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Abstract This paper presents the results of a computer

simulation which, combined a small network of spiking

neurons with linear quadratic regulator (LQR) control to

solve the acrobot swing-up and balance task. To our

knowledge, this task has not been previously solved with

spiking neural networks. Input to the network was drawn

from the state of the acrobot, and output was torque, either

directly applied to the actuated joint, or via the switching

of an LQR controller designed for balance. The neural

network’s weights were tuned using a (l + k)-evolution

strategy without recombination, and neurons’ parameters,

were chosen to roughly approximate biological neurons.

Keywords Spiking neural networks � Acrobot �
LQR � Evolution

1 Introduction

We are studying the applicability of spiking neural net-

works (SNNs) to the control of robots with complex

nonlinear morphologies that lead to unstable states

requiring constant active feedback control. This is difficult

using conventional control due to the effort required in

modeling the robot’s equations of motion and deriving a

robust control scheme on the basis of that model.

Theoretical results of Maass [14] have shown that SNNs

(third generation NNs) are computationally more powerful

than standard sigmoid NNs (second generation NNs) or

networks of threshold units (perceptrons or first generation

NNs) provided certain conditions hold. Such conditions

require a delay-coded input which linearly maps an analog

input signal to the neuron’s fire time. As a first step we

chose not to implement these conditions since they are

biologically less plausible; but they will be considered for

future studies. In the present study we use rate-coded input

which maps an analog input signal to the rate at which the

neuron fires.

Additional motivation to investigate SNNs is that they

are better models to represent the spiking nature of bio-

logical neurons, which are used in the mechanical control

of biological systems. Recently, networks of 10,000

spiking neurons have been used in the large-scale imple-

mentations of the blue brain project [16] to model cortical

columns of the brain. However, spiking neurons not only

occur in the massive networks of the brain but also in

relatively small networks of the peripheral regions of the

nervous system such as reflex networks in the limbs [11],

which can be modeled with small networks in the order of

tens of neurons. It is an open question whether small net-

works of spiking neurons can successfully be employed to

control limb movement and reflexes of unstable robots,

such as for example, bi-ped robots. The aim of the present

paper is to shed light on these questions by applying small

SNNs to the control of an underactuated, simulated robot.

Primary work has been initiated on implementing SNNs

as controllers for robots governed by simple dynamics,

such as two wheeled robot cars, rather than underactuated

unstable robots governed by highly nonlinear dynamics.

Joshi and Maass [10] successfully used a SNN as the

‘‘liquid’’ of a liquid state machine to control a fully actu-

ated two-link robot arm in the horizontal plane. The

controller was created by learning a filter which trans-

formed the state of the network to a control signal for the

robot’s motors, while the neurons and synaptic weights
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remained constant throughout the learning process. Flor-

eano et al. [6] evolved only the structure of a SNN with ten

hidden neurons, while keeping the synaptic weights con-

stant. Even with their greatly simplified model of spiking

neurons, customized to fit the microcontroller on a small

sugar cube sized two-wheeled robot, the robot was able to

successfully navigate an oval track avoiding walls. French

and Damper [7] assembled a SNN out of two network

components, each evolved to achieve the particular subtask

‘‘frequency discrimination’’ of an overall objective to

control a two-wheeled robot to drive towards flashing lights

of distinct frequencies. Their evolution strategy allowed for

networks of arbitrary cardinality, and neurons and synapses

of various models. Federici [5] created a novel algorithm,

which evolved the rules of development of a SNN that was

used to grow the network from a single cell to its final

structure. The technique was applied to a wall-avoidance

task for a two-wheel robot with infrared sensors.

Rather than applying SNNs to stable robotic platforms

such as the ones mentioned previously, we instead apply

them to an unstable robot with highly nonlinear dynamics.

The acrobot [19] is a two-link non-linear underactuated

robotic platform, commonly used as a benchmark for new

artificial intelligence approaches targeted at dynamics

control. A drawing of the acrobot is shown in Fig. 1. Its

motion resembles that of a gymnast swinging on a hori-

zontal bar, the difference being that unlike the gymnast the

acrobot can spin its q2 joint ‘‘hip’’ through complete rev-

olutions. The object of the task is to swing the acrobot from

a hanging-down position to a standing-up position. This is

quite difficult as only the q2 joint is actuated. A more

formal description of the acrobot and the swing-up task is

given in Sect. 2.

