
Chaos, Solitons and Fractals 123 (2019) 69–78 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Frontiers 

Image encryption using finite-precision error 

Lucas G. Nardo 

a , Erivelton G. Nepomuceno 

a , ∗, Janier Arias-Garcia 

b , Denis N. Butusov 

c 

a Control and Modelling Group (GCOM), Department of Electrical Engineering, Federal University of São João del-Rei, São João del-Rei, MG, 36307-352, Brazil 
b Department of Electronic Engineering, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil 
c Youth Research Institute, Saint-Petersburg Electrotechnical University, LETI, 5, Professora Popova st., Saint Petersburg 197376, Russia 

a r t i c l e i n f o 

Article history: 

Received 28 January 2019 

Revised 26 March 2019 

Accepted 27 March 2019 

Available online 3 April 2019 

Keywords: 

Image encryption 

Finite-precision error 

Natural interval extension 

Lower bound error 

Computer arithmetic 

NIST tests 

a b s t r a c t 

Chaotic systems are broadly adopted to generate pseudo-random numbers used in encryption schemes. 

However, when implemented on a finite precision computer, chaotic systems end up in dynamical degra- 

dation of chaotic properties. Many works have been proposed to address this issue. Nevertheless, little 

attention has been paid to exploit the finite precision as a source of randomness rather a feature that 

should be mitigated. This paper proposes a novel plain-image encryption using finite-precision error. The 

error is obtained by means of the implementation of a chaotic system using two natural different interval 

extensions. The generated sequence has passed all NIST test, which means it has sufficient randomness 

to be used in encryption. Several benchmark images have been effectively encrypted using the proposed 

approach. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Chaotic systems have been considered as an important nonlin-

ar source in designing encryption schemes [1–3] . Encryption has

eceived great attention over the last few decades due to an expo-

ential increase in the amount of data traffic [4] . Among the many

pplications of encryption, image security attracts huge concerns

rom academic and industry actors. According to Wu [5] , the un-

lanned exposure of particular and governmental photos accentu-

tes the importance of image security. These images can be related

o objects, persons, technical specifications of projects, among oth-

rs [6] . 

One of the main reasons to exploit chaotic systems in encryp-

ion schemes is related to the statement made by Herring and Pal-

ore [7] , who have established an intrinsic relationship between

seudo-random number generators and chaotic systems. Matthews

8] has been considered as pioneer to propose an encryption 

cheme based on chaos. After that, many works with different

haotic systems have been employed to propose cryptographic

ethods [9–18] . Here are some examples: Li et al. [18] have pro-

osed an image encryption algorithm using the tent map. In the

ame way, Wang et al. [10] have developed a new scheme us-

ng the logistic map, as the chaotic system and several other

perations, such as the applications of disturbance, the pixels
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huffling and pixels substitution to ensure the encryption perfor-

ance. There are also combinations of chaotic systems, such as

ogistic-tent system proposed by Chai [9] or continuous three-

imensional chaotic, as the Lorenz system used in [19] and Van

er Pol-Duffing oscillator in [20] . 

Whereas most of chaos-based encryption schemes have been

hown successful in literature, some studies have questioned the

ffectiveness of such methods. Recently, Özkaynak [21] has done

everal case studies indicating that some methodologies are easy

o break and also showed a series of steps that cryptographic

ethods must follow to be considered safe. Wu et al. [22] have

eported that a number of papers, well accepted in the academic

ommunity, do not pass the statistical tests NPCR and UACI when

igorous expected values are applied, therefore such methods are

ulnerable to differential attacks. Apart from that, a major chal-

enge to be faced in the application of chaotic systems is that cer-

ain systems show degradation of their chaotic properties due to

he use of finite precision in digital computers, as reported by Li

t al. [23] . Over the past few years, many researchers have been

uccessful in reducing the degradation of the chaotic properties

f digital systems, as shown in [24] . The reader is referred to

25–43] for an extensive bibliography on this topic. Nevertheless,

ittle attention has been paid to exploit the finite precision as a

ource of randomness rather a feature that should be mitigated.

he authors in [44] have considered the finite-precision, but their

ork deals with the short-period phenomena in chaotic system us-

ng binary approach and it can be seen as a standard technique

o deal with chaos degradation. In general, finite-precision error is

omething to be minimized [45,46] . 
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Fig. 1. The lower bound error from two pseudo-orbits. The logarithmic scale ex- 

hibits the loss of decimal places in the simulation and it is close related to error 

propagation of the simulation [63] . The x-axis is the number of iterates used by 

the discretization scheme as explained in Step 2 of Section 3 . We have exploited 

the randomness properties of this sequence to generate the keystream for our pro- 

posed image encryption scheme. 
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This paper proposes a novel image encryption using finite-

precision error. The error is obtained by means of the implementa-

tion of a chaotic system using two natural different interval exten-

sions. With these two extensions, we calculate the lower bound

error [47,48] . This measure has been used successfully to com-

pute the largest Lyapunov exponent, in a sense that the calcu-

lated pseudo-orbit diverges exponentially from the precise orbits.

