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Abstract

In this paper we consider the asymptotic stability of a class of discrete-tinteh#wg linear systems, where each of the constituent
subsystems is Schur stable. We first present an example to motivattualyy which illustrates that the bilinear transform does not
preserve the stability of a class of switched linear systems. Consequemtiynuous time stability results cannot be transformed to
discrete time analogs using this transformation. We then present a sub€ldiscrete-time switching systems, that arise frequently in
practical applications. We prove that global attractivity for this subclasste obtained without requiring the existence of a common
quadratic Lyapunov function (CQLF). Using this result we presentréh®gis procedure to construct switching stabilizing controllers for
an automotive control problem, which is related to the stabilization of a vehidk dynamics subject to switches in the center of gravity
(CG) height.

1 Introduction design of switched systems. One such method was however
initially proposed in [2], and further developed in [3]. The

Many control problems that arise in automotive engineering basic problem addressed here is to study the discrete time
lead naturally to solutions that involve switching between ~ analog of this system class. To show that this is not a trivial
set of stabilizing controllers. Examples include speed-con exercise we present the following example.

trol systems, and robust rollover mitigation systems [6]. |

this paper we consider one such problem, where switching eyample 1.1 Consider the following stable LTI systems,
arises naturally due to changes in the vehicle parameters.

Specifically, we consider the design of robust switched con-

trollers that prevent instabilities due to abrupt changebé ~ Za : X=Ax, A cR>3

center of gravity position.

Typically, switched linear controllers are designed uding with the constituent system matrices
ear matrix inequalities (LMIs); see [1] for an example of
such a design in the automotive roll dynamics control con- 190 0 19 0 o0 ~19 0 1875
text. More often than not, LMI based control system design A= [ o -9 o0 } Ay = [ -0 -9 o0 } Ag= [ 0 -9 875 }
is based on quadratic Lyapunov functions, and is iterative i 0 0 -025

nature, requiring multiple searches before a controllér sa
isfying certain performance criteria is found. Design reth
ods that are constructive, in the manner of pole placement
say, for linear systems, are generally not available for the

—1875 0 -0.25 0 0 -025

These three matrices all share the same eigenvalues, and
'they satisfy the conditions of Theorem 3.1 given in [2].
Therefore, one can conclude that the continuous time
switched systerm>,, above is stable. Now consider the
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time matrices are

09 0 O 09 0 O 09 0 -15
Agi1=| 0 08 0 |, Ag2=[0108 0O |, Agz=| 0 08 —14].
0 0 -06 15 0 -06 0 0 -06

It is sufficient to show that there exists a switching seqeenc
between the matricefAy 1, Ad 2,Ad,3} such that the system

Zag - X(k+1) = A(K)x(k) for  A(K) € {Ad1,Ad2,Ad3},

is unstable. We simply consider the incremental switching
sequencéyy 3 — Aq 2 — Ag 1; then the dynamics of the sys-
tem evolve according to the product

Ag = A4 1A42Aq 3.

Since the eigenvalues 8§ are{0.512 —0.081,1.944}, then
with one eigenvalue outside the unit circle, this switching
sequence, repeated periodically, is unstable.

This example shows that, unlike LTI systems, the Bilinear
transform does not necessarily preserve the stabilityyefli
time-varying systems. This observation may have implica-
tions for control system design. Traditionally, the apptoa

to relate continuous-time linear time invariant (LTI) Hutav
stability results to discrete-time LTI Schur stability cder-
parts requires the use of the bilinear transform. Our exam-
ple is consistent with the results reported in a recent paper
[4], where it is noted that while quadratic Lyapunov func-
tions are preserved under the Bilinear transform, other non
guadratic Lyapunov functions are not. Unfortunately, tke e
ample demonstrates that matters are much worse than re
ported in this paper; namely, that not only are non-quatirati
functions not preserved under this mapping, but also stabi
ity need not be.

Fortunately, it is possible to modify the proof of Theorem
3.1 in [2] to place additional discrete time conditions on
the system matrices to guarantee the global attractiviiy, a
hence the exponential stability [5] of the origin for thissy
tem class.

