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Abstract — This paper investigates string stability issues in homogeneous strings of

strictly proper feedback control systems. We consider initial condition problems with

unidirectional nearest neighbour communications, using only linear systems with two

integrators in the loop. We define string stability as a type of stability that is uniform

with respect to the string length. We show conditions under which the L2-norm and

the L∞-norm of states are bounded and derive a formula for the minimal time headways

required to guarantee string stability.
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I Introduction

Since commercial and private vehicle traffic in-
creased significantly during the last decades a
growing number of researchers are focusing on ‘pla-
tooning’. This special field of formation control
concentrates on finding suitable methods to con-
trol a linear string of automobiles driving in a col-
umn. Among the desirable features of platoon-
ing are for example higher traffic throughput, the
safety gain and reduced fuel consumption.

A lot of work has been done for the simplest
form of platoon control where a constant distance
between the vehicles is required, e.g. [1–5]. To sim-
plify communication requirements, and to achieve
a controller design which does not depend on the
string length, we consider the case where the auto-
mobiles are equipped with a local controller based
on sensing the distance to the preceding vehicle.
If the dynamics of the vehicle and controller are
also independent of the location in the string, the
string is called ‘homogeneous’.

Since every controller only uses the information
of the separation to its predecessor the system
structure will be triangular and studying the sta-

The authors would like to thank the Science Foun-
dation of Ireland for supporting this work with grant
07/RPR/I177.

bility of the system is relatively easy. Thus, for
a fixed string length, and appropriately designed
local controllers, asymptotic and input-output sta-
bility can be guaranteed. However, in some cases,
these forms of stability are not uniform with re-
spect to string length, and as the string length
grows, the disturbance response may grow without
bound. That effect is often called ‘string instabil-
ity’.

Different definitions of string stability have been
used, including mostly input-output formulations
and some rare initial conditions and state space
formulations, [6]. Due to simpler analysis most
research is based around the Euclidean norm, [7,8]
but definitions involving the maximum norm can
also be found, [9].

It is not possible to achieve string stability in
a homogeneous string of strictly proper feedback
control systems with nearest neighbour communi-
cations if only linear systems with two integrators
in the open loop and a constant inter-vehicle spac-
ing is required, [3]. It has also been shown that
this result is independent of the particular linear
controller design, [7, 10].

Techniques that yield string stability include:
Introduction of a speed dependent inter-vehicle
spacing policy (also called ‘time headway pol-
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Figure 1: Block diagram of the linear system with
time headway

icy’), [11], implementing heterogeneous strings, i.e.
the particular controller depends on the position
within the string, [8,12], and using nonlinear spac-
ing policies, [13].

This paper presents some of the results in [5].
We will focus on a homogeneous string of linear
control systems with two integrators in the open
loop using unidirectional nearest neighbour com-
munication. In Section II we will clarify the nota-
tion and describe the behaviour of the system as a
state space model. After showing string instability
for the case where zero or a small time headway is
used in Section III, we will derive a formula for the
minimal time headway required and prove string
stability when using a sufficiently large time head-
way in Section IV. The results will be illustrated
by an example and simulations in Section V.

II Preliminaries

We wish to discuss the stability of a simple chain
of N vehicles where all but the first should keep
a fixed distance xd to their predecessor. The first
car follows a given trajectory. We will choose the
same vehicle model and the same linear controller
to stabilise the plant (i.e. to force the position error
to zero, ei → 0) for every subsystem, i.e. every car.
Since the trajectory the first vehicle must follow is
a ramp with slope vr, we must have at least two
integrators in the open loop of every subsystem to
force the steady state error signals to zero.

We will choose a vehicle model and an appropri-
ate controller design such that the open loop trans-
fer function of every subsystem has exactly two
poles at the origin, e.g. two integrators in the plant.
It has been shown that such a homogeneous string
of linear, time invariant subsystems with two inte-
grators in the open loop is string unstable if a fixed
distance xd between the vehicles is required, [3,7].
That is a small disturbance at the beginning of the
string amplifies without bound while propagating
down string. However, using a time headway h (i.e.
an additional velocity vi dependent term, see Fig-
ure 1) can guarantee string stability and ensure
bounded error signals ei = xi−1 − xi − xd − hvi

independent of the string length N , [11].

We want to transform the state space with the
physical states of the system such as position xi,
velocity vi, controller input ui, and the controller

states xcji
into deviation coordinates ξi

t→∞
−−−→ 0

such that they can be described by

ξ̇i = Aξi + bcTξi−1, ∀i > 2 (1)

ξ̇1 = Aξ1 (2)

Therefore, we choose ξi = Xi−1 − Xi with
XT

i =
(
ei vi xc1i

xc2i
· · ·

)
. Details of the

necessary transformation can be found in [5].
In vector form, we can write
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Since measurement noise and disturbances are ne-
glected for simplicity, ξ(t) only depends on the ini-
tial conditions ξ(0):

ξ(t) = L−1

{(

sI − Ã
)−1

}

ξ(0) (4)

Note that the local, single closed loop transfer
function cT (sI − A)

−1
b = Γ(s), can be written as

Γ(s) = 1
Q(s)T (s), with Q(s) = hs + 1 and T (s) be-

ing the complementary sensitivity function of the
system. Assume Ch(s) is designed as a function of

h to keep T (s) = C(s)
s2+C(s) independent of h.

