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Abstract During an adaptive immune response, lymphocytes proliferate for five to twenty five cell
divisions, then stop and die over a period of weeks. Based on extensive flow cytometry data, Hawkins
et al. (PNAS, 2007, 104, 5032–5037) introduced a cell-level stochastic model of lymphocyte population
dynamics, called the Cyton Model, that accurately captures mean lymphocyte population size as a
function of time. In Subramanian et al. (J. Math. Biol., 2008, 56:6, 861–892), we performed a branching
process analysis of the Cyton Model and deduced from parameterizations for in vitro and in vivo data
that the immune response is predictable despite each cell’s fate being highly variable.

One drawback of flow cytometry data is that individual cells cannot be tracked, so that it is not
possible to investigate dependencies in the fate of cells within family trees. In the absence of this in-
formation, while the Cyton Model abandons one of the usual assumptions of branching processes (the
independence of lifetime and progeny number), it adopts another of the standard branching processes
hypotheses: that the fates of progeny are stochastically independent. However, new experimental ob-
servations of lymphocytes show that the fates of cells in the same family tree are not stochastically
independent. Hawkins et al. (2008, submitted for publication) report on ciné lapse photography ex-
periments where every founding cell’s family tree is recorded for a system of proliferating lymphocytes
responding to a mitogenic stimulus. Data from these experiments demonstrate that the death-or-
division fates of collaterally consanguineous cells (those in the same generation within a founding
cell’s family tree) are strongly correlated, while there is little correlation between cells of distinct
generations and between cells in distinct family trees.

As this finding contrasts with one of the assumptions of the Cyton Model, in this paper we introduce
three variants of the Cyton Model with increasing levels of collaterally consanguineous correlation
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structure to incorporate these new found dependencies. We investigate their impact on the predicted
expected variability of cell population size. Mathematically we conclude that while the introduction
of correlation structure leaves the mean population size unchanged from the Cyton Model, the vari-
ance of the population size distribution is typically larger. Biologically, through comparison of model
predictions for Cyton Model parameterizations determined by in vitro and in vivo experiments, we
deduce that if collaterally consanguineous correlation extends beyond cousins, then the immune re-
sponse is less predictable than would be concluded from the original Cyton Model. That is, some
of the variability seen in data that we previously attributed to experimental error could be due to
intrinsic variability in the cell population size dynamics.

1 Introduction

Advances in flow cytometry and the introduction of techniques for following cell division by labeling
with the fluorescent dye carboxyfluorescein succinimidyl ester (CFSE) have enabled the collection
of experimental data on the kinetics of lymphocyte division progression and cell survival [1][2]. For
example, the series of papers [3][4][5][6][7] report on extensive in vitro experiments on the behavior
of purified näıve lymphocytes exposed to a mitogenic stimulus. Starting with a collection of founding
lymphocytes, these techniques enable the determination of the number of cells alive as a function
of time and identify the distribution of cell generation number. Data gathered in these experiments
suggests that each cell’s lifetime and progeny number are not stochastically independent [6]. Instead it
suggests a mathematical mechanism to describe the dependence through the competition between two
distinct processes within each cell that can be mathematically described by two random variables: a
time to die, TD, and a time to divide, TB . Whichever process is completed first (i.e., whichever random
variable is smaller) determines the fate of that cell. The experimental data indicates that TB and TD

are a function of a cell’s generation number and that, in particular, the distributions of the random
variables for founding cells are parameterized significantly differently to those in later generations [6].

Lymphocytes responding to a mitogenic stimulus do not proliferate indefinitely, but undergo a finite
number of divisions before ceasing to sub-divide, with this number varying within the population.
It is demonstrated in [7] that this limit of proliferation in the in vitro systems is not due culture
conditions (i.e., exhausting media or stimuli), but is an important and regulable feature of in vitro

responses. Thus to describe lymphocytes responding to a mitogenic stimulus, there is a need for a
mechanism that captures the fact that proliferation is transient and does not continue indefinitely.
For lymphocytes, Hawkins et al. [6] coin the phrase Division Destiny for this mechanism, where the
progeny of founder cells can only sub-divide at most a certain number of times. As division destiny
varies within the population of founding cells, we will mathematically model it as a random variable.

Flow cytometry data motivated the introduction of the Cyton Model, a set of stochastic hypotheses
for lymphocyte population dynamics, by Hawkins et al. [6], which encapsulates these properties. In [6],
the Cyton Model is used to determine the evolution of the mean population size per generation and is
fit to lymphocyte flow cytometry data. The Cyton Model has been further analyzed by Subramanian
et al. [8] who determine the evolution of each generation’s population size Probability Generating
Function (PGF) by considering it as a non-standard branching process. In [8] it is reported that
despite the fate of each cell being highly variable, for Cyton Model parameterizations from in vitro

and in vivo experiments the overall population size variance is small. It is concluded that despite
the potential for great variability in the experience of each individual cell, the immune response is
predictable.

One drawback of flow cytometry methods is that individual cells cannot be tracked. Thus from flow
cytometry data it is not possible to infer relationships between progeny of a single founder. In the



3

absence of this information, while the Cyton Model abandons the usual independence of lifetime and
progeny number assumption, it adopts another of the standard branching processes hypotheses: that
progeny are stochastically independent copies of each other. However, new experimental observations
show that siblings are not stochastically independent entities. This motivates the present article.

The reaction of B lymphocytes stimulated with the ligand for Toll Like Receptor 9 (TLR-9) has
recently been proposed as a representative of cell population dynamics by Hawkins et al. [9]. This cell
system has desirable experimental properties that enable the collection of detailed cell-by-cell data
through optical observation. In particular, unlike most proliferating cell systems, the proliferating
population does not form three dimensional structures, but remains in a two dimensional plane. Thus
each individual cell and its progeny can be optically followed through time lapse photography, as they
do not leave the field of vision. Although labor intensive, these optical experiments allow the collection
of more detailed information than flow cytometry. They enable the construction of a family tree for
each founder cell and the investigation of correlation structure between division, death and division
destiny of relatives and between distinct family trees. From an identifiability perspective, Hawkins
et al. [9] discovered an optical marker to distinguish cells that had experienced division destiny from
those that had died through apoptosis before division occurred. Cells that have undergone division
destiny fail to grow before dying, whereas those that divide or die by apoptosis continually expand
until reaching their fate. Based on this marker, the data indicates that division destiny is typically
experienced by all members of a given family tree in a single generation, with a lot of variation across
distinct family trees. We will, therefore, mathematically represent division destiny as random variable,
K, that independently assigns to each founding cell a maximum number of cell divisions that its family
tree can experience.

The results reported in [9] show the presence of strong correlation between the time to divide of
collaterally consanguineous cells (i.e. cells that are in the same generation of a single founder’s family
tree). Clearly this has serious implications for mathematical predictions as one of the Cyton Model
assumptions, the independence of siblings, appears to be inaccurate.

In this article we consider three variants of the Cyton Model that incorporate increasing levels of
collaterally consanguineous correlation structure within the paradigm of non-standard branching pro-
cesses. The first variant introduces the least amount of additional dependence, where the only change
is that siblings experience the same time to divide. The second variant introduces further correlation
structure where all siblings, cousins and second cousins experience the same fate, but the fates of more
distantly related cells are stochastically independent. The final variant, Variant 3, introduces the most
extreme form of correlation for collaterally consanguineous cells: all cells in the same generation of a
single family tree experience the same fate. When considered in conjunction with the Cyton Model,
these three variants allow us to explore the full range of collaterally consanguineous correlation struc-
tures: from the Cyton Model with no correlations, through two variants with local dependencies, to a
variant with highly non-local correlation structure.

Analyzing these variants of the Cyton Model enables us to draw conclusions regarding the impact of
correlation structure on the predictability of immune response. We determine the time-evolution of
the probability generating function of population size per generation and compare predictions with
experimental data. So long as the probability generating function is finite in an open neighborhood of
1 (e.g. [10] pp 278), the population distribution can be recovered using numerical inversion techniques
such as those described in [11][12][13][14][15], but in this article we focus on deductions regarding the
first two moments of the distribution, the mean and the variance.

