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This paper is devoted to the problem of model building from data produced by a nonlinear
dynamical system. Unlike most published works that address the problem from a black-box per-
spective, in the present paper a procedure is developed that permits the use of prior knowledge
about the location of fixed-points in addition to the data thus resulting in a gray-box approach.
Numerical results using Chua’s double-scroll attractor and the sine map are presented. As dis-
cussed, the suggested procedure is useful as a means to partially compensate for the loss of
information due to noise and to improve dynamical performance in the presence of model struc-
ture mismatches. Preliminary results have indicated that the procedure outlined in this paper
is a systematic way of searching for models in the vicinity of the black-box solution. This could
have important consequences not only in model building but also in model validation.

Keywords : Gray-box identification; fixed points; multiobjective optimization.

1. Introduction

Since the papers by Packard and co-workers
[Packard et al., 1980] and that of Takens [1981], the
field of nonlinear dynamics has witnessed great in-
terest in what is called the state (or phase) space re-
construction problem [Casdagli et al., 1991; Gibson
et al., 1992] (see also [Sauer et al., 1991] for a com-
prehensive treatment of the subject). Briefly, the
main goal is, usually starting from a single time se-
ries called the observable, to define a space spanned
by variables that are functions of the observable
in such a way that the reconstructed space shares
dynamical and topological features of the original

space. In this respect, there are a number of is-
sues that are of utmost importance to enable a suc-
cessful reconstruction in a nonideal environment.
Among such issues we mention the choice of de-
lay time [Rosenstein et al., 1994] and data length
[Kugiumtzis, 1996], and the investigation of the ef-
fects of basis variables [Casdagli et al., 1991] and
the choice of observable [Letellier et al., 1998].

A different problem, although quite related, is
that of functional approximation or simply model-
ing. Basically, this problem amounts to obtaining a
mathematical model (for instance, one or more dy-
namical equations) directly from a set of available

‡Author for correspondence.
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data (usually, but not necessarily, a single time
series). If such a model is valid, it will display
dynamics close to those underlying the data. A
great variety of procedures have been suggested
in the literature to obtain models for nonlinear
dynamics from data. Examples include radial ba-
sis functions [Broomhead & Lowe, 1988], differen-
tial equations [Gouesbet & Letellier, 1994; Brown
et al., 1994; Lainscsek et al., 1998], neural networks
[Suykens & Vandewalle, 1995], difference equations
[Aguirre et al., 1997], mixed models [Irving &
Dewson, 1997], wavelets [Billings & Coca, 1999] and
Volterra models [Floriani et al., 2000] to mention
but a few.

A common feature to practically all the meth-
ods mentioned above is that in obtaining a model
from data no prior knowledge is assumed. More-
over, in order to estimate the model parameters
a single cost function is usually minimized. Tech-
niques with such characteristics are usually referred
to as black-box monovariable methods and, as can
be seen from the aforementioned papers, are quite
useful in a number of situations.

Assuming some information about the system
is available prior to modeling, is it possible to effec-
tively use such information during model building?
How can this be done? What kind of information
can be used? It is believed that such questions open
new areas of research in the modeling of nonlinear
dynamics and that the first answers will be specific
to certain types of mathematical representations.

A few timid attempts to use prior informa-
tion in modeling (usually referred to as gray-box
modeling) nonlinear dynamics can be found in re-
cent years. Brown and co-workers have modified
the model structure in view of a symmetrical flow
[Brown et al., 1994]. Similarly, one of us has used
symmetry of fixed points [Aguirre et al., 1997] and
the knowledge of steady-state relationships for the
nonautonomous case [Aguirre et al., 2000] also to
constrain the space of viable model structures. In
all such papers, however, the prior information is
not directly used in the stage of parameter estima-
tion in which the model parameters are estimated
by the minimization of a cost function that takes
into account a single objective, as for instance, the
minimization of the sum of squared errors between
data and model predictions.

This paper is believed to stand out from the
aforementioned literature in at least two main
points. Firstly, prior information (location of fixed

points) will be used, in the context of nonlinear
difference equations, to directly constrain parame-
ter estimation and not only to help restrict some
model structure classes, as in [Aguirre et al., 2000].
Secondly, the parameter estimation stage will be
accomplished by means of a multiobjetctive proce-
dure, that is, the cost function takes into account
more than one (in this paper, two) objective. The
suggested procedure may be advantageous in many
situations. It not only permits to use the informa-
tion available about the location of fixed points but
also enables the user to determine the weight with
which such information should be used in the mod-
eling procedure. The result is a continuum of mod-
els from which a particular candidate that best suits
the user needs can be selected.

