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a b s t r a c t 

It has been shown that natural interval extensions (NIE) can be used to calculate the largest positive 

Lyapunov exponent (LLE). However, the elaboration of NIE are not always possible for some dynamical 

systems, such as those modelled by simple equations or by Simulink-type blocks. In this paper, we use 

rounding mode of floating-point numbers to compute the LLE. We have exhibited how to produce two 

pseudo-orbits by means of different rounding modes; these pseudo-orbits are used to calculate the Lower 

Bound Error (LBE). The LLE is the slope of the line gotten from the logarithm of the LBE, which is esti- 

mated by means of a recursive least square algorithm (RLS). The main contribution of this paper is to 

develop a procedure to compute the LLE based on the LBE without using the NIE. Additionally, with the 

aid of RLS the number of required points has been decreased. Eight numerical examples are given to 

show the effectiveness of the proposed technique. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

It is generally accepted that the largest positive Lyapunov ex-

ponent (LLE) is one of the best approaches to detect the pres-

ence of chaos in a dynamical system [1–7] . Lyapunov exponents

measure the average divergence or convergence of nearby trajec-

tories along certain directions in state space. In chaotic systems,

the states of two copies of the same system separate exponen-

tially with time despite very similar initial conditions [8,9] . Several

numerical methods to estimate LLE have been proposed since the

work by Oseledec [10] . In general, Lyapunov exponents are com-

puted by tracing the exponential divergence of close trajectories.

This divergence is explored in [11] to calculate the LLE, although

in [12] it is pointed out that such a method is not very robust

and difficult to apply. To overwhelm this problem, Rosenstein et al.

[1] and Kantz [12] have proposed a different strategy, in which

the time dependence of distances between nearby trajectories is

recorded explicitly to select the appropriate length scale and range

of times from the output [2] . Examples to compute the LLE can be

seen in [1,3,6,7,11–14,14–25] , just to cite a few. 

The relevance of the measure of the LLE and the observation

of that two copies of the same system separate exponentially does
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ot rely only on the characterization of the system is chaotic or

ot. Perc and Marhl [26] have developed a technique in which

his featured is exploited to detect and control unstable periodic

rbits. It is also important to state that the determination of LLE

as been applied with success to acquire important insights into

ystem dynamics [23–25,27] . Recently, Mendes and Nepomuceno

2] have presented a simple algorithm to estimate the LLE. The ap-

roach is based on the concept of the lower bound error (LBE) first

ntroduced in [28] and further developed in [29] . To estimate the

LE, the system, either discrete or continuous, is simulated using

wo different natural interval extensions (NIE), which are the foun-

ation used to calculate the LBE. Although, the method proposed

n [2] brings some interesting developments, either for its simplic-

ty and robustness or for the smaller amount of required data, it

resents at least one downside, which is the need to elaborate NIE

30] . In a first instance, this seems to be an easy step, but soon we

ave realised that there are many cases in which NIE are not easily

erived. For example, let the quadratic map [31] given by 

x n +1 = 2 − x 2 n . (1)

his map is in a very simplified form, which does not allow any

hange of sequence in the arithmetic operation to produce a dif-

erent NIE. Besides that, there are dynamical systems, modelled by

eural networks, such as in [32] , which equations are not easily

anipulated. We may also mention systems modelled by blocks,

uch as Simulink [33] , which equations are not explicitly available.

hus, to overcome this limitation, we have found that two differ-
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Table 1 

Chaotic systems investigated in this paper. The Rössler has also been modelled us- 

ing Simulink, as described in Fig. 1 . The sampling time is denoted by �t ( s ). The 

initial condition is arbitrarily adopted but fixed for the two rounding modes. 