We consider the following definitions for string
stability for nonzero initial conditions:

Definition 1 (L2-String Stability) Consider a
string of N dynamic systems of dimension n de-
scribed by

ξ̇i = f(ξi,ξi−1) ∀1 < i ≤ N, ξ̇1 = f(ξ1,0) (5)

where N ∈ N, ξi ∈ R
n, f : R

n × R
n → R

n,
f(0,0) = 0. The origin ξi = 0, ∀i of (5) is L2-
string stable if given any k ∈ {1,2, . . . ,N} and any
ǫ > 0 there exists a δ > 0, such that

ξi(0) = 0, i 6= k and ||ξk(0)||2 < δ

⇒ sup
i

||ξi(t)||L2
< ǫ

where δ is independent of the string length N . •

Definition 2 (L∞-String Stability) Consider
a string of dynamic systems as described in (5).
The origin ξi = 0, ∀i of (5) is L∞-string stable if
given any k ∈ {1,2, . . . ,N} and any ǫ > 0 there
exists a δ > 0, such that

ξi(0) = 0, i 6= k and ||ξk(0)||∞ < δ

⇒ sup
i

||ξi(t)||L∞
< ǫ

where δ is independent of the string length N . •



Thus, we focus on a special class of initial condi-
tions, where only the initial values of one single
subsystem k are non zero. If the Euclidean norm,
or the maximum norm of ξk(0) is bounded, we re-
quire the L2-norm, or the L∞-norm of the states
of the ith subsystem to be bounded for every sub-
system i within the string, respectively.

III String instability for small time

headways

The behaviour of ξ(t) is described by (4) where
(

sI − Ã
)−1

can be written elementwise as

(

sI − Ã
)−1

ij
=







0, for i < j

(sI − A)−1, for i = j

(sI − A)−1bΓ(i−j−1)

· cT(sI − A)−1, for i > j

(6)

Equations (4) and (6) lead us to

ξi(t)=







0, for i < k

L−1
{
(sI − A)−1

}
ξk(0), for i = k

L−1
{
(sI − A)−1bΓ(i−k−1)

· cT(sI − A)−1
}

ξk(0), for i > k

(7)

a) L2-String Instability

To satisfy Definition 1 the L2-norm of every set
of states of every subsystem must be bounded for
any bounded ‖ξk(0)‖2. Therefore the L2-norm of
every combination of states of ξi(t) must also be
bounded.

For simplicity we will now choose ξ′i(t) = cTξi(t)
and ξk(0) = b and show that the L2-norm of ξ′i(t)
grows without bound if i increases and i > k.

For i > k the L2 norm of ξ′i(t) is given by

‖ξ′i(t)‖L2
=

∥
∥
∥L−1

{

Γ(i−k+1)(s)
}∥

∥
∥

L2

(8)

Using Parseval’s relation, we can calculate the
square of the L2-norm of ξ′i(t) for the initial con-
dition given

||ξ′i(t)||
2
L2

=
1

2π

∞∫

−∞

|ξ′i(jω)|
2
dω

=
1

2π

∞∫

−∞

∣
∣
∣Γ(i−k+1)(jω)

∣
∣
∣

2

dω (9)

It is known that the absolute value of the comple-
mentary sensitivity function of a single subsystem,
Γ(jω), is greater than 1 + ǫ for a range of frequen-
cies ω ∈ (ω−,ω+), if zero or a small time headway
is used, [3, 5, 7].

Since
∫

R

f(x)dx ≥

∫

T⊂R

f(x)dx (10)

for any non-negative function f(x), we can bound
(9) by

‖ξ′i(t)‖
2
L2

≥
1

2π

ω+∫

ω−

∣
∣
∣Γ(i−k+1)(jω)

∣
∣
∣

2

dω

≥
1

2π
(ω+ − ω−)(1 + ǫ)2(i−k+1) (11)

So ||ξ′i(t)||L2
will grow as i increases and the system

cannot be L2-string stable in the sense of Defini-
tion 1.

b) L∞-String Instability

We will now expand the argument above and show,
that the system cannot be L∞-string stable ei-
ther. Note that since Γ(s) is analytic in the closed
right half plane, it is continuous there. Therefore,
there exist an η > 0 and an ǫη ∈ (0,ǫ), such that
|Γ(η + jω)| ≥ 1 + ǫη for all ω ∈ [ω−,ω+]. There-
fore the following analogy to (9) and (11) holds