The remainder of the paper is organized as fol-
lows. Section 2 presents the motivation for using
the multiobjective optimization approach. In Sec. 3
a brief background, containing a description of the
NARMAX models and the concepts of term clus-
ters and cluster coefficients is presented. Such con-
cepts are used to calculate fixed points of polyno-
mial NARMAX models. In Sec. 4 the use of prior
knowledge is presented using both mono-objective
and multiobjective approaches. Then, in Sec. 5 the
multiobjective approach is illustrated in the param-
eter estimation for two chaotic systems: Chua’s cir-
cuit and the sine map. In addition, a brief discussion
on results is presented. Finally, Sec. 6 summarizes
the main points of the paper.

2. Multiobjective Approach

Let Fig. 1 represent the set of efficient solutions, or
the Pareto set of a biobjective optimization prob-
lem. This means that there does not exist any so-
lution “below” that set, in the graphic of Fig. 1,
and any method that minimizes f1 and/or f2, in
the best case, will find solutions inside that set.

Black-box identification techniques (that rely
on mono-objective unconstrained optimization al-
gorithms) usually lead to solutions like p1, that take
into account only one objective having no control on
other objectives (either explicitly defined or not). A
gray-box identification procedure based on mono-
objective optimization with aggregated objectives
or with an objective taken as a constraint would
yield a single solution that is likely to lead to a
solution like pb, since there is no reason for that
procedure to find pa.
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Fig. 1. The continuous curve linking point p1 to point p2 is a hypothetical Pareto set of a biobjective optimization problem.
Solutions p1 and p2 denote the individual optima of the objective functions f1 and f2. Solutions pa and pb both belong to the
Pareto set.

Multiobjective approaches can fall into two
cases:

• If the criteria that are to be considered in the fi-
nal choice of one solution are objectives f1 and
f2 only, solution pb is possibly not suitable, since
there are better ones, that would represent a
small degradation in one objective and a large en-
hancement in the other one. In this case, solution
pa would be possibly “the best one”. This solution
is near (in objective values) to both the individ-
ual optima of objectives f1 and f2. From another
point of view, solution pa, if modified, would lead
to a rather small enhancement in one objective at
a great cost in terms of the other one. The multi-
objective optimization approach can lead to the
choice of a solution like pa.

• If, however, there are other criteria that cannot
be expressed in terms of f1 and f2 but are also
important in order to characterize meaningful so-
lutions, then the whole set of efficient solutions

should be examined in the search for the best so-
lution. The solution, in this case, is found with
some interaction with a “user”. This is the case
here, when qualitative properties of the model are
important.

In both situations, when some kind of trade-
off analysis occurs, the multiobjective framework
will probably be more helpful than mono-objective
techniques.

3. Identification Algorithm

The mathematical representation used is the
Nonlinear AutoRegressive Moving Average with
eXogenous input (NARMAX) [Leontaritis &
Billings, 1985a]. It is believed that the procedure
suggested in this paper can be used in other rep-
resentations as a systematic way of parameter es-
timation. Consider the NARMAX model described
by the following equation:

y(k) = F





y(k − 1), . . . , y(k − ny)

u(k − d), . . . , u(k − d− nu + 1)

e(k), . . . , e(k − ne)



 (1)

where ny, nu and ne are the maximum lags con-
sidered for the process, input and noise terms, re-
spectively, and d is the delay measured in sampling
intervals, Ts. Moreover, y(k) is a time series of the
output while u(k) is a time series of the input. e(k)
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accounts for uncertainties, noise, unmodeled dy-
namics and the like. F `[·] is some nonlinear function
of y(k), u(k) and e(k). In this paper F `[·] is taken
to be a nonlinear polynomial of degree ` ∈ Z+. In
order to estimate the parameters of such a polyno-
mial, (1) is expressed as follows:

y(k) = ψT(k − 1)θ̂ + ξ(k) (2)

where ψ(k− 1) is the vector of regressors (indepen-
dent variables) that contains linear and nonlinear
combinations of output, input and noise terms up
to and including time k − 1. The parameters cor-
responding to each term in such matrices are the
elements of the vector θ̂. Finally, ξ(k) is the resid-

ual or prediction errors at time k which are defined
as the difference between the measured data y(k)

and the one-step-ahead prediction ψT(k − 1)θ̂.
A dynamical model as in (2) taken over a set of

data, furnishes constraints which can be presented
by a matrix equation as follows:

y = Ψθ̂ + ξ . (3)

The parameter vector θ̂ that minimizes the in-
ner product of the residual vector can be estimated
by orthogonal least-squares techniques that mini-
mize the cost function

JLS(θ̂) = (y − Ψθ̂)T(y − Ψθ̂) . (4)

One of several advantages of such algorithms is
that the error reduction ratio (ERR) can be easily
obtained as a byproduct [Billings et al., 1989]. This
criterion provides an indication of which terms to
include in the model by ordering all the candidate
terms according to a hierarchy that depends on the
relative importance of each term. After the terms
have been ordered by the ERR, information crite-
ria can be used to help decide a good cut-off point.

