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Abstract 

Anti-adhesion therapy can be used to prevent infectious diseases caused by fungi 

and bacteria. Anti-adhesion ligands interfere with the ability of the fungi or bacteria 

to adhere to cells in the host organism. New forms of therapy are needed since the 

inappropriate use of antifungal agents and antibiotics has led to an increase in fungal 

and bacterial strains resistant to conventional forms of treatment. 

In this thesis, anti-adhesion compounds of Candida albicans to buccal epithelial cells 

(BEC) are considered. It was found that glycomimetics built around aromatic scaffolds 

could be potential anti-adhesion ligands. Using synthetic carbohydrate chemistry and 

Copper-Catalyzed Azide-Alkyne Cycloaddtion (CuAAC) chemistry, a first generation 

of monovalent, divalent and trivalent anti-adhesion ligands were synthesised. After 

this initial SAR (Structure Activity Relationship) study a divalent galactoside was 

identified as the lead compound, capable of displacing 50 % of yeast cells already 

attached to the BECs. Fluorescence studies suggest that this compound may bind to 

structural components of the fungal cell wall.  

In the pursuit of increasing the potency of this lead compound, anti-adhesion ligands 

with alternative scaffolds were synthesised and evaluated in biological assays. It was 

found that the squaramide derivatives did not improve the anti-adhesive properties 

of the original compounds. However, a norbornene derivative showed better results 

than the lead compound in two of the assays and had the ability to displace 45 % of 

yeast already attached to the BECs.   

To exploit the ‘Multivalent/Chelate Effect’ and increase the potency of the divalent 

galactoside, multivalent displays of the lead compound were then synthesised. The 

lead compound was attached to different scaffolds using a triethyl glycol linker and 

CuAAC chemistry. This resulted in glycoclusters and glycodendrimers having different 

valencies (three to sixteen copies of the lead compound), flexibilities and 

carbohydrate presentation. 

The ultimate aim of this research is to identify the Candida cell wall component 

responsible for the adhesion process with which the lead compound is interacting. 

Photoaffinity labelling (PAL) may be used to identify target proteins. PAL probes 
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containing two different phototags, a benzophenone and a diazirine derivative, were 

synthesised. The phototags were covalently linked to the lead compound using 

coupling chemistry and aza-Micheal addition reactions.  
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1.1 Fungal Infections  

Fungal infections affect over a billion people globally. 1.5 billion people worldwide 

are estimated to have superficial fungal infections of the skin, nails and hair,1 tens of 

millions of people suffer from mucosal candidiasis and more than 150 million people 

have serious fungal diseases. These infections can have a huge impact on people’s 

lives and can also be fatal. The severity of fungal infections can range from 

asymptomatic-mild mucocutaneous infections to potentially lethal systemic 

infections. The mortality associated with fungal disease is greater than 1.6 million,2 

which is similar to that of tuberculosis,3 and 3-fold greater than malaria.4 The 

HIV/AIDS pandemic, tuberculosis, chronic obstructive pulmonary disease (COPD), 

asthma and the increasing incidence of cancers are the major drivers of fungal 

infections both in developed and developing countries. Recent global estimates 

found 3 million cases of chronic pulmonary aspergillosis, 700,000 cases of invasive 

candidiasis, 500,000 cases of Pneumocystis jirovecii pneumonia, and over 200,000 

cases of cryptococcal meningitis complicating HIV/AIDs.5 The epidemiology of fungal 

diseases has changed significantly over the past decades. Nonetheless, Aspergillus, 

Candida, Cryptococcus species, Pneumocystis jirovecii and endemic dimorphic fungi 

such as Histoplasma capsulatum remain the main fungal pathogens responsible for 

the majority of cases of serious fungal diseases.5 

1.1.1 Candida albicans 

The genus Candida includes about 200 different species, with only a few species 

being human opportunistic pathogens that cause infections mainly in 

immunocompromised hosts. Candida albicans is the most common fungal 

opportunistic pathogen. The fungus is dimorphic since it grows as both yeast and 

filamentous cells. It is a commensal colonizer in humans and exists in the 

gastrointestinal and genitourinary tracts, as part of  the oral and conjunctival flora.6 

However, it is known to cause infections when the host becomes 

immunocompromised. These infections can be superficial and affect the skin 

(cutaneous candidosis), the mucous membrane of the oral and vulvovaginal cavities, 

and the fingernails (paronychial and onychial candidosis).7 Candida infections can 
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also be invasive and enter the bloodstream and disseminate to internal organs. 

Factors that contribute to fungal invasion include: surgery (especially abdominal), 

burns, long-term stay in intensive care unit, previous administration of broad-

spectrum antibiotics and immunosuppressive agents, anti-neoplastic chemotherapy, 

organ transplantation, hemodialysis and central venous catheters.8  

There are three main factors that contribute to the high mortality of invasive fungal 

infections. Firstly, since conventional microbiological approaches are insensitive, 

non-specific and laborious, a trustworthy, timely diagnosis is challenging. Secondly, 

the clinical signs and symptoms of an invasive fungal infection may not be present 

until the infection is at an advanced stage.9 Thirdly, and most significantly, current 

antifungal therapies are inadequate, and the overuse of these drugs have led to the 

development of antifungal resistance.10 

1.1.2 Antifungal Resistance 

Antifungal resistance can develop in different ways, depending on the mode of action 

of the antifungal drug. Resistance mechanisms include reduction in the intracellular 

accumulation of the drug, decrease in the affinity for the target, and counteraction 

of the drug effect.11 

The largest family of antifungal drugs is the azole family. Azoles inhibit the activity of 

the enzyme Erg11p, a lanosterol 14-α-demethylase,12 which is involved in the 

biosynthesis of ergosterol. Depletion of ergosterol leads to structural damage of the 

cell membrane resulting in cell death. Ergosterol, analogous to cholesterol in animals, 

is the largest sterol component of the fungal cell membrane. Ergosterol and 

cholesterol have sufficient structural differences, therefore most antifungal agents 

which target ergosterol binding or biosynthesis do not also interact with the 

cholesterol of host cells. The azole family of antifungal drugs includes the imidazoles 

(micoazole, econazole, clotrimazole and ketoconazole) and the triazoles 

(fluconazole, itraconazole). Many antifungal azoles can be administered topically to 

treat superficial fungal infections, as well as intravenously for the treatment and 

prevention of invasive fungal infections.13 
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In recent years, fluconazole and intraconazole have been widely used for the 

prevention and treatment of systemic fungal infections because of their 

bioavailability and safety profiles.14 As a result, fluconazole resistance has been 

described in a high percentage of patients. In particular, azole-resistant C. albicans is 

frequent in HIV-infected patients with oropharyngeal candidiasis (also known as oral 

thrush). The three main mechanisms leading to azole resistance in C. albicans are the 

following (with others shown in Figure 1.1): 

 Point mutations of ERG11, the gene encoding the target protein (Erg11p) of 

the azole, that reduces the binding affinity of the protein to the azole 

antifungals; 

 Overexpression of ERG11, leading to an increase in the intracellular 

concentration of the target protein (Erg11p); 

 Overexpression of efflux membrane transporters, which decreases the 

intracellular concentration of the antifungal drug.15 

Since Candida have also developed resistance to other antifungal drugs such as the 

echinocandins16 and polyenes17, there is an urgent need for the development of new 

drugs to fight these fungal infections. One way to tackle this problem is to use the 

anti-adhesion approach, which blocks the adhesion of the pathogen to the host cell, 

the first step in the pathogenesis of microbial infections. 
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Figure 1.1: Comparison of documented fluconazole resistance mechanisms in Candida 

species reprinted from Whaley et al.18 A) Erg3 inactivation leads to the utilization of 

alternative sterols in the yeast membrane; B) Uptake of exogenous sterols helps 

circumvent endogenous sterol production by fluconazole; C) Increased expression of ATP-

binding cassette efflux pumps and (D) major facilitator superfamily transporters reduce 

accumulation of azoles; E) Inherently low affinity of fluconazole binding to species-specific 

Erg11 may decrease fluconazole’s potential to inhibit the protein; F) Increased expression 

of Erg11 protein can help overcome azole activity; G) Aneuploidy (presence of an abnormal 

number of chromosomes) may promote genetic adaption to azole exposure; and H) 

Mutations in ERG11 can also result in proteins with reduced affinity for fluconazole binding. 

Reprinted with permission from Frontiers. 

1.2  Mechanisms of Adhesion in Fungi 

As mentioned above, there has been a huge increase in the incidence of fungal 

infections in the past few decades. Hence, a vast amount of research has been put 

into elucidating host-pathogen relationships. In particular, the initial interactions of 

the fungi to the host cells are essential to the colonization of the host and initiation 

of disease.19-21 Adhesins are cell-surface biomolecules, usually proteins, that mediate 

the adhesion of the microbe to other cells or to surfaces. Fungal pathogens display a 
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large variety of adhesins on their surface, and are therefore able to adhere to a 

variety of cell types within the host. They can also interact with numerous ligands 

present in various host sites, such as biological fluids, extracellular membrane and 

basement membranes.22  

1.2.1 Adhesins Present in Different Phyla of Fungi 

The phyla Ascomycota is one of the seven phyla in the Fungi Kingdom (Figure 1.2).23 

Within this phylum there are three subphyla which contain well-known human and 

plant pathogens. Taphriomycotina contains Schizosaccharomyces and Pneumocystis 

genera, Saccharomycotina contains Saccharomyces and Candida genera, while 

Pezizomycotina contains Aspergillus and Blastomyces and many other genera.24 

 

Figure 1.2: Phylogenetic relationship of the fungal phyla (in bold) and subphyla.23 

1.2.1.1   Adhesins of Ascomycota  

Most of the well-characterised fungal adhesins are found in Saccharomyces and 

Candida, two genera of the subphylum Saccharomycotina. These adhesins are 
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generally 600-2500 residue mannoproteins, which are covalently bound to the 

glucan in the cell wall through modified GPI (glycosyl-phosphatidyl-inositol) anchors. 

GPI anchors are glycolipid anchors for many cell surface glycoproteins. Many have 

discrete binding domains (Figure 1.3 A1 and A3), but others do not (Figure 1.3 A2). 

They can interact with adhesins on fungi, bacteria and mammalian cells or abiotic 

surfaces. The binding mechanisms include ligand binding, hydrophobic effect, and 

amyloid-like protein-protein aggregation.22, 25  

Pezizomycotina includes Aspergillus and most of the top ten plant pathogens, 

including Magnaporthe and Botrytis genera. Adhesins in this subphylum comprise of 

fungal hydrophobins that mediate their binding to hydrophobic surfaces, including 

plant hosts. These are small cysteine-rich proteins that self-assemble through 

amyloid-like interactions and are known for their ability to coat the conidial surface 

in Aspergillus and other filamentous Ascomycota, in addition to abiotic surfaces.26-28  

Taphrinomycotina are the third branch of the Ascomycota tree and adhesins have 

been characterized in the fission yeast Schizosaccharomyces and the AIDS-related 

opportunisitic pathogen Pneumocystis. In Schizosaccharomyces pombe Gsf2 is a 

galactose-specific lectin with a secretion signal and a GPI addition signal. In S. pombe 

and Schizosaccharomyces japonica, Linder and Gustafson29 identified a family of 

proteins, including the adhesin Map4, with Ser/Thr-rich repeats and secretion 

signals, but none have GPI addition signals. Instead there are often recognizable 

lectin-like domains and a Schizosaccharomyces-specific domain (Figure 1.3 E). 

Pneumocystis adhesins include Pneumocystis jirocvecii Int1, an RGD-containing 

protein without a signal sequence, and a C-terminus region similar to the Bud4 GTP-

binding protein. Int1 appears to be expressed on the surface of cells, even when 

exogenously expressed in S. cerevisiae. Int1 expression in P. jirocvecii and S. 

cerevisiae mediates Ca2+ dependent binding to fibronectin.30 

1.2.1.2   Adhesins of Basidomycota  

Relatively few adhesins are known from Basidomycota. The best studied are those of 

the encapsulated yeast Cryptococcus neoformans. Glucuronoxylomannan, the main 

constituent of the C. neoformans capsule, has been reported to have adhesive and 
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anti-adhesive properties. Mannoprotein MP84 is an adhesin with secretion and GPI 

addition signals, as well as N- and O-glycosidation sequences (Figure 1.3 F). It was 

reported that MP84 binds to lung epithelial cells and inhibits the binding of C. 

neoformans to lung epithelial cells.31  

 

Figure 1.3: Diagram of fungal adhesins, showing different domain arrangements and cell 

wall associations reprinted from Lipke et al.24. The cell wall is shown as blue lines, 

representing glucan polymers. Abbreviations for the genus and species are in italics: Ca, C. 

albicans; Sc, S. cerevisiae; Pb, Paracoccidioides braziliensis; Af, A. fumigatus; Bd, 

Blastomyces dermatitidis; Sp, S. pombe; Cn, C. neoformans, with the adhesin name beside. 

Hydrophobic domains are shown in yellow. Potential amyloid-forming β-aggregation core 

sequences are shown as red zigzags; O-linked glycosidations are short green lines, N-

glycans are longer green lines. C represents Cys-rich sequences in ScFig2 (A2) and AfRodB 

(C), and CW the Cys/Trp-rich domains in Bad-1 (D). Adhesins labelled (A) are covalently 

attached to the wall through modified GPI anchors, and (F) may be as well. The other sub-

figure indices (B through E) show other cell wall attachment modes.24 Reprinted with 

permission from MDPI.  

1.2.2  Mechanisms of Adherence of the Candida Species 

Interactions of Candida yeasts and hyphae with the host cells are crucial for the initial 

colonization of the host. Adherence of C. albicans to inert surfaces and biological 

substrates is considered a major attribute to its virulence. C. albicans displays a large 

repertoire of adhesins and has a highly complex cell wall.32 The fungal cell wall plays 

a vital role in these interactions as it acts as an interface between the pathogen and 

its host. Fungal cell walls are structurally unique, with each species having distinctive 
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glycan polymers and proteins cross-linked together to form a complex network, 

which forms the structural basis of the cell wall.33 Most cell wall proteins are 

glycoproteins, which are highly glycosylated and contain negatively charged 

phosphate groups in their carbohydrate side chains, which affect the electrostatic 

charge of the membrane. Cell wall proteins also contribute to the cell surface 

hydrophobicity, which is important for adherence to biomaterials, such as catheters, 

prostheses or medical implants.22 

1.2.2.1    Cell Wall of C. albicans 

The cell wall of C. albicans is a highly dynamic structure, organised into several layers 

which are mainly composed of polysaccharides (Figure 1.4). These polysaccharides 

are made up of D-glucose, N-acetyl-D-glucosamine and D-mannose 

monosaccharides, with some reports suggesting the presence of sialic acid in the 

Candida cell wall. Glucans and chitin form the rigid framework of the cell wall. 

Glucans are composed of highly branched glucose homopolymers with β-1,3 and β-

1,6 linkages. Chitin is a linear polymer of β-1,4-D-GlcNAc, which provides cross-linking 

and strength to the glucan scaffold. Another polymer, mannan, which is a 

polysaccharide consisting of mannose residues with α-1,2 or α-1,3 linkages, is also 

part of the Candida cell wall. These polymers are only found in covalent association 

with proteins (mannoproteins) and never as unconjugated oligosaccharides. Mannan 

can also be found as linear chains of α-1,6 linked mannose with branched side chains 

consisting of mannose with α-1,2 or α-1,3 linkages. β-1,2-oligiomannosides are 

present in the cell wall and are linked by phosphodiester bonds to the other 

carbohydrate chains. Sialic acids are the terminal residues of the carbohydrate side 

chains of mannoproteins.34  
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Figure 1.4: Structure of C. albicans cell wall adapted from Gow et al.35. Reprinted with 

permission from Springer Nature. 

Mannoproteins are the major component of the outer layer of the cell wall forming 

fimbriae, where they appear as a network of fibrils arranged perpendicularly to the 

cell surface. There are two main classes of mannoproteins present in the cell wall: 

GPI-proteins and Pir proteins. GPI-proteins have a GPI-anchor to the carbohydrates 

in the cell walls and include the adhesins Als1p and Als3p. These proteins are 

localized in the outer cell wall and are linked mainly to β-glucans by their GPI-anchor. 

Pir proteins are proteins encoded by members of the PIR (proteins with internal 

repeats) gene family. They are localized in the inner layer of the cell wall and are 

covalently linked to the β-1,3-glucans. These proteins contain an N-terminal signal 

peptide, and internal repeat region, and a highly conserved C-terminal region.22 

1.2.2.2  Adhesins in C. albicans 

1.2.2.2.1 Glycans 

Glycans in the cell wall of C. albicans have been found to influence the adherence of 

the yeast cells. As stated above, the cell wall is rich in glycosylated mannoproteins, 

and it is reported that the carbohydrate part of these biomolecules may contribute 

to the adhesion of the yeast to host cells. Kanbe et al.36 reported that the mannan 

portion of a mannoprotein, obtained from an extraction of the fungal cells, is 

responsible for the adherence of the C. albicans to spleen and lymph tissue. Further 

research explored the adhesive characteristics of the acid stable moiety of the C. 
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albicans phosphomannoprotein complex (PMPC). Complete digestion of the acid-

stable moiety with an α-mannosidase or hydrolysis with 0.6 N sulphuric acid 

destroyed the adhesion activity of the yeast to the spleen cells. It was found that 

both the mannan core and the oligomannosyl side chains are responsible for the 

adhesion activity of the acid-stable part of the PMPC.37 In an adherence model using 

Caco-2 (human colon carcinoma epithelial) cells, Dalle et al.38 reported that α-1,2 and 

β-1,2 oligomannosides are involved in the adhesion of C. albicans to epithelial cells. 

In this study, preincubation of the yeast with monoclonal antibodies (MAbs) specific 

for α-1,2 and β-1,2 mannan resulted in a dose-dependent decrease in adhesion. Also, 

in competitive assays β-1,2 and α-1,2 tetramannosides were the most potent 

carbohydrate inhibitors, with IC50 values of 2.58 and 6.99 mM, respectively. Dromer 

et al.39 also found that administration of β-1,2 tetramannosides in a mouse model 

prior to inoculation with C. albicans prevented colonization of the yeast. The α-1,2 

tetramannosides, in this study, had no effect on the yeast. 