This paper is organized as follows. In Section 2 we recall the mathematical framework of the Cyton
Model and introduce three new models based on alternate hypotheses that incorporate increasing
depth of correlation structure between collaterally consanguineous cells. These models are studied



4

in detail in Sections 3, 4 and 5. For each variant an iterative scheme is introduced to determine the
probability generation function of population size per generation, taking into account the possibility of
different distributions per generation and division destiny, to enable deductions for parameterizations
from data. Mathematically we find:

– The evolution of mean population size is the same in the original Cyton Model and its three
variants with additional correlation structure.

– All higher moments of the population size distribution differ in each model. Thus there is, poten-
tially, significantly higher intrinsic variability in population size than would be predicted based on
the standard independence of siblings hypothesis.

– Dependencies typically lead to higher variance at all times. If the dependency is local with, for ex-
ample, siblings (or siblings and cousins etcetera) sharing the same fate, but more distant relations
are independent, then variance is larger but qualitatively similar with that from the equivalent
system with independence. However, if the dependency is non-local where all collaterally consan-
guineous cells (i.e. all those in a given family tree that are of the same generation) share the
same fate, we show by an analytic example that the variance can behave qualitatively differently,
growing more quickly and remaining significantly higher at large times.

In Section 6 we compare deductions from the Cyton Model variants for parameterizations that have
been proposed for in vitro [7] and in vivo [16] data. Biologically we find:

– If siblings having identical times to divide, but with all more distant relations being stochastically
independent, this results in a negligible increase in variance over the Cyton Model and that,
therefore, this would continue to suggest a highly predictable immune response.

– Assume siblings, cousins and second cousins have identical times to divide and to die, but with
all more distant relations being stochastically independent. If proliferation occurs for less than
(approximately) ten generation this results in a reasonable increase in variance that is still qualita-
tively similar to that of the Cyton Model. If proliferation occurs for a larger number of generations
then these local dependencies are washed out and the model predictions are nearly identical to
those of the Cyton Model. This would suggest that the immune response is still highly predictable,
but that, in comparison with the Cyton Model, more of the variability observed in data may be
attributable to intrinsic fluctuations of the cell dynamics if proliferation only occurs for a small
number of generations.

– If all the progeny of a founding cell within a single generation experience the same division and
death times, but cells in distinct generations are independent, the increase in variance is significant
and the model makes qualitatively different predictions to the Cyton Model. Variance does not
increase more dramatically than the other models during proliferation, but during cessation it
decreases significantly more slowly. This suggests that some of the variability in data than we had
previously attributed to experimental error based on analysis of the Cyton Model [8] could be due
to intrinsic fluctuations, especially at large times.

In Section 7 we discuss related work and the deductions from the results in the present article.

2 The Cyton Model and three variants with correlated collaterally consanguineous cells

The Cyton Model was introduced by Hawkins et al. [6]. It provides a cell-level stochastic model for
the regulation of lymphocyte proliferation and survival. It addresses the requirement for variability in
each cell’s fate by postulating independent control of time to divide, TB, and time to die, TD, within
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each cell. Whichever processes concludes first determines the fate of that cell. The combination of the
two time-based mechanisms in each cell is called the Cyton. In Subramanian et al. [8] a non-standard
branching process is used to analyse the Cyton Model. There it is noted that while the independence
of the random variables TB and TD is motivated by biological reasoning, for the mathematics it is not
formally necessary. This is significant for model identifiability since we do not need to know the full
distributions of TB and TD, but only certain conditional distributions that are directly observable if
one conducts optical experiments.

The reason that a non-standard branching process is needed to analyse the Cyton Model is as follows.
In terms familiar to the literature in continuous time Branching processes [17][18][19][20], letting L
denote a cell’s lifetime random variable and ζ its number of progeny random variable, we can write
each in terms of TB and TD:

L = min(TB , TD) and ζ =

{

2 if TB < TD

0 if TB ≥ TD,

where TB and TD are assumed to be almost surely positive and if both processes complete simultane-
ously, TD = TB, we assume that the cell dies. Except in exceptional circumstances (e.g. independent
and exponentially distributed TB and TD), L and ζ are not independent random variables even if TB

and TD are. Thus the Cyton Model leads to a non-standard continuous time branching process rather
than a Bellman-Harris process [18].

Explicitly, the Cyton Model hypotheses are:

– Each cell’s Cyton is stochastically independent.
– Individual cells will, upon division, adopt new values for the time to die and time to divide that

are drawn from appropriate distributions.
– The operation of the regulable Cyton controlling division and survival, seen leading up to the first

division, is repeated through subsequent divisions.
– As in [8], there is a division destiny for each founding cell in the initial population that is drawn

from a stochastic distribution.

Inspired by the evidence presented in Hawkins et al. [9] we consider three variants of the Cyton Model
that incorporate increasing levels of dependencies between collaterally consanguineous cells1.

– Variant 1: Founding cells have independent Cytons. Siblings have the same time to divide, but
different times to die. All relations that are cousins or more distant (second cousins, etcetera) are
independent.

– Variant 2: Founding cells have independent Cytons. Siblings, cousins and second cousins have the
same time to divide and die. All relations that are more distant are independent.

– Variant 3: Founding cells have independent Cytons. For each individual generation in a founding
cell’s family there is only a single time to die and time to divide pair that is experienced by every
cell in that generation. Thus in each generation either every cell, be they siblings, cousins, second
cousins, etcetera, in a given family tree divides or dies and all cells do so at the same time.

In the three Variants, all cells that are progeny of a single founding cell experience the same division
destiny. Also all three retain the hypothesis that times to die and and divide are independent across
distinct generations.

Variant 1 enables us to explore the impact that correlation in the smallest part of a family tree,
siblings, has on model predictions of variance. It is possible to construct analogous models to Variant

1 See Figure 1 for our family tree nomenclature.
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Founder Cousins

Siblings

2nd Cousins

Fig. 1 Founding cell’s family tree indicating siblings, cousins and second cousins

1, but where this dependence occurs up to the level of cousins or second cousins, etcetera, by using
similar ideas to those in the present article.

In Variant 2, cells that are siblings, cousins and second cousins experience identical fates at identical
times, but the Cytons of more distant relatives are independent. These cells share the same TB and
TD random variables, whereas the time to die and time to division random variables of more distant
relations are stochastically independent.

Variant 3 represents the highest level of correlation structure that we consider. For each generation
of cells from a single founder, all cells experience the same fate, death or division, and, moreover, this
fate occurs at the same time. This contrasts with models as in Variant 2 where the correlation extends
only a finite breadth in each generation. Variant 3 gives rise to significantly larger variance at large
times, as members from a small number of family trees are likely to constitute the majority of the
population and within these families, all cells die, divide and experience division destiny at the same
time.

We begin by introducing a simple analytic example in an idealized setting. In Section 2.1, we consider
the Cyton Model for a homogeneous population whose distributions do not depend on generation
number and in the absence of division destiny. This example enables us to show that variance in
Variant 3 behaves qualitatively differently to the other variants at large times. As we will compare
the Cyton Model with the variants based on parameterizations from data, in Section 2.2 we briefly
recall a mathematical framework [8] for determining the Probability Generating Function (PGF) of
the Cyton Model. This treatment includes the full model where the distributions of TB and TD may
change at each generation and where the population experience division destiny. For parameterizations
from data, quantitative comments are made in Section 6.
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2.1 Cyton Model without division destiny, homogeneous analytic example

Let Z(t) denote the total number of cells alive at time t. We consider the Probability Generating
Function (PGF) F cyt(s, t) := E(sZ(t)|Z(0) = 1) of family descendent from a single founding cell.
We do this because if Z(0) = d, then E(sZ(t)|Z(0) = d) = E(sZ(t)|Z(0) = 1)d as founding cells are
assumed to be stochastically independent.