3.1. Term clusters and cluster

coefficients

The deterministic part of a polynomial NARMAX
model can be expanded as the summation of terms
with degrees of nonlinearity in the range 1 ≤ m ≤ `.
Each mth order term is multiplied by a coefficient
cp,m−p(n1, . . . , nm) as follows

y(k) =
∑̀

m=0

m
∑

p=0

ny,nu
∑

n1,nm

cp,m−p(n1, . . . , nm)

×

p
∏

i=1

y(k − ni)

m
∏

i=p+1

u(k − ni) , (5)

where

ny ,nu
∑

n1,nm

≡

ny
∑

n1=1

· · ·

nu
∑

nm=1

, (6)

and the upper limit is ny if the summation refers to
factors in y(k − ni) or nu for factors in u(k − ni).

Considering an asymptotically stable model in
steady-state excited by a constant input, Eq. (5)
can be written as

y(k) =

ny,nu
∑

n1,nm

cp,m−p(n1, . . . , nm)

×
∑̀

m=0

y(k − 1)pu(k − 1)m−p , (7)

and the following definition can be presented.

Definition 3.1.
∑ny,nu

n1,nm
cp,m−p(n1, . . . , nm) in

Eq. (7) are the coefficients of the term clusters

Ωypum−p , which contain terms of the form y(k −
i)pu(k − j)m−p for m = 0, . . . , ` and p = 0, . . . , m.
Such coefficients are called cluster coefficients and
are represented as

∑

ypum−p .

A term cluster is a set of terms of the same type
and the respective cluster coefficient is obtained by
the summation of the coefficients for all the terms
of the respective cluster which explain the type of
nonlinearity.

All the possible clusters of an autonomous poly-
nomial with degree of nonlinearity ` are Ω0 =
constant, Ωy = Ωy2 , . . . , Ωy` . Thus, the fixed point
of a map with degree of nonlinearity `, see Eqs. (5)
and (6), are given by the roots of the following clus-
tered polynomial [Aguirre & Mendes, 1996]

y(k) = c0,0 + y(k)

ny
∑

n1=1

c1,0(n1)

+ y(k)2
nyny
∑

n1,n2

c2,0(n1, n2)

+ y(k)`

nyny
∑

n1,n`

cl,0(n1, . . . , n2) . (8)

Finally, using the definition of cluster coeffi-
cients and dropping the argument k, the last equa-
tion can be written as follows

Σy`y` + · · · + Σy2y2 + (Σy − 1)y + Σ0 = 0 , (9)
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where Σ0 = c0,0. From the last equation it becomes
clear that an autonomous polynomial with degree
of nonlinearity ` will have up to ` fixed-points if
Σy`y` 6= 0.

In many practical situations Σ0 = c0,0 = 0 and
in this case the previous equation can be rewritten
as

[Σy`y`−1 + · · · + Σy2y + (Σy − 1)]y = 0 . (10)

From Eq. (10) it becomes evident that the re-
spective dynamical model has one trivial and `− 1
nontrivial fixed points.

4. Incorporating Prior Knowledge

In this section formulae will be developed that
will enable taking into account prior information
about fixed-point location. To this end, consider
the vector-valued function of optimization objec-
tives defined by:

J(θ) =







J1(θ)
...

