the controller computation,

is defined with the aim of minimising the uncertainty
magnitude. To this end, over the frequency domain, Ω,
used to describe the ETFEs defined in Eq. (11), for each
single frequency ω? ∈ Ω the circle of minimum radius that
contains the ETFEs, defined in Eq. (11), is computed.
The center of each minimum radius circle, (Ro

k, Io
k), where

k = 1, . . . , 63 indicates the particular spectral component,
is used to define the NM Go and, in terms of an additive
structure, the uncertainty set U . The interested reader is
referred to [3] for further details about the definition of
the NM.

D. Uncertainty Quantification Issues and Passivisation
In Fig. 4, the results of the ETFEs, Gi(ω), expressed in

Eq. (11), are shown in the complex plane (Nyquist plot),
using coloured-dotted lines. It is important to note that,
even before approaching an analysis of the results, in an
ideal situation the LHP of Fig. 4 should be completely
clear. To highlight potential passivity issues obtained
in the application of standard uncertainty quantification
approaches, it can be noted that, for instance, G1(ω),
denoted using dotted-blue line in Fig. 4, is partially con-
tained in the LHP. Similarly, the NM Go(ω), denoted
in Fig. 4 with a deep-grey-solid line, is also partially
contained in the LHP. Analogously, the uncertainty set U ,
denoted in Fig. 4 using grey circles, is partially contained
in the LHP. Note that, in Fig. 4, the uncertainty set is
shown considering the frequency set required to spectrally

Fig. 4. Nyquist plot of the ETFEs, the NM, its corresponding
uncertainty set, passivated NM, and its corresponding passivated
uncertainty set.

describe fex(t), as discussed in Section V-B. Then, in
Fig. 4, following the passivisation methodology described
in Section IV, the rectified NM, G̃o(ω), and uncertainty
set, Ũ , are shown using a dashed-red line and red-circles,
respectively, both fully contained in the RHP.

E. Performance Results
To asses the performance of the presented passivisation

method, the results presented in [3] are primarily con-
sidered as a benchmark. In [3], a similar experimental
setup has been considered. However, in the light of the
limitations described in Section V-D, the solution pre-
sented in [3] proposes to avoid those spectral components
that do not guarantee the passivity condition for the
complete family of models. In contrast, in this study,
by means of the presented passivisation methodology,
those components are considered. Thus, considering the
WCP, three assessment scenarios are proposed. Scenario
1: Go(ω) and U , are considered. A nominal, û?

0 , and,
considering circular boundaries, robust û?

r control inputs
are computed; Scenario 2: G̃o(ω) and Ũ are considered.
A nominal, û?

0 , and, considering circular boundaries,
robust û?

r control inputs are computed; Scenario 3: Each
ETFE, Gi(ω), is considered. Using the nominal û?

0, and
the robust û?

r control inputs computed for Scenario 2,
the resulting performance is assessed. In each scenario,
each control input is applied to the complete considered
family of models.
In Fig. 5, using the WCP, the assessment results for

Scenarios 1, 2, and 3 are shown, where the results obtained



Fig. 5. Performance assessment results for the considered scenarios.

using the synthetically generated wave excitation forces
are depicted using light-coloured lines, while the obtained
results using the CFD-based wave excitation force is de-
picted using deep-coloured lines. In Fig. 5, the model
that produces the WCP, within the corresponding family
of models, is indicated as Gwcp. Due to the non-passive
conditions in Scenario 1, which represents the results of
applying the spectral control methods even under non-
passive conditions, the resulting absorbed energy is nega-
tive. This negative performance results as a consequence
of the violation of the required passivity conditions, due
to the use of the NM Go(ω) and the uncertainty set U .
When the passivisation approach is applied in the second
scenario, the absorbed energy is positive in the WCP case.
In Scenario 3, which employs the presented passivisation
strategy, the absorbed energy, in practical terms, is zero,
while with the application of the nominal approach the
absorbed energy is negative. Thus, in a realistic scenario,
the WCP will be contained between the results shown for
Scenarios 2 and 3. Then, using the presented passivisation
methodology in a realistic scenario, i.e. not necessarily
the WCP, the absorbed energy will be greater than zero.
Within this context, it is important to take into account
that, in [3], where the invalid (i.e. non-passive) frequency
components have been omitted, absorbed energy of the
order of 3 J over 100 s is achieved. From a simple compar-
ison between the results in [3] and those presented here, it
is straightforward to note that the inclusion of the extra
passivised spectral components significantly extends the
available energy for power production, while the risk of
generating negative power values is virtually reduced to
zero.

VI. Conclusion
In this study, a passivisation strategy for energy max-

imising control for WEC systems is presented. This strat-
egy is essentially based on a-priori knowledge of the sys-
tem, primarily the natural passivity of WEC systems and
existing spectral control strategies. The results obtained in
the case study show that by using the presented methodol-
ogy, in comparison with available results in the literature,
the absorbed energy can be significantly extended.
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