System Equations Parameters �t ( s ) Initial 

Condition 

Logistic x n +1 = μx n (1 − x n ) μ = 4 . 0 1 x 0 = 2 / 3 

Hénon x n +1 = 1 − ax 2 n + y n a = 1 . 4 1 x 0 = 0 . 3 

y n +1 = bx n b = 0 . 3 y 0 = 0 . 3 

Sine Map x n +1 = ax n − bx 3 n a = 2 . 6 86 8 1 x 0 = 0 . 1 

b = 0 . 2462 

Tent Map x n +1 = r min { x n , 1 - x n } r = 1.99 1 x 0 = 0 . 6 

Lorenz ˙ x = σ (y − x ) σ = 16 . 0 0.01 x (0) = 1 

˙ y = x (ρ − z) − y ρ = 45 . 92 y (0) = 0 . 5 

˙ z = xy − βz β = 4 . 0 z(0) = 0 . 9 

Rössler ˙ x = −y − z a = 0 . 15 0.10 x (0) = −1 

˙ y = x + ay b = 0 . 20 y (0) = 1 

˙ z = b + z(x − c) c = 10 . 0 z(0) = 1 

Mackey-Glass ˙ x = 

ax τ

1 − x c τ
− bx a = 0 . 2 , b = 0 . 1 0.3 x (0) = 0 . 3 

c = 10 , τ = 30 

Table 2 

Computation of the LLE ( λ) given in natural logarithm. The last column 

presents the number needed iterates to calculate λ. The expected values are 

obtained in references indicated in the third column. 

System Literature λ [Ref.] Calculated λ Iterates 

Logistic 0.693 [4] 0.711 35 

Hénon 0.418 [11] 0.408 89 

Sine Map 0.773 [44] 0.794 26 

Tent Map 0.688 [45] 0.684 16 

Lorenz 1.500 [11] 1.390 2496 

Rössler 0.092 [11] 0.092 1413 

Rössler (Simulink) 0.092 [11] 0.092 1090 

Mackey-Glass 0.0074 [18] 0.0069 10,178 
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[ { ̂ x } , { ̂ x } ] of a map, then γ = γ ≥ � . 
nt rounding modes present similar effects to those produced by

wo NIE. Therefore, rounding mode has been applied instead of us-

ng NIE to calculate the LBE, and consequently the LLE. According

o IEEE 754-2008 standard, the rounding mode indicates how the

east significant returned digit of a rounded result is to be calcu-

ated [34–36] , this can be simply obtained with an internal Matlab

unction [37] or in C 

++ [38] . From this point, this paper follows

he steps presented in [2] , where the LLE is obtained by a sim-

le least square fit to the line of the natural logarithm of LBE, just

bout from the beginning of simulation up to the instant when

he LBE stops increasing. We have also improved this stage replac-

ng the least square by the recursive least square algorithm (RLS)

39] . This brings two main advantages: reduction of the number of

oints and automation of the process, as we do not need to set

p beginning and end points of LBE range to calculate the slope,

nd thus the LLE. As in [1] the natural logarithm is adopted here.

he method is applied successfully to eight numerical examples.

irstly, the same examples used in [1] : Logistic [40] , Hénon [41] ,

orenz [42] , and Rössler equations [43] have been considered. We

lso included other four cases, namely: Sine Map [44] , Tent Map

45] , Mackey-Glass [46] , and a Simulink version of Rössler adapted

rom Aseeri [47] . We have also investigated the results of the pro-

osed method to calculate the LLE for a periodic dynamical system,

hich has obviously delivered a non-positive value. 

lgorithm 1 Pseudo-code of the LLE calculation using Matlab,

here mod1 and mod2 are two different rounding modes and RLS

s the recursive least square algorithm according Eq. (6) . 

1: input Parameters, initial conditions, tol 

2: Stop ← False 

3: while Stop do 

4: |system_dependent(‘setround’,mod1)| 

5: ˆ x a,n +1 ← f ( ̂  x a,n ) 

6: |system_dependent(‘setround’,mod2)| 

7: ˆ x b,n +1 ← f ( ̂  x b,n ) 

8: |system_dependent(‘setround’,0.5)| 

9: � �,n +1 ← (| ̂ x a,n +1 − ˆ x b,n +1 | ) / 2 
10: λn +1 ← RLS (� �,n +1 ) 

11: λ5+ ← max { λn +1 , λn , · · · , λn −3 } 
12: λ5 − ← min { λn +1 , λn , · · · , λn −3 } 
13: λm 

← mean { λn +1 , λn , · · · , λn −3 } 
14: if 

| λ5+ − λ5 −| 
| λm 

| < tol then 

15: Stop ← True 

16: end if 

17: end while 

The remainder of the paper is organised as follows.

ection 2 provides preliminary concepts about LBE. The main

esults are developed in Section 3 . Section 4 is devoted to

llustrate the results and final remarks are given in Section 5 . 