Jn(θ)






. (11)

If, say, function J1(θ) stands for the square error
function (4) and J2(θ) stands for the sum of the
squares of the fixed-points location error, the mul-
tiobjective problem becomes:

min J(θ)

subject to {θ ∈ D
(12)

in which D stands for the feasible set.
Generally, the minimization of functionals Ji

have competing solutions. This is reasonable since,
in most situations, the best solution will not neces-
sarily coincide with any of the individual optimal so-
lutions, being rather a compromise solution among
the several performance criteria. The suitable con-
ceptual framework for characterizing the solutions
for this trade-off is furnished by the multiobjective

programming theory [Chankong & Haimes, 1983].
The problem is to minimize, in some sense, the
vector-valued objective J(θ). The central concept
in multiobjective programming is that of efficient

or Pareto optimal solutions. The set Θ∗ of efficient
solutions θ∗ may be characterized by

θ∗ ∈ Θ∗ ⇔ {@ θ ∈ D : J(θ) ≤ J(θ∗) and

J(θ) 6= J(θ∗)} . (13)

An efficient solution must belong to the feasi-
ble solution set. In Eq. (13), the less than or equal

to and the different relations between vectors are
defined as:

V ≤ Z ⇔ vi ≤ zi, ∀ i ∈ 1, . . . , n

V 6= Z ⇔ ∃ i ∈ 1, . . . , n|vi 6= zi
(14)

in which vi and zi are the components of the n-
dimensional vectors V and Z. A solution is efficient

if and only if there does not exist any other solution
that further minimizes any of the objective vector
components without increasing at least one other
component of the same vector.

In order to define computational procedures for
determining the efficient solution set, a standard
procedure is to characterize the efficient solution
set in terms of solutions of appropriate scalar opti-
mization problems. A common way for obtaining a
scalar problem from a vector problem is the weight-

ing problem Pw [Chankong & Haimes, 1983]. Let

W =







w|w ∈ Rn, wj ≥ 0 and

n
∑

j=1

wj = 1







(15)

be the set of non-negative weights. The weighting
problem is defined for some w ∈W as P (w):

min
θ∈D

n
∑

i=1

wiJi(θ) , (16)

where Ji are all objectives and constraints.
This method is very simple, but it leads to a

correct solution only in the case of convex problems
(all objective functions being convex functionals
and the feasible set being a convex set) [Chankong
& Haimes, 1983]. As the location of fixed-points
can be stated as a quadratic function of the iden-
tification parameters [Aguirre & Mendes, 1996], it
defines a convex functional, and the multiobjective
problem becomes convex (note that the time series
squared prediction error is also convex). Therefore,
the weighting method can be applied in the case
under analysis.

4.1. Sum of squared error versus

location of fixed points

The use of (4) in parameter estimation problems is
standard and is one of the most suitable approaches.
Nonetheless, in some practical situations the use
of prior knowledge in addition to (4) can be espe-
cially helpful in increasing the quality of the model
[Johansen, 1996; Aguirre et al., 2000].

The location of fixed-points can be obtained
from the equations which describe the system,
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but it is also possible to estimate the fixed-points
from some measured data [Aguirre & Souza, 1998].
Therefore, the use of the location of fixed-points as a
prior knowledge seems to be suitable, as this knowl-
edge is important and it is possible to estimate it a

priori. Moreover, in NAR(MA)X models the fixed-
points depend on the parameters, as described in
Eq. (10). Thus, the parameter estimation problem
with two objectives that should be achieved simul-
taneously, namely minimum sum of squared predic-
tion errors and minimum error in fixed-point loca-
tion, can be formulated. In particular, it is desirable
to minimize the error between the location of fixed-
points known a priori and the model fixed-points,
see Eq. (9). Given ` fixed-points [α1, . . . , α2, α`], it
is possible to calculate a set of cluster coefficients
that define such fixed-points. That is, if a model has
the following clustered form

∏̀

i=1

(y − αi) = Σy`y` + · · · + Σy2y2

+(Σy − 1)y + Σ0 = 0 , (17)

then such a model has fixed-points at y = [α1, . . . ,
α2, α`]. Define the set Φ of these model coefficients:

Φ = [Σy` , . . . , Σy2 , (Σy − 1), Σ0] . (18)

It is worth mentioning that (17) multiplied by any
constant will furnish the same fixed points. Thus,
in order to avoid a large variance of parameters,
the following procedure can be carried out. The pa-
rameter set obtained by standard least-squares is
used as reference; by means of Definition 3.1 a set
of cluster coefficients are determined:

ΦLS = [ΣLSy` , . . . , ΣLSy2 , (ΣLSy − 1), ΣLS0] . (19)

Define the Euclidean norm, ‖ · ‖, of a parameter
set as the square root of the sum of the squares of
parameters. The Euclidean norm of the parameter
set of any model associated to given fixed-points
can be normalized, in order to become equal to the
Euclidean norm of the set ΦLS. Doing so, the nor-
malized set Σ becomes:

Σ =
‖ΦLS‖

‖Φ‖
[Σy` , . . . , Σy2 , (Σy − 1), Σ0] . (20)

To minimize the error of location of fixed-points,
the following function should be minimized

JFP(θ̂) = (Σ − Σ̂)T(Σ − Σ̂)

= (Σ − Sθ̂)T(Σ − Sθ̂) (21)

where S is a linear map such that Σ̂ = Sθ̂.