One of the first to approach the acrobot swing-up control

problem was Spong [19]. He created two swing-up strate-

gies based on the partial feedback linearization of the

acrobot dynamics, one for each joint. He applied each

strategy with a linear quadratic regulator (LQR) to balance

the acrobot in the standing position, and both strategies

produced a successful swing-up and balance. Boone [3]

used an N-step lookahead search to select the appropriate

torque which first added the required amount of energy to

the acrobot which would allow it to reach its standing-up

position. Once this was achieved, the search objective was

changed to find a trajectory which would get the acrobot

close to the standing-up state. Torque output was only one

of two possible extreme values, either positive or negative

1 Nm, which is known as bang-bang control. Allowing

only two possible output values, and limiting the amount of

switching between these values reduced the search to a

practical size. Yoshimoto et al. [21] successfully applied

reinforcement learning to the task, which switched between

one of five conventional controllers.

The area of acrobot swing-up control is quite advanced

with many other existing successful techniques in addition

to those mentioned previously, including sigmoid NN

function approximation for reinforcement learning [4, 20],

evolving a non-feedback vector of torque values [12], a

fuzzy controller used to increase the acrobot’s energy [13],

output zeroing based on angular momentum and rotation

angle of center-of-mass [17]. Although the primary focus

of this study is the application of SNNs as control models

for complex robotic platforms, it has given some specific

insights into the techniques which may be used to improve

acrobot swing-up solutions.

This paper is organized as follows. Section 2 describes

the acrobot and the swing-up task used in this study. Sec-

tion 3 describes SNNs and the discrete time model that was

used for simulations. Section 4 describes the network

configuration and the LQR controller used in simulations.

Section 5 presents the evolution and simulation setup. A

discussion of the results is given in Sect. 6, with conclu-

sions following in Sect. 7.

2 The acrobot

The acrobot is composed of two links, an inner and outer

link connected together by an actuated hinge joint, with

their relative angle given by q2. The inner link is anchored

with an unactuated hinge joint, and subtends an angle of q1

to the horizontal. The torque applied at the actuated hinge

is given by s2, which is limited to js2j � s2max
: Angular

velocities of joints q1 and q2 are _q1 and _q2: The state of the

acrobot at time t is given by the vector xðtÞ ¼
ðq1ðtÞ q2ðtÞ _q1ðtÞ _q2ðtÞÞT: There are two notable equilibria,

an unstable one at qu ¼ ðp2 0 0 0ÞT; the other stable at

qs ¼ ð� p
2

0 0 0ÞT.

Acrobot Task: Given the initial state x(0) = qs, find a

control strategy which will get the acrobot to the final state

x(T) = qu, and keep it there as t ? ?.
Fig. 1 The acrobot showing directions for gravity, torque and joint

angles
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In this study T = 20 s was chosen, after a series of pilot

experiments which showed this value to induce a favorable

learning rate without excessive computation time. The

acrobot task is considered a difficult control problem

because the acrobot is underactuated and has highly non-

linear dynamics.

The equations of motion governing the dynamics of the

acrobot are presented in [19]. Masses of the links are given

by mi, lengths li, and inertia tensors Ii, where i = 1,2 for the

inner and outer links, respectively. Acceleration due to

gravity is given by g. The parameters used for simulation

are listed in Table 1.

The acrobot is simulated using a fourth-order Runge-

Kutta integrator [18] with a time step of 1 millisecond.

3 Spiking networks

This section gives an introduction to SNNs, including the

models used in our simulations. The word ‘‘spiking’’ will

often be omitted here when mentioning spiking neurons or

networks.