. The lower bound error 

In this section, some definitions on recursive functions, NIE and

seudo-orbits are shown. After that, the theorem of LBE is pre-

ented [28] . Let n ∈ N , a metric space M ⊂ R , the relation 

x n +1 = f (x n ) , (2) 

here f : M → M , is a recursive function or a map of a state space

nto itself and x n denotes the state at the discrete time n . The se-

uence { x n } obtained by iterating Eq. (2) starting from an initial

ondition x 0 is called the orbit of x 0 [48] . Let f be a function of

eal variable x . Moore and Moore [49] present the following defi-

ition. 
efinition 2.1. A natural interval extension (NIE) of f is an interval

alued function F of an interval variable X , with the property 

F (x ) = f (x ) for real arguments , (3) 

here by an interval we mean a closed set of real numbers x ∈ R

uch that X = [ X , X̄ ] = { x : X ≤ x ≤ X̄ } . 
Connected to a map an orbit may be defined as follows: 

efinition 2.2. An orbit is a sequence of values of a map, repre-

ented by { x n } = [ x 0 , x 1 , . . . , x n ] . 

efinition 2.3. Let i ∈ N represents a pseudo-orbit, which is defined

y an initial condition, a natural interval extension of f, some specific

ardware, software, numerical precision standard and discretization

cheme . A pseudo-orbit approximates an orbit and can be repre-

ented as 

{ ̂  x i,n } = [ ̂  x i, 0 , ̂  x i, 1 , . . . , ̂  x i,n ] , 

uch that 

| x n − ˆ x i,n | ≤ γi,n , (4) 

here γi,n ∈ R is a bound of the error and γ i, n ≥ 0. 

Nepomuceno et al. [29] have shown that two pseudo-orbits de-

ived from associative multiplication property presents the same

rror bounds. These extensions have been called in such work as

rithmetic interval extension . The lower bound error theorem has

een proved in [29] : 

heorem 2.4. Let { ̂ x a,n } and { ̂ x b,n } be two pseudo-orbits derived

rom two arithmetic interval extensions. Let � �,n = | ̂ x a,n − ˆ x b,n | / 2 be

he lower bound error associated to the set of pseudo-orbits � =

a,n b,n a,n b,n �,n 
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Fig. 1. Rössler simulated in Simulink. The parameters, initial condition, sampling time are the same that described in Table 1 . Adapted from Aseeri [47] . 

Table 3 

Computation of LLE considering two additional combination 

of rounding modes, namely, rounding upwards ( + ∞ ) and 

rounding to nearest (0.5), and rounding downwards ( −∞ ) and 

rounding to nearest (0.5). 

System + ∞ and 0.5 0.5 and −∞ 

N λ N λ

Logistic 35 0.709 35 0.708 

Hénon 89 0.408 85 0.401 

Sine Map 26 0.796 26 0.788 

Tent Map 17 0.682 12 0.685 

Lorenz 2493 1.391 2529 1.396 

Rössler 2436 0.087 1628 0.091 

Rössler (Simulink) 1878 0.092 2121 0.093 

Mackey-Glass 14073 0.0074 10167 0.0069 

Table 4 

Critical time T c using the LLE. See [65] for detailed 

discussion. D is the diameter of the attractor (the 

peak-to-peak value). T c is given in number of iterates 

for the Logistic, Hénon, Sine Map and Tent Map, and 

in time for Lorenz, Rössler, Rössler (Simulink) and 

Mackey-Glass. 

System D LLE 10 T c 

Logistic 1 0.309 51 

Hénon 1 0.177 89 

Sine Map 1 0.345 46 

Tent Map 1 0.297 53 

Lorenz 42.34 0.607 28.5 

Rössler 17.98 0.039 425.8 

Rössler (Simulink) 31.89 0.039 432.6 

Mackey-Glass 1.38 0.0030 5290.9 
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3. Estimating LLE with rounding mode 