It is easy to verify that this problem is convex.
Thus the weighting problem Pw is a suitable multi-
objective formulation. Using Eqs. (15) and (16), the
parameter estimation problem with the use of prior
knowledge (location of fixed points) is as follows

min
θ̂∈D

JMO(θ̂) = w1JLS(θ̂) + w2JFP(θ̂) . (22)

Considering w = w1 = 1−w2 and replacing re-
spectively JLS and JFP by Eqs. (4) and (21) yields

min
θ̂∈D

JMO(θ̂)

= w(y − Ψθ̂)T(y − Ψθ̂)

+ (1 − w)(Σ − Sθ̂)T(Σ − Sθ̂) . (23)

In order to minimize the cost function JMO re-
garding to θ̂, it is necessary to solve (∂JMO/∂θ̂) =
0, that is

∂JMO

∂θ̂
= w(ΨTΨθ̂ − ΨTy)

+ (1 −w)(STSθ̂ − STΣ) = 0 (24)

and

θ̂ = [wΨTΨ + (1 − w)STS]−1[(wΨTy

+(1 − w)STΣ] . (25)

It is a simple matter to show that

∂2J

∂θ̂
2

= wΨTΨ + (1 − w)STS > 0 . (26)

Therefore, θ̂ in Eq. (24) is the minimum of the
cost function J . Furthermore, varying the weight w
from 0 to 1 produces the Pareto optimal solutions.
Finally, it is clear to see that when w = 1, Eq. (24)
gives the solution of minimum sum of squared er-
ror and when w = 0, conversely, Eq. (24) yields
the solution that takes into account exclusively the
location of fixed-points.

5. Numerical Results

This section illustrates the application of the new
methodology to two bench systems: a NAR model
of Chua’s Circuit [Chua & Hasler, 1993] and the
sine-map with cubic-type nonlinearities.
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5.1. Chua’s circuit

This example uses a NAR model obtained from
a real implementation of Chua’s circuit [Aguirre
et al., 1997]

y(k) = +3.523y(k − 1) − 4.2897y(k − 2)

− 0.2588y(k − 4) − 1.7784y(k − 1)3

+2.0652y(k − 3) + 6.1761y(k − 1)2y(k − 2)

+0.1623y(k − 1)y(k − 2)y(k − 4)

− 2.7381y(k − 1)2y(k − 3)

− 5.5369y(k − 1)y(k − 2)2+ 0.1031y(k − 2)3

+0.4623y(k − 4)3 − 0.5247y(k − 2)2y(k − 4)

− 1.8965y(k − 1)y(k − 3)2

+5.4255y(k − 1)y(k − 2)y(k − 3)

+0.7258y(k − 2)y(k − 4)2

− 1.7684y(k − 3)y(k − 4)2

+1.18y(k − 3)2y(k − 4) + ξ(k) (27)

The system is autonomous and therefore has
no eXogenous inputs, and the Moving Average part
has been estimated to reduce bias but is not used
for simulation. This example will use data generated
by the model above in order to avoid structure mis-
match problems. This constitutes the best possible

situation for the traditional mono-objective (black-
box) identification techniques. The multiobjective
technique proposed in Sec. 4 will be employed in
this case, for different additive white noise levels.
In this way, the role of the new multiobjective tech-
nique can be assessed.

The model fixed points are approximately at
y = 0, ±2.2417 and the map has an estimated
largest Lyapunov exponent (LLE) equal to λ =
3.625 ± 0.075 bits/s. Figure 2 shows the model
(double-scroll) attractor and Fig. 3 shows the first
return map, both Figs. 2 and 3 were obtained by
simulating model (27).

This example will be studied following two
paths. First, using data obtained from the model
(27) the system will be identified using the same
structure. This is an unrealistically ideal case, where
structure is known and the data is not corrupted by
noise. Second, zero mean white noise with variance
0.0001 is added to the data yielding a signal noise
ratio (SNR) of approximately 93.53 dB, compared
to 72.30 dB of real data used in [Aguirre et al.,
1997]. In spite of the fact that in the present case
the structure is assumed known, it will be seen that
the conventional approach will not be able to accu-
rately identify the system dynamics.
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Fig. 2. Double-scroll attractor reconstructed from model (27).
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Fig. 4. Pareto optimal solutions. Some dynamic properties of models assigned by letters (a)–(f) are shown in Table 1.