1

2π

∞∫

−∞

|ξ′i(η + jω)|
2
dω

=
1

2π

∞∫

−∞

|Γ(η + jω)|
2(i−k+1)

dω (12)

≥
1

2π
(ω+ − ω−)(1 + ǫη)2(i−k+1) (13)

Using Parseval’s Theorem and frequency shifting,
we obtain

1

2π

∞∫

−∞

|ξ′i(η + jω)|
2
dω =

∞∫

0

ξ′i
2
(t)e−2ηtdt

≤
1

2η
‖ξ′i(t)‖

2
L∞

(14)

Combining (13) and (14), we see that

||ξ′i(t)||L∞
≥ (1 + ǫη)(i−k+1)

√
η

π
(ω+ − ω−) (15)

and therefore the system cannot be L∞-string sta-
ble according to Definition 2.

However, if a sufficiently large time headway h is
chosen L2-string stability and L∞-string stability
can be guaranteed as we will show below.

IV String stability for sufficient time

headways

a) L2-String Stability

Since we have seen above that ‖Γ(jω)‖ > 1 will
provoke string instability, we will now choose a suf-
ficiently large time headway h such that |Γ(jω)| ≤1



for all ω.

|Γ(jω)|2 =
1

1 + ω2h2
2

|T (jω)|2 ≤ 1 ∀ω (16)

h2 :=

√

max
ω

(
|T (jω)|2 − 1

ω2

)

(17)

where T (s) is the complementary sensitivity func-
tion for the system with zero time headway. Thus,
picking a time headway greater or equal the min-
imal time headway h2, will ensure |Γ(jω)| ≤ 1 for
all ω.

Again, ξi(t) is described by (7) and we analyse
the L2-norm of ξi(t) for i > k and use of Parseval’s
Theorem

‖ξi(t)‖L2
=

∥
∥L−1

{
(sI − A)−1b

· Γ(i−k−1)cT(sI − A)−1
}
ξk(0)

∥
∥
∥

L2

≤
∥
∥
∥(sI − A)−1bΓ(i−k−1)cT(sI − A)−1

∥
∥
∥

H2

· ‖ξk(0)‖2

≤
∥
∥(sI − A)−1b

∥
∥

H∞

‖Γ‖
(i−k−1)
H∞

·
∥
∥cT(sI − A)−1

∥
∥

H2
‖ξk(0)‖2 (18)

Since A is Hurwitz the values of
∥
∥(sI − A)−1b

∥
∥

H∞

and
∥
∥cT(sI − A)−1

∥
∥

H2
are some finite numbers.

With h ≥ h2, ‖Γ(jω)‖ = supω |Γ(jω)| = 1 and for
bounded initial conditions ‖ξk(0)‖2 < δ, ‖ξi(t)‖L2

is bounded independently of the string length N

or the position within the string i.

b) L∞-String Stability

Since the dynamics of the system is described by
(7), the L∞-norm of ξ(t) is the maximum of all
‖ξi(t)‖L∞

. Thus, in order to satisfy L∞-string
stability according to Definition 2 all states in
ξ(t) need to be bounded. The product of inverse
Laplace-transforms is the same as the convolution
of the corresponding impulse responses:

ξi(t) =







0, for i < k

α(t)ξk(0), for i = k

φ(t) ∗ γ(t)∗(i−k−1) ∗ cα(t)ξk(0), for i > k

(19)

where α(t) = L−1{(sI − A)−1},
φ(t) = L−1{(sI − A)−1b}, γ(t) = L−1{Γ(s)},
and γ(t)∗i = γ(t) ∗ γ(t) ∗ . . . ∗ γ(t)

︸ ︷︷ ︸

i times

.

Since A is Hurwitz, the L∞-norm of α(t)ξk(0) is
bounded for bounded initial conditions ξk(0), the
norm of φ(t) ∗ γ(t)∗(i−k−1) ∗ cα(t)ξk(0) for i > k

must be bounded independently of i or N to satisfy

Definition 2.

||ξi(t)||L∞
=

∥
∥
∥φ(t) ∗ γ(t)∗(i−k−1) ∗ cα(t)ξk(0)

∥
∥
∥

L∞

≤
∥
∥
∥φ(t) ∗ γ(t)∗(i−k−1)∗ cα(t)

∥
∥
∥

i∞
‖ξk(0)‖∞

(20)

Because the controller is designed in a way that A

is Hurwitz the impulse responses α(t) and φ(t) are
bounded. Thus the induced L∞-norm will depend
on the norm of γ∗(i−k−1)(t) which is always less or
equal to the norm of γ(t) to the power of (i−k−1)
(||γ∗(i−k−1)(t)|| ≤ ||γ(t)||(i−k−1)).