The glycosylation of mannoproteins is highly complex and involves several protein 

mannosyltransferases (Pmt) and mannosyltransferases (Mnt). Pmts mediates the 

first mannosylation step in O-glycosylation which occurs in the endoplasmic 

reiticulum.40 The addition of further mannose residues to the first O-linked mannose 

occurs in the Golgi and involves many Mnts.41 Cells lacking Pmt activity show reduced 

adherence to endothelial cells40 and reduced colonization of organs in a mouse 

model.42 A similar trend is seen when cells with a lack of Mnts are tested for their 

adherence properties. Deletion of the genes that code these proteins, resulted in a 

significant reduction of adherence to human buccal epithelial cells (BECs).41  

Other cell wall carbohydrates are also involved in adherence. C. albicans synthesises 

sialic acids and express them on the cell surface. These sialic acids contribute to the 

negatively charged character of the yeast cell, which is an important factor involved 

in fungal interactions with host cells. Adhesion of the yeast cells to a cationic solid 

phase substrate (poly-L-lysine) was partly mediated by the sialic acids, since the 

number of adherent cells was significantly reduced after treatment with sialidase (an 

enzyme that hydrolyses the terminal sialic acid residues in oligosaccharides, 

glycoproteins, glycolipids etc.).32 
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1.2.2.2.2 Agglutinin-like Sequence Proteins 

Agglutinin-like sequence (Als) proteins are the most widely expressed adhesins in C. 

albicans.43 The ALS gene family encodes a group of GPI-anchored proteins that 

function as adhesins. There are at least eight distinct ALS genes in the C. albicans 

genome.44 Mature Als proteins are highly homologous to each other. They consist of 

a 300-residue N-terminal region predicted to have an immunoglobulin-like fold (Ig), 

a 104-residue conserved threonine-rich region (T), a central domain compromising a 

variable number of tandem repeats (TR) of a threonine-rich sequence, and a heavily 

glycosylated C-terminal serine/threonine stalk region, also varible in length.22, 45 The 

N-terminal domain in Als proteins mediate substrate-specific adherence.  

Comparative energy-based models suggest differences in key physiochemical 

properties of the N-terminal domains of different Als proteins. These differences 

include surface area, hydrophobicity and electrostatic charge and govern their 

distinct adherence and invasive biological functions.46 

Of the Als proteins, Als1p, Als3p and Als5p have been extensively characterized and 

research suggests that they play an important role in the adherence of C. albicans to 

host cells. Als1p45, 47 and Als3p48 were reported to bind to human endothelial and 

epithelial cells, with Als5p also reported to bind to extracellular matrix (ECM) 

proteins.45  

ALS1 encodes for the cell surface protein Als1p that mediates adherence of C. 

albicans to endothelial cells. Als1p has an N-terminal domain, which contains a signal 

peptide; a middle region, which has twenty 36-amino acid tandem repeats; and a C-

terminal domain, which contains a GPI-anchor sequence. Site-directed mutagenesis 

was used to outline the regions in Als1p required for endothelial cell adherence and 

cell surface expression of the protein. The mutant alleles of ALS1 containing either 

deletions or insertions were expressed in the normally non-adherent S. cerevisiae. 

Results found that in this model of Als1p, the endothelial cell binding region is 

localized in the N-terminus, the tandem repeats are essential for the proper 

presentation of the binding site, and the C-terminus is required for localizing Als1p 

to the cell surface.47 It has also been found that Als1p is important for the adherence 

to the oral mucosa during the early stage of an infection.49  
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Zhao et al.48 carried out a study with mutant strains of Als1p and Als3p. The results 

from this study demonstrated functional similarities and differences between these 

proteins and suggest that loss of Als3p affects C. albicans adhesion more than loss of 

Als1p. 

Als5p is another C. albicans adhesin which is highly homologous to Als1p.45, 50 The 

adherence of C. albicans and S. cerevisiae yeast cells expressing either of the Als 

proteins to specific peptides was studied using a random, polyethylene glycol (PEG)-

bead based peptide library. The results show that the two adhesins recognize a broad 

array of target ligands, in particular those containing the sequence motif “τφ+” 

where “τ” represents a residue with high turn propensity, “φ” represents a bulky 

hydrophobic residue and “+” represents R or K. This shows the adherence recognition 

systems of these adhesins is degenerate, as they are neither highly specific nor highly 

organized as to their protein or peptide targets. This recognition system allows the 

microorganism to adhere to a large repertoire of targets.51  

1.2.2.2.3 Hyphal Cell Wall Adhesins 

Hwp1p (hyphal wall protein 1) is found exclusively at the germ tube surface. It is 

another adhesin of C. albicans that mediates binding to BEC. Hwp1 is the first C. 

albicans cell surface protein that was found to be required for biofilm formation in 

vivo. In an in vivo model using venous catheters, the HWP1 null mutant was defective 

in biofilm formation, producing only yeast microcolonies in the catheter lumen.52 

Hwp1p is a substrate for mammalian transglutaminase. It mediates the attachment 

of germ tubes to transglutaminase-expressing epithelial cells.53  

1.2.2.2.4 Integrins 

Integrins are transmembrane receptors that facilitate cell-extracellular matrix 

adhesion. Since, C. albicans bind and adhere to numerous ECM proteins, it has been 

hypothesised that there are integrin-like receptors at the yeast cell surface. In 

mammalian cells, integrins are heterodimeric or heterotrimeric transmembrane 

proteins which recognise various ECM proteins by their peptide sequence, usually 

the tripeptide RGD (arginylglycylaspartic acid). They are therefore involved in various 

physiochemical or pathological processes such as diapedesis (passage of cells 
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through the intact vessel wall), cohesion inside tissues, and tumour metastasis. α5β1 

is an integrin that binds to matrix macromolecules, in particular fibronectin, where it 

recognizes the RGD sequence in the central region of the molecule. Numerous 

antibodies to human integrins, recognising α5 and β1 subunits, bound to Candida 

cells, and RGD peptides inhibited adherence of Candida cells to various ligands. This 

suggests that there is an important role for an α5β1-like integrin receptor as a 

mediator of Candida-host cell interaction.54  

Research for integrin-like proteins led to the isolation of INT1 gene in C. albicans. 

INT1 expression in S. cerevisiae allowed this normally non-adherent yeast to adhere 

to human epithelial cells. Disruption of INT1 in C. albicans suppressed adherence to 

epithelial cells and virulence in mice.55 Other integrin-like proteins have been 

suggested in C. albicans such as a protein with a high sequence homology to alcohol 

dehydrogenase (ADH), although its function as an adhesin is unknown.56  

1.2.2.2.5 Lectin-like proteins 

Lectins are defined as carbohydrate binding proteins other than enzymes or 

antibodies and exist in most living organisms. They are involved in diverse biological 

processes and mediate the interaction and communication between cells. A lectin 

usually contains two or more binding sites for carbohydrate units and interact with 

them non-covalently in a manner that is usually reversible and highly specific. Binding 

results from numerous weak interactions, with dissociation constants in the 

millimolar range for monosaccharides, which combine to form a stronger 

attraction.57 

In Candida glabrata, the EPA (epithelial adhesion) gene family encode a major group 

of adhesins.58 The general structure of Epa proteins is similar to that of the Als 

proteins of C. albicans. Epa1p is a Ca2+-dependent lectin that binds to lactose and N-

acetyllactosamine-containing glycoconjugates. Lactose and N-acetyllactosamine 

inhibited 50 % of C. glabrata binding to epithelial cells at a concentration of 1.25 to 

1.5 mM.59  

Lectin-like proteins have also been investigated as adhesins in C. albicans. Early 

studies have shown that simple sugars (such as fucose, glucosamine and N-
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acetylglucosamine)60-62 can inhibit adherence of the yeast to human BEC, which will 

be discussed later in Section 2.1.5.  

Adherence of C. albicans to basement membrane proteins, such as type IV collagen, 

is a crucial step in the development of candidiasis. Alonso et al.63 studied the 

interaction of C. albicans yeast cells with the three main domains of type IV collagen. 

It was found that several sugars known to be part of the N-linked oligosaccharide 

chains of collagen IV inhibited the adhesion to immobilized 7S, the N-terminal cross-

linking domain of collagen IV. N-acetylglucosamine, L-fucose and methylmannoside 

caused similar inhibition, whereas N-acetyllacosamine was a more effective inhibitor. 

Glucose, galactose, lactose and heparin sulfate did not affect the binding of the yeast. 

Combinations of the inhibitory sugars at suboptimal inhibition concentrations did not 

reduce C. albicans adhesion more than the individual sugars, suggesting that a single 

lectin is responsible for the interaction.  

1.3 Anti-Adhesion Strategies with Small Molecules  

Upon encountering the host cell, microorganisms must first attach via weak, non-

specific interactions with the host cell surface. This is mediated by physiochemical 

properties of the microorganism and host cell surfaces, such as charge and 

hydrophobicity. This process is known to be a reversible adsorption step, which is 

followed by initial adhesion. This is mediated by specific interactions, where the 

binding moieties vary depending on both the microorganism and host cell. Generally, 

this process involves adhesins (proteins) on the microorganism interacting with 

carbohydrates or other recognition epitopes on the host cell surface. 

All steps of this multi-stage process can be targeted in the anti-adhesion strategy. 

The surface properties of either the microorganism or the host cell can be changed 

to prevent non-specific interactions. The biogenesis of microbial adhesins or host cell 

receptors can be inhibited, either by interfering with the biosynthesis of subunits or 

blocking translocation and surface assembly. The specific interactions between 

microbial adhesins and host cell receptors can be targeted in several ways. Anti-

adhesion compounds can competitively inhibit attachment by mimicking microbial 

or host cell binding partners. Alternatively, antibodies recognizing microbial surface 
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epitopes can be used to either actively or passively immunize the host.64 These 

different strategies are shown in Figure 1.5. In the following sections the anti-

adherence strategies used to combat bacterial infections are first discussed. Due to 

the vast amount of knowledge of bacterial adhesins, many anti-adhesion ligands 

have been designed to target specific steps in the adherence process. Following this 

the anti-adherence strategy of fungi, in particular Candida, are discussed. In this case, 

there is a lack of structural knowledge of the adhesins mediating this process and 

hence, this hampers a focused design approach in many incidences. 

 

Figure 1.5: Strategies for anti-adhesion therapy reprinted from Krachler et al.64. Microbial 

attachment can be inhibited by interfering with adhesin biosynthesis (A), adhesin assembly 

(B), or host receptor assembly (C). Binding can be inhibited by competitive replacement of 

the adhesin from the host (D) or of the host receptor from the adhesin (E) using soluble 

molecules, or by using designer microbes (F). Antibodies against microbial adhesins can 

block surface epitopes required for binding (G).64 Reprinted with permission from Taylor & 

Francis Online. 

1.3.1 Anti-Adhesion Strategy in Bacteria 

Anti-adhesion therapy has become an important discovery pathway to prevent and 

treat bacterial infections due to the numerous emerging strains of bacteria which 

have become resistant to conventional antibiotics. Bacteria resistant to anti-

adhesion agents may also be expected eventually, but because these agents do not 

act by killing or arresting growth of the pathogen, as antibiotics do, it is reasonable 

to assume that strains resistant to anti-adhesion agents will be diluted with the 

A                 B                  C                   D                  E                   F                   G 
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sensitive bacteria whose adhesion is inhibited and shed out of the host. The spread 

of bacteria resistant to anti-adhesion agents is expected to occur at significantly 

lower frequencies than that of bacteria resistant to antibiotics.65 

Extensive research has been carried out on the process of bacterial adhesion. Many 

adhesins in bacterial species have been characterized and their modes of action have 

been reported. With this knowledge, numerous strategies have been developed to 

prevent bacterial adhesion and hence the development of infections.  

1.3.1.1 Disrupting Surface Receptor Biogenesis 

1.3.1.1.1 Pathogen Receptors: 

Several studies have described that sub-inhibitory concentrations of certain 

antibiotics, in particular, the fluoroquinolone ciprofloxacine 1.1 and the 

aminoglycoside amikacin 1.2 (Figure 1.6), can lead to altered physicochemical 

properties of the bacterial surface and decreased bacterial adhesion to host cells in 

uropathogenic Escherichi coli. This is thought to be caused by abnormal protein 

synthesis, which leads to the production of partially or incorrectly folded proteins. 

This results in the impaired surface display of outer membrane proteins and the 

assembly of fimbrial adhesins. The resulting change in surface charge as well as 

inhibition of specific interactions with host receptors act synergistically in preventing 

adhesion.66-68  

 

Figure 1.6: Structure of fluoroquinolone ciprofloxacine 1.1 and the aminoglycoside 

amikacin 1.2. 

Chaperone–usher (C/U) pili are large, multi-subunit organelles mediating host cell 

adhesion and are important virulence factors in a range of bacterial pathogens, 

including E. coli and species of Salmonella, Yersinia, Pseudomonas, Klebsiella, and 

Haemophilus. C/U pilus biogenesis is accomplished by translocation of pilin subunits 

1.2 1.1 
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and subsequent association with a periplasmic chaperone, which delivers them to an 

outer membrane usher complex. The structure of the complex between the P pilus 

chaperone PapD and a synthetic peptide mimicking the C-terminus of the pilus 

protein PapG was solved and used as a basis to rationally design small molecule 

inhibitors to prevent pilus assembly (pilicides) by disrupting the chaperon–pilin 

complex. Two families of pilicides, amino acid derivatives and pyridinone derivatives, 

were designed to target the active site of the periplasmic chaperones69 or to interfere 

with association of the chaperone-pilin-usher complex.70, 71 An example of one 

pilicide, compound 1.3, is shown in Figure 1.7 a. These compounds target the specific 

interaction between the chaperone-subunit complexes and the N-terminal domain 

of the usher, a unique protein-protein interaction site essential to the biogenesis of 

pili (Figure 1.7 b-d). The pilicide occupies the usher N-terminal binding site on the 

chaperone-subunit complex and thus pauses pilus assembly. This resulted in an 

inhibition of bacterial adherence and biofilm formation in uropathogenic bacteria. 

 

Figure 1.7: a) Structure of pilicide 1.3; b) The pilicide 1.3 (green) binds to the N-terminal 

domain of the chaperone PapD (blue); c) The pilicide 1.3 (green) occupies a hydrophobic 

patch formed by I93, L32 and V56 amino acids (purple); d) Structure of the chaperone-

subunit complex, where the chaperone is shown in blue, the subunit in orange and the 

usher N-terminal domain in yellow.71  

a) 

c) 

b) 

d) 

 

1.3 
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1.3.1.1.2 Host Cell Receptor 

Many bacterial adhesins rely on host glycosphingolipids (GSLs) for host cell binding 

and membrane translocation.72 Depletion of GSLs from the host cell membrane has 

been proposed as an efficient strategy to prevent or treat infections.73 Administering 

inhibitors specific for enzymes in the GSL biosynthetic pathway can deplete the 

amount of GSL of the host cell membrane. Ceramide glucosyltransferase catalyses 

the initial step in the glucosylceramide-based GSL synthetic pathway, where glucose 

is transferred from UDP-glucose to ceramide to produce glucosylceramide, which is 

the core component of GSLs. Inhibiting ceramide glucosyltransferase was shown to 

successfully reduce bacterial colonisation of cultivated human uroepithelial cells and 

in a murine model of urinary tract infection (UTI). Here, the iminosugar, N-

butyldeoxynojirimycin, blocked the ceramide-specific glucosyltransferase and 

decreased the GSL content in a dose-dependent manner. This depletion significantly 

inhibited P-fimbriated bacterial attachment in vitro. In the murine model, depletion 

of GSLs in vivo, reduced susceptibility to experimental UTI with P-fimbriated E. coli.74 

1.3.1.2 Competition-Based Strategies 

1.3.1.2.1 Sugar-Based Inhibitors 

Specific bacterial host interactions are frequently mediated by carbohydrates, which 

are present in large numbers both on the bacterial surface (in the form of capsules, 

lipopolysaccharides, and glycoproteins) and the host surface (as glycoproteins and 

glycosphingolipids). Therefore, a large body of research has focused on the use of 

glycomimetics and synthetic glycosides as anti-adhesive agents by competitively 

inhibiting pathogen binding. 

In Gram-negative bacteria, lectins usually exist in the form of polymorphic fimbriae 

or pili. They are often made up of hundreds of protein subunits that bind host 

oligosaccharides.75 Lectins in Gram-positive bacteria are generally within the 

peptidoglycan layer or anchored to the cytoplasmic membrane that cross the 

peptidoglycan layer and extend beyond the cell wall.76 There has been substantial 

interest in determining the specificity of bacterial lectins to their associated 

oligosaccharides, but there has been experimental challenges associated with this. 
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Numerous techniques have been used to extend the knowledge in this area, 

including: direct-binding assays, measurement of in vitro cell adherence to tissue 

culture cells in the presence of oligosaccharides, and determining virulence in vivo 

when exogenous oligosaccharide receptors are present. Table 1.1 lists some of the 

oligosaccharide structures found on host cell surfaces that are recognised by 

pathogen lectins. 
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Table 1.1: Examples of pathogen oligosaccharide adherence sites on host mucosal surfaces 

recognised by pathogen lectins.77 Reprinted from Advances in Food and Nutrition Research, 

Vol. 55, Shoaf-Sweeney, K. D., Hutkins, R. W., Chapter 2: Adherence, Anti-Adherence, and 

Oligosaccharides: Preventing Pathogens from Sticking to the Host, page 110, Copyright 

(2008), with permission from Elsevier. 

Organism Target Molecule Target Tissue 

Escherichia coli   

Type 1 pili Man(α1-3)[Man(α1-6)]Man Urinary 

P-fimbriae Gal(α1-4)Gal Urinary 

S-fimbriae NeuAc(α2-3)Gal(β1-3)GalNAc Neural 

CFA/1 NeuAc(α2-8)- Intestinal 

K1 GlcNAc(β1-4)GlcNAc Endothelial 

F5 (K99) NeuGc(α2-3)Gal(β1-4)Glc Intestinal 

Bordetella pertussis Gal(β1-3)GalNAc(β1-4)Gal(β1-4)Glc Respiratory 

Haemophilus influenza 
[NeuAc(α2-3)]0,1Gal(β1-4)GlcNAc- 

(β1-3)Gal(β1-4)GlcNAc 
Respiratory 

Helicobacter pylori NeuGc(α2-3)Gal(β1-4)GlcNAc Stomach 

 Fuc(α1-2)Gal(β1-3)[Fuc(α1-4)]Gal Stomach 

Klebsiella pneumonia Man Respiratory 

Mycococcus pneumonia NeuGc(α2-3)Gal(β1-4)GlcNAc Respiratory 

Neisseria gonorrhoea Gal(β1-4)GlcNAc Genital 

Pseudomonas 

aeruginosa 
Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc Respiratory 

Salmonella typhimurium Man Intestinal 

 Gal(β1-4)GalNAc Intestinal 

Streptococcus 

pneumonia 

[NeuAc(α2-3)]0,1Gal(β1-4)GlcNAc- 

(β1-3)Gal(β1-4)GlcNAc 
Respiratory 

Streptococcus suis Gal(α1-4)Gal(β1-4)Glc Respiratory 

 

The lectin-mediated adhesion can be inhibited both in vitro and in vivo by either 

simple or complex carbohydrates that compete with the binding of the lectins to 

host-cell glycoproteins or glycolipids.78 The affinity of simple sugars (mono- or 

disaccharides) to lectins is usually low, in the millimolar range. An increase in several 
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orders of magnitude in the affinity can be achieved by suitable chemical 

derivatization. These modifications can be efficiently designed if the structure of the 

lectin is available, such as FimH in E. coli (discussed further in Section 2.1.4.1) and 

LecA and LecB in P. aeruginosa (dicussed further in Section 2.1.4.2). FimH is one of 

the most extensively studied lectins as a target for design of anti-adhesion 

glycomimetics. There are many examples of α-mannosides reported as inhibitors of 

E. coli adhesion which act by blocking the binding of FimH to epithelial cells. For 

example, hydrophobic α-mannosides, such as 4-methylumbelliferyl α-mannoside 

and p-nitro-o-chlorophenyl α-mannoside, were 500-1000 times more effective at 

inhibiting the adhesion of type 1 fimbriated E. coli to yeasts or ileal epithelial cells 

than methyl α-mannoside.79 Using multivalent ligands also increased the affinity of 

the inhibitors to the bacterial lectins.80 When 3’-sialyllactose (NeuAc(α2-3)Gal(β1-

4)Glc) were covalently attached to human serum albumin (20 moles of sugar per 

mole of protein), the inhibition of adhesion of the bacteria to epithelial cells was two 

orders of magnitude better than the oligosaccharide by itself.81 The multivalent 

effect will be discussed in more detail in Chapter 4. 