Normally, the result of an operation (or function) on floating-

point numbers cannot be exactly representable in the floating-

point system being used, and thus, it must be rounded. One of

the most interesting ideas brought out by IEEE 754 is the con-

cept of rounding mode: the way a numerical value is rounded to

a finite floating-point number is specified by a rounding mode (or

rounding direction attribute), that defines a rounding function [34–

36,50] . Denote the set of IEEE 754 floating point numbers (includ-

ing gradual underflow and ± ∞ ) by F , includes directed round-

ing. We can use different rounding modes, such as: � rounding

to nearest, 
 rounding downwards (towards −∞ ), and � rounding
pwards (towards + ∞ ). For example, let a, b, c ∈ F . Then, 

d 1 = 
 (a × b − c) 

d 2 = � (a × b − c) 

roduces d 1 , d 2 ∈ F such that the true result d = a × b − c ∈
 satisfies d 1 ≤ d ≤ d 2 . Note that this does not need be

rue when replacing a × b − c by c − a × b. Switching round-

ng mode is available in Matlab through an internal routine:

ystem_dependent(‘setround’,mod) , where mod = -Inf
r mod = Inf switches the rounding mode to downwards or up-

ards, respectively. For mod = 0.5 the rounding mode is set to the

earest [37] . This procedure may also be achieved in other pro-

ramming languages, such as in C 

++ [38] . In this case, the pseudo-

rbits { ̂ x a,n } and { ̂ x b,n } are derived from two rounding modes, in-

tead of two NIE, as proposed by Mendes and Nepomuceno [2] . It

s important to stress that we are using only rounding modes de-

ned by IEEE 754-2008. 

The method proposed in this work is summarised in the follow-

ng steps: 

1. Choose two rounding modes. In this paper, we show the re-

sults for all possible permutations of the three basic rounding

modes: rounding to nearest, rounding downwards and rounding

upwards; 

2. With the same software, hardware, operational system, initial

conditions, step size and discretization scheme, simulate the

system with two previously chosen rounding modes; 

3. Use the recursive least square algorithm (RLS) to estimate the

slope of absolute value of natural algorithm of the LBE. The

slope of this line is the LLE. 

The implementation of the proposed method can be easily

ade, merely inserting the suitable functions in the routine. Re-

arding the third step, the slope is estimated by means of RLS. Let

 model be represented such as [39,51] : 

y (k ) = ψ 

T 
k (k − 1) ̂  θk + ξ (k ) , (5)

here a sequence of computed LBE are presented in ψ 

T (k − 1) and

 ( k ); ξ ( k ) is the residue at time k and 

ˆ θk are the parameters to be

stimated, which are the slope (LLE) and independent term for the

ine. The parameter ˆ θk are estimated by means of the following

quations: ⎧ ⎪ ⎨ 

⎪ ⎩ 

K k = 

P k −1 ψ k 

ψ 

T 
k 

P k −1 ψ k +1 
, 

ˆ θk = 

ˆ θk −1 + K k 

[ 
y (k ) − ψ 

T 
k 

ˆ θk −1 

] 
, 

P k = P k −1 − K k ψ 

T P k −1 , 

(6)
k 
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Fig. 2. The LBE for the chaotic dynamical systems, where (a) Logistic, (b) Hénon, (c) Sine Map, (d) Tent Map, (e) Lorenz, (f) Rössler, (g) Rössler (Simulink) and (h) Mackey- 

Glass. The red line is the least squares fit. In each figure, the equation of the line is also shown, where the first value is the estimate of the LLE. The x-axis is time and y-axis 

is ln (| � �, n |). The calculation of � �, n is performed as described in Theorem 2.4 . (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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here K k is the gain matrix, P k is the covariance matrix, ψ is

he regressors matrix at time k , and y ( k ) is the vector of depen-

ent variable. The initial conditions adopted are: P 0 = 10 4 I 2 and

0 = [0 0] T . A pseudo-code of the LLE calculation using Matlab is

resented in Algorithm 1 . 
d  
As presented in [28,29] , the LBE is a measure of the distance

etween the simulated dynamical systems (or pseudo-orbit) and

he real orbit. If a system is chaotic the distance between these

wo entities must be exponentially divergent, and therefore a slope

n a logarithm plot of the LBE is what is needed to capture such a

ivergence and quantified it as a number which is precisely the
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Fig. 3. The convergence to LLE of the numerical examples, where (a) Logistic, (b) Hénon, (c) Sine Map, (d) Tent Map, (e) Lorenz, (f) Rössler, (g) Rössler (Simulink) and (h) 