For illustrative (rather than data matching) purposes we consider the fundamental (non-linear Volterra)
integral equation for F cyt(s, t) for the Cyton Model [8] in the presence of a homogeneous population
where TB and TD are the same for every generation and in the absence of division destiny:

F cyt(s, t) = sP (TB > t, TD > t) + P (TD ≤ t, TB ≥ TD) +

∫ t

0

F cyt(s, t − r)2dP (TD > r, TB = r). (1)

These three terms come from the usual considerations: neither death nor division has occurred and
the founding cell is still alive; time to death has occurred and did so before time to division so that the
founding cell died; time to division expired before time to die, the founder gave rise to two siblings. As
the two siblings are independent and identically distributed with the founder, we get the F cyt(s, t−r)2

term: with Z1(t) denoting the progeny of one sister and Z2(t) denoting the progeny of the other, then
using the independence property followed by the homogeneity assumption that is in force in this
section:

E(sZ1(t)+Z2(t)|Z1(0) = Z2(0) = 1) = E(sZ1(t)|Z1(0) = 1)E(sZ2(t)|Z2(0) = 1)

= E(sZ(t)|Z(0) = 0)2 = F cyt(s, t)2. (2)

Recall that the mean population size m(t) can be determined as

m(t) :=
∂

∂s
F cyt(s, t)|s=1 = E(Z(t)).

Defining

vcyt(t) :=
∂2F cyt(s, t)

∂s2

∣

∣

s=1
= E(Z(t)2) − E(Z(t)),

the variance is

varcyt(t) := vcyt(t) + m(t)(1 − m(t)).

Taking partial derivatives of equation (1) with respect to s we get that

m(t) = P (TD > t, TB > t) +

∫ t

0

2m(t − r) dP (TB = r, TD > r) (3)

vcyt(t) =

∫ t

0

2
(

m(t − r)2 + vcyt(t − r)
)

dP (TB = r, TD > r) (4)

for the homogenous Cyton Model without division destiny.

Consider the setting where the time to division is exponentially distributed, P (T H
B > t) = e−λBt, and

the time to death is independent of it and exponentially distributed P (T H
D > t) = e−λDt. In this case

each cell’s life time random variable L, the time to whichever of division or death occurs first, has
distribution P (L ≤ t) = 1 − P (T H

B > t, T H
D > t) = 1 − exp(−(λB + λD)t). The number of children

ζ at the end of its lifetime satisfies P (ζ = 0) = λD/(λB + λD) and P (ζ = 2) = λB/(λB + λD).
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As P (ζ = 0, L ≤ t) = P (T H
D < T H

B , T H
D ≤ t) =

∫ t

0 P (T H
B > r)dP (T H

D = r) = λD/(λB + λD)(1 −
exp(−(λB + λD)t)) = P (ζ = 0)P (L ≤ t), the random variables ζ and L are independent. Thus this
forms a classic Bellman-Harris process and the homogeneous part of the population falls within the
standard branching process methodology where it is well known that

m(t) = e(λB−λD)t

and varcyt(t) =

{

(

e2(λB−λD)t − e(λB−λD)t
)

(

λB+λD

λB−λD

)

if λB 6= λD ,

2λBt if λB = λD .
(5)

Note that exponentially distributed lifetimes are not biologically plausible for most cell systems. It
has been known since the work of Prescott [21], Nachtwey and Cameron [22], and Smith and Martin
[23] that there is a lower bound on the time between cell divisions that is thought to correspond to the
minimum time cells take to progress through the S and G2/M phases of the cell cycle. The purpose
of this simple explicit example with exponential distributions is to enable us to demonstrate in closed
form that the non-local correlation structure of collaterally consanguineous cells in model Variant 3
gives rise to qualitatively different behavior in the variance. When comparing model predictions with
data in Section 6 we employ log-normal distributions and include a minimum time between divisions.

2.2 Cyton Model, generational PGF evolution

As with most branching processes, the fundamental equation (1) for the homogeneous Cyton Model
without division destiny (and the equivalent ones for its variants) only admit analytic solutions for a
limited class of TB and TD distributions. Experimental evidence from flow cytometry proposes skewed
distributions, such as Weibull or log-normal, as providing an excellent fit to death and division time
data [6]. These distributions are outside this class for which equation (1) has an analytic solution.
Moreover, as the distributions change between the founding cells and their progeny, to match with
data it is necessary to provide an iterative scheme to determine the probability generating function for
the population size. This iterative scheme is unlikely to lead to easy analytic deductions, but enables
simple numerical implementation for any class of distributions. We will present similar schemes for
the three Variants.

We say that founding cells are in generation 0, the cells that result from their division are in gen-
eration 1 and so forth. For each generation k ∈ Z+ let T k

D denote the time to die and T k
B denote

the time to division random variables. To enable deductions regarding the joint distributions of dis-
tinct generations it will prove more convenient to work with Moment Generating Functions (MGFs),
M cyt(θ, t) := F cyt(eθ, t), θ ∈ R, rather than the PGFs as in [8]. Let Zj(t) denote the number of cells
of generation j that are alive at time t. We consider the MGF of random vector of cells in generations
k through l at time t, (Zk(t), . . . , Zl(t)), after starting with one cell of generation k at time 0. Defining

M cyt(θl
k, t) := 1 if l < k, for k ≤ l this MGF is defined by

M cyt(θl
k, t) := E

(

e
P

l
j=k

θjZj(t)|Zk(0) = 1, Zi(0) = 0 if i 6= k
)

,

where θ
l
k is the vector (θk, θk+1, . . . , θl) ∈ R

l−k+1.
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Considering all the possible fates of the initial cell from generation k that could occur until time t,
with the logic as in equation (1), we get the following MGF relationship across generations:

M cyt(θl
k, t) =eθkP (T k

D > t, T k
B > k) + P (T k

D ≤ t, T k
B ≥ T k

D)

+

∫ t

0

M cyt(θl
k+1, t − r)2dP (T k

B = r, T k
D > r),

where we have used the fact that siblings, and their descendents, are independent.

To include division destiny, we recall that the progeny of a founder cell can undergo a maximum
number of subdivisions. This number K is a random variable that is selected independently for each
founding cell from a given distribution. If division destiny selects at generation k∗, then cell division
cannot happen once generation k∗ is reached, i.e., P (T k∗

B = +∞) = 1. Furthermore, we assume a

different time to die random variable T̃ k∗

D for the time to die distribution once division destiny occurs.

To include division destiny, we must derive

M̃ cyt(θk∗

k , t) := E
(

e
P

k∗

j=k
θjZj(t)|Zk(0) = 1, Zi(0) = 0 if i 6= k

)

for all k ∈ {0, 1, . . . , k∗} and for all k∗ in the support of the distribution of K. These are determined
in turn by each iteration given below:

1. Initialize by setting k = k∗ and M̃ cyt(θk∗ , t) = 1 + (eθk∗ − 1)P (T̃ k∗

D > t).
2. Set k = k − 1 and calculate

M̃ cyt(θk∗

k , t) =eθkP (T k
D > t, T k

B > k) + P (T k
D ≤ t, T k

B ≥ T k
D)

+

∫ t

0

M̃ cyt(θk∗

k+1, t − r)2dP (T k
B = r, T k

D > r).

3. If k > 0, then repeat the previous step and otherwise terminate.

The division destiny random variable K typically has finite support, with upper bound Kmax, so that
the iterative scheme will terminate after a finite number of iterations2. We are now in a position to
determine the MGF of the population starting with one founding cell at time 0 by performing the
following:

M̄ cyt(θKmax

0 , t) :=

Kmax
∑

k∗=0

P (K = k∗)M̃ cyt(θk∗

0 , t). (6)

With the distributions of K, {T k
B, T k

D} given we can follow this scheme to determine M̄ cyt(θKmax

0 , t)
in equation (6). As founding cells are independent, if there are d initial cells, the MGF of the total

population is the dth power of M̄ cyt(θKmax

0 , t) in equation (6).