More details on the lower bound error and its application can

be seen in [49–53] . Chua’s circuit has been employed as chaotic

system [54–56] . An important feature of the proposed method is

that the keystreams not only depend on the cipher keys, but also

to the original plain-images. In this work, we have shown that

the lower bound error presents suitable pseudo-random proper-

ties for our proposed encryption scheme. Indeed, the generated se-

quence by the lower bound error has passed all NIST test [24,57] ,

which means it has sufficient randomness to be used in encryption

[3,58] . To show the effectiveness of our proposal, several perfor-

mance analysis have been performed in five images. Experiments

show that the proposed scheme has a good performance upon the

following performance criteria: key space, key sensitive, correla-

tion of adjacent pixels, information entropy, histogram, differential,

time and algorithm complexity analysis, resistance to known and

chosen-plaintext attacks, noise attack and information loss. 

The remainder of the article is presented as follows. In

Section 2 , an overview of preliminary concepts for understanding

the rest of the work is presented. The methodology as well as the

proposed algorithms of encryption and decryption are explained in

Section 3 . In Section 4 , it is shown the performance analysis of the

algorithm under a series of tests and compared with the results

found in the literature. Finally, Section 5 contains the conclusion

of the paper. 

2. Preliminary concepts 

2.1. Chua’s circuit 

The autonomous Chua’s circuit [54] is formed by linear compo-

nents: a resistor, an inductor and two capacitors, combined with to

an active, piecewise linear component, well-known as the Chua’s

diode. This system is represented by Eq. (1) . Moreover, Eq. (2) rep-

resents the current of the Chua’s diode ( i R (v c 1 ) ), which G a , G b and

B p are the slopes and the breaking points of the nonlinear compo-

nent. ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

c 1 
dv c 1 
dt 

= 

v c 2 − v c 1 
R 

− i R (v c 1 ) 

C 2 
dv c 2 
dt 

= 

v c 1 − v c 2 
R 

+ i L 

L 
di L 

dt 
= −v c 2 

(1)

i R (v c 1 ) = 

{ 

G b v c 1 + B p (G b − G a ) , if v c 1 < −B p 

G a v c 1 , if | v c 1 | ≤ B p 

G b v c 1 + B p (G a − G b ) , if v c 1 > B p 

(2)

This circuit is one of the most used benchmarks in the research

of dynamical systems and it has already been applied in encryption

schemes as described in [59,60] . 

2.2. The lower bound error 

Nepomuceno and Martins [47] have developed a technique to

estimate an error bound propagation in numerical simulations. In

order to understand the mechanisms of this technique, some defi-

nitions are given as follows. 

Definition 2.1. A map or a system originate a sequence of values

which configure an orbit, represented by x = [ x , x , x , x , . . . , x ] . 
i 0 1 2 3 i 
efinition 2.2. A pseudo-orbit approximates a true orbit, repre-

ented by { ̂ x i,n } = [ ̂ x i, 0 , ̂  x i, 1 , . . . , ̂  x i,n ] . A pseudo-orbit is originated

ue to computer finite-precision [47] . 

Interval and natural interval extension have been defined by

oore et al. [61] as: 

efinition 2.3. An interval is a closed set of real numbers x ∈ R

uch that X = [ X , X ] = x : X ≤ x ≤ X . 

efinition 2.4. A natural interval extension of a function f is an

nterval-valued function F of an interval variable X , with the prop-

rty F (x ) = f (x ) [47,62] . 

Here we present an example of such interval extension given by

qs. (3) and (4) 

 1 
dv c 1 
dt 

= 

v C 2 − v c 1 
R 

− i R (v c 1 ) (3)

 1 
dv c 1 
dt 

= 

v C 2 
R 

− v c 1 
R 

− i R (v c 1 ) . (4)

Finally, the lower bound error can be established as follows. 

efinition 2.5. Let be two pseudo-orbits ˆ x a,n and ˆ x b,n , arising from

wo different natural interval extensions of the function f ( x ), the

ower bound error δ is given by [48] : 

= 

| ̂  x a,n − ˆ x b,n | 
2 

. (5)

Where δ has the same unit of measurement of the pseudo-

rbits ˆ x a,n and ˆ x b,n . Fig. 1 shows the divergence of the pseudo-

rbits and the gradual increase of the error. 