2 Stability of a class of discrete-time switched systems

Consider the discrete time linear time-varying system
@

wherex(k) € R", and where the system matiik) is such
that it switches between the matriogss R™" belonging to
the seter = {Aq, ...,Am}. We shall refer to this ahe switch-
ing systemThe time-invariant discrete time linear system
x(k+1) = Aix(k), denoted,, is referred to as thé" con-
stituent system

x(k+1) = AK)X(K),

Following [2] we assume that (amongst other conditions) the
A matrices ine/ are diagonalizable, and any two of the

matrices share at least- 1 real linearly independent eigen-
vectors. Before we proceed, we exploit in what follows the
known fact that for linear systems, uniform global attracti
ity of the equilibrium state implies global uniform asymp-
totic stability [5]. With this in mind, we note that while our
main result concerns global attractivity of the origin oj (1
under certain conditions, the implication is asymptote:- st
bility.

Theorem 2.1 Let ¥ = {v1,...,Vn41} be a set of real vec-
tors, where eachj\e R" for i = {1,2,...,n+ 1}. Suppose
any choice of n vectors itt” are linearly independent. For
each i€ {1,2,...,n+1}, we construct Me R™" matrices

as follows

[V1,V2, ... ,Vn_1,Vq] for i=1

. )
[V1,.., Vi1, Vi, ..o, V) fOr 2<i<n+41

Mi (2

i.e., fori 1, M is obtained by replacing thg —1)" column

in M with the vector y, 1. Suppose we also have p different
diagonal matrices , Dy, ...,Dp in R™" with all diagonal
entries in(0,1). We now define the matrices A R™" as
follows

Ani = MDyM; %, ®)

and let.or be the set of all Ay for he {1,2,...,p} and
i €{1,2,...,n+1}. Then for the switching system (1) with
the sete defined as above, the origin is globally attractive.

Comment 2.1 Before we give the proof, we wish to make
the following comment. The proof of this theorem is analo-
gous to the proof of Theorem 3.1 in [2]. The main differences
in the two proofs are that here we look at the discrete-time
case (as opposed to the continuous-time), and significantly
that this discrete time proof only works if the eigenvalues
of the matrices i are in(0,1) (as opposed t¢—1,1)).

Comment 2.2 The proof of Theorem 2.1 given below
hinges on equation (17). We need the right hand side of
(17) to not change sign as the discrete time $tapays in
any switching interval (as was the case in equation (24) in
[2]). This is guaranteed by the assumption that the eigenval
ues of the matrices in7 are in(0,1). Example 1.1 above
shows that Theorem 2.1 is not valid if there is no restriction
on the eigenvalues if1,1). We will now give the details

of the proof up to equation (17), which is the discrete time
analogue of equation (24) in [2], and the proof thereafter
follows as in [2].

Proof of Theorem 2.1:

Step-1 : In this step we replace thex n matricesM; and
Ani € & by (n+1) x (n+ 1) matricesM; and Ay, re-
spectively. The matricefn; € & 2 {Ay; : Anj € &/} are
chosen such that there is at least one common eigenvec-
tor t=(10...0)T for all the matrices in/. The fol-




lowing lemma helps us construct the augmented matriceslt is apparent from this last equation that the higher dimen-

M; € R(MDx(+1) in the higher dimensional state space.

Lemma 2.1 [2]: Let ¥ = {vi,...,Vvn+1} be a set of real
vectors with eachjwe R" for i = {1,2,...,n+ 1}. Suppose
any choice of n vectors itt” are linearly independent. Then
there exists a positive number “a” such that the set=\W
{(a,v1), (L, v2),(1,v3),...,(1,vnr1)} islinearly independent
in R, Here (a,v1) is the vector with A1 coordinates,
whose first coordinate is “a” and remaining n coordinates
are the n coordinates ofiv

Based on this lemma we now define matrichs €
R(MDx(+1) \with a special structure such that they embed
the M; € R™" matrices defined in (2) as follows

1b1..1

0
| o]
X M;

0

1if i=2
aif i£2

M; =

(4)

wherei € {1,2,...,n+1}, and ‘a” is a scalar as defined in
Lemma 2.1. This structure fdvl, was used to ensure that
its columns are linearly independent for edache define
matricesDy, 2 diag(0,Dy) € RM DX We now define
the matricesh,; and the set# as follows

Ani € S 2 {Ani:Anj €/}, where
0 Chi1 ...