Mackey-Glass. The red line indicates where the stop criteria has been reached. X-axis is time and y-axis is the LLE. In each graph, it is also shown the number of required 

iterates and the computed LLE. We have established the tolerance for the examples (a), (c), (d) as tol = 0 . 01 , for example (b) as tol = 0 . 005 , for example (e) as tol = 0 . 0 0 0 03 , 

for examples (f) and (g) as tol = 0 . 0 0 0 05 and for example (h) as tol = 0 . 0 0 0 0 01 . (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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Fig. 4. Hénon map: (a) Results of n iterates for two pseudo-orbits, which have been yield by means of rounding downwards (o) and rounding upwards (x). (b) The LBE for 

the Hénon Map, wherein the calculation of � �, n is performed as described in the Theorem 2.4 . 
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o  
efinition of the positive Lyapunov exponent. Thus, the definition

f the largest Lyapunov exponent used by Rosenstein et al. [1] is

onsidered 

d(t) = Ce λt , (7) 

here d ( t ) is the average divergence at time t, C is a constant that

ormalises the initial separation and the λ is the Lyapunov expo-

ent (LLE). Using (7) combined with LBE definition and chaotic sys-

em, one can easily understand why it is possible to estimate the

LE using the proposed method. 

. Illustrative examples 

In this section, the proposed method is applied to calculate

he largest positive Lyapunov exponent from the chaotic systems

escribed in Table 1 . To show some properties of the proposed

ethod, one of the chaotic system, the Rössler has also been mod-

lled using Simulink from an adaptation of a work done by Aseeri

47] , as shown in Fig. 1 . All simulations were performed using Mat-

ab in a computer with double precision (64 bits). The continu-

us systems were discretised using the fourth order Runge-Kutta

ethod. In the end of section, we have also shown the ability of

he method to distinguish non chaotic orbits. 

Table 2 shows the results obtained in calculating the LLE.

he natural logarithm of LBE and the fitted line are shown in

ig. 2 with their respective equation. The estimated LLE is in good

greement with the values found in the literature. Besides, the

umber of iterations is also presented and they are much smaller

han those values presented for the maps in [1] . It is notewor-

hy that to implement the presented approach one does not need

ny kind of parametrization or embedding dimension. The method

akes use only of the simulation of two rounding modes of the

riginal dynamic equation, making the computation of the LLE

uite simple. Comparing with the previous work of the authors [2] ,

he reduction of the number of iterates is significant. The number

f iterates has dropped in all the five systems tested, with a min-

mum of decrease of 15% for the Lorenz and reaching 60% for the

össler. Other important features of the proposed method are out-

ined here. First, the method has been tested with a great variety of

ystems. From discrete to continuous systems, as well as high or-

er systems, such as Mackey-Glass system. Compared to previous

ork [2] two systems have been tested in order to show the supe-

iority of the proposed method. The first system is the Tent Map.

lthough this system is simple, it presents the same problem de-

cribed in (1) , as it does not allow the derivation of NIE. Even if NIE

re easily derived from systems such as Lorenz and Logistic Map,

his procedure relies on a symbolic manipulation, which for the

ake of algorithm automation is not usually straightforward. The
econd system is the Rössler simulated by Simulink (see Fig. 1 ). In

oth cases, the pseudo-orbit is easily produced without any prob-

em. We have also presented an example to deal with computation

f LLE from data, which is an important feature for model-free in-

estigations. The example of the Sine Map shows the possibility to

ombine the proposed method and system identification tools. In

act, the Sine Map, described in [44] , is given by 

x n +1 = 1 . 2 π sin (x n ) , (8) 

hereas the Sine Map used to estimate the LLE has been given by

x n +1 = 2 . 6 86 8 x n − 0 . 2462 x 3 n , (9) 

s indicated in Table 1 . Instead of using the original equation, we

eliberately apply a polynomial NAR identified from the data. The

iterature is full of examples of system identification approach to

odel chaotic systems, [52] which allows the proposed method to

e applied even in cases where there are no known equations of

he system. The interesting reader may consult [53] for further de-

ails on this topic. 