Streptococcus suis is a Gram-positive bacterium, which causes sepsis and meningitis 

in pigs and humans. Carbohydrate-binding specificities of S. suis have been identified, 

and these studies have shown that many strains recognize Gal(α1-4)Gal (galabiose) 

containing oligosaccharides present in host glycolipids. Oligosaccharides containing 

the Gal(α1-4)Gal structure inhibited adhesion of S. suis at micromolar 

concentrations, whereas oligosaccharides containing Gal(α1-3)Gal or Gal(α1-6)Gal 

structures only inhibited the adhesion at millimolar concentrations.82 The S. suis 

adhesin binding to Gal(α1-4)Gal-oligosaccharides, Streptococcal adhesin P (SadP), 

was recently identified.83 It has a Gal(α1-4)Gal-binding N-terminal domain and a C-

terminal LPNTG-motif for cell wall anchoring.  

Screening of a library of chemically modified Gal(α1-4)Gal derivatives has identified 

compounds that inhibit S. suis adhesion with unusually high affinity (nanomolar 

range). In this study, it was found that phenylurea derivatisation at C3’ and 

methoxymethylation at O2’ of galabiose provided inhibitors of S. suis adhesion.84 

Also, the design of multivalent Gal(α1-4)Gal-containing dendrimers has resulted in a 
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significant increase of the inhibitory potency of the disaccharide.85 Once the 

structures of the receptors are known, more potent high-affinity receptor analogs 

can be designed. SadP adhesin represents a promising target for the design of anti-

adhesion ligands for the prevention and treatment of S. suis infections. 

1.3.2 Anti-Adhesion Strategy in Fungi 

The degree of knowledge regarding fungal adhesins is more limited than those in 

bacteria, since fungi are complex, eukaryotic cells that have cell walls which are 

structurally unique, with each species displaying distinctive glycan polymers and 

proteins. Hence, the majority of studies of fungal adhesion involve testing a 

compound’s ability to inhibit adhesion, and then trying to determine the adhesin 

responsible. Therefore, this lack of structural knowledge hampers a focused design 

approach for the development of anti-adhesion agents for fungal pathogens. High 

affinity ligands can only be developed if the structure of the adhesin is known. With 

that being said, recently, there have been some breakthroughs in this area where 

some fungal adhesins e.g. FleA in A. fumigatus (discussed in Section 2.1.4.3), has 

been identified, fully characterized and crystal structures have been solved. Hence, 

the development of high-affinity anti-adhesion ligands is now becoming possible for 

fungal pathogens.  

The majority of research on anti-adhesion ligands based on small molecules used to 

inhibit adhesion of fungi has focused on C. albicans. Small molecules display different 

modes of action to inhibit the process of adhesion of fungi to host cells although in 

most cases their mode of action is unknown. The biosynthesis of cell wall 

components, the localization of GPI-anchored proteins, down-regulation of genes 

that encode for adhesins, the disruption of the cell membrane and the use of small 

molecules that competitively inhibit the interaction between the fungal adhesin and 

the host cell receptors have been targeted. Small molecules, both synthetic and 

natural, have been tested for their anti-adhesive properties towards C. albicans. 

1.3.2.1 Disruption of biosynthesis of cell wall components 

As mentioned earlier, β-1,6-glucan is a fungus specific cell wall component that is 

essential for the retention of many cell wall proteins. Kitamura et al.86 reported the 
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discovery of a small molecule inhibitor 1.4 of β-1,6-glucan biosynthesis in yeast. This 

leads to the release of cell wall proteins, which play a critical role in virulence, from 

the cell (shown in Figure 1.8). The adhesion of C. albicans cells to mammalian cells 

and their hyphal elongation were strongly reduced by the drug treatment.  

 

Figure 1.8: Shows the structure of the small molecule inhibitor 1.4 of β-1,6-glucan 

biosynthesis; a) microscopic images of untreated C. albicans cells; b) microscopic images of 

C. albicans cells treated with compound 1.4.86 Adapted with permission from American 

Society for Microbiology.  

Anti-adhesion tests of fluconazole 1.5, a well-known, bis-triazole antifungal drug, 

began in the early 1990s. Darwazeh et al.87 explored the effect of systemic 

fluconazole intake on Candida adhesion to BEC obtained from healthy volunteers on 

systemic fluconazole therapy. It was found that the fluconazole significantly reduced 

the number of BEC with adherent yeast. There was a 48.7 % reduction in adhesion 

during the therapy compared to before the fluconazole therapy. Several other 

studies have also shown significant reduction of adherence of C. albicans isolates to 

denture acrylic and BEC after treatment with fluconazole.88-90 It is known that 

fluconazole inhibits the production of lanosterol 14-α-demethylase (discussed in 

Section 1.1.1). This affects the cell wall composition of the C. albicans and hence the 

ability to adhere to BEC. 

1.4 

b) 

a) 
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Several tetrazole compounds were reported to have anti-adherent properties against 

C. albicans. Compound 1.6 was found to be the most active of a series of 2,5-

disubstituted tetrazoles that were tested as inhibitors of C. albicans adhesion. This 

compound efficiently reduced the adherence of C. albicans to Caco-2 cells by 86 %, 

at 16 μg/mL.91 More 2,5-disubstituted tetrazoles were tested by Staniszewska et al..92 

Compound 1.7 reduced the adhesion of C. albicans to Caco-2 cells by >50 % at 0.0313 

mg/mL.92 Tetrazole derivatives with pyrrolidine scaffolds were also tested for anti-

adherent properties. Compound 1.8 and other derivatives were tested for their 

ability to prevent C. albicans adhesion to TR-146 cell-line. Compound 1.8 reduced the 

adherence of the yeast most efficiently (over 98 % reduction at 46.05 mM).93 These 

new antifungal drugs (structures in Figure 1.9) cause yeast cell death, but also inhibit 

adhesion. It is suggested that adhesion is inhibited by disrupting cell wall biogenesis, 

the process that results in the biosynthesis of macromolecules, assembly and 

arrangement of these components to form the cell wall. 

 

Figure 1.9: Structures of triazole and tetrazole compounds that show anti-adhesive 

properties towards C. albicans by disrupting cell wall biogenesis. 

1.3.2.2 Disruption of localization of GPI-anchor Proteins 

GPI-anchored cell wall mannoproteins are required for the adhesion of pathogenic 

fungi, such as C. albicans, to human epithelium. Tsukahara et al.94 discovered an 

isoquinoline derivative, compound 1.9, that inhibits cell wall localization of GPI-

anchored mannoproteins in S. cerevisiae and C. albicans. This compound inhibits the 

adhesion of C. albicans cells to a mammalian epithelial cell monolayer (Figure 1.10). 

The molecular target of this compound was found to be the protein product of a 
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novel gene, GWT1. They suggest that the function of this Gwt1 protein may be in GPI 

synthesis, intracellular transport of GPI-anchored protein, and transfer of the GPI-

anchored protein to the cell wall. 

                                                        

Figure 1.10: Structure of isoquinoline derivative 1.9; Graph showing the effect of compound 

1.9 on the adherence ability of C. albicans.94 

1.3.2.3 Inhibition of degradative enzyme production 

Extensive research on the anti-adhesive properties of sulfone derivatives has been 

conducted in Staniszewska’s laboratory.95-97 Compounds 1.10 and 1.11 (Figure 1.11) 

were evaluated against the adhesion of a wild-type C. albicans strain and 3 mutant 

strains to Caco-2 cell line. First, the fungi were pre-treated with the sulfone 

derivatives. The first compound 1.10 significantly altered the adherence properties 

in a concentration-dependent manner. Adhesion of the wild type C. albicans was 10.8 

fold lower than the non-treated controls at a concentration of 8 μg/mL, and was 5.2 

fold lower at a concentration of 16 μg/mL. The mutant strains displayed a larger 

inhibition of adhesion. When the fungi were post-treated with the sulfone derivatives 

at 16 μg/mL, there was a very significant reduction of adhesion, ranging from 44.0 

fold to 112.1 fold.95 Compound 1.11 also exhibited reduced adhesion, but to a lesser 

degree than compound 1.10.  

In another study, structurally similar sulfones were tested against C. albicans. 

Compound 1.12 and the previously tested sulfone derivatives 1.10 and 1.11 (Figure 

1.11) were also tested for the ability to inhibit the adhesion to epithelial cells. Pre-

treating the cells with sulfone 1.12 and 1.10 (8–16 μg/mL) did not significantly affect 

adhesion of all the Candida strains tested compared to their non-treated 

1.9 
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counterparts. Compound 1.11 altered adhesion of the strains significantly at all the 

concentrations tested. In 62 % of all the strains tested the concentration of 16 μg/mL 

inhibited attachment of cells to Caco-2.96  

In 2018, more tests were carried out on compound 1.10 and a new β-ketosulfone 

compound 1.13 (Figure 1.11). Pre-treatment of yeast cells with the β-ketosulfone at 

16 μg/mL significantly affected the yeast adhesion to the Caco-2 cell line. Adhesion 

of C. albicans was reduced by 49.46 % (1.97-fold compared to the untreated 

control).97 

These sulfone derivatives successfully inhibit degradative enzyme production, for 

example Saps (Secreted aspartyl proteases). SAP2 is downregulated in the presence 

of these sulfone derivatives. This enzyme degrades extracellular matrix and host 

surface proteins, such as keratin, collagen, vimentin, and mucin, but also several host 

defense proteins such as secretory IgA and salivary lactoferrin. The ability of these 

compounds to inhibit enzyme production may influence the adhesion of C. albicans 

to host cells.  

 

Figure 1.11: Structure of sulfone-derivatives that have anti-adhesive properties towards C. 

albicans. 

1.3.2.4 Down-regulation of Genes that Encode Adhesins 

Numerous natural products have been tested for their anti-adhesive properties 

towards C. albicans adhesion. These include polyphenols such as curcumin, 

pyrogallol, magnolol and honokiol, and anthraquinone derivatives such as purpurin, 

alizarin, chrysazin and emodin. These compound’s mechanism of action involves the 
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down-regulation of genes that encode adhesins that mediates the adhesion of C. 

albicans. 

1.3.2.4.1 Polyphenols 

Curcumin 1.14 (Figure 1.12) is a yellow–orange polyphenol compound produced by 

the rhizome of Curcuma longa plants, which is widely used as a spice in Asian cooking. 

This compound has been shown to possess a wide range of pharmacological 

activities. Antifungal activity was assessed by experiments done with crude extracts 

of C. longa. This work focused on the evaluation of curcumin antifungal activity 

against 23 fungi strains of clinical interest as well as its ability to inhibit the adhesion 

of Candida spp. to human BEC. Curcumin extracts were able to inhibit the adhesion 

to BEC of all the Candida species. Curcumin was 2.5 fold more potent than 

fluconazole at inhibiting the adhesion of C. albicans, showing >50 % inhibition of 

adhesion to BEC.98   

In another study, 14 polyphenols were tested for their anti-fungal properties. From 

these compounds curcumin 1.14 and pyrogallol 1.15 (Figure 1.12) showed the best 

anti-fungal properties. These compounds were also evaluated using phenotypic 

assays, where it was demonstrated that pre-coating coverslips with 1.14 significantly 

reduced C. albicans adhesion by 55.3 %, whereas 1.15 coating only led to a slight 

reduction in adhesion of 15.63 %.99 Expression of the adhesins Als3 and Hwp1 was 

shown to be significantly downregulated by 1.14, whereas 1.15 showed no significant 

downregulation of the adhesins following treatment.  

Magnolol 1.16 and honokiol 1.17 (Figure 1.12) are lignans found in the bark of species 

of magnolia. The effects of these compounds on C. albicans adherence to the surface 

of mammalian cells was investigated. Magnolol 1.16 and honokiol 1.17 at 

concentrations of 4–32 μg/mL significantly inhibited the adhesion of C. albicans cells 

to the surface of HSC-T6 cells (immortalized rat hepatic stellate cell line).100 

Treatment with magnolol and honokiol, resulted in three adhesion-related 

genes HWP1, ALS3, and ECE1 being significantly down-regulated. 
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1.3.2.4.2 Anthraquinone Derivatives 

Purpurin 1.18 (Figure 1.12), is a naturally occurring red/yellow dye from the roots of 

the madder plant (Rubia tincorum). The anti-adhesion properties of purpurin were 

evaluated at a range of concentrations. It was found that purpurin 1.18 has an effect 

on adhesion of C. albicans in a dose-dependent manner. Also, expressions of 

adhesion-related genes, namely ALS1, EFG1 and HWP1 were decreased in 

comparison to the control.101  

Alizarin 1.19 (Figure 1.12) is a red dye derived from the roots of plants of the madder 

genus. Chrysazin 1.20 (Figure 1.12) is a synthetic derivative of alizarin. Alizarin 1.19 

and chrysazin 1.20 appear to inhibit cell adhesion, biofilm formation, and hyphal 

development in C. albicans by regulating the hypha-specific genes.102 Alizarin also 

downregulated the expression of several hypha-specific and biofilm related genes 

(ALS3, ECE1, ECE2, and RBT1), which affect the adhesive properties of the yeast. 

Emodin 1.21 (Figure 1.12) is a natural secondary plant product, originally isolated 

from the rhizomes of Rheum palmatum. The studies were performed on 50 strains 

of C. albicans with a proven ability to form biofilm, which were isolated from the 

vaginas of women from different age groups. Emodin 1.21 suppressed adhesion in 

the case of 30 of the 50 tested clinical strains, whereas only 15 of the 50 strains were 

susceptible to emodin 1.21 action when the biofilm was fully established.103 Due to 

the structural similarities of purpurin and alizarin, it is assumed that this compound 

may also cause downregulation of genes relating to adhesion. Interestingly, emodin 

added to Candida culture also inhibited the phosphorylation of many cellular 

proteins, leading to the inhibition of protein kinase CK2, which governs the 

interactions of C. albicans with endothelial and oral epithelial cells in vitro and 

virulence during oropharyngeal candidiasis. 
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Figure 1.12: Structure of polyphenols and anthraquinone derivatives that have been shown 

to inhibit the adhesion of C. albicans by down-regulation of genes that encode adhesins. 

1.3.2.5 Membrane Distortions 

1.3.2.5.1 Quaternary Ammonia Compounds 

Many quaternary ammonium compounds have been found to have anti-adhesive 

properties against C. albicans and some of their structures are shown in Figure 1.13. 

Non-antibiotic, antimicrobial agents (cetrimonium bromide 1.22, cetylpyridinium 

chloride 1.23 and dequalinium chloride 1.24) were shown to reduce the adherence 

of C. albicans to human BEC in vitro, during research first carried out in 1992.104 

Research has also been carried out on surfactants 1.25-1.28 to test their anti-

adhesive properties against C. albicans: cetyltrimethylammonium chloride (CTAC) 

1.25, sodium dodecyl sulfate (SDS) 1.26, N-hexadecyl-N–N’-dimethyl-3-ammonio-1-

propane-sulfonate (HPS) 1.27 and octylphenoxypolyethoxyethanol (Triton X-100) 

1.28. All the surfactants tested displayed a decrease in the number of yeasts adhered 

to BECs; however, a significant reduction was obtained by CTAC 1.25 and HPS 1.27 in 

all concentrations tested (0.3-3 μg/ml) and for SDS 1.26 and Triton X-100 1.28 at the 

concentrations of 3 μg/ml and 1.5 μg/ml.105  

1.14 1.15 

1.16 1.17 

1.18 1.19 1.20 1.21 



Chapter 1 

31 
 

The cationic charge leads to denaturation of adhesins on the C. albicans cells by these 

surfactants. The principal factor which inhibits adherence is the disruption of the 

fungal membrane and a steric interference of the approach of the microbial cell to 

the epithelial cell (long hydrophobic chains decrease contact between microbial cell 

and the substrate). Also, alternation of cell surface hydrophobicity and cell zeta 

potential is also suggested to contribute.105 

 

Figure 1.13: Structure of compounds 1.22-1.28 that have the ability of reducing the 

adhesion of C. albicans by disruption of the fungal membrane. 

A group of biodegradable alanine-derived gemini quaternary ammonium salts 

(gemini-QAS) with various alkyl chains and spacer lengths was tested for anti-

adhesive and anti-biofilm activity (structures of two examples are shown in Figure 

1.14, compounds 1.29 and 1.30). Gemini quaternary ammonium salts effectively 

inhibited fungal cell adhesion to polystyrene and silicone surfaces. The deposition of 

gemini-QAS on the polystyrene plate inhibited the adhesion of C. albicans cells. 

Similarly, compounds 1.29 and 1.30 (Figure 1.14 a) were tested for their influence on 

C. albicans adhesion to silicone catheter. Both of them exhibited anti-adhesive 

properties, with compound 1.29 showing slightly better activity.106  

Medium alkyl chain cationic lipo-oxazoles comprising six to thirteen carbon twin 

chains and a quaternary ammonium unit were synthesized and evaluated for their in 
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vitro anti-Candida and biofilm inhibition activity. Heptyl and octyl chain analogues 

showed promising anti-fungal activity. Cationic lipo-oxazole compound 1.31 

(structure shown in Figure 1.14 b) was evaluated for its ability to inhibit Candida cell 

adhesion to polystyrene surfaces. Compound 1.31 demonstrated about 60 % 

reduction in adhesion at the concentration range of 12.5 μg/ml compared to growth 

control in which no drug was added.107 This cationic agent reportedly reacts with the 

phospholipid component in the cell membrane, thereby producing membrane 

distortions often leading to a complete loss of structural organization of the cells. 