Once M̄ cyt(θKmax

0 , t) is known, the moments of the distribution of population size can be determined
by numerically taking partial derivatives of M̄ cyt((θ, . . . , θ), t) with respect to θ and evaluating at
(0, 0, . . . , 0). As this may be numerically problematic, if one only wishes to determine a particular
moment of the distribution, one can explicitly take derivatives of the iterative scheme to get a direct
iterative scheme for the moment of interest. In Section 6 we will use the latter methodology to
determine the predicted variance of the Cyton Model for distributions that have been proposed to
match with data and compare it with the predictions based on its variants.

2 Even if it is not the case that K has bounded support, there exists a minimum time between cell divisions
[23]. Thus there exists some b > 0 such that T k

B > b almost surely for every generation k and for a given time
t at most members of the first [t/b] (the greatest integer smaller than t/b) generations can be present.
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3 Cyton Model Variant 1, siblings with correlated division

Variant 1 introduces the least amount of additional correlation structure beyond the original Cyton
Model, where siblings have the same time to divide, but different times to die. All cells that are more
distantly related (e.g. cousins) are independent. It is possible to extend the analysis to models where
this correlation is up to the level of cousins, second cousins, etcetera, but here we focus on siblings.

The Cyton Model Variant 1 hypotheses are:

– Each founding cell is stochastically independent.
– Cells in distinct generations are independent.
– Siblings share the same time to divide, but have differing times to die. Cousins (cells born of two

siblings), second cousins, etcetera, have stochastically independent times to divide and die, which
are all drawn from the appropriate distributions.

– There is a division destiny for each founding cell in the starting population that is drawn from a
stochastic distribution.

3.1 Cyton Model Variant 1 without division destiny, homogenous analytic example

To identify F var1(s, t) for a single founding cell in a population with homogeneous TB and TD distri-
butions and in the absence of division destiny, it is necessary to determine the evolution of two related
PGFs:

F var1(s, t) := E(sZ(t)|Z(0) = 1) and F var1
sib (s, t) := E(sZ(t)|Z(0) = 2 siblings).

For the former, we have the natural generalization to that in equation (1) for the Cyton Model:

F var1(s, t) = sP (TD > t, TB > t) + P (TD ≤ t, TB ≥ TD) +

∫ t

0

F var1
sib (s, t − r)dP (TD > r, TB = r).

(7)

However, the evolution for F var1
sib (s, t) is somewhat more involved. With T 1

D and T 2
D being the times

to death of two siblings who share a single time to division TB , we have that

F var1
sib (s, t) = s2P (min(T 1

D, T 2
D) > t, TB > t)

+ sP
(

min(T 1
D, T 2

D) ≤ t, TB > t, max(T 1
D, T 2

D) > t
)

+ P
(

max(T 1
D, T 2

D) ≤ min(TB , t),
)

+

∫ t

0

F var1
sib (s, t − r)dP

(

min(T 1
D, T 2

D) ≤ r, TB = r, max(T 1
D, T 2

D) > r
)

+

∫ t

0

F var1
sib (s, t − r)2dP (TB = r, min(T 1

D, T 2
D) > r). (8)

The terms can be described as follows: both siblings are still alive; one sister has died, the other has
neither died nor divided; both siblings have died; one sister has died and the other divided; both
siblings have divided. It is in the last integral where cousins appear. By inserting the F var1

sib (s, t − r)2

term, we are asserting the independence of cousins. It is here that an alternative PGF term would be
inserted if we wished cousins to have dependencies.
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Note that as

∂

∂s
F var1

sib (s, t)|s=1 = 2E(Z(t)) = 2m(t),

taking derivatives of equation (7) with respect to s, we see that m(t) evolves as equation (3). That is,
as in the original Cyton Model. The variance, however, is governed by a different equation to that for
the Cyton Model, equation (4). With

vvar1
sib (t) :=

∂2

∂s2
F var1

sib (s, t)|s=1,

taking partial derivatives of equation (7) with respect to s, we have that

vvar1(t) :=
∂2

∂s2
F var1(s, t)|s=1 =

∫ t

0

vvar1
sib (t − r)dP (TD > r, TB = r).

Finally we obtain an integral equation for vsib(t) by taking partial derivatives of equation (8) with
respect to s. Using the identity P (A ∩ B) + P (A ∪ B) = P (A) + P (B), we get

vvar1
sib (t) = 2P (min(T 1

D, T 2
D) > t, TB > t) + 2

∫ t

0

vvar1
sib (t − r)dP (TB = r, T 1

D > r)

+ 8

∫ t

0

m(t − r)2dP (min(T 1
D, T 2

D) > r, TB = r).

From these expressions, it is unclear if var(t) is always higher in the Variant 1 model.

For the simple example with exponentially distributed and independent times to die and times to
divide that was introduced in Section 2.1, var(t) can be calculated explicitly. If λB 6= λD , then

varvar1(t) =
(5λB + 3λD)

3(λB − λD)

(

e2(λB−λD)t − e(λB−λD)t
)

+
2λB

3(2λB + λD)

(

e−(λB+2λD)t − e(λB−λD)t
)

,

(9)

and if λB = λD , then

varvar1(t) =
8λBt

3
− 2

9

(

1 − e−3λBt
)

. (10)

It can be shown that regardless of λB and λD the variance in equations (9) and (10) for this variant
is greater than that in equation (5) for the Cyton Model.

3.2 Cyton Model Variant 1; Generational PGF Evolution

As in Section 2.2, we introduce an iterative scheme for determining the PGF of the population size
per generation for the Variant 1 model.

Again it is more convenient to work with MGFs than PGFs, with the MGF M var1(θ, t) taking the
role of the PGF F var1(eθ, t) and Hvar1(θ, t) taking on the role of F var1

sib (eθ, t). With Zk(t) denoting
the number of cells of generation k that are alive at time t. We must evaluate the moment generating
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function of random vector of cells in generations k through l at time t, (Zk(t), . . . , Zl(t)), starting with

one cell of generation k at time 0. Define Mvar1(θl
k, t) := 1 if l < k and if l ≥ k define

Mvar1(θl
k, t) := E

(

e
P

l
j=k

θjZj(t)|Zk(0) = 1, Zi(0) = 0 if i 6= k
)

Unlike in the Cyton Model model, we also need to define the MGF of the random vector of cells
in generations k through l at time t starting with two siblings of generation k at time 0. Define
Hvar1(θl

k, t) := 1 if l < k and if l ≥ k ≥ 1 define

Hvar1(θl
k, t) := E

(

e
P

l
j=k

θjZj(t)|Zk(0) = 2 siblings, Zi(0) = 0 if i 6= k
)

∀ k ∈ N, l ∈ Z+.

We insist on k ≥ 1 as cells from the zeroth/founder generation are assumed to not be siblings, but
are stochastically independent.