5.1.1. First case

The knowledge of fixed points was included in the
parameter estimation by means of (25). Twenty

models have been identified. The Pareto optimal

solutions are shown in Fig. 4, varying w from 0 to 1.
For the sake of simplicity six models (a)–

(f), as shown in Fig. 4, will be analyzed further.
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Table 1. Some static and dynamic properties of six models for the dou-
ble-scroll model (27).

Model Weight SSPE SSEFP Fixed Point LLE

(a) 0.001 1.9745 0.0086 0; ± 2.2466 2.8263 ± 0.0459
(b) 0.2111 1.9746 0.0078 0; ± 2.2473 2.6291 ± 0.1567
(c) 0.4212 1.9800 0.0037 0; ± 2.2606 2.0530 ± 0.0042
(d) 0.6313 1.9918 0.0013 0; ± 2.2141 –
(e) 0.8414 2.0016 0.0005 0; ± 2.2292 –

(f) 0.9990 2.0197 2.4251 × 10−7 0; ± 2.2347 –

Table 1 shows the following parameters of the
models (a)–(f): (i) Weight used in the Pw prob-
lem; (ii) sum of squared prediction error (SSPE);
(iii) sum of squared error of fixed-points (SSEFP);
(iv) the location of fixed-points; (v) and the LLE.

As expected, when the weight goes to 1 the
sum of errors between the model fixed-points and
the specified values goes to zero. Conversely, as
the weight goes to zero, the solution gradually ap-
proaches the one obtained using the mono-objective

−4 −2 0 2 4
−4

−2

0

2

4

y(
k−

4)

−4 −2 0 2 4
−4

−2

0

2

4
y(

k−
4)

−4 −2 0 2 4
−4

−2

0

2

4

y(
k−

4)

−4 −2 0 2 4
−4

−2

0

2

4

y(
k−

4)

−4 −2 0 2 4
−4

−2

0

2

4

y(k)

y(
k−

4)

−4 −2 0 2 4
−4

−2

0

2

4

y(k)

y(
k−

4)

(a) (b)
−4 −2 0 2 4

−4

−2

0

2

4

y(
k−

4)

−4 −2 0 2 4
−4

−2

0

2

4

y(
k−

4)

−4 −2 0 2 4
−4

−2

0

2

4

y(
k−

4)

−4 −2 0 2 4
−4

−2

0

2

4

y(
k−

4)

−4 −2 0 2 4
−4

−2

0

2

4

y(k)

y(
k−

4)

−4 −2 0 2 4
−4

−2

0

2

4

y(k)

y(
k−

4)

(c) (d)

−4 −2 0 2 4
−4

−2

0

2

4

y(
k−

4)

−4 −2 0 2 4
−4

−2

0

2

4

y(
k−

4)

−4 −2 0 2 4
−4

−2

0

2

4

y(
k−

4)

−4 −2 0 2 4
−4

−2

0

2

4

y(
k−

4)

−4 −2 0 2 4
−4

−2

0

2

4

y(k)

y(
k−

4)

−4 −2 0 2 4
−4

−2

0

2

4

y(k)

y(
k−

4)

(e) (f)

Fig. 5. Projections of double-scroll attractors corresponding to models (a)–(f), see Table 1 and Fig. 4. Noise-free case.
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technique. Figure 5 shows the attractor bidimen-
sional projections for models (a)–(f). It is interest-
ing to notice that as the fixed-point is forced to its
original value, the model dynamics deteriorate and
eventually becomes unstable (see model (f)). The
LLE algorithm did not converge for models (d) and
(e) although such models were still stable.

The first return map is presented in Fig. 6. The
shape of the map changes considerably from model
(a) to model (f). Considering the whole set of model
features (see Table 1), it seems that model (a) is
the best one. This result was somewhat expected
because, due to ideal case being simulated, there is
a NAR model that simultaneously attains the mini-
mum prediction error and the minimum fixed-point
location error: the original model (27). In this case,
the black-box identification indeed leads to a very
good result. The variation of fixed-point error in
Fig. 4 is almost negligible.

5.1.2. Second case

In the second case, the time series data was arti-
ficially corrupted with additive noise. In this case,
one should expect that the minimum of the pre-
diction error will not be close to the minimum of
the fixed point error, as was for the noise free case.
In other words, there should be greater difference
between the models estimated by the minimiza-
tion of the sum of squared prediction errors and
by the minimization of sum of squared fixed-point
errors. Therefore, a multiobjective solution would
be highly desirable in this case.