The same research group then evaluated lipo-benzamide compounds fused with 

varying lengths of hydrocarbon chains (C2-C18) for antifungal activity against C. 

albicans. Quaternary ammonium group containing C9 hydrocarbon chain derivative 

1.32 (Figure 1.14 b) was able to inhibit Candida cell adhesion to the polystyrene 

surface in a concentration dependent manner. This compound inhibits 90 % Candida 

cell adhesion on polystyrene surface at 12.5 μg/ml concentration compared to 

growth control in which no drug was added.108  

Double-headed cationic surfactants with varying hydrocarbon chain length (n-C13H27 

and C15H31) were synthesised and their anti-fungal properties were investigated. The 

ability of these surfactant coatings to inhibit fungal adhesion was tested using 

different surfaces: polystyrene, silicone, glass and stainless steel. The adhesion 

studies were focused on C14(DAPACl)2 1.33, C16(DAPACl)2 1.34, C14(TAPABr)2 1.35 

and C16(TAPABr)2 1.36 (Figure 1.14 c). The adhesion of C. albicans to polystyrene was 

not greatly affected by the tested compounds, with the chlorides showing slightly 

better results. C. albicans adhesion to silicone catheters was reduced by C16 

dicephalic surfactants 1.34 and 1.36. Significant reduction (approx. 50 %) was 

observed for C16(TAPABr)2 1.36 at 100 μM. Interestingly, C14 compounds (1.33 and 

1.35) caused the stimulation of C. albicans adhesion. The amount of adherent cells 

on the stainless steel surface was strongly reduced by both chlorides 1.33 and 1.34 

at the concentration of 100 μM. The anti-adhesive activity of dicephalic surfactants 

to the glass surface was independent of the compound structure and for most cases, 

significant reduction in the amount of adherent cells was only achieved at 

concentrations at high as 400 μM.109 Interestingly, these compounds did not cause 
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DNA leakage from the C. albicans cells, with the exception of C14(DAPACl)2 1.34. 

Therefore, the mode of action of dicephalic surfactants does not concerns cell lysis. 

Further studies showed that the dicephalic surfactants impacted ROS production and 

accumulation of lipid droplets. 

 

Figure 1.14: Structures of quaternary ammonium compounds that inhibit the adhesion of 

C. albicans. a) Structures of biodegradable alanine-derived gemini quaternary 

ammonium salts; b) structures of medium alkyl chain cationic lipo-oxazole and lipo-

benzamide compounds; c) structure of double-headed cationic surfactants. 

1.3.2.5.2 Non-Antibiotic Antimicrobial Agents 

Non-antibiotic antimicrobial agents have a similar effect as the quaternary ammonia 

compounds on the adhesion of C. albicans. Several studies have shown that 

chlorhexidine gluconate 1.37 is able to reduce the adhesion of C. albicans cells to 

BECs at very low concentrations (as low as 0.00005 % v/v).104, 110-112 In recent years, 

in fact, chlorhexidine is often used as a positive control when testing the adhesive 

properties of other compounds.113-116 This antifungal impairs the integrity of the cell 

wall and the plasma membrane entering the cytoplasm resulting in leakage of cell 

contents and leading to cell death. 

1.29 
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Another known antimicrobial agent, taurolidine 1.38 (Figure 1.15) was analysed for 

its anti-adhesive properties, first in 1987. Taurolidine 1.38, generally recommended 

for use at a 2.0 % concentration, was shown to significantly reduce the adherence of 

both exponential and stationary phase C. albicans (vaginal isolate) to epithelial cells 

at concentrations greater than 0.1 %.117 It reacts with the fungal cell wall and 

taurolidine causes a loss of microbial fimbriae and flagellae which effects the 

adhesion of the yeast. 

Brolene is a non-antibiotic, antimicrobial preparation, which contains propamidine 

isethionate 1.39 as the antimicrobially active agent and contains benzalkonium 

chloride 1.40 (Figure 1.15) as a preservative, both of which are cationic agents. Two 

strains of C. albicans, including one clinical isolate from a diagnosed oral infection, 

were employed in this study. At both concentrations examined (10 and 100 % w/v), 

Brolene significantly reduced the adherence of C. albicans to BEC. These effects were 

observed for both strains, when either the BEC or yeast were treated. Reductions in 

adherence ranged from 25.91 - 76.02 %. 118  

 

Figure 1.15: Structure of non-antibiotic antimicrobial agents that have been shown to 

inhibit the adhesion of C. albicans. 
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1.3.2.5.3 Terpenes and Terpenoids 

Terpenes are a large and diverse class of natural, organic compounds, produced by a 

variety of plants, particularly conifers, and by some insects. The amyrins are three 

closely related natural chemical compounds of the triterpene class: α-amyrin (ursane 

skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. They are widely distributed in 

nature and have been isolated from a variety of plant sources such as epicuticular 

wax. The antifungal activity of amyrin pentacyclic triterpene and 15 synthetic 

derivatives was evaluated against Candida species.  Among the 15 derivatives, α- and 

β-amyrin formiate 1.41 and 1.42 (Figure 1.16) and α- and β-amyrin acetate were the 

most active, inhibiting growth of all the Candida species tested in concentrations that 

ranged from 30 to 250 μg/mL. α- and β-amyrin formiate 1.41 and 1.42 also inhibited 

the adhesion ability of C. albicans to BEC by 65.3 %.119  

Terpenoids, are a large and diverse class of naturally occurring organic chemicals 

derived from terpenes. Most are multicyclic structures with oxygen containing 

functional groups. About 60 % of known natural products are terpenoids. Two 

abietane diterpenoids isolated from Salvia austriaca, taxodone 1.43 and 15-deoxy-

fuerstione 1.44 (Figure 1.16) were tested in C. albicans. Taxodone 1.43 was found to 

significantly limit the degree of Candida adhesion by about 41 % depending on the 

concentration. The inhibition of biofilm formation by C. albicans was independent of 

the taxodone 1.43 concentration used, ranging from 76.4 % at 1/2 MIC to 75.5 % at 

1/4 MIC. 15-Deoxy-fuerstione 1.44 was not as effective in the inhibition of C. albicans 

adherence as taxodone, and reached 38.3 % at 1/4 MIC.120  

It has been suggested that the application of abietane diterpene may lead to the 

formation of hydroxyl radicals, which are then involved in the disruption of microbial 

cell membrane and leakage of intracellular materials. The mechanism of action of the 

terpenoides has not been explained completely, but it is speculated that it involves 

the rupture of the membrane by the lipophylic compounds and their functional 

groups interfere with the structure of the enzymatic proteins. Additionally, it could 

be involved in the inhibition of the synthesis of 1,3‐β‐D‐glucan which participates in 

the synthesis of the cellular wall of the fungi.119, 120 All of these processes impact the 

adhesion of C. albicans. 

https://en.wikipedia.org/wiki/Organic_chemistry#Classification_of_organic_compounds
https://en.wikipedia.org/wiki/Organic_compound
https://en.wikipedia.org/wiki/Plant
https://en.wikipedia.org/wiki/Pinophyta
https://en.wikipedia.org/wiki/Insect
https://en.wikipedia.org/wiki/Triterpene
https://en.wikipedia.org/wiki/Epicuticular_wax
https://en.wikipedia.org/wiki/Epicuticular_wax
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Figure 1.16: Structure of two terepenes (1.41 and 1.42) and two terpenoids (1.43 and 1.44) 

that inhibited the adhesion of C. albicans. 

1.3.2.6 Blocking the Interaction of Fungal Adhesins and Host Cell Receptors 

The inhibition of the interaction between the fungal adhesin and the host cell 

receptor can be attempted through several approaches, including: 1. Competitive 

binding with analogues of host cell receptors; 2. Binding to specific lectins; 3. Use of 

anti-adhesion antibodies; 4. Modulations induced by drugs, enzymes or other 

substance; 5. Use of inhibitors of enzymes involved in biosynthesis of the cell wall 

components.121  

High affinity binding to FleA, an adhesin in A. fumigatus, has been successfully 

achieved by glycoconjugates that interact with this adhesin. The glycoconjugates 

prevents the adhesin in the fungi interacting with host cells and hence inhibits 

infection (discussed in Section 2.1.4.3). High affinity ligands can be designed when 

the structure of the adhesin is known. 

The nitro-benzene compound 1.45 (Figure 1.17) was identified in 2018 by Marc et 

al.,122 which possesses various structural moieties present in known anti-biofilm 

agents. Compounds containing an N-(oxazolylmethyl)-thiazolidinedione scaffold 

were found to be selective inhibitors of C. albicans biofilm formation. In silico 

screening suggested that the compounds could act by binding to the C. albicans Als 

1.41 1.42 
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surface proteins, especially Als1, Als3, Als5 and Als6, which are well-known adhesin 

proteins. The binding pocket of these proteins have a large percentage of polar 

amino acids, which could account for their ability for polar interactions with various 

ligands, including the N-(oxazolylmethyl)-thiazolidinediones present in compound 

1.45.122  

 

 

 

 

 

 

Figure 1.17: a) Structure of N-(oxazolylmethyl)-thiazolidinedione compound 1.45; b) 

Compound 1.45 docked in the binding site of the C. albicans Als1 surface protein.122 

Reprinted with permission from MDPI. 

1.3.2.7 Unknown/Other Mode of Action 

Thiazole 1.46 and diazanaphthalene 1.47 functionalities are also present in 

compounds that exhibit anti-adhesion activity and their structures are shown in 

Figure 1.18. Compound 1.46 inhibited adhesion of C. albicans to human BEC by 75 % 

at MIC values (1-4 mg/L for most strains).123 This antifungal, which was also tested 

on Cryptococcus strains, mode of action is related to the interference with the 

antioxidant system and accumulation of superoxide radicals. This compound initiates 

some accumulation of harmful events on the fungal cell that causes a failure in 

protecting the fungi from executing the virulence factors, such as C. 

albicans adhesion. Silmitasertib (CX-4945) 1.47, an anti-tumour drug which is a 

selective inhibitor of protein kinase CK2, has been found to have anti-fungal 

properties. It effectively inhibited the adhesion phase of the biofilm formation 

process of C. albicans by 42 % at the concentration of 62.5 μg/mL (1/4 MIC).124 The 

1.45 
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mode of action of this compound is unknown, but could prevent possible cancer-

associated candidiasis. 

Chemical screening of 30,000 compounds by Fazyl et al.125, identified filastatin 1.48 

(Figure 1.18) as a small molecule inhibitor of C. albicans adhesion, morphogenesis 

and pathogenesis. Preliminary tests showed that filastatin 1.48 significantly reduced 

the adhesion of C. albicans to polystyrene at a concentration of 25 μM. Interestingly, 

this compound could also affect adhesion after the C. albicans cells had already 

bound to the polystryene. Filastatin reduced the amount of bound cells when added 

after adhesion, although not as efficiently as when the compound and cells are co-

incubated at the beginning of the experiment. The ability of filastatin 1.48 to inhibit 

adhesion to epithelial cells was also determined, at the same concentration as the 

previous test (25 μM). Filstatin 1.48 significantly inhibited the adherence of GFP-

encoding (Green Fluroescent Protein) C. albicans to monolayers of human lung 

epithelial cells as determined by fluorescence quantitation and microscopy.125 The 

mode of action is unknown, but due to the multiple activites of filastatin, it is 

possibile that multiple targets exist. 

Previous studies showed that cyclooxygenase inhibitors, such as aspirin, caused a 

significant reduction in fungal adhesion of fluconazole resistant C. albicans at 

concentrations between 1-10 mM.126 Nitric oxide (NO) has also been shown to affect 

adhesion of fungi. (NO)-releasing xerogel surfaces are effective inhibitors of C. 

albicans adhesion with an NO flux as low as 2 pmol cm-2 s-1 significantly reducing 

adhesion.127 Madariaga-Venegas et al.128 combined these concepts and evaluated 

the antifungal/antibiofilm effect of a nitric-oxide releasing aspirin (NO-ASA) 1.49 

(Figure 1.18) on C. albicans isolates from denture stomatitis patients in vitro. The 

ability of C. albicans to adhere to polystyrene microtiter plates was evaluated. It was 

found that 125 μM NO-ASA 1.49 inhibited adhesion in all tested strains, with 

reductions in adhesion ranging from 20-77 % depending on the strain. This effect was 

dose-dependent, as 500 μM NO-ASA 1.49 resulted in a stronger inhibition, with 

reductions ranging from 45-97 %. Interestingly, it was found that 500 μM of aspirin 

actually increased adhesion of the fungi to the polystyrene plate. NO-ASA causes no 
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antifungal effect, possibly the effect of NO-ASA could be mediated at least in part by 

inhibition of PGE2 synthesis. 

In an in vitro model of denture stomatitis, compound 1.50 (Figure 1.18), a novel 

antifungal molecule, effectively prevented candidal adhesion and biofilm 

development on denture acrylic surfaces. In this model, biofilm viability was reduced 

by 85 %, 66 % and 97 %, when compound 1.50 was added before, after, or both 

before and after the 1.5 h adhesion phase respectively.129 This antifungal is toxic to 

fungi and not to human cell lines or bacteria and may cause cell membrane damage. 

The effect of sub inhibitory concentrations of gentian violet 1.51 (Figure 1.18) on the 

germ tube formation by C. albicans and its adherence ability to oral epithelial cells 

was investigated. The effect of sub inhibitory concentrations of gentian violet 1.51 

on the adherence ability (2.4 μg/mL) was determined. Sub inhibitory concentrations 

of gentian violet 1.51 significantly reduced the adherence ability of C. albicans by 57 

%, with similar results seen for all strains tested.114 At high concentrations, gentian 

violet 1.51 killed C. albicans, whereas at subinhibitory concentrations it reduced its 

virulence by preventing the adherence ability and germ tube formation. Gentian 

violet 1.51 may have interfered with the production of adhesins or may have caused 

a mechanical disruption of the adhesins already present in the outer envelopes. 

Figure 1.18: Structures of compounds with an unknown mechanism of action that cause 

inhibition of adherence in C. albicans. 
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Many essential oils and extracts from plants have also been found to inhibit adhesion 

of C.  albicans, but their active compound is generally unknown, as they are 

composed of complex mixtures of both polar and non-polar natural compounds.130-

133  

1.4 Aims 

The need for the development of new methods to fight fungal infections is of huge 

importance to global public health in the rise of resistance to conventional antifungal 

therapies. The aim of the research described in this thesis is to develop novel 

compounds to tackle fungal infection, in particular in the treatment of C. albicans 

infection. As discussed earlier, several strategies have targeted the adhesion of fungi 

to host cells as a key step in the infection process. As such, a diverse range of 

compounds have been evaluated as inhibitors of C. albicans adhesion. Most of the 

compounds described previously in Section 1.4 are antifungal agents which also 

possess anti-adhesion properties. Hence, C. albicans could become resistant to these 

types of drugs. The need for non-antifungal, anti-adhesive agents is very important. 

It is well documented that carbohydrate interactions are hugely important in the 

adhesion process, and this has been successfully investigated with bacterial 

pathogens. However, there are very few examples of carbohydrate based inhibitors 

of fungal adhesion. 

The first objective was to carry out an SAR study to screen a small library of aromatic 

glycoconjugates to determine the structural features required for anti-adhesive 

properties (Chapter 2). Once a lead compound was identified, we wanted to develop 

more potent anti-adhesion ligands. To achieve this, we altered the core scaffold of 

the aromatic ligands (Chapter 3) and created multivalent displays of the lead 

compound (Chapter 4).  

The ultimate aim of this research is to determine the adhesins in the C. albicans with 

which the glycoconjugates are interacting. First, the lead compound was 

fluorescently labelled to determine the site of action of these anti-adhesion 

glycoconjugates (Chapter 2). The photo-affinity labelling approach was then 

considered and preliminary synthesis towards a photoaffinity tagged derivative of 
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the lead compound was investigated (Chapter 5). This technique may be used to 

identify the adhesin in the C. albicans. Finding the target of the glycoconjugates will 

allow for the development of high-affinity ligands to tackle the emerging problem of 

resistant candidal strains and a method of treating Candida infections. 
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2.1 Introduction 

2.1.1 Aromatic Scaffolds: 

Aromatic scaffolds have been used extensively in the synthesis of glycoconjuagtes for 

many years for several reasons. They have varied chemical reactivities, can be 

functionalized in many ways using well known reactions such as electrophilic and 

nucleophilic aromatic substitution (SEAr and SNAr), they provide a rigid framework 

and may have specific spectroscopic properties. They can also be characterized in a 

straightforward manner compared to more complex structures such as polymers and 

nanoparticles. Importantly, they provide a versatile and polyvalent framework where 

simple sugars or complex oligosaccharides can be displayed for a variety of biological 

applications.134 Also, the water-solubility is generally good in these compounds due 

to the hydrophobicity of the aromatic core being overcome by the polar sugar 

residues. Glycoconjugates with an aromatic core were first reported in the literature 

in the early 1960s by Yariv et al.135 These 1,3,5-tris-(p-glycosyloxyphenylazo)-2,4,6-

trihydroxybenzenes compounds were used as artificial antigens. 

 

Figure 2.1: Structure of 1,3,5-tris-(p-glycosyloxyphenlazo)-2,4,6-trihydroxybenzenes.135  

Since these first aromatic glycoconjugates, numerous different aromatic centred 

scaffolds have been employed in the synthesis of di- and tri-substituted benzene 

containing glycoconjugates, glycoclusters, glycodendrimers, glycoconjugates from 

self-assembled aromatic systems and glycofullerenes.134 Di- and tri-substituted 

benzene glycoconjugates have been built using a variety of different synthetic 

2.1 R= β-Galactosyl 

2.2 R= β-Glucosyl 

2.3 R= β-Lacosyl 
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strategies, including Lewis acid promoted glycosidations,136 pre-activation 

strategies,137, 138 CuAAC reactions139, 140 and, Pd-catalysed Heck couplings and 

Songashira couplings.141, 142 

2.1.2 Divalent Aromatic-Centred Glycoconjugates 

Lewis acid promoted glycosidation reactions between peracetylated sugars and 

various di- and tri-hydroxylated benzenes have been performed using boron 

trifluoride etherate143 or zinc chloride136 as the catalyst. These reactions resulted in 

aryl centred divalent mannosides and glucosides in moderate yields. In an effort to 

improve the efficiency and stereoselectively of glycosidation reactions, Roy et al. 

used activated precursors to synthesise dendronized divalent α-D-mannopyranylated 

conjugates. In these glycoconjugates, the glycosides and the aromatic core were pre-

activated with amino and isothiocyanato functional groups which could then be 

linked using thiourea coupling chemistry. For example, in the formation of the 

divalent α-D-mannopyranoside 2.4 shown in Figure 2.2, the primary amine of 3-(2-

aminoethylthio)propyl mannopyranoside was coupled to an aromatic core 

containing two isothiocyanato functional groups. This formed a thiourea linkage 

between the aminated heteroaliphatic glycoside to the aromatic scaffold. 