Anji

Chi,n 5)
Anj 2 MiDyM; 1 =
0

for some real numbersy; 1,Chi 2, . . ., Chin that depend oih
andi. Note here that = (1 0 ... 0)" is a common eigen-

vector for all them= p(n+ 1) number of matricesy; € .

We can now express th@+ 1)™" order state space system
with the augmented matricés,; € <7 as follows

X 1(k+1) X+ 1(K)
Xl(k'Jr 1) _ Kh’i lek) ’ (6)
Xn(k+ 1) Xn(K)

which according to the special structure assumemngrin
(5), is valid if and only if the following set of equations kol

X1(|(—|— 1) X1(k)

= An, Ko
Xn(k+1) Xn(K)

Xnp1(k+1) = 37 q0nijxj(K)

sional switching system witim+ 1 states explicitly con-
tains the original switching system with states. We will
show in step 3 of the proof that for any solutisk) =
(Xn+1(K), X1 (K),%2(K), ..., %n(K)) of the augmented switching
system (6)limy_. (X1 (K),%2(K), ..., %n(K)) = O will be guar-
anteed for any solutior(k) = (x1(k),x2(K), . ..,xn(k)) of the
original switched system (1) with the special structuresth
proving global attractivity of the origin.

Step-2 : Now for a giveni € {1,2,...,n+ 1} we consider
then+1 linearly independent columns &;. These form

an n+ 1 dimensional coordinate system which includes

as one of the axes. We consider the projection of the state
x(k) onto T as the dynamics of the system (6) evolve. This
projection is given by the first component of the vector

8)

and is denoted bjg;]1(k). We denote thg'" component of
0i(k) as[gi]j(k) for eachi = {1,2,...,n+1}. We define

6K = { (01100, 021K, [gal1(K), .- . [Gns1]2(K) |- (©)

Now suppose that the system dynamics of the augmented
system (6) are described by the following LTI system

X(k+1) = An jX(K)

during some arbitrary discrete time intenj&, ky], where
ko = k; + sfor some positive integesrepresenting the num-
ber of discrete time steps. Then

(10)

gj (k+ 1) = Dhgj(k). (12)
We denoteAnm, as them™ diagonal element of the x

n diagonal matriceDy for me {1,2,...,n} and forh ¢
{1,2,..., p}. It follows from the definition oDy, thatAp i, is
the (m+ 1)!" diagonal element oDy,. Suppose further that
each eigenvalugy, , is in (0,1). We then have

0 for m=1
iImk+1) = . 12
Sl {)\h,ml[gj]m(k) for m#1 42
Thus, when we are system (10) we get
[9i]m(K) = Anm-1)* M [gj]m(ke) for mz#1 (13)

Note here thafg;]1(k) is a constant function of the discrete
time stegk, while eacHg;j|m(k) for m# 1 varies according to
relationship (13) over the discrete interyil, ko]. Consider
the evolution of|gi|1(k) relative to[g;]1(k). This ‘distance’
denoted byd; j (k) is given by

di.j (k) = llgi]1(K) — [9j]1(K)|. (14)



Note that using the following identity

gi (k) = M, *M;g; (K), (15) A
/ L@ —sma,l
one can conveniently calculate the distadcgk) as the first ,'_ g y
component of the vectdtM, *M; —I)g; (k)|, wherel is the TURRERL, o
identity matrix inR(™1x(+1) | ooking at the structure of gt
the matrixF; j = M,"1M; for i # j, we observe that the first- w el
row first-column entry of this matrix is always 1. Next, we s
give a lemma which establishes that there is only one other 71: =
nonzero entry in the first row df j matrix. v T i
L i R
3 |
Lemma 2.2 [2] If we exclude the first column of the matrix N 7
F,j= Mfle, fori# j, then there is only one non-zero entry _
denoted by g 5 in the first row, and columid. Note thatd Fig. 1. Second order roll plane model.

depends on the j indices, and the relationship is given as ) . .
on the market that give the drivers the option to select com-

. _ fort and sporty driving experience settings with a press of a
_J) when i=1 button, and/or modify the suspension settings as a function
i when i#£ 1 of speed [6]. The aim of the control design given here is to

configure the driving experience based on active suspension
actuators alone, and at the same time, guarantee switching

) . . ) , stability in the roll dynamics of the vehicle subject to sedd
Using this lemma and the identity (15) it can be shown that changes in the CG (center of gravity) position.