Note that the induced L∞-norm of an operator
is the L1-norm of its impulse response. Hence,
one way to insure that the system is L∞-string
stable is to require ||γ(t)||L1

to be less or equal than
1. That is the same as requiring a monotonically
non decreasing step response or equivalently a non
negative impulse response.

Since the complementary sensitivity function
has changed from T (s) to Γ(s) = Q(s)−1T (s)
by introducing the time headway the corre-
sponding impulse response changed as well from
γ0(t) = L−1 {T (s)} to γ(t) = L−1 {Γ(s)}.

γ(t) = L−1

{
1

hs + 1
T (s)

}

=
1

h
e−

t
h

t∫

0

e
τ
h γ0(τ)dτ (21)

Because 1
h
e−

t
h > 0 the integral over e

t
h γ0(t) needs

to be greater or equal then zero.

γ(t) =
1

h
e−

t
h

t∫

0

e
τ
h γ0(τ)dτ ≥ 0 ⇔

t∫

0

e
τ
h γ0(τ)dτ

︸ ︷︷ ︸

γ̄(t)

≥ 0

(22)

If possible we need to find a h∞ which is the min-
imal time headway h satisfying (22). Thus, every
h ≥ h∞ guarantees L∞-string stability.

Since γ(t) is continuous we only need to make
sure that all local maxima and minima of γ̄(t) are
greater or equal then zero. Local extrema appear
if the derivative of γ̄(t) is zero

d

dt
(γ̄(t)) = e

t
h γ0(t) = 0 ⇐⇒ γ0(t) = 0 (23)

Thus, we must assure that γ0(t) changes sign only
a finite number of times by requiring that the dom-
inant pole of T (s) is real. Then γ̄(t) must be non
negative at the zero crossings of γ0(t). If γ̄(t) is non
negative at all zero crossings of γ0(t) the impulse
response γ(t) will be non negative for all t > 0.
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Therefore we can guarantee L∞-string stability ac-
cording to Definition 2 by using a time headway
h ≥ h∞.

Note that under some mild conditions h ≥ h2 is
also sufficient for L∞-string stability, [5].

Swaroop et al. established a different result fo-
cusing on the poles and zeros of T (s) to assure a
positive impulse response in [14].

V Example and simulation results

In this section we will illustrate our results by pre-
senting some simulations of a simple example sys-
tem. We will choose T (s) = s+1

s2+s+1 as the com-
plementary sensitivity function of the system.

First, we need to find the minimal time headway
that gives L2-string stability according to (17). For

T (s) = s+1
s2+s+1 the curve of

√
∣
∣T (jω)

∣
∣
2
− 1

/

ω is

shown in Figure 2. The maximum is achieved at
ω ≈ 0.5 and h2 ≈ 1.47. In Figure 3 we can observe
how the magnitude of Γ(jω) changes with the time
headway h. If no or a small time headway (e.g.
h = 1) is used |Γ(jω)| is larger than one for a
range of frequencies. However, as soon as h ≥ h2,
|Γ(jω)| ≤ 1 for all ω.

Impulse responses for different values of h are
shown in Figure 4. Only h ≥ h∞ = 2.42 guaran-
tees a non negative impulse response.

A string of 20 vehicles with the complementary
sensitivity function Γ(s) = 1

hs+1T (s) and non zero
initial conditions in the first subsystem has been
simulated for different time headways h.

The behaviour of the error signals ei(t) without
using a time headway is shown in Figure 5. Appar-
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Figure 5: Error signals ei(t) for h = 0

ently the error signal ei(t) increases as i increases
and the system therefore is string unstable.

Using a small time headway of h < h2 improves
the performance of the string significantly, shown
in Figure 6. However, the string is not string stable
since the norm of the error signal ei(t) grows as i

increases.

Simulations with h = h2 can be observed in Fig-
ure 7. The norm of the error signals ei(t) is now
bounded independently of the string length N and
the position within in the string i. However, it is
hard to detect string stability in a simulation of 20
vehicles only.

The effect of a sufficiently large time head-
way can also be observed in Figure 8. Although
2 < 2.42 = h∞ the L∞-norm of ei does not grow
with i and the system is L∞-string stable.
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VI Conclusions and future directions

In this paper we have discussed L2-string stability
and L∞-string stability of a class of homogeneous
strings of linear, time invariant control systems
with two integrators in the open loop using uni-
directional nearest neighbour communication. We
showed that zero or a small time headway provokes
string instability. A formula for the minimal time
headway h2, or h∞ to guarantee L2-string stabil-
ity, or L∞-string stability was derived and string
stability was proved for h ≥ h2, h ≥ h∞.

As for future directions, it would be interesting
to extend the results presented to more general
cases. That could be analyzing heterogeneous sys-
tems, or bidirectional controller designs.
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