Following similar logic to the integral equations (7) and (8), by considering the possible fates and
likelihoods of those fates for the cells under consideration, the inter-generational relationships are:

Mvar1(θl
k, t) = eθkP (T k

D > t, T k
B > t) + P (T k

D ≤ t, T k
B ≥ T k

D)

+

∫ t

0

Hvar1(θl
k+1, t − r)dP (T k

B = r, T k
D > r)

Hvar1(θl
k, t) = e2θkP (min(T k,1

D , T k,2
D ) > t, T k

B > t)

+ eθkP (min(T k,1
D , T k,2

D ) ≤ t, T k
B > t, max(T k,1

D , T k,2
D ) > t)

+ P (max(T k,1
D , T k,2

D ) ≤ min(T k
B , t))

+

∫ t

0

Hvar1(θl
k+1, t − r)dP (min(T k,1

D , T k,2
D ) ≤ r, T k

B = r, max(T k,1
D , T k,2

D ) > r)

+

∫ t

0

Hvar1(θl
k+1, t − r)2dP (T k

B = r, min(T k,1
D , T k,2

D ) > r)

Division destiny is again represented by random the variable K. If K = k∗, then division cannot
happen for any cell in this family tree once generation k∗ is reached. Furthermore, again, we assume
a different time to die random variable T̃ k∗

D for the time to die distribution once division destiny sets
in. In this setting we must determine

M̃var1(θk∗

k , t) := E
(

e
P

k∗

j=k
θjZj(t)|Zk(0) = 1, Zi(0) = 0 if i 6= k

)

for k = 0, 1, . . . , k∗ and

H̃var1(θk∗

k , t) := E
(

e
P

k∗

j=k
θjZj(t)|Zk(0) = 2 siblings, Zi(0) = 0 if i 6= k

)

for k = 1, . . . , k∗

and for all k∗ in the support of K. These are derived by iterating the following scheme:

1. Initialize by setting k = k∗, M̃var1(θk∗ , t) = 1 + (eθk∗ − 1)P (T̃ k∗

D > t), and if k∗ > 0 also

H̃var1(θk∗ , t) = e2θk∗P (min(T̃ k∗,1
D , T̃ k∗,2

D ) > t) + P (max(T̃ k∗,1
D , T̃ k∗,2

D ) ≤ t)

+ eθk∗P (min(T̃ k∗,1
D , T̃ k∗,2

D ) ≤ t, max(T̃ k∗,1
D , T̃ k∗,2

D ) > t).
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2. Set k = k − 1 and calculate

M̃var1(θk∗

k , t) =eθkP (T k
D > t, T k

B > k) + P (T k
D ≤ t, T k

B ≥ T k
D)

+

∫ t

0

H̃var1(θk∗

k+1, t − r)dP (T k
B = r, T k

D > r).

If k > 0, also calculate the following

H̃var1(θk∗

k , t) = e2θkP (min(T k,1
D , T k,2

D ) > t, T k
B > t)

+ eθkP (min(T k,1
D , T k,2

D ) ≤ t, T k
B > t, max(T k,1

D , T k,2
D ) > t)

+ P (max(T k,1
D , T k,2

D ) ≤ min(T k
B , t))

+

∫ t

0

H̃var1(θl
k+1, t − r)dP (min(T k,1

D , T k,2
D ) ≤ r, T k

B = r, max(T k,1
D , T k,2

D ) > r)

+

∫ t

0

H̃var1(θl
k+1, t − r)2dP (T k

B = r, min(T k,1
D , T k,2

D ) > r).

3. If k > 0, then repeat the previous step and otherwise terminate.

Assuming that K has finite support with upper limit Kmax, we can derive the moment generating
function starting with one founder cell at time 0 by evaluating:

M̄var1(θKmax

0 , t) :=

Kmax
∑

k∗=0

P (K = k∗)M̃var1(θk∗

0 , t). (11)

As in Section 2.2 for the Cyton Model, with the distributions of K, {T k
B, T k

D} given we can follow

this scheme to determine M̄var1(θKmax

0 , t) in equation (11). In Section 6 we will use this scheme to
determine the predicted variance of this model for distributions that have been proposed to match
with data.

4 Cyton Model Variant 2, second cousins with correlated division and death

Variant 2 introduces a stronger correlation structure than Variant 1. All siblings, cousins, and second
cousins experience the same fate at the same time. All more distant relations (third cousins etcetera)
are independent. It is possible to consider this dependency up to any finite depth in the family tree.
We report on second cousins as this is the least amount of dependency that gives rise to predictions
that are recognizably distinct from the Cyton Model for parameterizations from data.

The Cyton Model Variant 2 hypotheses are:

– Each founder cell is stochastically independent.
– For each pair of siblings, quad of cousins and octet of second cousins there is a single, shared, time

to divide and time to die pair, drawn from the appropriate distributions. More distant relations
are stochastically independent.

– There is a division destiny for each founding cell in the starting population that is drawn from a
stochastic distribution.
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If founding cells were not independent, but constituted independent groups of eight second cousins, the
impact of these revised assumptions would be that for a given number of founding cells the variance
predicted by this Variant would be eight times that in the Cyton Model. This occurs as each octet of
second cousins has a family tree based on the Cyton Model, but with each element representing eight
second cousins, so that the population is eight times that of the Cyton Model. Thus the variance is sixty
four times that of the Cyton Model. However, we should compare an octet of founding second cousins
with an octet of founding Cyton Model cells, so that the increase in variance due to this additional
dependency is eight times that of Cyton Model. Despite this back of the envelope calculation, for the
flow cytometry parameterizations, we find that the independence of founding cells (the assumption
that they are not related) dramatically reduces this difference in predicted variance to far less than
a factor of twice that predicted by the Cyton Model. However, we do show that the variance of this
model (or indeed, any model with independence beyond siblings or cousins etcetera) is necessarily
higher than that in the Cyton Model.

4.1 Cyton Model Variant 2 without division destiny, homogeneous analytic example

This model Variant, with dependencies between second cousins, can be determined through first
solving for the PGF of the Cyton Model in equation (1) and then taking three integrals:

F var2(s, t) = sP (TB > t, TD > t) + P (TD ≤ t, TB ≥ TD) +

∫ t

0

F var2
sib (s, t − r)dP (TD > r, TB = r)

F var2
sib (s, t) = sP (TB > t, TD > t) + P (TD ≤ t, TB ≥ TD) +

∫ t

0

F var2
cous (s, t − r)dP (TD > r, TB = r)

F var2
cous (s, t) = sP (TB > t, TD > t) + P (TD ≤ t, TB ≥ TD) +

∫ t

0

F var2
2nd-cous(s, t − r)dP (TD > r, TB = r)

F var2
2nd-cous(s, t) = F cyt(s8, t),

where F cyt is the PGF for the Cyton Model given in equation (1). This final equality occurs as second
cousins follow the rules of the Cyton Model, but with each Cyton corresponding to an octet of second
cousins.

In order to see that the variance of this model is always larger than that of the Cyton Model, it suffices
to note that the only difference between the Cyton Model and this Variant occurs in the integrand in
the final integral. Compare the Variant 2 term

∂2

∂s2
F cyt(s8, t)|s=1 = 56m(t) + 64vcyt(t) = 56(m(t) + vcyt(t)) + 8vcyt(t)

with the corresponding term in the Cyton Model where there are eight independent second cousins

∂2

∂s2
F cyt(s, t)8|s=1 = 56m(t)2 + 8vcyt(t).

As varcyt(t) = vcyt(t) + m(t) − m(t)2 ≥ 0, the variance for this variant is always greater than that of
the Cyton Model. A similar argument holds for any depth of correlation (siblings, cousins, etcetera)
of this sort. Thus this finite-depth correlation structure never leads to a decrease in variance.
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For completeness, we give expressions for the variance in the simple example introduced in Section
2.1. If λB 6= λD and 3λB 6= λD then

varvar2(t) =
λB + λD

3λB − λD

(

8λ2
Bt2 +

4(13λB − 3λD)

3λB − λD

λBt +
115λ2

B − 54λBλD + 7λ2
D

(3λB − λD)2

)

e−(λB+λD)t

+
(λB + λD)(101λ3

B − 47λ2
BλD + 11λBλ2

D − λ3
D)

(λB − λD)(3λB − λD)3
e2(λB−λD)t − 8(λB + λD)

λB − λD

e(λB−λD)t.

If λB = λD or 3λB = λD, varvar2(t) can be determined by taking limits in the equation given above.

4.2 Cyton Model Variant 2, generational PGF evolution

For Variant 2, the generational approach is similar to that for Variant 1, so we do not expound on it. It
suffices to say that one first determines the MGF for the Cyton Model as described in Section 2.2, but
starting with the distributions of second cousins, to identify the moment generating function for second
cousins. The joint moment generating function for the entire population can then be determined by
taking the obvious integrals.