. Proposed algorithm 

The keystream of the proposed algorithm is obtained by the

seudo-random sequence of the lower bound error. We have used

tandard Matlab routines to describe the main steps of the encryp-

ion scheme [24] . 

Step 1 : As a way to obtain a different keystream for different

mages, ensuring the diffusion and confusion properties, a factor

or each original image is added to the initial condition ( V C 1 ) ac-

ording to Eq. (6) . 

 

′ 
C1 = V C1 + F o , (6)
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Fig. 2. Encryption process. The scheme shows the main steps of the proposed technique. The novelty propose here is based on the lower bound error [47,48] . 
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Table 1 

The original image factor for the benchmark images. This factor has been cal- 

culated according to Eq. (7) . This factor aims at increasing diffusion and confu- 

sion properties of the proposed encryption scheme. In order to guarantee the 

reproducibility of our results, the hexadecimal representation of the original 

image factor have been presented in the third column. 

Image Factor Hexadecimal representation 

Lena 9 . 86764 83154296 86 × 10 −4 3f502acaab8a5ce5 
Boat 1 . 360362091064453 × 10 −3 3f5649c5ac471b47 
House 1 . 379846038818359 × 10 −3 3f569b7e670e2c12 
Pepper 1 . 231443634033203 × 10 −3 3f542d0c88a47ecf 
Cameraman 1 . 18722656250 0 0 0 0 × 10 −3 3f537396d0917d6b 
here F o is dependent of the original plain-image. We call F 0 as

riginal image factor and it is given by 

 o = 

1 

M × N 

M ∑ 

i =1 

N ∑ 

j=1 

P a (i, j) × 10 

−5 . (7)

In Eq. (7) , P a is an image of dimensions M × N; i and j are the

espective coordinate values. Note that the original image factor is

iven by the simple average of the pixel values multiplied by an

lement equal to 10 −5 . 

Step 2 : Chua’s circuit is simulated using the 4 th order Runge–

utta method with an integration step of 10 −6 . The same initial

ondition is used for each natural interval extension. The number

f iterates is given by tr + M × N − 1 , where tr is the discarded

ransient time, and M and N are the dimension of the image to

e encrypted. The tr points can be estimated according the critical

ime suggested in [47] . 

Step 3 : Two sequences S 1 and S 2 are generated by each natu-

al interval extension. The logarithm of the lower bound error is

erformed to obtain single sequence S ∈ R 

M×N−1 given by (8) : 

 = log 10 
| S 1 − S 2 | 

2 

. (8) 

Step 4 : Images are 8-bit grey using a pixel matrix with num-

ers between 0 (black tone) and 255 (white tone). The normalized

equence S is given by: 

 n = uint8(mod(S × 10 

15 , 256)) , (9)

here uint 8 is Matlab routine to convert the sequence into 8-bit

ositive integer and mod represents the modulo operator. 

Step 5 : In order to transform the sequence S n in an array with

quivalent format of the original image, the following process is

one: 

 n = v ec2 mat(S n , N) , (10) 

here vec 2 mat is the process of converting vector to matrix and N

s the width of the image. 

Step 6 : To encrypt the plain image ( P a ) in a cipher image ( C i ),

he bit-wise XOR operation is executed with the normalized se-

uence and the image, such as 

 i (i, j) = S n (i, j) � P a (i, j) . 

These steps are illustrated by the image cryptosystem shown in

ig. 2 . It is worth to say this encryption system respect the Ker-

khoffs’s principle [64] , in other words, the only secret parameter

s just the key. Once the image is encrypted, the process of con-

erting the noise-like image to the original image is basically the

everse encryption process. 
. Performance analysis 

A series of numerical experiments has been conducted to

emonstrate the efficiency and security of the proposed approach.

e have used the following benchmark 256 × 256 pixels images:

ena, boat, house, pepper and cameraman. 

The experiments and validations are presented in Sections 4.1 –

.11 . Eleven criteria have adopted: NIST SP 800-22 test, key space,

ey sensitive, correlation of adjacent pixels, information entropy,

istogram, differential, resistance to known and chosen plaintext

ttacks, noise attack, information loss and time and algorithm

omplexity analysis. Moreover, we have compared our results with

ther papers found in literature such as [13,18,19,65] . 