[9i]1(K) = [9j]2(k) +ci j 5191]5(K), (16) The equations of motion for the simplified roll plane model
of a car with roll torque input, shown in Figure 1, is given as
for 1 <i <n+1andi # j, which is valid irrespective of the

switched system that we are in. Combining (13) and (16) 36t cg+ ko= mh(a,+ gg) + U (18)
we get q )
K whereu denotes the roll torque input provided by active
[6i]2(k) — [9j]1(K) = ¢ j 5(Ans-1)" "[Gj]s (k). 17) suspension actuators, amglis the roll angle. Alsoa is
o ] the lateral acceleration, anyj,, = Ju+mi? denotes the
wherei # j and whenever we are in system (10). equivalent roll moment of inertia. Further definitions oéth

parameters appearing in the model is given in Table 1.
Step-3 : In this last step we show that lime |[gi]1(K) —

[gjl1(k)| =0, for alli, j € {1,...,n+1}. From this fact we It is important here to note that the changes in the CG posi-
will deduce that lim_.(x1(K),...,%(k)) = 0. Hence, the tion significantly affects the roll dynamics of a vehicle.[1]
Theorem will be proved. Given that these changes in the CG position can be detected
in real time (for an example of such a method see [7]), we
The proof of this step follows along the same lines as the give next a synthesis method for a stable switched linear
proof of Theorem 3.1 in [2]. Note that equation (17) in this control design procedure for driving dynamics enhancement
paper is the analogue of equation (24) in [2], and the proofs system based on active suspension actuators, and making
thereafter are analogous. As mentioned in Comment 2.2, theuse of the results obtained in Section 2. For illustrative pu

proof from here on works because the eigenvaldigs_, poses, we assume vertical changes in CG position as the
are in(0,1). only source of switching, which can result from verticaldoa
shifts and/or passenger movements.
3 A stabilizing switched controller design for config-  The switched control structure consistshfdifferent con-
urable driving experience for automotive vehicles trollers that switch based on the current CG height (i.e.,

the CG height change is the switching criteria). For the
As an example of the application of the results presented in €ase of exposition we assurile= 3. Defining the state as
the previous section we consider the design of an automobilex=[ @, ®]", and using a first order approximation for the
roll dynamics enhancement system. Software configurablematrix exponentials, we can represent (18) as in the follow-
driving experience enhancement technologies utilizing ac ing discrete time state space form
tive control systems is a topical subject for many car manu-
facturers. In fact, there are already some passenger @shicl x(k+ 1) = Aqix(K) + Gq ay(k) + Bgiu(k), (19)



wherei € {1,2,3} and

Al 1 At
0= _(k-mgh)At . At |0
Jxeqi ! ‘]Xeqi (20)
T T
- mhAt C_ At
Gd’l o [0 ‘]Xeqi :| Bd"l o |:0 ‘]Xeo,i ]

We propose the following switched linear state feedback
control structure

C: u(k)=—-Kix(k) for ie{1,23}, (21)

where K; = [ ki1, Kiz2 | with ki1, k2 € R, are fixed con-
trol gains corresponding to each CG height configuration.
Then, the closed loop system can be expressekassl) =

Ax(k) + Gg,ay(k), where

3 1
A=A —BaiKi= 1| gemonimat | erogar | (22)
‘]Xeqi ‘]Xeqi

for eachi € {1,2,3}. The following lemma states the con-
troller synthesis procedure.

Lemma 3.1 [6] Let the matricesh; € R?*2 for i € {1,2,3}
be given as defined in (22). Considet, D5, D3 € R?*?

(23)

where the diagonal elements are such that A; < 1 and
Ai #Aj forevery ij € {1,2,3} and i# j. Suppose further
that invertible matrices ¥ M, M3 € R%*2 are defined as

[ we= [ wa= 2],

where all the entries1, N1, Ui, V2, N2, LUz are real numbers.
Then the following control gaing;q, kj> for each i

Vi M1
V2 M2

Vi m
V2 N2

My = { (24)

3
k11 =mgh —k— =2t (A1 - 1)(A2— 1)

fori=1 (25)
Fe 12 (A—1)2
J
Ko1 =mgh —k— 22 (A3 —1)(A2—1
= gthxeqz (Affl)z(_az_l))z( e (26)
Koo=—CHt Q""" ks
J
K3 =mghy —k— 222 (A1 — 1)(A3—1
> gthxew (AlAle)z(_(l)\s_l))z( =1 fori=3 (27)
Ka=—Ct—x "~ o n

guarantee that the conditions of Theorem 2.1 are satisfied,

and consequently the switching system is stable.