5 Cyton Model Variant 3, correlations within generations

Variant 3 introduces the strongest correlation structure that we consider. Within each family tree, all
cells in a given generation experience the same fate at the same time, but the experience of cells in
distinct generations are independent. Thus we replace the Cyton Model hypotheses with the following:

– Each founder cell is stochastically independent.
– For all the progeny of a given founder cell in a single generation, a single, shared, new time to

divide and time to die are drawn from the appropriate distributions.
– The operation of the regulable cyton controlling division and survival, seen leading up to the first

division, is repeated through subsequent divisions.
– There is a division destiny for each founding cell in the starting population that is drawn from a

stochastic distribution.

5.1 Cyton Model Variant 3 without division destiny, homogeneous analytic example

We first consider the consequences of these revised hypotheses on the fundamental equation that
determine the evolution of the PGF for a homogeneous population in the absence of division destiny,
where (TB, TD) are chosen independently for each generation and from the same distribution.

Let Z(t) denote the total number of cells alive at time t. We consider the equation that determines
the PGF F var3(s, t) := E(sZ(t)|Z(0) = 1):

F var3(s, t) = sP (TB > t, TD > t) + P (TD ≤ t, TB ≥ TD) +

∫ t

0

F var3(s2, t − r)dP (TD > r, TB = r).

(12)
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These terms can be understood as in Section 2.1, where the difference between the Cyton Model and
this variant is in the final integral. The integrand is now

E(sZ1(t)+Z2(t)|Z1(0) = Z2(0) = 1) = E(s2Z1(t)|Z1(0) = 1) = E(s2Z(t)|Z(0) = 0) = F var3(s2, t),

having used the fact that siblings share the same time to divide and time to die. This can be contrasted
with the expression in equation (2). The equation (12) has the effect that this propagates and all
descendents of a given founder in a single generation have the same time to die and time to divide.

For the original Cyton Model, equations (3) and (4) describe the evolution of the mean population
size, m(t), and variance varvar3(t). For the new hypotheses, we get the same evolution of the mean
(equation (3)), but a different equation for the variance since the following equation holds:

vvar3(t) =

∫ t

0

2
(

m(t − r) + 2vvar3(t − r)
)

dP (TB = r, TD > r). (13)

It is the case that vvar3(t) is necessarily greater than or equal to vcyt(t) in equation (4). This can be
seen by considering vvar3(t) − vcyt(t), which is 0 when t = 0, and noting that m(t − r) − m(t − r)2 +
vvar3(t − r) = varvar3(t − r) ≥ 0:

vvar3(t) − vcyt(t) =

∫ t

0

(

varvar3(t − r) + 2(vvar3(t) − vcyt(t))
)

dP (TB = r, TD > r) ≥ 0.

If the PGF F var3(s, t) is finite in an open s neighborhood of 1, then it completely specifies the
distribution of Z(t), e.g. [10]. Analytically, particular care must be taken with equation (12) to ensure
this is the case, as we now illustrate based on the example in Section 2.1. For the particular case where
TB is exponentially distributed with rate λB and TD is independent and exponentially distributed with
parameter λD , the distribution of Z(t) for this variant can be calculated directly. Let {T i

D} denote
the sequence of death times and {T i

B} the sequence of division times so that Li := min{T i
D, T i

B} is
the lifetime of the ith generation. For n ≥ 1, the probability that Z(t) = 2n is the probability that n
divisions have occurred:

P (Z(t) = 2n) = P (L0 + . . . + Ln−1 ≤ t, L0 + . . . + Ln > t, T i
B < T i

D for all i ∈ {0, . . . , n − 1}) (14)

= P (L0 + . . . + Ln−1 ≤ t, L0 + . . . + Ln > t)P (T i
B < T i

D for all i ∈ {0, . . . , n − 1})

=
(λB + λD)ntn

n!
e−(λB+λd)t

(

λB

λB + λD

)n

=
(λBt)n

n!
e−(λB+λd)t

and P (Z(t) = 0) = 1 − ∑

n≥0 P (Z(t) = 2n) = 1 − exp(−λDt). This distribution has every moment
finite as

E(Z(t)k) =
∑

n≥1

(2n)kP (Z(t) = 2n) = e((2k−1)λB−λD)t, (15)

but F var3(s, t) =
∑∞

n=0 snP (Z(t) = 2n) is infinite for all s > 1. This difficulty arises as the probability
that a large number of generations pass in a brief period of time does not decrease sufficiently fast
for the expectation to be finite. In practical cell systems this concern does not arise due to the lower
bound on the time between cell divisions [23]. For this example varvar3(t) can be calculated explicitly
using equation (15):

varvar3(t) = e(3λB−λD)t − e2(λB−λD)t. (16)
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Fig. 2 Variance comparison between Cyton Model and Variant 3. Independent exponentially distributed time
to die, λD = 1, and time to divide λB = 0.33. Demonstrates qualitative difference in variances for large t

Comparing the Cyton Model variance in equation (5) with the variance from the Variant 3 model in
equation (16), the variance of the Variant 3 model decreases significantly more slowly at large t. This
is illustrated in Figure 2 when λD = 1 and λB = 0.33.

5.2 Cyton Model Variant 3, generational PGF evolution

As in Sections 2.2, 3.2 and 4.2, we now present an iterative scheme that enables us to numerically
evaluate the PGF for the population size. Using equation (14) we can explicitly write down a formula
for the MGF, but in practice it is easiest to evaluate it using the following recursive approach.

For each k ∈ Z+ let T k
D denote the time to die and T k

B denote the time to division random variables. It
will again prove more convenient to work with Moment Generating Functions (MGFs), M var3(θ, t) :=
F var3(eθ, t). Let Zj(t) denote the number of cells of generation j that are alive at time t. We consider
the MGF of random vector of cells in generations k through l at time t, (Zk(t), . . . , Zl(t)), after starting

with one cell of generation k at time 0. Defining M var3(θl
k, t) := 1 if k > l, for k ≤ l this MGF is

defined by

Mvar3(θl
k, t) := E

(

e
P

l
j=k

θjZj(t)|Zk(0) = 1, Zi(0) = 0 if i 6= k
)

,

where θ
l
k is the vector (θk, θk+1, . . . , θl) ∈ R

l−k+1.

Considering all the possible fates of the initial cell from generation k that could occur until time t we
get the following MGF relationship across generations:

Mvar3(θl
k, t) =eθkP (T k

D > t, T k
B > k) + P (T k

D ≤ t, T k
B ≥ T k

D)

+

∫ t

0

Mvar3(2θ
l
k+1, t − r)dP (T k

B = r, T k
D > r)
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where 2θ
l
k+1 = (2θk+1, 2θk+2, . . . , 2θl) and we have used the fact that all cells in a given generation

have the same time to die and divide.

To include division destiny, we must first derive

M̃var3(θk∗

k , t) := E
(

e
P

k∗

j=k
θjZj(t)|Zk(0) = 1, Zi(0) = 0 if i 6= k}

)

for k = 0, 1, . . . , k∗.

These must be evaluated for all k∗ in the support of K. These are determined in turn by each iteration
given below:

1. Initialize by setting k = k∗ and M̃var3(θk∗ , t) = 1 + (eθk∗ − 1)P (T̃ k∗

D > t).
2. Set k = k − 1 and calculate

M̃var3(θk∗

k , t) =eθkP (T k
D > t, T k

B > k) + P (T k
D ≤ t, T k

B ≥ T k
D)

+

∫ t

0

Mvar3(2θ
l
k+1, t − r)dP (T k

B = r, T k
D > r).

3. If k > 0, then repeat the previous step and otherwise terminate.

Once again, letting Kmax < ∞ denote the maximum value in the support of K, we are now in a position
to determine the MGF of the population starting with one founding cell at time 0 by performing the
following:

M̄var3(θKmax

0 , t) :=

Kmax
∑

k∗=0

P (K = k∗)M̃(θk∗

0 , t). (17)

As in Section 2.2 for the Cyton Model, with the distributions of K and {T k
B, T k

D}, for each k ≥ 0,

given we can follow this this scheme to determine M̄var3(θKmax

0 , t) in equation (17). If K is unbounded
and there is not a minimum time between cell divisions, then care needs to be taken to ensure that
M̄ is finite as explained in the example in Section 5.1.