Neurons and synapses in a SNN are arranged as nodes and

edges of a directed graph, respectively. Neurons send and

receive data via the timing of spike events which are sent

across synapses from a source neuron to a destination neu-

ron. Each neuron i contains its own state ui representing the

exponentially decaying membrane potential of biological

neurons. When a spike reaches a neuron then that neuron’s

membrane potential is momentarily raised (or lowered) in

proportion to the postsynaptic potential function �. If the

membrane potential rises above the threshold h then the

neuron fires a spike to its destination neurons, and the neu-

ron’s membrane potential is decreased by g for a refraction

period, thereby preventing more immediate firings.

In biological NNs spikes require a short amount of time to

travel from their source neuron to the destination neurons.

However, in this study, spikes are not subjected to an explicit

synaptic delay. Synapses have a ‘‘weight’’ value wij, which

determines the amount a spike from a source neuron j

increases a destination neuron’s membrane potential ui. It is

these weights which are tuned during learning. In future

studies tunable delays will also be used since they have the

potential to increase the computational power of SNNs [14].

The leaky integrate-and-fire model for neurons [8, 9] is

used in our simulations since it is concise, simple to

implement and fast to simulate. To reduce the number of

parameters that need tuning during learning all of the

neurons are made homogeneous. The precise neuron model

is shown in Eqs. (1)–(4).

uiðtÞ ¼
X

ti2F iðtÞ
gðt � tiÞ þ

X

j

X

tj2F jðtÞ
wij�ðt � tjÞ ð1Þ

F iðtÞ ¼ ti j uiðtiÞ[ h; ti\tf g ð2Þ

gðsÞ ¼ �m exp
�s

sq

� �
ð3Þ

�ðsÞ ¼ exp
�s

sl

� �
� exp

�s

sr

� �
ð4Þ

where F iðtÞ contains all firing times for any neuron i that

occur before time t, and m, sq, sl, sr are constants which

specify the size and shape of the refraction function g and

the postsynaptic potential function �. This neuron model is

approximated in discrete time to simplify implementation

and allow for easy integration with the discrete time sim-

ulation of the acrobot.

We use a discrete-time model governing the dynamics

of a neuron i, given by Eqs. (5)–(8).

viðt þ DtÞ ¼ AviðtÞ þ BuiðtÞ ð5Þ

A ¼
dl 0 0

0 dr 0

0 0 dq

0

@

1

A B ¼
1 0

1 0

0 m

0

@

1

A

uiðtÞ ¼
jiðtÞ
fiðtÞ

� � ð6Þ

fiðtÞ ¼
1; if ð1� 1� 1ÞviðtÞ[ h
0; otherwise

�
ð7Þ

jiðtÞ ¼
X

j

wijfjðtÞ ð8Þ

where dl, dr, dq [ (0, 1), m[ 0, and h C 0. The values

dl = 0.9, dr = 0.8, dq = 0.9, m = 1, and h = 1 are used in

the simulations presented in this study. Also, a time step of

Dt = 1 ms is used, and t is an integer multiple of Dt. These

values were chosen by hand so that the neurons imitate

(quite roughly) dynamics such as firing rates and post-

synaptic potential durations of biological neurons [11].

The values dl, dr and dq can be derived from sl, sr and

sq in Eqs. (3) and (4) with the following relation

da ¼ exp
�Dt

sa

� �
; for a 2 fl; r; qg: ð9Þ

The state of neuron i is given by the time-varying vector

vi ¼ ðv1 v2 v3ÞT; where vi(0) = 0. The value of the inner

product (1 -1 -1) vi in Eq. (7) represents the membrane

potential of neuron i, and h is the threshold. When the

membrane potential rises above the threshold then the

neuron fires by setting fi to 1, and the membrane potential

is consequently reduced by the refraction constant m in the

Table 1 Acrobot parameters, where all units are in SI

m1 m2 l1 l2 I1 I2 g s2max

1 1 1 1 1/12 1/12 9.8 10
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next step. The fi term can be thought of as the spiking

‘‘output’’ of neuron i.