The following parameters have been used to generate the se-

ret key, based on the circuit described in Aguirre [55] : C 1 = 10 nF ,

 2 = 100 nF , L = 19 mH, R = 1 . 8 k �, G a = −0 . 68 mS, G b = −0 . 37 mS,

p = 1 . 1 V . While the initial conditions are given by V c 1 = 0 . 5 V,

 c 2 = −0 . 2 V, I L = 0 A . The natural interval extensions are presented

n Eqs. (3) and (4) . The original image factors added to the initial

ondition ( V c 1 ) are showed in Table 1 . Fig. 3 shows the encryption

nd decryption results using the parameters and methodology. 

.1. NIST SP 800-22 test 

The NIST SP 800-22 is a statistical test suite for RNGs (random

umber generators) and PRNGs (pseudo-random number genera-

ors) composed by 15 statistical tests. From each P-value, which is

roduced by the end of each test, it is possible to determine if the

equence can be or cannot be accepted as a random sequence. The

ignificance level α helps in this decision, if P − v alue ≥ α, then

he sequence passes the proposed test [24,57] . 

In order to generate the sequence according to NIST framework,

e have adopted Eq. (9) as S n = uint32(mod(S × 10 15 , 2 32 )) , since a
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Fig. 3. Representation of cryptography by XOR operation. (a) and (c): Plain image. (b): Cipher image. The encryption occurs from image (a) to (b). The decryption is performed 

from image (b) to (c). The performance of bit-XOR operation twice represents the entire cryptographic process of encryption and decryption. 

Table 2 

P-value results for fifteen tests. The feasibility of the cryptosystem is proved, as 

the P − v alue ≥ α = 0 . 01 for all tests. Similar test has been performed by Cao 

et al. [24] . 

Statistical Test P-value Result 

Frequency 0.883171 Passed 

Block Frequency ( m = 128 ) 0.236810 Passed 

Cusum-Forward 0.437274 Passed 

Cusum-Reverse 0.437274 Passed 

Runs 0.759756 Passed 

Long Runs of Ones 0.759756 Passed 

Rank 0.145326 Passed 

Spectral DFT 0.719747 Passed 

NonOverlapping Templates ( m = 9 , B = 0 0 0 0 0 0 0 01 ) 0.554420 Passed 

Overlapping Templates ( m = 9 ) 0.595549 Passed 

Universal 0.304126 Passed 

Approximate Entropy ( m = 10 ) 0.867692 Passed 

Random Excursions ( x = +1 ) 0.494392 Passed 

Random Excursions Variant ( x = −1 ) 0.236810 Passed 

Linear Complexity ( M = 500 ) 0.534146 Passed 

Serial ( m = 16 ) 0.554420 Passed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Results of key sensitivity tests in the encryption and de- 

cryption processes applied to Lena. The Lena image has 

(256 × 256) pixels. A very small value is added to initial 

condition of each of the states of Chua’s Circuit. The third 

and fourth columns present the values calculated according 

to Eq. (11) (encryption) and (12) (decryption) [16] . Values 

close to 100% indicate a completely different image. 

Secret Key Diff1 (%) Diff2 (%) 

V ′ C 1 
+ 10 −14 99.64 99.64 

V C 2 + 10 −14 99.62 99.62 

I L + 10 −14 99.59 99.59 
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long sequence length is required. Starting from a bit stream length

equal to 10 0 0 0 0 0 and α = 0 . 01 , the P-value for each test is exhib-

ited in Table 2 . As indicated by test outcomes, it is clear that the

series generated proved successful at NIST tests. Thus, the designed

system is suitable for use in encryption algorithm to generate ran-

dom number [3,58] . 

4.2. Key space 

In the proposed scheme, four secret parameters have been used

to compose the key, namely: three initial conditions of Chua’s cir-

cuit and the original image factor according to Eq. (7) , which has

been shown in Table 1 . The three initial conditions are represented

using floating-point [66] with precision of p = 53 bits, which yields

2 53 3 . The image factor gives a space of 256 × 256 = 2 16 . Thus, the

key space is approximately 2 53 3 × 2 16 = 2 175 , which is larger than

the minimum of 2 100 suggested in the literature, which has been

employed by Norouzi and Mirzakuchaki [12] and Hu et al. [19] to

ensure robustness against brute-force attack. 