6 Comparison with data

We compare the predictions of the Cyton Model and each of its variants based on parameterizations
determined from two sets of experiments. One set is from in vitro experimental data reported in
Turner, Hawkins and Hodgkin [7] that follows B lymphocytes stimulated by 3 µM CpG DNA. The
other set of data is from an in vivo experiment reported on in Homann, Teyton and Oldstone [16]
where CD8+ T lymphocytes specific to a single peptide/MHC epitope were followed after infection
with lymphocytic choriomeningitis virus.

We use the Cyton Model parameterizations for these experiments based on those given in [6]. It has
been reported [5][6] that the empirical clock distributions appear to be well matched by members of
the family of log-normal distributions. For example, P (TD > t) ≈ P (N(µ, σ2) > log t), where N(µ, σ2)
is a Normally distributed random variable with mean µ and variance σ2. Assuming the TB and TD

random variables are independent, with the (µ, σ2) information for each random variable it is possible
to make predictions from each model variant that can be compared with the data.

In the in vitro experiments, approximately fifteen thousand CFSE-labeled purified B-cells were exposed
to the mitogenic stimulus. Roughly 10% of the founding cells do not respond to the stimulus. The
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overall cell population size were recorded from the introduction of the stimulus to beyond division
destiny by flow cytometric analysis [6].

In the in vivo experiment CD8+ T lymphocytes specific to a single peptide/MHC epitope were followed
after infection with lymphocytic choriomeningitis virus. The overall cell population size was recorded
from the introduction of the virus to beyond division destiny and on to the period where remaining cell
numbers are retained at a homeostatic level. The true starting cell number is unknown, although it is
estimated to be approximately one hundred [24][6]. This starting value of approximately one hundred
is a minimal estimate for a virus response, as it represents a single epitope and is representative of
similar data that could be collected on at least four other epitopes, bringing the population response
to an initial number over five hundred [16][24].

The in vitro division destiny has the probability mass function given in Figure 3, with Kmax = 8. The
division destiny distribution is such that a maximum of 8 generations can occur. The complete list of
clock parameters are:

– Time to division of founding cells: mean 34.86 hours (including 1 hour minimum); standard de-
viation 4.9 hours. Time to death of founding cells: mean 151.27 hours; standard deviation 19.75
hours.

– Time to division of cells in each subsequent generation: mean 7.01 hours (including 1 hour mini-
mum); standard deviation 1.27 hours. Time to death of cells in each subsequent generation: mean
83.93 hours; standard deviation 113.55 hours.

The in vivo division destiny has the probability mass function given in Figure 3, with Kmax = 27. The
division destiny distribution is such that (barring death by apoptosis) a minimum of 12 and maximum
of 27 generations can occur. The complete list of clock parameters are:

– Time to division of founding cells: mean 40.44 hours (including 1 hour minimum); standard de-
viation 7.55 hours. Time to death of founding cells: mean 400.50 hours; standard deviation 20.04
hours.

– Time to division of cells in each subsequent division: mean 8.73 hours (including 1 hour minimum);
standard deviation 0.70 hour. Time to death cells in each subsequent division: mean 67.56 hours;
standard deviation 59.94 hours.

Figure 4 plots the predicted variance for the cell population starting with a single founding cell for
both the in vitro and in vivo experiments. For these parameterizations, the difference between the
variance in the original Cyton Model and the Variant 1 model is miniscule, so the latter is not shown.
The Variant 2 model, where all relations not more distant than second cousins share a time to divide
and die, results in greater variance for the in vitro data, but is near identical to the Cyton Model
predictions for the in vivo data. This suggests that local dependencies have little impact on variability
in population size once a sufficient number of divisions have occurred, as there is enough independence
in the population to limit the effect of the local dependencies. If the founding cells were all second
cousins and the Variant 2 model was used, the variance would be eight times that of the Cyton Model.
Clearly the reduction that occurs as founders are assumed independent has a significant impact. The
Variant 3 model, where all collaterally consanguineous cells experience the same fate, gives a dramatic
increase in variance, particularly at longer time-scales. Qualitatively, note that its variance decays
more slowly at large times than those of the other models.

For 13, 500 founding in vitro and 90 founding in vivo cells, the upper two plots in Figure 5 compare
the predicted variability in the overall population based on the Cyton Model and Variant 3, which has
the greatest impact on variance. Variants 1 and 2, which have local dependencies, are not plotted as
they are not easily distinguished from the Cyton Model on this scale. The Variant 3 model, however,
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Fig. 4 Variance comparison for a single founding cell based on in vitro and in vivo data parameterizations.
Cyton Model, Variant 2 and Variant 3 shown. Variant 1 indistinguishable from Cyton Model so is not shown.

produces wider error bars for both experiments. This can be understood as, unlike the other variants,
cell division does not lead to additional statistical averaging beyond that from the independence of
the founding cells. This can most easily be seen for the in vivo data as there is a small number of
founding cells whose family trees undergo a large number of cell divisions. When the population size
increases, there is no additional statistical averaging beyond that available in the original population
in order to reduce variance.

To better see the variability predicted by the models, the lower two plots in Figure 5 show variability
around the mean population size. Their content is the similar to that in the upper two plots, but with
the model’s mean prediction subtracted from all lines and the data. Only the Cyton Model, Variant
2 and Variant 3 are shown, as Variant 1 is indistinguishable from the Cyton Model. For both the in

vitro and in vivo data, the wider error bars of the Variant 3 model includes more data points. This



21

! "! #!! #"! $!!

%&'()&*)+,-./

!

"!!!!

#!!!!!

#"!!!!

$!!!!!
0
,
1
-
23
4&
,
*
)/
&5
(

6343

7(3*

7(3*89/4:);7

7(3*<9/4:);7

7(3*89/4:)=3.&3*4)>

7(3*<9/4:)=3.&3*4)>

!"#$%&'(

! "!! #!! $!! %!!

&'()*'+*,-./0

!

12"!3

"2"!4

"512"!4

#2"!4

6
-
7
.
89
:'
-
+
*0
';
)

<9:9

=)9+

=)9+>#0:?*@=

=)9+>#0:?*A9/'9+:*$

=)9+B#0:?*@=

C=)9+B#0:?D>*A9/'9+:*$

!"#$%$&

! "! #!! #"! $!!

%&'()&*)+,-./

0#!!!!

!

#!!!!

$!!!!

1!!!!

2
(
3
&4
5&
,
*
)6
.,
'
)'
(
4
*

2454

785,*)9,:(;)<=

>4.&4*5)$)<=

>4.&4*5)1)<=

785,*)9,:(;)?=

>4.&4*5)$)?=

>4.&4*5)1)?=

!"#$%&'(

!" #"" #!" $"" $!" %"" %!" &""

'()*+(,+-./01

2&3#"4

2$3#"4

"

$3#"4

&3#"4

5
*
6
(7
8(
.
,
+9
0.
)
+)
*
7
,

5787

:;8.,+<.=*>+?@

A70(7,8+$+?@

A70(7,8+%+?@

:;8.,+<.=*>+B@

A70(7,8+$+B@

A70(7,8+%+B@

!"#$%$&

Fig. 5 Top two graphs show predicted variability comparison for in vitro and in vivo data. Cyton Model
and Variant 3 shown. Variant 3 shows qualitatively different behavior at large times. Lower two graphs show
predicted variability around mean for in vitro and in vivo data. Cyton Model, Variant 2 and Variant 3 shown.

suggests that some of the variability seen in data that had previously been attributed to experimental
error [8] could, in the presence of dependencies within family trees, be due to intrinsic variability in
the cell-system population dynamics.