The ji term in Eq. (8) is the ‘‘input’’ to neuron i. The

sum is over all source neurons of neuron i, and wij is the

synaptic weight from neuron j to neuron i. If wij [ 0 then a

spike arriving at a neuron increases the neuron’s membrane

potential (with delayed onset since dl [ dr [ 0). This

represents an excitatory post-synaptic potential and its

practical purpose is to increase the chance of the neuron

firing. If wij \ 0 then an incoming spike reduces the

membrane potential, which represents an inhibitory post-

synaptic potential and decreases the chance of the neuron

firing.

This model is used for the hidden neurons of the net-

work, that is, neurons that are connected only to other

neurons. Sensor and motor neurons used in our simulations

have a slightly different model as they must also receive

input from and send output to the environment.

3.1 Motor and sensor neurons

A hidden neuron can be used to model a motor neuron,

where the motor neuron’s analog output is given by

ð1 � 1 0ÞviðtÞ: ð10Þ

However this is a verbose way to model a motor neuron,

since the dq and m parameters are no longer used because

the neuron is never required to fire spikes.

A sensor neuron can be modeled by replacing A, B and

ui in Eqs. (5) and (6) with As, Bs and usi
respectively

As ¼
0 0 0

0 0 0

0 0 dq

0
@

1
A Bs ¼

1 0

0 0

0 m

0
@

1
A

usi
ðtÞ ¼ jsi

ðtÞ
fiðtÞ

� � ð11Þ

where the analog input to a sensor neuron is set to jsi
;

eliminating equation (8). For brevity the time-varying

analog input to a sensor neuron will be referred to as j. In

simulations the constraint j C 0 is applied. A value of

h = 0 is used for all sensor neurons, since setting h[ 0

results in a dead-zone for inputs Bh. This form of encoding

analog input into spikes is commonly known as rate

encoding, where the firing rate of a sensor neuron is pro-

portional to the input. Another method for encoding is

called delay encoding where the average firing rate remains

constant and the precise time at which the neuron fires is

proportional to the input.

A notable property of modeling sensor neurons this way

is that their output scales either logarithmicaly or linearly,

depending on the magnitude of the input. Assuming a

constant input j to a sensor neuron, the spiking rate of the

neuron can be calculated by finding the time between

spikes. The state of the sensor neuron is initialized as if it

had just spiked, and the time it takes for the v3 component

of the state v to decay to the next spike is calculated using

the equation dq
y(m + j) = j, where y is the number of

milliseconds between spikes. Therefore, the spike rate r

(spikes per millisecond) of a sensor neuron for a constant

input j[ 0 is given by the formula

rðjÞ ¼ 1

logdq

j
mþj

� � ð12Þ

noting that dq [ (0,1) and m[ 0. For large values of j the

approximation r(j) & kj is observed, where the constant

k [ 0, since

lim
j!1

rðmjÞ
rðjÞ ¼ m ð13Þ

and for small values of j the approximation rðjÞ �
1

logdq ðj=mÞ
is observed. This allows a sensor neuron to remain

sensitive to tiny inputs by having a spiking rate that is

inversely proportional to the log of the input, without an

exponential increase in sensitivity between large inputs.

Although these properties are derived for extreme values of

j, in practice we notice logarithmic proportions for j as

large as 0.01, and linear proportions for j as small as 1,

since dq = 0.9 and m = 1 in our simulations. However, this

property of sensor neurons may be disadvantageous

resulting in excessive output given small inputs. Such

overly sensitive control is visible in the results, particularly

during the acrobot’s balance period (after approx.

3,300 ms) in the bottom plot of Fig. 5b.

4 Controller

A combined SNN and LQR [1] controller was used in this

study to solve the acrobot task. A picture of the network

topology is shown in Fig. 2.

The network contains eight sensor neurons, two for each

element xi [ x of the acrobot state. Each element xi is split

into a positive and negative sensor neuron, whose inputs are

j = xi and j = -xi, respectively. Without this treatment

there would be no sensor information to the network about

negative state values. Sensor neurons in Fig. 2 are labeled

with the acrobot state variable which supplies the input to

that neuron, appended with a ‘‘ + ’’ or ‘‘-’’ symbol to

discern between positive and negative input signing.