Table 1
Simulation parameters

Parameter  Description Value Unit
m Vehicle mass 1200 [kg]
g Gravitational constant  9.81 [m/&]
Jex Roll moment of inertia 300 [kgn?]
c susp. damping coeff. 5000 [kgr’r?/s]
k susp. spring stifness 30000  [kgn?/s?
hi,ho,hs  respective CG heights  0.5,0.7,0.9[m|

Example 3.1 Let the positive constanty;, A, A3 be given
as 0994,0.6,0.3, respectively. Without loss of generality,
we choose the constants, L», N2 as 12,3, respectively.
Also, we set the discrete time step/ts= 0.05. The vehicle
model parameters used in the example are given in Table
1, and they correspond to a compact class vehicle. In this
example we assume that the CG height of the vehicle can
switch between any of the valuds, h, or hs specified in
Table 1 at any instant. Now utilizing Lemma 3.1, the closed
loop system matriced\;, A, and Az corresponding to the
controller gaini1, ki, for eachi € {1,2,3} are computed as

0.05

- 1 - 1 005 ~ 1 0.05
A= , A= , Ag= .
—0.048 0594 -56 —-0.1 —0.084 Q294

Then the evolution of dynamics corresponding to any switch-
ing sequence between the unforced closed loop system ma-
trices A1,A, and Az are stable by Theorem 2.1. That is,
the switched unforced discrete time dynamical systems ex-
pressed as follows

(28)

x(k+1) = Ak)x(k), A(k) € {A1,A2, As},

are stable under arbitrary switches, and the resultingesyst
matrices have positive real eigenvalueg0nl). This inher-
ently implies that with the suggested switched controlcstru
ture, where controller switching is based on the current CG
height, results in stable roll dynamics of the vehicle rdgar
less of the switching parameters. Also, it can be shown that
the closed loop forced switched roll plane model given with
X(k+ 1) = Aix(K) + Gg,iay(k) is stable for bounded lateral
acceleratioray(k) inputs [6].

Comment 3.1 It is important to note here that the closed
loop system matrices; fori € {1,2,3} given in (28)do not
have a CQLF, but nevertheless the corresponding switching
system is exponentially stable. The non-existence of a CQLF
can be confirmed numerically using LMI solvers.

We finally give the numerical simulation results correspond
ing to the suggested controller in feedback loop with a sim-
ple vehicle model known as the “single track model with the
roll degree of freedom” [6]. We used this model to represent
the real vehicle in simulation and in a feedback loop with
the discrete time control design introduced earlier. Ttie re
erence maneuver is a steady state cornering maneuver with
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Fig. 2. Driver steering wheel inpudt (where steering ratio is/20)
and the time varying CG height during the maneuver.
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Fig. 3. Comparisons of the states for vehicles with and without
control.

a gradual step steering inpu)(as shown in the upper part
of Figure 2. The steering input starts at 4 seconds into the
simulation and reaches its peak steady state value 0480

6 seconds in an affine linear fashion. Also the vehicle ve-
locity during the simulation was fixed & = 20m/s. In or-

der to represent the switching in the dynamics we assumed

the CG height profile shown in the lower part of Figure 2,

which we assume results from loads falling over inside the
vehicle during the maneuver. Using this controller results
in the state histories during the maneuver shown in Figure

4 Concluding remarks

In this paper we have shown that the global attractivity re-
sults for a class of discrete-time switching systems is not
necessarily equivalent to continuous time systems with thi
property. Hence, in cases when the existence of a CQLF
is unknown for the switched set of LTI systems, quali-
tative statements concerning the system stability for the
continuous-time as well as the discrete-time systems naust b
validated separately using non-CQLF techniques. One such
technique for a specific class of systems is presented in this
paper. This result can be translated into practical codigel
sign laws for switched systems, which we demonstrated by
a controller synthesis procedure for the stabilizationutba
motive roll dynamics subject to switches in the CG height.
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