For the systems introduced in the Table 1 , we have also tested

ore two combinations of rounding modes, in order to verify the

obustness of the proposed method. Table 3 provides the results,

hich show good agreement with the literature. The connection

etween chaos and finite precision also deserves a remark here.

orks such as in [28,54–64] have been extensively investigated

he effects of finite precision in the simulation of chaotic systems

n many perspectives and in many sorts of systems. Using the LLE

s a sort of propagation error measurement, we also estimate the

aximum number of iterations wherein the simulation relies on a

equired precision or number of significant digits. To carry out this

nalysis we use Eq. (10) , detailed in [65] : 

T c = 

log 10 (D/ 2) + P 

LLE 10 

, (10) 

here T c is the maximum number of iterations (or time), D is the

iameter of the attractor, or its peak-to-peak value, P is the num-

er of significant digits (for 64bits, P ≈ 16), and LLE 10 is given in

he logarithm to base ten. The LLE (calculated) given in Table 2 is

asily changed into base ten by means of 

LLE 10 = log 10 (e LLE ) . 

able 4 shows an estimation of the maximum number of iterations

r time ( T c ). For t > T c , the simulation is no longer reliable, and all

he significant digits are lost. In such situation, it is highly advis-

ble to carry out a more detailed investigation before to make any

onclusion. ( Fig. 3 ) 

Finally, we have tested the method for the case of non-chaotic

rbits. Considering the Hénon Map with parameters: a = 1 . 05 , b =
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0 . 3 and initial conditions x 0 = 0 . 3 and y 0 = 0 . 3 . Two pseudo-orbits

have been yield by means of rounding downwards (towards −∞ )

and rounding upwards (towards + ∞ ). As can be seen in Fig. 4 (a)

the map is in a periodicity region. Thereby, when we compute the

LBE there is no exponentially divergence and the inclination of the

fitted line is approximately zero, as shown in Fig. 4 (b). 

5. Conclusions 

Prior work has documented the effectiveness of using the lower

bound error (LBE) to compute the largest positive Lyapunov expo-

nent (LLE) [2] . However, these studies require the elaboration of

natural interval extensions, which are not generally easy to ob-

tain or even feasible to be developed. In this paper, we have in-

troduced a method to calculate the LLE using two rounding modes

of the same equation. The method proposed does not need any

sort of parametrization, embedding dimension, estimation of the

linearized and natural interval extension of the original dynamic

equation, only the use of two rounding modes and the original dy-

namic equation and recursive least square algorithm. The use of

rounding mode is a procedure that does not make use of sym-

bolic manipulations, and it can be used in systems such as the

Rössler modelled in Simulink ( Fig. 1 ) or in models which the NIE

is not possible to be derived. We have also tested successfully the

method with an identified model from data (Sine Map). Instead of

using its original equation, we have applied an identified polyno-

mial NAR. The results are in good agreement, showing that the

combination of the proposed approach and system identification

tools, such as polynomial NARMAX [52] , allows the computation of

the LLE from time series, as it has successfully been accomplished

in [53] . The estimates of the LLE using the proposed method were

shown to be in a good agreement with the values found in the lit-

erature when considering well-known chaotic systems. Moreover,

the proposed method can be considered as a simple tool to search

for new chaotic systems, because the computational of long and

demanding calculations to estimate the LLE is no longer needed.

It has also been shown the effectiveness of the method to iden-

tify non-chaotic systems, as seen in Fig. 4 . In fact, with the aid

of the RLS we could reduce the number of points used by Mendes

and Nepomuceno [2] . The use of rounding mode and RLS have also

presented the benefits of the automation of the routine, which in

[2] it is required a symbolic manipulation of the model, normally

performed by the user. 

Apart from that, we believe that this characterisation of chaotic

systems suggests a connection between chaos and the finite pre-

cision of computer arithmetic, as the LLE may also be used to in-

dicate the range time limit, in which the simulation is within a

required precision or a specific number of significant digits. This

is certainly an issue which deserves more investigation to shed

light in many issues on nonlinear dynamics highly dependent from

numerical simulations. Like the results obtained in [2] , this paper

shows that the Lyapunov exponent is close related to the propaga-

tion error of a computer simulation in a finite precision machine.

In fact, the technique reported in this paper is nothing less than a

measure of the error due to finite precision, which quite surpris-

ingly, it is exactly the LLE. 
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