4.3. Key sensitivity analysis 

An encryption scheme must have high sensitivity to secret key

changes. We have analysed this feature according to Zhang [16] as

follows. Each of initial conditions V ′ 
C1 

, V C 2 and I L have been per-

turbed separately by 10 −14 . The difference in the cipher image due

to this perturbation has been quantified by [16] : 

Diff 1 (%) = 

1 

M × N 

M ∑ 

i =1 

N ∑ 

j=1 

| sign (C 1 (i, j) − C 2 (i, j)) | × 100 , (11)
here M and N are the length and width, respectively, of the ci-

her images C 1 (without perturbation) and C 2 (with perturbation);

ign () is the sign function. 

The decryption process has been analysed in a similar way. The

uantitative difference between two decrypted images P 1 (without

erturbation) and P 2 (with perturbation) has been determined by

16] : 

iff 2 (%) = 

1 

M × N 

M ∑ 

i =1 

N ∑ 

j=1 

| sign (P 1 (i, j) − P 2 (i, j)) | × 100 . (12)

Table 3 shows the results of key sensitive in the encryption and

ecryption process. The process is highly sensitive to changes in

he secret key, as the difference in both cases are close to 100%. 

.4. Correlation analysis of adjacent pixels 

Hackers often attempt to break cryptosystems by analysing the

orrelation information [19,67] . In a cipher image, the correlation

oefficient is expected to be close to zero in the horizontal, vertical

nd diagonal directions to avoid such attacks. The correlation coef-

cient of adjacent pixels randomness test measures this correlation

y Eq. (13) [67] . 

(X, Y ) = 

E[(X − μX )(Y − μY )] 

σX σY 

, (13)

here X represents the series of pixels at position, Y represents the

eries of adjacent pixels, μ and σ are the mean and the standard

eviation values, respectively, and E is the expectation value. 

Table 4 shows the correlation coefficients for different images.

ote that the original images have a high coefficient, indicating

hat the pixels are strongly correlated, while the encrypted im-

ges do not. Results shown in Table 5 are evidenced through Fig. 4 .

able 5 compares the coefficients of the Lena image with differ-

nt works in literature. In spite of the correlation coefficients of

ur proposed scheme are not the lowest, the calculated values are

lose to zero. 
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Table 4 

Correlation coefficients test for the five benchmark images. We have 

shown the correlation for each original and encrypted image. The en- 

crypted images exhibit values very close to zero, which is expected 

for robust encryption schemes. 

Image Correlation Coefficient 

Horizontal Vertical Diagonal 

Lena Original 0 .93998 0 .96934 0 .91793 

Cipher 0 .00405 0 .00302 0 .00113 

Boat Original 0 .92066 0 .93714 0 .88052 

Cipher 0 .00842 0 .00187 0 .00136 

House Original 0 .97807 0 .96528 0 .94835 

Cipher −0 .00426 0 .00561 −0 .00259 

Pepper Original 0 .95223 0 .95303 0 .90949 

Cipher 0 .00130 −0 .00159 0 .00354 

Cameraman Original 0 .93321 0 .95928 0 .90764 

Cipher −0 .0 0 089 −0 .0 0 096 −0 .0 0 084 

Table 5 

Comparison of correlation coefficients of cipher 

Lena image. In spite of the correlation coefficients 

of our proposed scheme are not the lowest, the cal- 

culated values are close to 0. 

Correlation coefficient Lena 

Horizontal Vertical Diagonal 

0 .00405 0 .00302 0 .00113 Ours 

0 .0 0 083 0 .00223 0 .00650 [13] 

0 .00352 0 .00649 0 .00356 [65] 

0 .00160 0 .00250 0 .0 0 030 [18] 

−0 .00170 0 .00130 −0 .0 0 050 [19] 

0 .93998 0 .96934 0 .91793 Original 

Fig. 4. Correlation distribution of two adjacent pixels. The first column is for the plain im

of 50 × 50 pixels. Three types of correlations have been performed: i) (a)-(b): horizontally 

adjacent pixels with H = (1 : 49 , 1 : 50) and V = (2 : 50 , 1 : 50) . iii) (e)-(f) diagonal adjac

pixel gray value location. As it is possible to see, the distribution of pixel for the cipher im

pixels is very high in plain image. The cipher algorithm decreases the correlation of betw
age, while the second column is for the cipher image. We have shown only an area 

adjacent pixels with H = (1 : 50 , 1 : 49) and V = (1 : 50 , 2 : 50) . ii) (c)-(d) vertically 

ent pixels with H = (1 : 49 , 1 : 49) and V = (2 : 50 , 2 : 50) . The axis represents the 

age is well distributed over all range of gray scale. The correlation of the adjacent 

een adjacent pixels. See more details in [68] . 
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Table 6 

Information entropy of the Lena’s encrypted 

image for different approaches. The ideal infor- 

mation entropy is 8. The values of entropy for 

the images boat, house, pepper and cameraman 

have been calculated as 7.9971, 7.9969, 7.9975 

and 7.9969, respectively. 