Interestingly, this divalent cluster exhibited greatly improved affinities for 

multivalent plant lectins compared to the monosaccharide standards, showing the 

effectiveness of divalent glycoconjugates in comparison to the monovalent 

derivatives.137 

Copper catalysed azide-alkyne cycloaddition (CuAAc) was later used to assemble 

dimeric molecules. This method is reliable, efficient, robust, chemoselective and it is 

tolerant to a wide variety of reaction conditions. It has been used to synthesis 

complex glycodendrimers, but has also been used to prepare simple divalent 

glycomimetics from aromatic scaffolds such as 2.5 in Figure 2.2.139, 144 Various 

organometallic catalysts have also been used in glycoconjugation chemistry. Olefin 

metathesis of O-linked allylbenzene or stryl derivatives catalysed by ruthenium 

carbenoids was used to synthesise homodimers. In particular, stable Grubb’s 

ruthenium catalysts were used because of their functional group tolerance and 

chemo- and stereoselective transformations. Roy et al. used these catalysts for olefin 
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metathesis of ω-alkenyl glycosides leading to compound 2.6.145 The use of Pd-

catalysed Sonogashira-Heck-Cassar (SHC) cross-coupling reactions also allowed 

efficient fixation of many carbohydrate derivatives onto divalent aromatic platforms 

through alkyne-alkyne (Glaser) or alkyne-haloaryl reactions. Roy et al. utilized a Pd-

catalysed Sonogashira reaction using two equivalents of prop-2-ynyl α-D-

mannopyranoside with 1,4-diiodobenzene to form the corresponding bisethynylene 

homodimer 2.7.141 

 

Figure 2.2: Structures of divalent aromatic centred glycoconjugates using different 

synthetic strategies; activated precursors 2.4,137 CuAAc chemistry 2.5,139 olefin self-

metathesis 2.6,145 and Pd-catalysed Sonogashira chemistry 2.7.141 

2.1.3 Trivalent Aromatic-Centred Glycoconjugates 

Trisubstituted benzene glycoconjugates have been built with equivalent efficiency 

using comparable synthetic strategies as those used for the divalent derivatives. 

Interestingly, subsequent enhancements in their biological activities were recorded 

in some cases. Lewis acid-promoted glycosidations have been directly performed 

from 1,3,5-benzenetrimethanol and an excess of an adequately protected galactosyl 

epoxide using ZnCl2 as a catalyst. These reactions resulted in tris β-galactosides 

2.8.136 The preactivation strategy was also employed to form trivalent 

glycoconjugates. Again, the glycosides and the aromatic core were pre-activated with 

amino and isothiocyanato functional groups which could then be linked using 

thiourea coupling chemistry. Commerically available 3,5-dinitroaniline was reduced 

and treated with thiophosgene to provide 1,3,5-triisothiocyanatobenzene, which 

was coupled with mannosides via thiourea linkages under mild conditions to give 

2.4 
2.5

 
 2.4 

2.6

 
 2.4 

2.7

 
 2.4 
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trivalent compound 2.9.138 Phloroglucinol has been used as the initial building block 

to synthesis trivalent glycoconjugates using CuAAC chemistry. It has been 

functionalized with an azidoethoxy linker which was then reacted with prop-2-ynyl 

α-D-mannopyranoside.144 An inverted synthetic strategy has also been recently 

adapted. In this case, 1,3,5-tris(alkynyloxy)benzene, prepared from phloroglucinol 

and propargyl bromide, and peracetylated lactosyl azide were reacted under CuAAc 

conditions to form trivalent glycoconjugates 2.10. These compounds, along with 

tetravalent derivatives, were tested against two plant agglutinins and 

adhesion/growth-regulatory lectins (galectins).140 SHC cross-couplings have also 

been advantageously adapted for trivalent epitopes’ presentation. Sengupta and 

Sadhukhan142 used a one-step Pd-catalysed methodology in order to generate 

multiantennary glycoclusters. A threefold Sonogashira cross-coupling reaction of 

propargyl β-D-glucoside with 1,3,5-tribromobenzene in the presence of Pd(dba)2 

gave rise to the centrally planar triantennary glycocluster 2.11.  

 

Figure 2.3: Structures of trivalent aromatic centred glycoconjugates using different 

synthetic strategies; Lewis acid promoted glycosidation 2.8,136 activated precursors 2.9,138 

CuAAc chemistry 2.10,140 and Pd- catalysed Sonogashira chemistry 2.11.142 
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2.1.4 Glycoconjugates as Anti-Adhesion Ligands 

Aromatic glycoconjugates such as those described earlier have been tested for 

interactions with lectins e.g. galectin. This section will briefly review aromatic 

glycoconjugates that have been used as anti-adhesion ligands that can block 

attachment of pathogens. In the field of anti-adhesion glycoconjugates, high affinity 

ligands can be designed when detailed structural knowledge of the pathogen lectins 

involved in adhesion are available. As discussed in Chapter 1, many lectins and other 

adhesins are known and characterised in numerous species of bacteria. On the other 

hand, little is known about the adhesins that mediate the interaction of fungi with 

host cells.  

2.1.4.1 FimH in Escherichia coli 

FimH is the adhesive component of the type 1 pilus, which are essential virulence 

factors for the establishment of the bacterial Escherichia coli urinary tract 

infections.146 Blocking FimH binding to mannosylated proteins with FimH antibodies 

or small molecules is sufficient to prevent bacterial entry and infection. It was found 

that α-D-mannosides and mannosylated glycoconjugate dendrimers bind with high 

affinity to the bacterial lectin FimH. This was confirmed with X-ray crystal structure 

studies, where the structure of FimH in complex with mannose involves an intense 

hydrogen bonding network.147 The measured affinity of mannose for FimH found that 

the lectin binds the monosaccharide exceptionally well (Kd = 2.3 μM).148  

Long chain alkyl- and arylmannosides display very high affinity for FimH even as 

monovalent ligands. This is likely due to increased hydrophobic interactions with Ile-

52 and two tyrosine residues, Tyr-48 and Tyr-137, lining the hydrophobic rim of the 

binding pocket. Figure 2.4 b shows the hydrophobic contact between the FimH 

binding pockets and butyl α-D-mannoside. A separate crystal structure of the FimH 

binding domain bound to oligomannose-3 (structure shown in Figure 2.4 c) was 

recently solved149 that reveals an “open gate” between Tyr-48 and Tyr-137 into which 

oligomannose-3 inserts, adopting a conformation in which the second mannose 

residue interacts with Tyr-48 (Figure 2.4 d). Interestingly, the latter conformation is 

different from that seen in monomannose-bound forms of FimH. This conformational 
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flexibility of the tyrosine residues seen in these X-ray structures provides a rationale 

for designing arylmannosides with increased binding affinity relative to 

alkylmannosides by introducing additional hydrophobic and ring stacking 

interactions with Tyr-48 or Tyr-137. 

 

 

 

           

Figure 2.4: a) Structure of butyl α-D-mannoside; b) Shows the mannose-binding domain of 

FimH indicating the hydrophobic contact between the amino acids, Ile-52, Tyr-48 and Tyr-

137, and butyl α-D-mannoside;148 Reprinted with permission from John Wiley and Sons. c) 

Structure of oligomannose-3; d) Crystal structure of the FimH binding domain bound to 

oligomannose-3 that reveals an “open gate” between Tyr-48 and Tyr-137.149 Reprinted with 

permission from PLOS One. 

Using this information, Janetka et al.150 designed a series of potent small molecule 

FimH antagonists using the weak inhibitor α-D-phenylmannoside as an initial starting 

point for X-ray structure-guided optimization. Addition of substituents with 

increased hydrophobicity resulted in potency enhancement, in particular when using 

aromatic groups. After a Structure Activity Relationship (SAR) study, it was found that 

4’-biaryl groups substituted on the meta position with H-bond acceptors such as 

amides 2.12 or esters 2.13 are the most potent analogues, two of which are shown 

in Figure 2.5. This is due to an optimal π-stacking arrangement of the biaryl moieties 

with Tyr-48 and a H-bonding interaction with Arg-98. Dimers derived from these 

a) 

 

 

d) 

b) 

c) 
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Tyr137 
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mannosides 2.14 were also designed, which showed a 4-fold increase in cellular 

potency relative to that expected from two monomeric units, due to the ‘multivalent 

effect’ (This will be discussed in detail in Chapter 4).   

 

Figure 2.5: Shows the structure of the monomeric (2.12 and 2.13) and dimeric (2.14) 

mannosides used as FimH anagonists. 

2.1.4.2 LecA and LecB in Pseudomonas aeruginosa 

Pseudomonas aeruginosa in an opportunistic pathogen which causes fatal lung 

infections in immunocompromised patients, in particular in cystic fibrosis and 

hospitalised patients. The treatment of these infections is difficult due to the 

emergence of antimicrobial multiresistance. To establish itself in the host, P. 

aeruginosa uses host carbohydrate recognition for anchoring to mucosa through 

carbohydrate binding proteins including soluble lectins or adhesins exposed on pili, 

flagella, or fimbriae.151 Two soluble lectins have been identified in P. aeruginosa, 

LecA (PA-IL) and LecB (PA-IIL).152 The structure of both lectins have been solved using 

X-ray crystallography, showing a tetrameric arrangement of β-sandwich-folded 

monomers with a calcium ion in the carbohydrate binding domain (shown in Figure 

2.6).153 LecA binds to α-galactosyl residues present on glycosphingolipids in lung 

epithelial cell membranes,154, 155 while LecB binds to several fucosylated or 

mannosylated epitopes.156, 157  

2.12

 
 2.4 

2.13

 

 2.12

 
 2.4 

2.14

 

 2.12

 
 2.4 



Chapter 2 

50 
 

 

Figure 2.6: Crystal structure of the LecA and LecB, showing the tetrameric and monomeric 

structures. The associated calcium ions are shown.153 Reprinted from Microbes and 

Infection, vol. 6, Imberty, A., Wimmerová, M., Mitchell, E. P., Gilboa-Garber, N., Structures 

of the lectins from Pseudomonas aeruginosa: insights into the molecular basis for host 

glycan recognition, 837-853, Copyright (2004), with permission from Elsevier. 

Studies have shown that simple sugars can limit the infection of P. aeruginosa. For 

example, α-methyl-galactoside and α-methyl-fucoside were shown to limit the 

spread of infection in a murine pneumonia model, acting as LecA- and LecB-specific 

inhibitors. These two carbohydrates were found to be most active at a concentration 

of 50 mM.158 The adhesion of P. aeruginosa to human respiratory epithelial cells was 

significantly inhibited using human milk oligosaccharides. 2’-Fucosyllactose and 3-

fucosyllactose (structure shown in Figure 2.7) significantly inhibited the adhesion of 

P. aeruginosa to respiratory epithelial cells and to intestinal epithelial cells to a lesser 

extent.159 Using this information, many groups have synthesised a large number of 

glycoclusters to inhibit the carbohydrate-lectin interactions during the infection 

process. Recent studies have identified a novel divalent ligand 2.15 from a focused 

galactoside-conjugate array which binds LecA with very high affinity (Kd = 82 nM). 

Crystal structures of this ligand complexed to LecA confirmed its ability to chelate 
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two binding sites of LecA. This compound has been shown to lower the cellular 

invasiveness of P. aeruginosa by up to 90 % at concentrations of 0.05-5 μM.160  

 

Figure 2.7: Shows the structure of 2’-fucosyllactose, 3-fucosyllactose and the divalent 

galactoside 2.15 known to inhibit the adhesion of P. aeruginosa. 

Using these previous studies, Vidal and coworkers161 designed calix[4]arene-based 

glycoclusters functionalized with galactosides and fucosides. These glycoclusters 

consisted of propargylated calix[4]arenes, which were reacted with the carbohydrate 

moiety using CuAAC chemistry. Triethylene glycol spacers were used between the 

scaffold and the carbohydrates. These multivalent glycoclusters were found to have 

anti-biofilm formation properties, as well as anti-adhesive properties. A dose-

dependent inhibition of adhesion was observed at concentrations of 25-2500 μM. 

Inhibition of adhesion reached 70 % and 90 % with the galactosylated glycoclusters 

2.16 and fucosylated glycoclusters 2.17, while inhibition only reached 30 % and 65 % 

with the monovalent α-methyl-galactoside and α-methyl-fucoside. The fucosylated 

ligands had greater inhibition since fucose has higher affinity for LecB (μM) than 

galactose has for LecA (mM). An in vivo mouse model of the lung infection treated 

with these glycoclusters showed almost complete protection against P. aeruginosa 

at higher concentrations (mM). These higher concentrations are required in in vivo 
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assays since pharmacokinetic processes come into consideration. In these tests there 

are issues around the availability and accessibility of the soluble lectins. These 

synthetic glycoclusters must also compete with high affinity natural ligands, as well 

as the presence of competing unidentified adhesins or other lectins.161 

 

Figure 2.8: Structure of multivalent glycoclusters 2.16 and 2.17 used as anti-adhesive 

agents against P. aeruginosa lung infection.161 

2.1.4.3 FleA in Aspergillus fumigatus 

FleA, a fucose binding lectin, was recently identified in the opportunistic mold, 

Aspergillus fumigatus.162, 163 This fungus causes fatal lung infections in 

immunocompromised patients. The critical initial stage of adhesion to pneumocytes 

(surface epithelial cells of the alveoli) is partly mediated by the fucose-binding lectin 

FleA.162, 163 The 3D structure of this lectin is known and was solved by X-ray 

crystallography.164 FleA forms homodimers and adopts a six-bladed β-propellor fold. 

It has six functional fucose binding sites per protomer, located at each interface 

between adjacent blades and two opposite binding surfaces on the dimer (Figure 

2.9). Fucose recognition requires three amino acids: Arg, Glu/Gln and Tyr/Trp. Minor 

variations in this amino acid composition results in six non-equivalent binding sites 

and therefore exhibit different oligosaccharide preferences.164 Glycan array studies 

confirmed that shorter fucosylated oligosaccharides are preferred over large 

branched structures, and non-fucosylated epitopes are not recognized by FleA.163 2E-

hexenyl-α-L-fucopyranoside was found to be a potent FleA antagonist with 
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nanomolar efficacy and inhibits the binding and phagocytosis of A. fumigatus conidia 

by lung macrophages.165 

 

Figure 2.9: a) Structure of FleA monomer with individual blades and binding sites labelled 

in complex with α-methyl-seleno-fucoside; b) and side-view of FleA dimer with 

intermonomer contacts shown.163 Reprinted with permission from PLOS One. 

Using this information, Varrot, Goudin and co-workers166 designed mono-, di-, hexa- 

and octavalent fucosides with different sized oligo ethylene glycol spacers. They 

wanted to determine the structural features of these glycoconjugates that were 

necessary to tightly interact with the lectin FleA. It was found that multivalency 

greatly increased the affinity of the fucosides for FleA. For example, the monovalent 

fucoside 2.18 had low affinity for the lectin (Kd = 140 μM), whereas the octavalent 

fucoside 2.19 was highly potent (Kd = 0.04 μM). The ethylene glycol linker length also 

effected the affinity of the fucosides for FleA. Comparing divalent fucosides with 

varying linker lengths, found that fucoside 2.21 (Kd = 0.94 μM) was significantly more 

potent than fucoside 2.20 (Kd = 3.8 μM) which had a shorter linker, and fucoside 2.22 

(Kd = 52 μM) which had a longer linker. Adhesion assays were carried out using these 

fucosides, where the adhesion between the alveolar pneumocytes and A. fumigatus 

conidia in the presence of the fucosides were measured. No inhibition was observed 

for the monovalent compound 2.18 and the divalent compound 2.20 at 10 mM 

(concentration expressed in mol of fucose units). At 100 μM, compound 2.20 reduced 

adherence (63 % compared to the untreated control of 100 %). However, when the 

linker length was increased (compound 2.21), 76 % inhibition was observed at a 
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concentration of 10 μM and 70 % at 100 μM. Two hexavalent ligands (structures not 

shown) were significantly more powerful antiadhesives compared to the divalent 

fucosides. Both these compounds reached about 50 % adhesion inhibition at a 

fucoside concentration of 10 μM.166 

 

 

Figure 2.10: Structures of the monovalent fucoside 2.18, octavalent fucoside 2.19, and 

divalent fucosides 2.20-2.22 designed to interact with the lectin FleA.166 

2.1.4.4 Inhibition of Adhesion in Burkholderia multivorans 

Another example of aromatic glycoconjugates used to inhibit adhesion are the 

bivalent lactosides which were tested as potential inhibitors of Burkholderia 

multivorans by Murphy, McClean and coworkers.167 In this case the structure of the 

target lectin or adhesin are unknown. B. multivorans is a species of the Burkholderia 

cepacia complex (Bcc), which is an opportunistic human pathogen that most often 

causes pneumonia in immunocompromised individuals with underlying lung disease 

(e.g. cystic fibrosis). B. cepacia bind to glycolipid receptors, including asialo GM1 and 

asialo GM2 on epithelial cells in the lungs.168 However, the identity of these receptors 

is not known. McClean and co-workers169 have developed a rapid, reliable 
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quantitative PCR (polymerase chain reaction) technique for the identification of Bcc 

adhering to lung epithelial cells in vitro. Using this approach, it was found that 

millimolar concentrations of lactose could decrease bacterial attachment to lung 

epithelial cells by over 50 %. The preparation of bivalent lactosides based on 

terephthalamides have been previously shown to inhibit galectins (proteins that bind 

β-galactosides). McClean and coworkers then examined whether these galectin 

inhibitors could also inhibit attachment of B. multivorans to lung epithelial cells. 

Results showed that lactoside 2.23 strongly inhibited the binding of B. multivorans to 

lung epithelial cells at a range of concentrations (9-90 μM). In comparison, the more 

rigid derivative 2.24 was unable to inhibit adhesion. In fact, at certain concentrations 

it led to an increase in bacterial adhesion to the epithelial cells. Finally, the tertiary 

amide derivative 2.25 decreased attachment at low concentrations, but at higher 

concentrations, it led to an increase in bacterial attachment.  

 

Figure 2.11: Structure of bivalent lactosides used to inhibit the adhesion of B. multivorans 

to lung epithelial cells. 
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2.1.5 Inhibition of Adhesion in Candida albicans: 

Early reports indicate that some C. albicans adhesins recognise and bind to a broad 

range of cell surface glycans and carbohydrates.60-62 In these studies it was found that 

simple sugars can affect the adhesion process of C. albicans to human buccal 

epithelial cells (BECs). Sandin et al.60 showed evidence for mannose-mediated 

adhesion to BECs. Concanavalin A (ConA), a lectin that recognises mannose and 

glucose, inhibited the adherence of pretreated yeasts to BECs. This suggests that 

ConA is binding to and blocking the mannose containing receptors on the yeast 

surface or mannose moieties of the indigenous lectin associated with the yeast cell 

surface. ConA also inhibited the adhesion of pretreated BECs with non-treated 

yeasts. This result indicates that mannose containing moieties on the buccal cell 

surface could be acting as receptors for the C. albicans. Also, the presence of α-D-

methyl mannoside in the incubation medium during the assay inhibited adhesion of 

the C. albicans to the BECs. Critchley and Douglas61 investigated the effect of several 

lectins and sugars on the adhesion of C. albicans to buccal and vaginal epithelial cells. 

The adherence of most Candida strains were inhibited by L-fucose and winged-pea 

lectin (specific for L-fucose), suggesting that a glycoside containing α-L-fucosyl 

residues might function as a receptor for these strains of Candida. Other lectins, such 

as wheat-germ agglutinin (specific for N-acetyl-β-D-glucosaminyl residues) or peanut 

lectin (specific for D-galactosyl residues) had little effect on the adherence of these 

strains. In contrast, the adherence of one Candida strain was efficiently inhibited by 

N-acetyl-D-glucosamine and wheat-germ agglutinin and was unaffected by winged-

pea lectin and peanut lectin. The adhesion of all Candida strains were significantly 

enhanced by ConA lectin. This lectin is known to have multiple binding sites and can 

therefore promote adhesion by acting as bridges between α-D-mannosyl residues on 

the yeast and epithelial surfaces.  