The network contains two motor neurons. The torque

motor neuron sends its output directly to the torque s2, and

is modeled as mentioned in Sect. 3.1. The LQR controller

is activated when it receives positive input (j[ 0) and

deactivated when it receives negative input (j\ 0). Also,

when the LQR neuron is active the torque motor neuron is
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disabled, and the LQR neuron takes control by setting its

own value for s2.

There are also four hidden neurons which are com-

pletely connected with each other, without loop-back

connections as shown in Fig. 2. They bridge the sensor and

motor neurons and their recursive connections allow for

complex dynamics.

4.1 LQR controller

When the acrobot is near the unstable equilibrium state qu

it can be kept there using a LQR [1]. To create the LQR the

acrobot’s equations of motion are linearized about the state

qu and the control law s2(t) = -Kx(t) is optimized by

minimizing the quadratic cost

J ¼
Z1

0

jjxðtÞ � qujj2 þ s2
2

� �
dt: ð14Þ

The approximate value of the gain matrix becomes K ¼
ð269:522 67:522 98:966 29:047Þ for the parameters

given in Table 1.

The LQR controller is designed for a linearized version

of the acrobot at the standing-up state qu, which is an

approximation of the acrobot accurate to within only a

small margin of qu. The linearization simplifies the acrobot

model by making, within the equations of motion,

replacements such as sin(e) ? e, cos(e) ?1 and e2?0, for

values of e close to 0. This means the LQR controller does

not function as intended for states too far from qu, which

empirically corresponds to a few degrees from the stand-

ing-up state, and so is incapable of swinging-up and

balancing the acrobot on its own from the initial state qs.

5 Evolution

This section covers the evolution strategy (ES) used for

evolving the SNN controller. The SNN’s weights were

evolved using a (l + k)-ES [2] for 100 generations,

with l = 10 and k = 70. To elaborate, there was a popu-

lation of 10 parents producing 70 offsprings each

generation, and the top 10 fittest of the combination of

parents and offspring survived to make up the parents for

the next generation. No recombination was used, and

mutation of the synaptic weights occurred with an evolving

standard deviation strategy parameter for each weight. This

approach was chosen, after a series of pilot experiments, in

order to produce successful swing-up strategies without

excessive computation time.

The fitness of an individual was calculated from the cost

J given by the equation

J ¼
X2�104

t¼0

ðxðtÞ � quÞTQ ðxðtÞ � quÞ ð15Þ

where the matrix Q was tuned by hand and given by

Q ¼

10 0 0 0

0 5 0 0

0 0 1
2

0

0 0 0 1
2

0

BB@

1

CCA ð16Þ

to prioritize q1 over q2 and angles over angular velocities.

Note, the closer the cost is to 0 the fitter the individual

chromosome, and only the relative fitness of individuals in

the population is important rather than the actual value of

their cost.

The fitness for each individual chromosome was deter-

mined by transcribing it to the weights of the network and

q1

q1

q1

q1

qr
q2

q2

q2

q2

1 0 1

32
1

0

2

3

+

+

+

+

Fig. 2 Network topology and synaptic weights. Positive and negative

weights are shown in black and gray lines, respectively. A synapse’s

thickness is shown in proportion to the size of its weight |wij|, where

the thinnest line represents a weight size of 0.2, and the maximum and

minimum weights are 17.4 and -37.7, respectively. The network’s

synaptic connections have been split into two diagrams for clarity.

The diagram on the left shows connections from the sensor to the

hidden neurons, and from the hidden to the motor neurons. The

diagram on the right shows connections between hidden neurons only

Fig. 3 Stroboscopic sequences of each of the fittest individuals from

5 generations of a single evolution. From top to bottom the

generations are 0th, 5th, 11th, 21st and the elite solution at 41st.

Each row represents a separate 20-s simulation with 50 ms between

frames
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running a 20-s simulation (20,000 1-ms steps) of the

acrobot under the control of the network. Although all elite

individuals were able to swing-up and balance the acrobot

within 10 s of simulation (Fig. 4), reducing the simulation

time to 10 s during evolution resulted in a much reduced

success rate. We believe this is due to low-performing

early generations having inadequate time to complete the

swing up and balance, since it was observed that the swing

up and balance would occur much later in the simulation

for those generations.