Figure 7 shows the Pareto optimal solutions.
The range of values spanned by the sum of squared
fixed-point errors is much wider and the errors are
ten times larger than in the noise-free case. Table 2
shows some static and dynamic properties of six
models for this case. Figure 8 shows the projections
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Fig. 6. First return maps of models (a)–(f), see Table 1 and Fig. 4. Noise-free case.
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Fig. 7. Pareto optimal solutions. Some dynamic properties of models assigned by letters (a)–(f) are shown in Table 2.

of the double-scroll attractors for the models (a)–
(f) and Fig. 9 shows the first return map for the
mentioned models. In contrast to the noise-free
case, the best model seems to be model (c) which
is a multiobjective solution, that is, in estimating
the parameters of this model two different objec-
tives were simultaneously taken into account. This
model keeps all dynamic properties (see Figs. 8
and 9) and has a sum of squared fixed-point error
25% better than for the model obtained with the
black-box technique. In other words, with a negligi-
ble increase in the sum of squared prediction error,
the multiobjective technique suggested in Sec. 4 en-
ables the user to systematically obtain models with

better performance in terms of fixed-point location.
It should be realized that such models, in addition
to having fixed-points that are better located, often
have overall dynamics that are closer to the original
system, as for instance model (c).

5.2. The sine-map with cubic-type

nonlinearities

Consider the following map:

y(k) = α sin(y(k − 1)) , (28)

with α = 1.2π. For initial condition y(0) ∈ [−π, π].
Equation (28) maps the interval [−π, π] onto itself.
The fixed points are approximately y = 0, ±2.4383

Table 2. Static and dynamic properties of six models of the double-scroll
model (27) for the noisy case.

Model Weight SSPE SSEFP Fixed Point LLE

(a) 0.001 2.2494 0.0397 0; ± 2.2333 2.2122 ± 0.0330
(b) 0.2111 2.2495 0.0389 0; ± 2.2331 2.1475 ± 0.0512
(c) 0.4212 2.2599 0.03174 0; ± 2.2308 1.6107 ± 0.0051
(d) 0.6313 2.3145 0.02151 0; ± 2.2230 –
(e) 0.8414 2.4216 0.0129 0; ± 2.2279 –

(f) 0.9990 3.1395 2.0952 × 10−5 0; ± 2.2520 –
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Fig. 8. Projections of double-scroll attractors corresponding to models (a)–(f), see Table 2 and Fig. 7. Noisy case.

and the map has an estimated LLE equal to λ =
1.155±0.009 bits/s. Figure 10 shows the first return
map which is also a view of the attractor.

The following first-order model, using mono-
objective techniques, was estimated from 1000 data
points taken from the attractor shown in Fig. 10

y(k) = 2.6868y(k − 1) − 0.2462y(k − 1)3 , (29)

with fixed-points at y = 0, ±2.6176. The sum of
squared prediction errors is equal to 0.2319, and
LLE is given by λ = 1.1458 ± 3.4545 × 10−5 bits/s.

Incorporating the knowledge of fixed points by
means of (25) during parameter estimation, twenty
models have been identified. The Pareto optimal

solutions are shown in Fig. 11. It is worth mention-
ing that it was necessary to vary the parameter w
very close to 1 in order to produce a significant set

of solutions. The same indices as before were used
and are shown in Table 3.

Figure 12 shows the first return maps for the
models (a)–(f). Observe that as the fixed-points
tend to those of the system (indicated by the
crossing of the y = x line and the first return map
of the sine map) the first return map of the models
come closer to that of the original system, especially
for values of y(k) greater than 2 and less than −2.
In this case, the benefit of using the information of
fixed-points is quite obvious.

Model (b) displays interesting behavior. Al-
though such a model has fixed-points that are not
too far away from those of the original system, the
model attractor reveals periodic dynamics rather
than chaos. In order to further investigate this,
Fig. 13 shows the histogram of the six models.
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Fig. 9. First return maps of models (a)–(f), see Table 2 and Fig. 7. Noisy case.

Model (b) does not present a continuous distribu-
tion and, as expected, has a negative LLE. Thus it
is possible to conjecture that a bifurcation has oc-
curred along the Pareto as the weight, w is varied. In
fact, a close view at the neighborhood of model (b)
with the fixed-point error as the bifurcation param-
eter, shows the suspected bifurcation, as presented
in Fig. 14. The behavior of the LLE is shown in
Fig. 15. In fact, the bifurcation parameter is actu-
ally the weight, w, but there is a one-to-one relation
between w and the sum of squared fixed-point er-
rors, which is actually used to plot the bifurcation
diagram.