Cell surface glycoconjugates as possible adhesion receptors for C. albicans on human 

BEC have also been investigated. Brassart et al.62 conducted a study to investigate 

the ability of soluble glycopeptides and oligosaccharides at inhibiting the adhesion of 

yeast to exfoliated cells. Prelimary studies showed that fucose played a role in 

inhibiting the adhesion process. Then using human milk oligosaccharides as probes, 
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the minimal requirement for activity was found to be the Fucα(1-2)Galβ determinant. 

This study concluded that this disaccharide, part of the cell surface glycoconjugates, 

may act as a part of a complex adhesion mechanism, which possibily requires 

multireceptor specificities.  

 

 

Figure 2.12: The structure of two monosaccharides, L-fucose and N-acetyl-D-glucosamine 

found to inhibit the adhesion of C. albicans, and the structure of the minimal requirement 

from human milk oligosaccharides: Fucα(1-2)Galβ.  

More complex carbohydrate-based compounds have been found to participate in the 

adhesion process of C. albicans. Glycosphingolipids in particular can act as adhesion 

receptors for yeasts. C. albicans bound specifically to lactosylceramide (Galβ(1-

4)Glcβ(1-1)Cer, structure shown in Figure 2.13), and required the terminal galactosyl 

residue for binding.170 It has also been reported that C. albicans yeast form expresses 

a fimbrial adhesin that binds to asialo-GM1 (Gangliotetraosylceramide: βGal(1-

3)βGalNAc(1-4) βGal(1-4)βGlc(1-1)Cer), a glycosphingolipid displayed on the surface 

of human BEC (structure shown in Figure 2.13). It was found that the minimal 

carbohydrate sequence required for binding is βGalNAc(1-4)βGal.171 This and other 

disaccharides and some of its synthetic derivatives have been shown to inhibit 

purified fimbrial or pathogen binding in vitro. The in vivo efficacy of the propyl 

derivatives of this disaccharide were evaluated, in particular, Fimbrigal-P, octyl O-(2-

acetamido-2-deoxy-β-D-galactopyranosyl)-(1-4)-2-O-propyl-β-D-galactopysanoside 

(structure shown in Figure 2.13). Fimbrigal-P was shown to reduce the oral fungal 

burden in a rat oral candidiasis model, indicating that it makes a promising candidate 

for the prevention and treatment of microbial infections in which the pathogen relies 

on the βGalNAc(1-4)βGal disaccharide to establish adherence.172  

Fucα(1-2)Galβ 

L-Fucose N-Acetyl-D-glucosamine 



Chapter 2 

58 
 

 

 

Figure 2.13: Structure of lactosylceramide, asialo-GM1 highlighting the minimal binding 

sequence, and Fimbrigal-P. 

2.2 Chapter Objective 

This chapter deals with the synthesis of aromatic centred glycoconjugates as 

potential anti-adhesion ligands against C. albicans. As discussed earlier, cell surface 

glycans are important receptors for C. albicans adhesion and warrant the 

development of anti-adherence ligands that can mimic them. These glycocomimetics 

can thus disrupt C. albicans – epithelial cell interactions, preventing adherence of the 

yeast to the epithelial cells, and hence prevent infection. These compounds could 

represent a promising strategy to overcome fungal infections. However, lack of 

structural knowledge of the fungal adhesins that recognise these carbohydrates 

hampers a focused design approach. In this study, we opted instead to screen a small 

library of synthetic glycomimetics with a diverse presentation of carbohydrate 

binding epitopes in order to identify structural features that can lead to effective 

inhibition of fungal adherence. This chapter describes the synthesis of an aromatic-

core glycoconjugate (AGC) library and their subsequent evaluation as inhibitors of 

the adherence of C. albicans to BECs.  

The popularity of AGCs is partly due to the versatility in functionality and the 

substitution patterns that can be achieved from readily available starting materials 

as discussed in previous sections. Thus, 1,3- and 1,3,5-functionalized aromatic 

derivatives were explored as the starting point in the design of the anti-adherence 

AGCs library (Figure 2.14).  

Lactosylceramide Asialo-GM1 

Fimbrigal-P 
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Figure 2.14: 1,3 and 1,3,5-functionalized aromatic derivatives were chosen as the starting 

point in the design of the anti-adherence AGCs library. 

It is well known that multivalency, i.e. the number of carbohydrates presented in a 

ligand, can be an important factor that modulates carbohydrate protein interactions. 

Hence, mono-, di- and trivalent analogues were investigated. Carbohydrate moieties 

present in the epithelial cell surface and reported to bind C. albicans were selected 

to be grafted onto the aromatic scaffold. These included galactose, fucose, mannose, 

N-acetyl glucosamine, N-acetyl galactosamine and lactose derivatives. Triazolyl-

containing spacer groups of different lengths, generated by means of Copper-

Catalyzed Azide-Alkyne Cycloaddition (CuAAC) reactions, were used to connect the 

glycosides to the central aromatic core. With this modular approach, a small 

collection of glycoconjugates was readily assembled, in which (i) the carbohydrate 

moiety, (ii) the valency and (iii) the distance between the binding epitopes were 

varied (Figure 2.15). This provided sufficient structural diversity for an initial 

screening of the requirements for fungal anti-adherence activity.  

 

Figure 2.15: Core scaffold utilised for the synthesis of the aromatic glycoconjugates. 

2.3 The Synthesis of AGCs (Aromatic-Core Glycoconjugates) 

2.3.1 Triazole Containing Glycoconjugates 

The triazole linkage used to connect the glycoside to the aromatic core is an 

important feature of these ligands. It provides a reliable, straightforward synthetic 

route to numerous different analogues by changing the O-acetyl sugar azide (which 



Chapter 2 

60 
 

are also easy to prepare). 1,4-Disubstituted 1,2,3-triazoles are of great biological 

interest as they possess high chemical stability, display aromatic character and can 

act as hydrogen bond acceptors.173 They can therefore mimic the electronic 

properties and atom arrangement of peptide bonds, without being susceptible to 

hydrolytic cleavage.174 Copper (I) catalysed azide-alkyne cycloaddition (CuAAC) has 

been employed to incorporate triazoles in a vast array of medicinal chemistry and 

chemical biology projects. Recent literature has shown the use of this reaction to 

construct functionally diverse carbohydrate derivatives.175 

The regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles occurs via a CuAAC 

reaction reported independently by the Tornøe and Meldal groups in Denmark,176 

and the Sharpless and Folkin laboratories in the U.S.177 Prior to these reports, the 

uncatalysed 1,3-dipolar cycloaddition was utilised in the synthesis of substituted 

triazoles. However, this method had numerous disadvantages, including the need for 

high temperatures, long reaction times and a mixture of products, the 1,4- and 1,5-

triazole regioisomers 2.28 and 2.29. In contrast, the copper catalysed reaction 

transforms organic azides 2.27 and terminal alkynes 2.26 into the 1,4-disubstituted 

1,2,3-triazoles 2.28 exclusively, without the need for elevated temperatures (Scheme 

2.1).173 

 

Scheme 2.1: Huisgen 1,3-dipolar cycloaddition of azides and alkynes requires heating and 

results in mixtures of both 1,4- and 1,5-regioisomers (bottom), whereas CuAAC produces 

only 1,4-disubstituted 1,2,3-triazoles at rt. 

Scheme 2.2 shows the current proposal of the CuAAC reaction mechanism. The 

formation of the σ, π-di(copper) acetylide 2.30 initiates the reaction. The acetylide 
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engages in both σ and π bonding with the copper(I). This complex binds to the azide 

2.27 (step i) to form the azide/alkyne/copper(I) ternary complex 2.31. Metallacycle 

2.32 formation (step ii) occurs where one copper(I) is oxidized to copper(III). 

Reductive ring contraction (step iii) follows to afford the copper (I) triazolide 2.33, 

which deprotonates an alkyne 2.26 to complete the catalytic cycle (step iv). Amoung 

the four structures depicted in the catalytic cycle, both σ, π-di(copper) acetylide 

2.30178 and the copper(I) triazolide 2.33179 have been fully characterized and verified 

as viable intermediates in the reaction. The scarcity of evidence for the structures 

2.31 and 2.32 emphasizes that steps ii and iii are fast in the catalytic cycle. 

Intermediate 2.31 has only been detected once using an ion-tagged electron spray 

ionization mass spectrometric method.180 Folkin and co-workers, using a copper 

isotope labelling experiment, found that the dicopper metallacycle 2.32 was involved 

in a rapid internal rearrangement equilibrium to scramble the two copper centres.181 

 

 

 

 

 

 

 

 

Scheme 2.2: Outline of the plausible mechanism for the Cu(I) catalysed reaction between 

organic azides and terminal alkynes.182 

2.3.2 Synthesis of Sugar Azides 

All the O-acetyl sugar azides discussed in this chapter were synthesised from well-

known synthetic routes. The galactose 2.40,183 glucose 2.41,183 lactose 2.43184, 

mannose 2.42,185 and fucose 2.45183 derivatives were made from the corresponding 

peracetylated precursors. The azide was introduced at the anomeric centre using 
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TMSN3 and SnCl4. SnCl4 is used to activate the anomeric acetyl and due to 

neighbouring group precipitation, exclusively β-anomers were obtained for the 

peractylated galactose, glucose, fucose and lactose and the α-anomer for mannose. 

Scheme 2.3 shows the synthesis the D-sugar azides, while Scheme 2.4 shows the 

synthesis of L-fucose azide. 

 

Scheme 2.3: Synthesis of  D-sugar azides. Reagents and Conditions: TMSN3, SnCl4, 

anhydrous DCM, N2, 16 h, 79-97 %. 

 

 

Scheme 2.4: Synthesis of L-fucose azide. Reagents and Conditions: TMSN3, SnCl4, anhydrous 

DCM, N2, 16 h, 84 %. 

To prepare the 1-azidoethoxy-2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside 2.47, the 

peractylated galactose 2.36 was first reacted with 2-chloroethanol using boron 

trifluoride etherate as an activating agent to form compound 2.46, which was then 

reacted with NaN3 to form the desired azide 2.47.186 
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Scheme 2.4: Synthesis of 1-azidoethoxy-2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside 2.47. 

Reagents and Conditions: i) BF3.OEt2, 2-chloroethanol, DCM, rt, 16 h, 75 %; ii) NaN3, DMF, 

80 ˚C, 16 h, 80 %. 

The β-azido N-acetyl-D-galactosamine 2.52 and β-azido N-acetyl-D-glucosamine 2.53 

were prepared following a different route (Scheme 2.5). Here the N-acetyl-D-

glycosamine 2.48 and 2.49 were reacted with NaN3 in the presence of 2-chloro-1,3-

dimethylimidazolinium chloride (DMC) and a base, 2,6-lutidine, in D2O for 66 hours 

at 6°C.187 DMC is an excellent agent for selective activation of the anomeric hydroxyl 

groups. The reaction proceeds through a reactive intermediate formed as a result of 

the preferential attack of the anomeric hydroxyl group towards DMC. This occurs 

since the pKa values of the hemiacetal anomeric hydroxyl groups are much lower than 

those of the other hydroxyl groups and water. The resulting azides 2.50 and 2.51 

were then acetylated using acetic anhydride/pyridine reaction conditions to form the 

desired products 2.52 and 2.53. 

 

Scheme 2.5: Synthesis of β-azido N-acetyl-D-galactosamine 2.52 and β-azido N-acetyl-D-

glucosamine 2.53. Reagents and Conditions: i) NaN3, DMC, 2,6-lutidine, D2O, 6 ˚C, 66 h, 75-

78 %; ii) Ac2O, pyridine, rt, h, 85-90 %. 

2.3.3 Synthesis of Monovalent AGCs 

Three monovalent ligands were synthesised according to the route shown in Scheme 

2.6 and their structures are shown in Figure 2.16. The synthesis of the monovalent 

ligands utilized the 1,3 aromatic core 2.56. AGCs 2.60 and 2.61 have a sugar moiety 

(galactose and fucose, respectively) bonded directly through the anomeric position 
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to triazolyl linkages to the aromatic core. AGC 2.62 is similar to compound 2.60, but 

there are O-ethylene spacers in addition to the triazolyl linkages between the 

galactose and the aromatic core. 

The synthesis of the monovalent AGCs are shown in Scheme 2.6. 3-aminobenzoic acid 

2.54 was reacted with propionyl chloride. The resulting carboxylic acid 2.55 was 

reacted with propargylamine using TBTU (mechanism shown in Section 2.3.3.1) to 

give the amide 2.56 in 98 % yield. The attachment of the carbohydrate moiety to the 

aromatic scaffold was effected by means of the CuAAc reaction. The corresponding 

O-acetyl-1-β-azido-glycoside 2.40, 2.45, or 2.47 was reacted with the monovalent 

scaffold 2.59 using copper sulphate and sodium ascorbate as the catalytic system 

giving glycoconjugates 2.57-2.59 in 76-88 % yield. The deacetylation of these 

compounds were accomplished under mild basic conditions to give the monovalent 

glycosyl AGCs 2.60-2.62 in 87-94 % yield. The 1H NMR for AGC 2.61, a representative 

example of the monovalent series, is shown in Figure 2.17. The characteristic signals 

of the monovalent fucose ligand are shown. The integration proves that it is a 

monovalent ligand, since the triazolyl-H and the H-1 of the fucose both integrate for 

one each, while each of the aromatic protons also integrate for one each.  

 

Scheme 2.6: Synthesis of monovalent ACG 2.60-2.62. Reagents and conditions: i) C2H5COCl, 

NEt3, THF, N2, rt, 16 h, 23%; ii) TBTU, NEt3, propargylamine, DMF, 16 h, 98%; iii) O-Acetyl 

sugar azide 2.40, 2.45 or 2.47, CuSO4.5H2O/Na Asc, CH3COCH3/H2O, 16-24 h, 76-88 %; iv) 

MeOH, NEt3, H2O, 45°C, 87-94 %. 
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Figure 2.16: Structure of monovalent AGCs. 

 

Figure 2.17: 1H NMR spectrum of the monovalent fucose derivative 2.61 in DMSO-d6. 

Characteristic signals highlighted.  
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2.3.3.1 TBTU as a Coupling Reagent 

TBTU (2-(1H-benzotriazole-1-yl)-1,1,3,3-tetrametylaminium tetraflouroborate) was 

first used as a coupling reagent in 1989188, where it was considered ideally suited for 

solid-phase peptide synthesis. It was originally believed to have an uronium structure 

but crystallography data and solution studies revealed it actually has an aminium 

structure, in particular TBTU is a guanidinium N-oxide salt.189 Nevertheless, by 

custom, TBTU along with similar reagents are still considered to be uronium coupling 

reagents. HOBt is often used in conjunction with TBTU to reduce racemisation 

occurring during the peptide bond formation.188 

TBTU was used as the coupling reagent to form the monovalent scaffold 2.56 and the 

mechanism is shown in Scheme 2.7. First, the carboxylic acid 2.55 is deprotonated 

under mild basic conditions. The carboxylate anion 2.63 then attacks the aminium 

carbocation of the TBTU to form the activated ester 2.64. This also results in the 

formation of OBt- (an anionic benzotiazole N-oxide), which then attacks the 

electrophilic carbon of the active ester, to give a second active ester intermediate 

2.65 and N,N’-dimethylurea bi-product 2.66. The propargylamine then attacks the 

electrophilic carbon of the activated ester to form the desired amide product 2.56 

and a molecule of HOBt. However, it is important to highlight, that this is not the only 

pathway possible and the amide product can be formed via a number of routes. The 

amine could also attack the first active ester 2.64 generating the amide product. Also, 

the carboxylate ion can attack the active ester to form an anhydride, which could 

then react with the amine to form the amide product. 
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Scheme 2.7: Mechanism of TBTU mediated amide bond formation in 2.56 from the 

carboxylic acid 2.55. 

 

 2.3.4 Synthesis of Divalent AGCs 

Firstly, eight aromatic divalent ligands 2.78-2.85 were synthesised and are shown in 

Figure 2.18. All of these compounds utilise the 1,3,5-aromatic core with triazolyl 

linkages to the carbohydrate moieties. AGCs 2.78, 2.69 and 2.81-2.83 have the sugar 

moiety (galactose, fucose, mannose, lactose and glucose derivatives, respectively) 

bonded directly through the anomeric position to a triazolyl linkage. However, 

compound 2.80 is similar to AGC 2.78 except it has an O-ethylene spacer in addition 

to the triazole linkage between the galactose and the core. AGCs 2.84 and 2.85 

contain N-acetylated glycosamine moieties. Compound 2.84 contains two 

galactosamine derivatives, while compound 2.85 contains glucosamine analogues.  

The synthesis of the divalent glycosides 2.78-2.85, is depicted in Scheme 2.8. 5-

Aminoisophthalic acid 2.67 was reacted with propionyl chloride. The resulting 

dicarboxylic acid 2.68 was reacted with propargylamine using freshly prepared 4-

(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) to give 

the diamide 2.69 in 78 % yield. This diamide was used as the divalent scaffold in the 

synthesis of all the divalent anti-adhesion compounds. TBTU was initially used for this 

reaction but the yield was poor (around 40 %). It was found that DMTMM was the 

2.55

 

 2.34
 2.12

 
 2.4 

2.63

 

 2.34
 2.12

 
 2.4 

2.64

 

 2.34
 2.12

 
 2.4 

2.65

 

 2.34
 2.12

 
 2.4 

2.56

 

 2.34
 2.12

 
 2.4 

2.66

 

 2.34
 2.12

 
 2.4 



Chapter 2 

68 
 

coupling reagent that performed best (around 80 %) to give the diamide 2.69 

(mechanism shown in Scheme 2.10). The attachment of the carbohydrate moiety to 

the aromatic scaffold was effected by means for the CuAAc reaction. O-Acetyl-1-β-

azido-glycosides 2.40-2.43, 2.45, 2.47, 2.52 and 2.53 were reacted with the divalent 

scaffold 2.77 using copper sulphate and sodium ascorbate as the catalytic system. If 

the cycloaddition was carried out using conventional heating, the reaction times 

were long (up to four days) and the yields were moderate. However, it was found 

that if the reaction was carried out using microwave irradiation, it proceeded with 

yields typically up to 85 % for the protected glycoconjugate and with a drastic 

reduction in reaction times (10-30 mins). The deactylation was accomplished under 

mild basic conditions to give the divalent AGCs 2.78-2.85 in excellent yields.  

 

 

Scheme 2.8: Synthesis of divalent ACG 2.78-2.85. Reagents and conditions: i) C2H5COCl, 

NEt3, THF, N2, rt, 22 h, 77 %; ii) DMTMM, propargylamine, DMF, N2, rt, 16 h, 78 %; iii) 

corresponding O-Acetyl sugar azide 2.40-2.43, 2.45, 2.47, 2.52 or 2.53, CuSO4.5H2O/Na Asc, 

CH3CN/H2O, 42-84 %; iv) MeOH, NEt3, H2O, 45°C, 88-94 %. 
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Figure 2.18: Structure of Divalent AGCs. 
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2.3.4.1 DMTMM as a Coupling Reagent 

DMTMM has been highlighted as an effective activating agent for amide bond 

formation and peptide synthesis.190 Although initially reported by Kaminski et al. in 

1998,191 it was not until Kunishima and co-workers192, 193 optimised its usage that it 

began receiving interest as an alternative reagent for amide bond formations. 