Entropy References 

7.9968 Ours 

7.9826 [13] 

7.9980 [65] 

7.9998 [18] 

7.9975 [19] 
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Table 7 

Variances of the histograms in the respective images. The 

third column shows the percentage of reduction in variance 

of cipher image compared to the plain image. As a matter 

of comparison, Namasudra and Deka [72] have reduced the 

variance of Lena histogram in 99.089%. 

Images Variance 

Plain Cipher Reduction (%) 

Lena 30697 .616 290 .157 99 .055 

Boat 99221 .152 262 .596 99 .735 

House 300964 .870 276 .760 99 .908 

Pepper 37241 .419 227 .012 99 .390 

Cameraman 99630 .761 283 .522 99 .715 

Table 8 

Results of NPCR and UACI scores for the proposed cryptosys- 

tem. We have considered the following NPCR critical scores: 

N 

∗
0 . 05 = 99 . 57% , N 

∗
0 . 01 = 99 . 55% and N 

∗
0 . 001 = 99 . 53% . The UACI 

critical scores are as follows: U ∗−
0 . 05 

= 33 . 28% , U ∗−
0 . 01 

= 33 . 23% , 

U ∗−
0 . 001 

= 33 . 16% , U ∗+ 
0 . 05 

= 33 . 64% , U ∗+ 
0 . 01 

= 33 . 70% and U ∗+ 
0 . 001 

= 

33 . 77% . All images are 256 × 256 pixels. 

Image NPCR score (%) NPCR critical scores (%) 

N 

∗
0 . 05 N 

∗
0 . 01 N 

∗
0 . 001 

Lena 99.57% Pass Pass Pass 

Boat 99.59% Pass Pass Pass 

House 99.57% Pass Pass Pass 

Pepper 99.60% Pass Pass Pass 

Cameraman 99.58% Pass Pass Pass 

UACI score (%) UACI critical scores 

U ∗−
0 . 05 

U ∗−
0 . 01 

U ∗−
0 . 001 

U ∗+ 
0 . 05 

U ∗+ 
0 . 01 

U ∗+ 
0 . 001 

Lena 33.41% Pass Pass Pass 

Boat 33.44% Pass Pass Pass 

House 33.55% Pass Pass Pass 

Pepper 33.40% Pass Pass Pass 

Cameraman 33.30% Pass Pass Pass 
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4.5. Information entropy analysis 

Shannon’s entropy [69] is an approach for measuring random-

ness in a communication system, defined by Eq. (14) [13] , 

H(X ) = 

2 N −1 ∑ 

i =1 

P i log 2 
1 

P i 
, (14)

where H ( X ) is the entropy (bits), X is a symbol and P i is the prob-

ability value of symbol X . 

The theoretical value for entropy measure is H = log 2 (256) = 8

[70] . As the cipher images originated by PRNG (pseudo-random

number generator) are not truly random images, the expected en-

tropy value for the system to be considered secure is H ( X ) ≈ 8.

The values of entropy for the boat, house, pepper and camera-

man images have been calculated as 7.9971, 7.9969, 7.9975 and

7.9969, respectively. These values indicate good randomness prop-

erties. Moreover, Table 6 compares the entropy obtained by the

encryption of Lena image. Our method presents value very close

to 8 and it is very similar to other works in literature. Li et al.

[18] present the most approximate value of entropy for Lena ci-

pher image, although the difference is only in the third decimal

place. A metadata analysis in three papers [12,19,71] has been per-

formed, and we have collected 50 calculated entropy values. The

calculate mean of such sample is 7.992994 and the standard de-

viation is 0.009166. Therefore, we can be 95% confident that the

population mean falls between 7.9905 and 7.9955. It means that

our result of 7.9968 is higher than the expected mean entropy cal-

culated in the literature upon this metadata analysis. 