Since evolution strategies are stochastic, ten evolution

runs were used to show that a successful strategy was not

simply a coincidence of the initial population which was

drawn at random from a normal distribution. After 100

generations, the fittest individual from the population was

chosen as the solution of the learning strategy, and was

given the title elite. Detailed results presented in Sect. 6 are

for one of the ten elites produced from separate evolutions,

where the other nine showed similar performance.

6 Simulation results and discussion

Each of the ten separate evolutions produced a network that

was able to swing-up and balance the acrobot within the

20-second time period. One of the elite networks is shown

in Fig. 2, and the simulation plots for this network are

shown vertically aligned in Fig. 5. Figure 5a and b show

the state of the acrobot as it swings up from time 0 to about

3,500 ms, and then remains balanced from 3,500 ms

onwards.

Figure 3 presents five of the fittest individuals at dif-

ferent generations from an evolution run, and shows that

early generations required more than 10 s to swing up.

The LQR was added since our initial evolutions pro-

duced a SNN controller that was only able to swing-up but

not satisfactorily balance the acrobot in its standing state.

When the LQR was finally introduced, rather than manu-

ally initiating it when the acrobot was close to its standing

state, the network was given the chance to initiate the LQR

at arbitrary times as mentioned in Sect. 4, expecting that it

would only initiate around the standing state. However, as

shown in Fig. 5b, the network used the LQR at states

outside of its region of attraction. In the bottom plot of

Fig. 5b we can see that during the swing-up phase only

extreme values of torque produced by the LQR are

exploited.

Due to the torque artifacts from the motor neuron

induced by overly responsive sensor neurons, the network

is not successful in keeping a steady balance, although it

never loses balance entirely (visible in the bottom plot of

Fig. 5b after about 3,300 ms).

Similarities between solutions of uncorrelated evolu-

tions suggest that we have found solutions in the

neighborhood of the optimal swing-up trajectory given the

parameters governing the acrobot’s dynamics used in this

study. See Fig. 6 for a typically good swing-up strategy,

whose various stages of control were commonly observed

among the elite solutions. An observation-based

Fig. 4 The elite solution from

each of the ten separate

evolution runs, shown for the

first 10 s of simulation

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

an
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e
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ad
)

Acrobot State

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-10
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m
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Actuator Torque

q
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2

LQR
Neuron
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-π/2

-π
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(b)

Fig. 5 Vertically aligned plots which depict the first 5 s of a

20 second simulation of an elite NN. a Stroboscopic sequence of the

acrobot where gray and black lines represent the inner and outer links,

respectively. b The acrobot state and actuation torque, where the

black torque is based on the LQR controller and the gray torque is

based on the motor neuron
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qualitative analysis of each stage of control follows. (a)

One complete revolution of the outer link to inject energy

into the acrobot; (b) slow down the outer link conse-

quently swinging up the inner link; (c) extend outer link

to apply maximum torque via gravity to q1 once it is

extended; (d) keep the outer link extended to maximize

the torque applied to the q1 joint, and then contract the

outer link to reduce slowing of the acrobot as it climbs;

(e) extend the outer link, approaching the standing state

for balance.

In addition to the experiments with spiking neurons we

performed a series of experiments with standard sigmoidal

networks. In our experiments sigmoidal networks were

successful in solving the same task and seemed to perform

at least comparably in terms of success rate. However, such

a direct comparison of the two network types is not

appropriate because spiking neurons required an input

layer which maps analog input to spiking input, and in our

simulations this mapping resulted in different network

architectures.

7 Conclusion

We have shown in this study that a spiking neural network

can be used with an evolutionary strategy to control an

unstable and non-linear robot such as the acrobot. How-

ever, there is obvious room for improvement, such as

eliminating torque artifacts during balance or reducing the

rapid switching between torque extremes during swing-up.

We have also conjectured an optimal swing-up trajec-

tory given the simulation parameters used in this study.

The trajectory presented can be used to devise a detailed

fitness function and perhaps network architecture to bias

learning towards the trajectory.
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