DMTMM 2.88, which is a white solid, is synthesised by the reaction of 2-chloro-4,6-

dimethoxy-1,3,5-triazine (CDMT) 2.86 with N-methylmorpholine (NMM) 2.87 in THF 

at rt (Scheme 2.9). It is extremely easy to purify as the solid precipitates readily. 

However, it can be unstable and can only be used for one month after synthesis. As 

shown in Scheme 2.9, DMTMM 2.88 can undergo demethylation at the 

morpholinium nitrogen when suspended in DCM, while in THF it was found to be 

more stable with only 13% DMTM 2.89 detected after 13 hours.  

 

Scheme 2.9: Reagents and conditions: i) THF, rt, 30 min, 100 %; ii) THF, rt, 13 h; iii) DCM, rt, 

3 h. 

DMTMM was used as the coupling reagent to form the divalent scaffold 2.69 as 

shown in Scheme 2.10. In this reaction, the dicarboxylic acid 2.68 is deprotonated 

using a mild base to give the carboxylate ion 2.90, which reacts with the DMTMM 

2.88 in a SNAr transformation. After an electron rearrangement, the activated ester 

2.92 is formed, releasing a molecule of N-methylmorpholine. The resulting ester is 

highly reactive and can undergo nucleophilic attack. The propargylamine hence 

reacts with the activated ester 2.92 to form the amide, along with the triazinone by-

product 2.95. This mechanism occurs simultaneously with the other carboxylic to 

yield the diamide 2.69. 
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Scheme 2.10: Mechanism of DMTMM mediated amide bond formation in 2.69 from the 

dicarboxylic acid 2.68. 

 

2.3.4.2 Synthesis of AGC 2.98 

To determine the importance of the linkage of the carbohydrate to the aromatic 

centre for the anti-adherence effect, a rigid divalent analogue without the triazole 

linker 2.98 was synthesised. Here, the 2,3,4,6-tetra-O-acetyl-1-β-azido-galactoside 

2.40 was reduced to 2,3,4,6-tetra-O-acetyl-β-galactopyranosylamine 2.96194 using 

H2/Pd (C), which was coupled directly to the dicarboxylic acid scaffold 2.68 using 

TBTU as the coupling reagent (mechanism outlined in Section 2.3.3.1). The 

peractylated compound 2.97 was formed in 68 % yield and was then deprotected 

under mild basic conditions to give the desired rigid, divalent AGC 2.98 in 96 % yield.  
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Scheme 2.14: Synthesis of directly linked galactosyl group 2.98. Reagents and conditions: i) 

TBTU, NEt3, DMF, N2, 16 h, 68 %; ii) MeOH, NEt3, H2O, 45˚C, 96 %. 

2.3.4.3 Synthesis of Heterodivalent AGC 2.101 

A heterodivalent ligand 2.101 was also synthesised, which contained both galactosyl 

and mannosyl moieties. To synthesise this ligand, the 2,3,4,6-tetra-O-acetyl-α-azido-

mannoside 2.42 was reacted with the divalent scaffold 2.69, first under CuAAC 

conditions. This was achieved by having the scaffold in excess, i.e. using 4 equivalents 

of the scaffold 2.69 and one equivalent of mannosyl azide 2.42. This crude mixture 

was purified by column chromatography. After chromatography, 1H NMR showed 

that there was 1 equivalent of product 2.99 along with 1 equivalent of the scaffold 

2.69 appearing as one spot on the TLC. Trituration with hot water removed the 

scaffold, leaving the desired product 2.99.  

In the reaction of galactosyl azide 2.40 with the divalent scaffold 2.69, the 

purification of the monovalent intermediate was not possible, even after trituration 

with hot water. It was postulated that the corresponding intermediate interacted 

strongly with the divalent scaffold 2.69 and they were therefore not separable. 

Following the attachment of the mannose azide, the galactose azide 2.40 was then 

reacted with compound 2.99 under CuAAC conditions, affording the peractylated 

derivative of the heterodivalent ligand 2.100. This was then deprotected using 

standard conditions, i.e. methanol, NEt3 and water, to give the final product 2.101 

(Scheme 2.15). 
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Scheme 2.15: Synthesis of the divalent asymmetric AGC. Reagents and conditions: i) 

CuSO4.5H2O/Na Asc, CH3CN/H2O, MW at 100 ˚C, 10 mins, 34 %; ii) 2,3,4,6-tetra-O-acetyl-1-

β-azido-galactoside 2.40, CuSO4.5H2O/Na Asc, CH3COCH3/H2O, rt, 16 h, 84 %; iii) MeOH, 

NEt3, H2O, 45˚C, 6 h, 89 %. 

2.3.5 Synthesis of Trivalent AGCs 

Three trivalent AGCs were also synthesised 2.107-2.109 and their structures are 

shown in Scheme 2.11 and Figure 2.19. All these compounds also utilise the 1,3,5 

aromatic core 2.103. AGCs 2.107 and 2.108 have the three sugar moieties (galactose 

and fucose, respectively) bonded directly through the anomeric position to triazolyl 

linkages to the aromatic core. AGC 2.109 is similar to compound 2.107, but there are 

O-ethylene spacers in addition to the triazolyl linkages between the galactoses and 

the aromatic core. 

The synthesis of the trivalent AGCs, 2.107-2.109, are shown in Scheme 2.11. 1,3,5-

Trimesoyl chloride 2.102 was reacted with propargylamine in the presence of NEt3 to 

give the triamide 2.103 in 44 % yield. A coupling reagent was not needed in this case, 

since 1,3,5-trimesoyl chloride is very reactive due to the excellent leaving ability of 

the chloride ion. Hence the propargylamine undergoes nucleophilic attack directly 

with the carbonyl carbon of the acyl chloride forming the amide bond. The 

attachment of the carbohydrate moiety to the aromatic scaffold was effected by 

means of the CuAAc reaction as outlined previously. The corresponding O-acetyl-1-

β-azido-glycoside 2.40, 2.45 or 2.47 were reacted with the trivalent scaffold 2.103 
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using copper sulphate and sodium ascorbate as the catalytic system. The 

deacetylation of the peracetylated trivalent ligands 2.104-2.106 was accomplished 

under mild basic conditions to give the trivalent AGCs 2.107-2.109 in excellent yield.  

 

 

Scheme 2.11: Synthesis of trivalent ACG 2.107-2.109. Reagents and conditions: i) 

propargylamine, NEt3, DCM, 0 °C 3h, 44 %; ii) O-Acetyl sugar azide 2.40, 2.45 or 2.47, 

CuSO4.5H2O/Na Asc, CH3COCH3/H2O, 16-24 h, 50-72 %; iii) MeOH, NEt3, H2O, 45 °C, 83-89 %. 
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Figure 2.19: Structure of trivalent AGCs. 

2.4 Biological Evaluation 

The biological evaluation of compounds 2.60-2.62, 2.78-2.85, 2.98, 2.101 and 2.107-

2.109 was carried out in collaboration with Prof. Kevin Kavanagh in the Medical 

Mycology laboratory in the Biology Department of Maynooth University. I carried out 

the biological assays in this section, along with 4th Year research project students: 

Mairead McGovern, Aisling Gilroy, Stephenie Mullins and Sarah Howell. The 

experimental details of these assays are shown in Section 7.3. 

2.4.1 Toxicity Assays 

The toxicity of the compounds against C. albicans was firstly evaluated. Their toxicity 

was compared to the toxicity of a known anti-fungal drug, caspofungin,195 which 

decreased the growth of the C. albicans dramatically. None of the compounds 

showed significant ability to inhibit the growth of yeast cells at the range of 

concentrations used in the subsequent adherence assays. This implies that any 

reduction of adherence observed is not due to toxic effects (Figure 2.20).  
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Figure 2.20: Toxicity assay of several AGCs against C. albicans. 

2.4.2 Adherence Assays 

The ability of the glycoconjugates to inhibit adherence of C. albicans was evaluated 

in different assays: exclusion, competitive and displacement assays. 

2.4.2.1 Exclusion Assay 

 

 

Figure 2.21: Diagram showing the exclusion assay carried out on AGCs. 

This is the initial adherence assay that was performed to evaluate anti-adhesion 

activity of the AGCs. C. albicans cells were treated with the glycoconjugates, allowing 
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for an incubation period, then the treated yeast cells were exposed to the exfoliated 

BECs. The percentage increase or decrease of the number of C. albicans cells 

adhering to the BECs after treatment with the AGCs compared to the adherence of 

the untreated yeast in represented is Table 2.1. To calculate the change in adhesion 

the average number of yeast attached to each BEC in the control are counted and 

compared to the average number of yeast attached to the BEC in the presence of the 

AGCs. 

Table 2.1: Effect of AGCs on adherence of C. albicans to BECs (estimated according to 

exclusion assays, at AGCs concentration = 13.8 μM. Standard error (SE) in all cases was less 

than 10% of mean change in adherence). *Calculated at 1.38 μM. **Calculated from 

competitive assay at 1.38 μM 

AGCs Valency 
% Increase/Decrease 

of Adherence 

2.60 D-Gal 1 -14.5 

2.61 L-Fuc 1 -2 

2.62 D-Gal-β-OC2H4 1 -7.5 

2.78 D-Gal 2 -80 

2.79 L-Fuc 2 -8 

2.80 D-Gal-β-OC2H4 2 -35 

2.81 D-Man 2 +3 

2.82 D-Lac 2 +6.5 

2.83 D-Glc 2 -33* 

2.84 D-GalNAc 2 -59** 

2.85 D-GlcNAc 2 -45 

2.98 D-Gal 2 -26 

2.101 D-Gal/D-Man 2 -24 

2.107 D-Gal 3 -45 

2.108 L-Fuc 3 -30 

2.109 D-Gal-β-OC2H4 3 -42 
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2.4.2.1.1 Effect of Valency 

To test the effect of valency, monovalent, divalent and trivalent derivatives of the 

anti-adhesion ligands were synthesised. The results presented in Table 2.1 show the 

impact of the valency effect in the anti-adherence ability of the AGCs: monovalent 

compounds, in which only one carbohydrate moiety is present, are considerably less 

active than their di- and trivalent counterparts. 

Comparing the results of the galactosyl anti-adhesion ligands after the exclusion 

assay, it is clear that the divalent AGC 2.78 worked best (Figure 2.22 a). AGC 2.78 

decreased the adherence by 80 %, while the trivalent AGC 2.107 reduced the 

adhesion by 45 % and the monovalent AGC 2.60 by 14.5 %. This highlights the 

importance of having a divalent galactosyl ligand to inhibit the adhesion of C. albicans 

to BEC. In the case of the fucosyl AGCs, it was found that the anti-adhesive properties 

of the ligands increased with increasing valency, where the monovalent derivative 

2.61 was least effective with a decrease of 2 % and the trivalent ligand 2.108 was 

most effective with a decrease of 30 % (Figure 2.22 b). Since the divalent galactose 

compound showed considerably better results than any of the fucosyl compounds, 

these compounds were not focused on throughout the rest of the assays.  

 

Figure 2.22: Graphs showing the percentage decrease in adhesion of C. albicans to BECs 

after an exclusion assay after exposure to: a) galactosyl compounds 2.60 (monovalent), 

2.78 (divalent) and 2.107 (trivalent); b) fucosyl compounds 2.61 (monovalent), 2.79 

(divalent) and 2.108 (trivalent). 
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2.4.2.1.2 Effect of Different Sugars 

To test the effect of different sugars on the anti-adherence effect of the AGCs, 

different derivatives of the monovalent, divalent and trivalent AGCs were 

synthesised and evaluated in the exclusion assay. Focusing on the divalent AGCs, 

there are a wide variety of results from the exclusion assay, as seen in Figure 2.23. 

 

Figure 2.23: Graph showing the percentage increase/decrease in adhesion of C. albicans to 

BECs after an exclusion assay after exposure to divalent AGCs at 13.8 μM, except divalent 

AGC 2.83 at 1.38 μM and 2.84 at 1.38 μM in competitive assay. 

It can be clearly seen that divalent galactoside 2.78 was identified as the most active 

compound of the AGCs library screened, showing a remarkable 80 % decrease in 

adherence of the yeast to the BECs after treatment. This was followed by the N-acetyl 

glucosamine derivative 2.85, which decreased adhesion by 45 %. Remarkably, 

changing from the glucosamine to the glucose derivative had an effect on the anti-

adherence properties of the divalent AGCs, since the divalent glucosyl AGC 2.83 only 

inhibited adhesion by 33 %. Interestingly, compound 2.101, a structural analogue of 

2.78 in which one of the galactosyl moieties has been replaced by mannose, is only 

capable of producing a 24 % reduction in yeast adherence. This highlights the 

importance of a divalent galactosyl pattern as a recognition motif. In Figure 2.23, it 

can also be seen that the mannosyl and lactosyl divalent AGCs actually promoted 

adhesion by 3 % and 6.5 %, respectively. 
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The divalent galactoside 2.78 was then evaluated at lower concentrations. 

Significantly, the anti-adherence ability of this compound was maintained at a 100-

fold dilution in concentration (0.1 mg/mL, 0.14 μM) as shown in Figure 2.24. 

 

Figure 2.24: Shows the effect of divalent 2.78 (concentrations 10, 1, 0.1 mg/mL) on the 

adherence of C. albicans to BECs after the Exclusion assay where the C. albicans was pre-

incubated. The data displays average yeast adherence per BEC. 

2.4.2.1.3 Effect of Linker 

From Table 2.1 it is clear that the linker connecting the galactosyl moieties to the 

aromatic scaffold appears to also influence the anti-adherence ability of the 

glycoconjugates. The more flexible O-galactosides 2.62, 2.80, 2.109 inhibited yeast 

adherence less effectively than their respective analogues 2.60, 2.78, 2.107, in which 

the triazolyl spacer group is directly attached to the anomeric galactosyl carbon.  

After the initial screening of the anti-adhesion ligands, the divalent galactosyl 

compound 2.78 was deemed the lead compound. Studies were then carried out to 

determine if the distance between the galactose moieties was important to cause an 

anti-adhesive effect. Hence, the anti-adhesive nature of compounds 2.80 and 2.98 

were compared to the lead compound 2.78. In the exclusion assay, the smaller, more 
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rigid galactosyl derivative 2.98 decreased the adhesion of the yeast to the BEC by 

only 26 %. The more flexible derivative, with the extra ethyl linker, compound 2.80 

decreased the adhesion by 35 % (Figure 2.25). Hence, from this comparison it is clear 

that having the galactose moieties too close and locked in a rigid structure, as in 

compound 2.98, does not result in a good anti-adhesive ligand. Having a more flexible 

structure, as in compound 2.80 is also not the optimum structure to decrease the 

adhesion of the yeast to the BEC. 

 

Figure 2.25: Structure of AGCs 2.98, 2.78 and 2.80. Graph showing the percentage decrease 

in adhesion of C. albicans to BECs after an exclusion assay after exposure to galactosyl 

compounds 2.98, 2.78 and 2.80. 

2.4.2.2 Competitive Assay 

 

Figure 2.26: Diagram showing the competition assay carried out on AGCs. 

The best preforming compounds were then evaluated in a competition assay, in 

which their anti-adherence ability was tested in the presence of both C. albicans and 

BECs (Figure 2.26). Co-incubation with compound 2.78 resulted in a reduction in 

adherence of yeast cells to BECs of 60 %, even at the lowest concentration (Figure 

2.27). Whereas, co-incubation with compound 2.80 resulted in only 45 % decrease in 

adhesion. Again, emphasising the requirement of having the galactosyl moieties at 

the correct distance and orientation for having good anti-adhesive properties. The 
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anti-adhesion properties of AGC 2.78 in the competition assay was then evaluated at 

lower concentrations. Again, the anti-adherence ability of this compound was 

maintained at 100-fold dilution (Figure 2.28). 

                                                                                             

 

Figure 2.27: Shows the structure of galactosyl anti-adhesion ligands 2.78 and 2.80, and the 

results from the competitive assay after each compound was co-incubated with the C. 

albicans and the BECs. 

 

Figure 2.28: Shows the effect of divalent 2.78 (concentrations 10, 1, 0.1 mg/mL) on the 

adherence of C. albicans to BECs after the Competition assay. The data displays average 

yeast adherence per BEC. 
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2.4.2.3 Displacement Assay 

 

Figure 2.29: Diagram showing the displacement assay carried out on AGCs. 

The displacement assay was then carried out on the best preforming AGCs. Here, the 

C. albicans and the BECs are co-incubated and adhesion is allowed to occur. The 

synthetic AGCs are then introduced and the percentage of adhesion blocking is 

determined (Figure 2.29). This assay was performed using glycoconjugates 2.78 (0.1 

mg/mL, 0.138 μM) and 2.80 (0.11 mg/mL, 0.138 μM), which were added to a mixture 

of C. albicans and BECs, which had been previously incubated together. The ability of 

the compounds to reverse the adherence of the yeast to the BECs was then 

examined. Two controls were used in this assay: control 1 involved the assessment 

of the binding of C. albicans to BECs prior to compound exposure; control 2 involved 

BECs and adherent yeast cells being re-incubated in PBS for 90 minutes prior to a 

second filtration step. It was found that 2.78 imparted a reduction in adherence of 

56% (compared to control 1) and 31 % (compared to control 2) as shown in Figure 

2.30 a. These results suggest that divalent galactoside 2.78 binds with higher affinity 

to the C. albicans preventing its interaction with BECs. After the addition of 

compound 2.80, only 12 % of BEC had no yeast attached (Figure 2.30 c). Here, the 

larger percentage of BEC with no yeast attached indicates a better anti-adhesion 

ligand. From these two assays it is apparent that compound 2.78 has the most 

favourable structure to reduce the adherence of C. albicans to the BEC, indicating 

that the flexibility in compound 2.80 is a hindrance. 
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Figure 2.30: a) Shows the results from the Displacement Assay, where C. albicans and BECs 

were co-incubated and compound 2.78 (concentration 0.1 mg/mL) was subsequently 

added; control 1 involved the assessment of the binding of C. albicans to BECs prior to 

exposure; control 2 involved BECs and adherent yeast cells being re-incubated in PBS for 90 

minutes prior to a second filtration step; b) Optical microscopy image of C. albicans 

attached to BEC before (left) and after (right) treatment with 2.78; c) Graph showing the 

results from the Displacement Assay, where C. albicans and BECs were co-incubated and 

compound 2.80 (concentration 0.1 mg/mL) was subsequently added; d) Graph showing the 

results from the Displacement Assay, where C. albicans and BECs were co-incubated and 

compound 2.78 (concentration 0.1 mg/mL) was subsequently added. 