4.6. Histogram analysis 

The histogram of cipher image should be random and uni-

form. A quantitatively histogram analysis can be performed by

Eq. (15) [6,16] : 

 ar(h ) = 

1 

G 

2 
L 

G L −1 ∑ 

i =0 

G L −1 ∑ 

j=0 

1 

2 

(h i − h j ) 
2 , (15)

where G L = 256 is the gray level and h is the vector of the his-

togram values. Fig. 5 shows the plain images and the cipher im-

ages along with their respective histograms. It is clear that the en-

cryption scheme produces uniform histograms. Table 7 exhibits a

significant decrease in the cipher images. In all images, our en-

cryption scheme has reduced the variance of the plain image his-

tograms in more than 99%. As a matter of comparison, Namasu-

dra and Deka [72] have reduced the variance of Lena histogram

in 99.089%, while our proposed scheme has obtained a very close

value of 99.055%. 

4.7. Differential analysis 

Attackers often try to find common statistical patterns in en-

crypted images to break the algorithm and identify the original
icture [6,12,19] . The number of changing pixel rate (NPCR) and

nified averaged changed intensity (UACI) are the two most used

etrics to evaluate the resistance against these differential attacks

11,15] . The NPCR and UACI scores can be obtained by the following

quations Eqs. (16) and (17) [16] : 

P CR (%) = 

1 

M × N 

M ∑ 

i =1 

N ∑ 

j=1 

| sign (C 1 (i, j) − C 2 (i, j)) | × 100 , (16)

ACI(%) = 

1 

M × N 

M ∑ 

i =1 

N ∑ 

j=1 

| C 1 (i, j) − C 2 (i, j) | 
255 

× 100 , (17)

here M and N are the length and width, respectively, of the ci-

her image C i and sign () is the sign function. 

Wu et al. [22] have established scores as random variables and

erive their expectations and variances, providing the NPCR critical

alue and the accepted UACI interval values, for a variety of image

izes. In order to perform the test [6,12,14] , the authors firstly en-

rypted the original plain image. Secondly, one pixel in the origi-

al plain image was randomly chosen and its value was modified.

ith the modified plain image, another cipher image is achieved

y encrypting it. Lastly the NPCR and UACI scores can be computed

y Eqs. (16) and (17) . The results obtained are shown in Table 8 . It

an be observed that values respect the limits described by Wu

t al. [22] . Hence, the algorithm can resist to differential attack.

able 9 compares the NPCR and UACI scores with the values found

n other literature. 
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Fig. 5. This set of figures show histogram for five different images before and after application of our encryption scheme. The columns are following described: (I) plain 

image; (II) histogram of the plain images; (III) cipher image; (IV) histogram of the cipher image. Each line represents a different image as follows: (a) Lena; (b); boat; (c) 

house; (d) pepper; (e) cameraman. All images are given in grayscale with size 256 × 256. Although the plain image exhibits a high presence of particular shading gray values, 

the proposed scheme converts the plain image to a noise-like image, with uniform distribution of pixel. 

Table 9 

NPCR and UACI values for the Lena’s image. The results 

are very similar with those found by Diaconu [65] and 

Hu et al. [19] . 

NPCR score UACI score References 

99.57% 33.41% Ours 

99.57% 33.48% [65] 

99.61% 33.46% [19] 
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.8. Resistance to known and chosen-plaintext attacks 

Known and chosen-plaintext attacks are very often attacks to

ryptosystems [14] . In the known-plaintext attacks, a hacker knows
 string of both cipher and plain images [13] . On the other hand, in

he chosen-plaintext attacks, the hacker encrypts a chosen plain-

ext seeking for further information that compromises the cryp-

osystem. In our proposed encryption scheme, one of the keys is

btained from the plain image (see Eq. (7) ), which is an additional

rotection against attacks. Furthermore, commonly used black and

hite images [6,11] have been encrypted and no useful information

n the cipher images has appeared. This fact has been confirmed by

he indexes shown in Table 10 . 

.9. Noise attack 

The cryptographic method must be robust to noise disturbance

2,6,14] . We have performed such attack as follows [6] . A white
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Fig. 6. Noised encrypted images and decrypted images. In the first row, five cipher images have been perturbed with white Gaussian noise. In all cases the mean is zero. 

The variance has been different in each case with the values 0.0 0 0 01 (A), 0.0 0 01 (B), 0.001 (C), 0.01 (D) and 0.1 (E). The second row (F-J) shows the decrypted images, 

respectively. Most of information has been properly restored. 

Fig. 7. Cropping attack in the cipher images A-C. The decrypted images D-F show that the approach is resistance to information loss. 

Table 10 

Results of four tests applied on totally white and black images. 