7 Discussion and conclusions

Since their introduction, branching processes have been used extensively in the mathematical anal-
ysis of cell population dynamics. For certain cell systems, one of the key assumptions of branching
processes, the stochastic independence of siblings, has been known not to hold since Powell’s work
[25] on bacterial cells in the mid 1950s (see also Staudte et al. [26] for a modern reinvestigation of
Powell’s data). Powell discovered independence across generations, but correlation in the lifetimes of
siblings. Kubitschek [27] later found that these positive correlations extend to the lifetimes of cousins
and second cousins also. This work motivated, for example, the introduction by Crump and Mode
[28] and Olofsson [29] of generalized Bellman-Harris processes with local dependencies, but with the
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retention of the standard assumption of independent lifetime and progeny number distributions. They
do not consider transient dynamics, but prove limit theorems in the absence of replicative senescence
or division destiny.

Data from both flow cytometry [6] and optical experiments [9] studying the response of lymphocytes
to a mitogenic signal demonstrate that two of the standard assumptions of continuous time branching
processes are inappropriate for this cell system: the independence of lifetime and progeny number
random variables, and the stochastic independence of siblings. In modeling cell system dynamics,
the independence of lifetime and progeny number is typically assumed for one of two reasons: (I) an
absence of mechanistic reasons to motivate why there should be dependence; or (II) to ensure that the
resulting model is identifiable from experimentally observable quantities. For lymphocytes, the data
that led to the Cyton Model [6] gives biological motivation for a mechanistic structure that gives rise
to dependency asked for in (I). For (II), given a solid explanation for dependence between lifetime and
progeny number random variables, assuming they are independent in order to keep a model identifiable
seems to have questionable merits. Thankfully, based on data from optical experiments of the sort
described in [9], the resulting models are identifiable.

General mathematical frameworks for not-necessarily binary branching processes that treat popula-
tions where lifetime and offspring random variables that need not be independent were introduced by
Crump and Mode [30] and Jagers [31]. The dependencies there are not described as arising from com-
peting clocks as in the Cyton Model, but are motivated by human reproduction where offspring can
occur before death of the the parent. Good introductions to these frameworks and their applications
can be found in Jagers [31] and Haccou, Jagers and Vatutin [32].

Biologically reasonable mechanisms have been proposed that naturally give rise to dependencies be-
tween the lifetimes of siblings, but those that we are aware of would not explain strong dependencies
between collaterally consanguineous cells in conjunction with weak mother-daughter dependence. For
example, one well explored approach is setting the probability of division to be a function of cell-size
and, at division, sharing cell-size amongst progeny, e.g. Clifford and Sudbury [33,34], Heijmans [35],
Alt and Tyson [36] Tyson [37] Huggins and Stuadte [38]. In these models, size is a loose label that
can be considered short-hand for mass, quantity of a particular enzyme, etcetera. The dependen-
cies that arise from models of this sort are typically decaying geometrically between generations and
geometrically between distinct branches of each family tree.

There are cell systems other than lymphocytes whose behavior has been investigated using branching
processes where predictions have been compared to data. One good example is oligodendricyte popula-
tion dynamics that motivated the models introduced by Boucher et al. [39][40]. There, as in the general
Yakovlev-Yanev framework [41] that also includes immigration, the usual branching hypotheses are
adopted. For oligodendricytes, using time-lapse photography to follow sibling cells, these hypotheses
were checked by Hyrien et al. [42]. They found significant correlation between sibling cells’ lifetimes.
They investigated the impact of this correlation by comparing the predictions of the Boucher et al.
models with in silico simulation of the system with dependencies. They found this extra correlation
structure had little impact on model predictions, as we did for lymphocytes in our Variant 1 model.
They comment that they are not aware of mathematical models that explore the impact of these
dependencies, which is what we do in this article for lymphocytes.

As the standard branching process hypotheses do not hold for lymphocytes, it is important to study
the mathematical and modeling implications of the new hypotheses, as we have done through the
introduction of three variants of the Cyton Model in this paper. The mathematical conclusion of
studying variants of the Cyton Model that incorporate dependencies between siblings is that the
evolution of the mean population size is identical in the variants of the Cyton Model and in the
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Fig. 6 Coefficient of variation comparison for in vitro and in vivo data. For the in vivo parameterization, the
Variant 2 model line overlays the Cyton Model. For both parameterizations, the Variant 1 model line overlays
the Cyton Model and so is not shown

original Cyton Model. However, the variability in population sizes in each model differs and can be
substantially larger in the presence of correlation between collaterally consanguineous cells.

The qualitative differences seen between the model with extreme correlations, Variant 3, and the
others (original Cyton Model, Variant 1 and Variant 2) can most readily be seen by considering the
Coefficient of Variation (CV) of the population size distribution. The CV is a normalized measure of

the dispersion of a distribution. With d independent founding cells, the CV is
√

var(t)/(m(t)
√

d). For
the in vitro and in vivo parameterizations and d = 1, these are reported in Figure 6. For the in vitro

parameterization, two additional lines are drawn based on Variant 2, but with independence beyond
siblings and independence beyond cousins. This enables one to see the impact of local dependencies
when proliferation progresses for a relatively small number of divisions. The initial rise in CV occurs
at the onset of proliferation (approximately 25 hours in vitro and 20 hours in vivo), with all models
being qualitatively similar at the point. The second increase occurs at the onset of division destiny
(approximately 60 hours in vitro and 180 hours in vivo), but the Variant 3 model behaves qualitatively
differently to the Cyton Model. Its CV continues to increase at a rapid rate leading to predictions of
significantly greater variability at long time-scales. For the in vitro parameterization, this rise is also
captured by the Variant 2 model, with variance increasing as the depth of dependence is increased.
However, for the in vivo parameterization, while the Variant 3 model still exhibits the same effect, the
Variant 2 model (based on second cousins) is indistinguishable from the Cyton Model. This occurs
due to the statistical averaging that arises once a large number of generations are present during
proliferation.

These differences can be further explored by considering the predicted variances per generation. In
order to determine the moments of the kth generation one first determines M̄(θKmax

0 , t) (equations
(6), (11) and (17)), then takes partial derivatives of it with respect to θk and evaluates the resultant

function at θKmax

0 = (0, 0, . . . , 0). Alternatively, a recursive scheme for any particular moment can be
determined by performing the above procedure on the model’s iterative scheme.

Figure 7 reports the variance of the population size in for selected generations as a function of time
for the Cyton Model, Variant 2 and Variant 3 for the in vivo parameterization in Section 6. Note
that vertical scale changes on each graph, so that although they look qualitatively similar, they are
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Fig. 7 Variance of population size as a function of time for selected generations between 0th and 27th for the
in vivo parameterization
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quantitatively different. One can see that for the 0th generation, all the predictions are near identical.
For the following three generations, the Variant 2 and Variant 3 models predict similar higher variance
than the Cyton Model, as illustrated by generations 1 and 4. However, beyond generation 4 the Variant
2 and Variant 3 models separate, as the Variant 2 model’s correlation structure only extends to second
cousins. By the 11th generation, the Variant 3 model variance is significantly higher than that of the
Variant 2. This is also illustrated by the plot for generation 14. By the 19th generation the Variant
2 model variance is nearly identical to that of the Cyton Model, but the Variant 3 model predicts
significantly higher variance throughout. Note also that the variance predictions are tightly centered
at individual times until the onset of division destiny, whereupon a tail appears.

In summary, by considering the model predictions for model parameterizations based on in vitro [7]
and in vivo [16] experiments, we have investigated the impact of correlation between collaterally con-
sanguineous cells. We deduce that in order for more of the variability seen in experimental data to
be explained by the inherent nature of the cell dynamics, rather than experimental error, it would
be necessary that the dependencies within each cell’s family tree be non-local and extend beyond
siblings and cousins. Moreover, the impact of local collaterally consanguineous dependencies is quali-
tatively similar to that of independence, whereas the impact of non-local collaterally consanguineous
dependencies is qualitatively different at longer time-scales.
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