Thus, another important consideration can be
outlined: the multiobjective procedure defines a sys-
tematic way for searching solutions in the space of
models. The black-box approach leads to only one
point in such space for each model structure (a dis-
crete set of solutions). The multiobjective approach

allows a continuous search, starting in the black-box
solutions, and visiting an infinite set of “reasonable”
solutions. This can be important in the cases when
standard MQ procedures does not produce mod-
els with desired properties at first but rather yields
a solution which is in a vicinity of a good model
[Aguirre et al., 2002].

6. Final Remarks

This paper has discussed the use of prior knowl-
edge in nonlinear system identification using a
multiobjective approach. The difference between
mono- and multiobjective approaches related to the
incorporation of prior knowledge on fixed points
has been outlined. The mono-objective approach
leads directly to a single solution, while the mul-
tiobjective approach furnishes efficient or Pareto

optimal solutions. The Pareto set constitutes an
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Fig. 11. Pareto optimal solutions for the sine map with α = 1.2π.

object that guides the user interaction with the
algorithm, allowing the user to decide what solu-
tion is more appropriate for his needs, through a
trade-off analysis.

The presented methodology also allows to in-

corporate more than one kind of prior knowledge

when this knowledge is related to parameter estima-

tion directly. The use of multiobjective techniques
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Fig. 12. First return maps of six models (a)–(f) for the sine map. (· · ·) Original system; (◦) models, (−−−) y(k) = y(k +1).
See Table 3. The fixed-points are located at the crossings of the respective first return maps and the y = x line.

Table 3. Dynamic properties of sine-map.

Model Weight SSPE SSEFP Fixed Point LLE

(a) 0 0.2319 0.0711 0; ± 2.6116 1.0435 ± 3.8190 × 10−5

(b) 0.99998207821415 0.2377 0.0603 0; ± 2.5854 −0.0249 ± 6.1656 × 10−5

(c) 0.99999141427971 0.2506 0.0520 0; ± 2.5652 1.0225 ± 1.0801 × 10−5

(d) 0.99999777856618 0.3163 0.0296 0; ± 2.5103 1.0264 ± 9.1272 × 10−6

(e) 0.99999848570829 0.3412 0.0232 0; ± 2.4949 1.0223 ± 2.5611 × 10−5

(f) 0.99999919285389 0.3787 0.0146 0; ± 2.4739 1.0096 ± 1.4385 × 10−5

is suitable for the purpose of dealing with two or

more conflicting objectives simultaneously.
The main ideas have been applied to two

chaotic bench systems: Chua’s circuit and the sine
map. In the first case, very little seems to be gained

in the ideal case of clean data. However, as noise
is added to the identification data, the use of prior
knowledge results in better models. A possible ex-
planation for this is that as the noise blurs infor-
mation (dynamical and static) from the data, this
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Fig. 13. Histograms that show the distribution in space of data produced by the six models (a)–(f) obtained for the sine
map. See Table 3.

can be compensated for, at least to some extent, by
means of using additional information. In a practi-
cal setting, the location of fixed-points would also
have to be estimated from data. However, is has
been shown that such estimation is far more robust
to noise than the estimation of dynamical models
[Aguirre & Souza, 1998].

In the case of the sine map, even in the to-
tal absence of noise, the identified models do not
necessarily have a good set of fixed-points, mainly
due to the fact that the model structures used had
cubic nonlinearities while the original system had
a sine-type nonlinearity. The use of fixed-point in-
formation in this example resulted in models with
better dynamical properties in terms of first re-
turn map and slightly worse in terms of the largest
Lyapunov exponent. In this example it also became
clear that the weight used to produce the Pareto
set could become an important bifurcation-like

parameter that could be used to systematically

search for good models in the vicinity of mono-

objective black-box models thus overcoming short-

comings of other approaches. This has important

consequences in model validation because it often

happens that models which, at first sight, are not

dynamically valid are in the vicinity of good models.

The point is how can we systematically search for

good models starting from a “seed model” [Aguirre

et al., 2002]? The procedure developed in Sec. 4

seems to be a good alternative.

It is believed that this paper has taken an im-

portant step in the modeling of nonlinear dynamics

in suggesting a procedure to use prior knowledge

in the model building process. Important as this

might turn out to be, as pointed out in the intro-

duction, there are a number of important questions

that should be considered in order to move forward
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such as: which types of information can be used?
How can this be done using other representations?
The authors believe that answers to these questions
will be welcome contributions to the field.
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