These results indicate that the method is resistant to chosen- 

plaintext attacks as suggested by Wu et al. [14] . 

Test Images (512 × 512) 

White Black 

Entropy 7.9977 7.9975 

Corr. coef. Horizontal −0 . 00161 −0 . 0 0 091 

Diagonal −0 . 0 0 066 −0 . 0 0 043 

Vertical 0.0 0 040 −0 . 00177 

Histogram Variance - Plain 2.68 × 10 8 2.64 × 10 8 

Variance - Cipher 3.24 × 10 3 3.56 × 10 3 

Diff. anal. NPCR score 99.62% 99.59% 

UACI score 33.44% 33.52% 
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Gaussian noise with mean equal to zero and variance within

0.0 0 0 01 to 0.1, has been introduced to the image. Fig. 6 (A)–(E)

show the noised encrypted images and Fig. 6 (F)–(J) show de-

crypted images, respectively. It can be concluded that most of the

information in the original image can be restored and the encryp-

tion scheme is resistant to noise disturbance. As a matter of com-

parison, the authors in [6,73] have used noise with variance equal

to 0.0 0 01 and 0.0 025, respectively. While our results have shown
ood quality visual decrypted images with a significant higher vari-

nce equal to 0.1. 

.10. Information loss 

An effective cryptosystem must consider information loss [2,6] .

ig. 7 shows block removal in cipher images with pixel-size of

6 × 16, 32 × 32 and 64 × 64. The decrypted plain images continue

o be meaningful. Hence, our method is robust against to this kind

f attack. 

.11. Time and algorithm complexity analysis 

In addition to being resistant to various attacks, the algorithm

ust encrypt and decrypt an image efficiently [12] . In order to

nalyse the computational complexity of the cryptosystem, the

uthors counted the mathematical operations in the encryption

cheme, as done in [12] and [19] . Table 11 shows the summary

f the basic operations used throughout the encryption scheme.

or an image of size n × n , the total number of operations is

8 n 2 + 75 tr + 32 , which furnishes a computational complexity of

 ( n 2 ), the same as obtained by Norouzi and Mirzakuchaki [12] . 
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Table 11 

Summary of computational complexity. We have analysed the basic op- 

erations used throughout the encryption scheme. n stands for the di- 

mension of the image and tr is the transient time for the chaotic sys- 

tem. Our proposed method has the computational complexity of O ( n 2 ), 

which is the same in [12] . 

Operations Encryption process 

Sum/Subtraction 32 n 2 + 30 tr + 3 

Multiplication/Division 37 n 2 + 37 tr + 14 

Power 15 

Absolute 5 n 2 + 5 tr

Logarithm n 2 + tr

Module n 2 + tr

Uint8 n 2 + tr

bit-wise XOR n 2 

Summation of operators 78 n 2 + 75 tr + 32 
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. Conclusion 

We have designed a novel image encryption scheme using

nite-precision error. This design makes contact with earlier works

btained by us [47–51] . Instead of attempting to mitigate the

egradation effects of finite precision in chaotic digital systems, we

ave used natural interval extensions to exploit computer error as

 source of randomness. Initial conditions of the Chua’s circuit and

 factor based on the image to be ciphered have been employed

o generate the keystream. The generated sequence successfully

assed the NIST test suite SP800-22 and we concluded that our

seudo-random sequence has sufficient randomness to be used in

ncryption. The bit XOR operation along with the keystream have

een used to encrypt the image. 

The proposed approach proved to be efficient, producing a

seudo-random sequence with overwhelming cryptographic prop-

rties and encrypting the test picture set pictures. Additionally, the

imulation results have shown the algorithm to be at least as effi-

ient as other methods presented in literature. We illustrated the

esistant of proposed technique to a set of well-known cyberat-

acks. 

This investigation therefore indicates a cost-effective source of

andomness to increase the use of chaotic systems in encryption

chemes. Most notably, this is the first study to our knowledge to

nvestigate the computer error in encryption schemes. Our results

rovide convincing evidence of such endeavour. However, the com-

lexity analysis has shown our proposed scheme with no lower

ime consumption than other similar works. In a high demand-

ng real-time application, future work should devote some effort

o apply more efficient chaotic system. Such effort may be avoid

he degradation of chaos in computers, such as the case shown by

ao et al. [24] , and improve of the method’s performance through

he reduction of encryption time. We also plan to develop an em-

edded system based on our technique. Recent work on a minimal

igital chaotic system [74] has certainly established a way to turn

he method proposed here even more efficient. 
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