2.5 Fluorescence Imaging 

A fluorescently labelled analogue of galactosylated AGC 2.78, compound 2.115, was 

synthesized to investigate possible sites of interaction of anti-adherence AGCs with 

C. albicans (Scheme 2.12). 5-Aminoisophthalic acid 2.67 was reacted with di-tert-

butyl dicarbonate to protect the amine group resulting in compound 2.110. DMTMM 

2.88 was then used to couple propargylamine to the resulting dicarboxylic acid to 

give the diamide 2.111 in 95 % yield. Galactosyl azide 2.40 was then attached to the 
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N-Boc-protected divalent scaffold 2.111 using the CuAAc methodology outlined 

previously. The 2,3,4,6-tetra-O-acetyl-β-azido-galactoside 2.40 was reacted with 

2.111 using copper sulphate and sodium ascorbate at room temperature for 16 

hours. Column chromatography was used to isolate the pure peractylated compound 

2.112 in 71 % yield.  The tert-butyloxycarbonyl group was then removed using 

TFA/DCM in 99 % yield to reveal the free amine group in compound 2.113, which was 

reacted directly with fluorescein isothiocyanate (FITC). This reaction was carried out 

in the dark at room temperature overnight, followed by one hour in the MW at 50˚C 

to produce the crude product 2.114. Without further purification, the crude product 

was deactylated using mild basic conditions to give the FITC-labelled galactosyl AGC 

2.115, which was triturated with DCM to remove excess FITC. NMR analysis showed 

that ~40 % of the product was fluorescently labelled. The signal for the anomeric 

proton of the galactose moieties consists of two overlapping doublets. The doublet 

with the higher integration (0.6) represents the non-FITC labelled compound, while 

the doublet with the integration of 0.4 represents the anomeric proton of the 

galactose sugar of compound 2.115, the FITC labelled compound. NMR analysis is 

often used to determine the amount of fluorescently labelled compound present in 

a sample.196, 197  
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Scheme 2.12: Synthesis of fluorescently labelled galactoside ligand 2.115. Reagents and 

conditions: i) Di-tert-butyl dicarbonate, NaOH, 1,4-dioxane, 0 ˚C to rt, 3 h, 86 %; ii) 

DMTMM, propargylamine, THF, 48 h, 95 %; iii) 2,3,4,6-tetra-O-acetyl-1-β-azido-galactoside 

2.40, CuSO4.5H2O/Na Asc, CH3COCH3/H2O, rt, 16 h, 71 %; iv) TFA, DCM, 2 h, rt, 99 %; v) FITC, 

acetone, 50 ˚C, MW, 1 h, then in the dark, rt, 16 h, 40 %; vi) MeOH, NEt3, H2O, 45 ˚C, 6 h. 

 

As controls, C. albicans with no treatment were imaged under an Olympus Fluoview 

1000 confocal microscope to discard yeast autofluorescence (Figure 2.31 a). In 

addition, C. albicans cells were incubated with fluorescin isothiocyanate (FITC) and 

imaged (Figure 2.31 b). FITC-labelled galactoside 2.115 was then co-incubated with 

C. albicans cells and the cells were imaged. In this case, strong localized fluorescence 

at the surface of the yeast cells can be clearly observed. These images suggest that 

compound 2.115 is interacting with some structural components of the cell wall of 

the yeast cells (Figure 2.31 c). From the biological assays it is clear that the 

components in the yeast cell wall have high selectivity for the galactosyl AGCs that 

preformed best in the biological assays (Section 2.4). This suggests that the AGCs are 
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interacting with a lectin in the cell surface of the C. albicans, since lectins are proteins 

that bind specific carbohydrates. 

 

Figure 2.31: Confocal microscope images of C. albicans cells: a) without treatment; b) co-

incubated with FITC; c) co-incubated with fluorescently labelled galactosyl AGC 2.115, with 

zoomed in image of the localised fluorescence around the surface of the yeast cells. A 

wavelength of 488 nm laser was used for excitation and emission at 500-600 nm. 

 2.6 Conclusion 

In conclusion, a small library of AGCs were designed to conduct a preliminary SAR 

study on their ability to inhibit the adherence of the pathogenic yeast C. albicans. 

Mono- (2.60-2.62), di- (2.78-2.85, 2.98 and 2.101) and trivalent (2.107-2.109) AGCs 

were synthesised which included derivatives having different sugar moieties and 

different linkers from the sugar to the aromatic core. These AGCs were designed with 

sugar moieties that mimicked the cell surface glycans of the host cell to ensure the 

yeast would recognise them. Different linkers were used to determine if the distance 

between the sugars and the core would have an effect on the anti-adhesive 

properties of the AGCs. All these compounds were designed around a 1,3- or 1,3,5- 

aromatic core, which allowed for a convergent synthetic route using accessible 

building blocks. O-acetyl sugar azides were synthesised from well-known synthetic 

routes and were bonded to the aromatic core using CuAAC reaction conditions. The 

resulting peracetylated compounds were then deprotected to give the desired AGCs. 



Chapter 2 

88 
 

The anti-adherence properties of the AGCs were then tested using three adherence 

assays: exclusion, competition and displacement. The anti-adherence assays allowed 

for the identification of divalent galactosyl derivative 2.78 as an efficient inhibitor of 

C. albicans adherence, being able to displace over 50 % of yeast cells already attached 

to BECs. The precise three-dimensional presentation of the galactosyl moieties in 

2.78 appears to be a requirement for efficient adherence inhibition, since the other 

divalent galactosyl analogues 2.80 and 2.98 have significantly lower abilities at 

decreasing adherence. Also, the heterodivalent analogue 2.101 did not inhibit the 

adhesion of the yeast to the BEC significantly. This suggests that AGC 2.78 is 

interfering with a specific recognition process that is a part of the complex C. albicans 

adherence mechanisms. There is a requirement for a divalent galactosyl ligand, 

where the sugar moieties are at the optimum distance and orientation for interacting 

with the yeast. Fluorescence studies suggest that a potential target for 2.78 could be 

a fungal cell wall lectin, since it has high specificity to the type of sugar in the AGC. 

For example, the divalent mannosyl and lactosyl AGCs actually promoted adhesion, 

instead of the desired effect to inhibit the adhesion process. 

The synthetic accessibility and high efficacy shown by 2.78 in the biological assays 

make this compound a promising lead for development of new fungal anti-adherence 

agents, less prone to the development of resistance mechanisms than conventional 

fungicidal treatments. 
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3.1 Introduction 

Synthetic glycoconjugates can be built around many scaffolds, not only aromatic 

frameworks. They can also be assembled around aliphatic, carbohydrate and peptide 

scaffolds, along with more unusual scaffolds such as cyclophosphazene cores, 

azamacrocycle cyclams, linear pentaerythrityl phosphodiester oligomers and 

polyhedral oligosilsesquioxanes (Figure 3.1).198 The use of different scaffolds results 

in a diverse display of the carbohydrate moieties which may affect the biological 

activity of the glycoconjugates.  

 

Figure 3.1: Common scaffolds used in the design of glycoclusters and glycodendrimers.198 

Generally, it is assumed that the inner scaffolds play a passive role by only providing 

physical support to the attached carbohydrates. However, recent studies show that 

scaffolds actively influence recognition and can potentially modulate lectin-mediated 

signalling properties of glycoconjugates. It was found that scaffolds of 

glycoconjugates help the covalently attached carbohydrates to become more 
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spontaneous in lectin binding and they help diversify the lattice forming or cross-

linking properties of glycoconjugates.199 

With this in mind, we wanted to explore the effect of molecular scaffolds in a second 

generation of analogues of the lead compound 2.78 identified in earlier work 

(discussed in Chapter 2). We chose to investigate squaramide and norbornene core 

frameworks, both of which are not commonly used in the synthesis of 

glycoconjugates, but still would allow for the introduction of the two triazolyl 

galactoside moieties required for anti-adhesion activity in the first generation of 

compounds. 

3.1.1 Squaramides 

Squaramides have been extensively investigated across diverse areas of the chemical 

and biological sciences. Squaramides are a family of conformationally rigid 

cyclobutene ring derivatives, which are derived from squaric acid (3,4-

dihydroxycyclobut-3-ene-1,2-dione). Squaramides are able to form up to four 

hydrogen bonds; two carbonyl hydrogen-bond acceptors and two NH hydrogen bond 

donors. Interestingly, squaramides are considered to be aromatic compounds. The 

lone pair on the nitrogen atoms can delocalize into the cyclo-butenedione ring 

system resulting in the four-membered ring with aromatic character (Hückel’s rule: 

[4n + 2] π electrons, n = 0). In addition, an enhancement in the squaramides 

aromaticity is observed when they participate in hydrogen bonding.200 These 

properties have led to squaramides being used in areas of self-assembly and 

molecular recognition processes since they can benefit from favourable 

thermodynamic stability brought about by aromatic gain. 

It is possible to readily synthesise monoamide derivatives, as well as, symmetrical 

and unsymmetrical diamide derivatives from diester squarates. The selective 

formation of the monoamide is explained by the much faster amidation of the diester 

compared to the resulting ester amide. This allows the selective and sequential 

amidation if an additional base is added (usually triethylamine, or a basic aqueous 

buffer solution) to the ester amide in the presence of a second amine (Scheme 3.1). 

This concept was first reported by Rajewsky and coworkers.201 
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Scheme 3.1: General scheme for the sequential amidation of squarates resulting in 

symmetrical (if R2 = R3) and unsymmetrical (if R2 ≠ R3) diamides of squaric acid, where R1-R3 

can be any alkyl or aryl substituent.202 

Squaramides have found uses in areas of materials science and biology. In particular 

in self-assembly, organocatalysis, molecular recognition, medicinal chemistry and 

bioconjugation.203 

Due to their selectivity in relation with amino functional groups, squaric acid esters 

are widely applied in carbohydrate chemistry as linker molecules between amino-

saccharides and proteins.202 Carbohydrate conjugations mediated by squaramide 

tethers are often used for the grafting of carbohydrate epitopes onto peptides and 

proteins. For example, squaramides have been used to link mannosides to BSA 

(bovine serum albumin) which acts as a carrier protein for immunological 

investigations. Nifantiev et al.204 synthesised 3-aminopropyl glycosides of a 

heptasaccharide fragment of the cell wall mannan from Candida, which corresponds 

to the antigenic Factor 9. The aminopropyl glycoside of the heptamannoside 3.1 was 

reacted with diethyl squarate 3.2 to give the monoamide 3.3, which was then 

coupled to BSA (bovine serum albumin) to produce the target neoglycoconjugate 3.4 

(Scheme 3.2). This compound was analysed for the capacity to induce protective 

humoral immunity and appropriate cellular immunity.205 This research provides 

some insights on the immunomodulatory properties of oligomannosides and 

contributed to the development of synthetic oligosaccharide vaccines against fungal 

diseases.  
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Scheme 3.2: Structure and synthesis of BSA-based glycoconjugates.204 

Squaramides have also been used to link two saccharides together. For example, a 

bivalent glycopeptide ligand with the capacity to bridge two putative carbohydrate 

binding sites on FimH was designed and synthesized. The well-known squaric acid 

diester linkage strategy was applied to connect the monosaccharide and the 

trisaccharide part of the bivalent glycopeptide target structure 3.5. The synthetic 

assembly relies on peptide coupling chemistry and the squaric acid diester to link two 

different amines in two subsequent steps.206  

 

Figure 3.2: Structure of bivalent glycopeptide ligand 3.5. 

Lindhorst and coworkers have synthesised a series of α-D-mannosidic squaric acid 

monoamides, which were used to study the carbohydrate binding of type 1-

fimbriated E. coli.207 In this study it was shown that the squaric acid monoamide 3.6, 

shown in Figure 3.3, exceeds p-nitrophenyl α-D-mannoside in potency as an inhibitor 
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of type 1 fimbriae-mediated bacterial adhesion, according to an ELISA (enzyme-

linked immunosorbent assay). It was assumed that this result was due to additional 

interactions of the extended aglycon moiety in compound 3.6, relative to p-

nitrophenyl α-D-mannoside, at the entrance of the FimH carbohydrate recognition 

domain (CRD). More recently, Lindhorst and coworkers208 further investigated the 

mechanism of the bacterial adhesion on mannosidic squaric acid monoamides. In this 

study it was considered whether the high inhibitory potency of the squaric acid 

derivative 3.6, is not due to additional interactions with the CRD, but to the formation 

of a covalent bond within the FimH CRD. This hypothesis is justified by the special 

reactivity of squaric acid monoesters, which are frequently used for bioconjugation 

(as discussed previously). However, when compound 3.7, which is a diamide lacking 

the potential for covalent crosslinking within the FimH CRD was tested, it was found 

that it exceeded the adhesion inhibition ability of the monoamide 3.6. A covalently 

crosslinked ligand-inhibitor complex after incubation with 3.6 is hence very unlikely. 

Therefore, mannosides such as 3.6 and 3.7 and similar derivatives constitute 

promising candidates for a new class of low-molecular-weight anti-adhesives for type 

1-fimbriated bacteria, exceeding the inhibitory potencies of many other mannosides. 

 

Figure 3.3: Inhibition of E. coli binding to squaric acid derivatives of mannose showing 

specific binding (via mannose) and unspecific covalent binding (via amidation of the squaric 

acid ester amide). The structures of the two investigated mannoside derivatives are also 

shown, with 3.6 being able to form a covalent bond to the protein and 3.7 exhibiting only a 

specific binding motif.208 
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There are very limited examples in which squaramides have been used as scaffolds 

to display carbohydrates in a multivalent fashion. However, due to their success in 

the formation of anti-adhesion ligands for FimH receptor in E. coli, they could prove 

to be successful scaffolds for a second generation of fungal anti-adhesion 

compounds. 

3.1.2 Norbornenes 

Norbornene, or bicyclo[2.2.1]hept-2-ene, is a cyclic alkene with a dense three-

dimensional structure consisting of a cyclohexene ring with a bridging methylene in 

the para-position. The molecule carries a double bond which induces significant ring 

strain and reactivity. Norbornene is prepared by a Diels-Alder reaction of 

cyclopentadiene and ethylene. Many substituted norbornenes can be prepared in a 

similar manner. The most common use of norbornenes is in the formation of 

polymers. Norbornene and its derivatives can be polymerized in three different ways 

and are shown in Figure 3.4.209 The best known polymerization of norborene is the 

ring-opening metathesis polymerization (ROMP), where the cyclohexene ring opens 

at the double bond, leaving a pentane ring co-planar with the polymer chain. Little is 

known about the cationic (or radical) polymerization of norbornene, where a low 

molar mass oligomeric material with 2,7-connectivity is formed. Vinyl-type 

polymerization leaves the bicyclic structural unit intact and opens only the double 

bond of the -component. 

 

Figure 3.4: Schematic representation of the three different types of polymerization for 

norbornene.209 
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In the field of glycochemistry, norbornenes have mostly been used to form polyvalent 

carbohydrate ligands. In one study, saccharide-substituted polymers, prepared by 

ring-opening metathesis of oxanorbornene monomer 3.8, act as polyvalent ligands 

for the mannose/glucose-binding protein Concanavalin A. The inhibitory properties 

of the polyvalent ligands were compared with those of the corresponding 

monosaccharides. It was found that the polyvalent ligands display significant increase 

in functional affinity in all cases. For the mannose-containing polymer 3.9, shown in 

Figure 3.5, there is a 50,000-fold enhancement in inhibitory activity to the 

monovalent derivative.210 

 

Figure 3.5: Polymerization reaction from mannose-substituted oxanorbornene 3.8 to form 

mannose neoglycopolymer 3.9.210 

Another use of norbornenes is in the site-specific post-synthetic coupling of complex 

molecules under mild conditions. Inverse electron-demand Diels-Alder (DAinv) 

cycloaddition reactions can be used as a biorthogonal reaction for the selective and 

efficient modification of biomolecules. Here, the norbornene moieties are used as 

the dienophiles which are rapidly conjugated to tetrazine dienes to site-specifically 

label proteins.211 

This technique has been utilized in metabolic glycoengineering (MGE), since it allows 

the introduction of unnaturally modified carbohydrates into cellular glycans and their 

visualization through biorthogonal ligation. Two norbornene-modified mannosamine 

derivatives (exo 3.10/endo 3.11) were synthesised. A human cell line was grown in 

the presence of 3.10 or 3.11 (Figure 3.6). Cells were then treated with Tz-biotin 

(tetrazine containing compound linked to a biotin moiety with a PEG chain) and 

subsequently treated with streptavidin-Alexa Fluor-55 to allow their visualization. 

3.8 3.9 
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The results show that labelling with both mannosamine derivatives leads to staining. 

This implies that both derivatives were incorporated into cell-surface 

glycoconjugates and could be visualized with the aid of the DAinv reaction.212 

 

Figure 3.6: a) Structure of mannosamine derivatives 3.10 and 3.11 with norbornene units 

attached through carbamate linkages; b) Strategy for MGE experiments. Cells were fed with 

sugars 3.10 and 3.11 and then treated with Tz-biotin, where Tz-biotin = tetrazine containing 

compound linked to a biotin moiety with a PEG chain.212 

3.2 Chapter Objective 

As discussed in the previous chapter, a small library of multivalent aromatic 

glycoconjugates were synthesised. A divalent galactoside 2.78 with a 1,3,5-

functionalized aromatic core could inhibit the adherence of C. albicans to BECs. It was 

found that the precise three-dimensional presentation of the galactosyl moieties in 

compound 2.78 appeared to be a requirement for the efficient adherence inhibition. 

Since the presence of the terminal galactosides seemed to be an important structural 

factor in determining anti-adhesion activity against C. albicans, we decided to explore 

alternative molecular frameworks to generate analogues of compound 2.78, which 

display both galactosyl moieties for an improved presentation to the receptor 

mediating the adhesion of C. albicans to BECs. 

3.10 3.11 
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The first generation aromatic core glycoconjugates (AGCs) were built around 

scaffolds with a 1,3 or 1,3,5 substitution pattern. We decided to first explore a 1,4 

substituted analogue of compound 2.78. Given the planar, aromatic character of 

squaramide derivatives, we decided to synthesise a series of analogues of lead 

compound 2.78 with a squaramide core as a relevant comparison to the benzene 

core glycoconjugates described in Chapter 2. 

While the 1,4-disubtitutes and N,N-dipropargyl squaramide scaffolds can be readily 

prepared, no further functionalization is possible once the grafting of the 

carbohydrate moieties through CuAAC takes place. To overcome this drawback, we 

sought for a suitable molecular scaffold which would still afford the formation of the 

N,N-dipropargyl amides required for CuAAC reaction with sugar azides, while 

allowing for the introduction of reporter tags, such as fluorescent labels, or other 

chemically reactive groups to continue derivatization of the analogues. Hence, we 

decided to investigate 5-norbornene dicarboxylic acids as starting material to 

synthesis the next family of analogues of lead compound 2.78. In addition, the use of 

the 2-endo, 3-exo-dicarboxylic acid (trans) or the endo-2,3-dicarboxylic acid (cis) may 

allow for a different spatial presentation of the galactosyl moieties. 

 

Figure 3.7: Structures of the alternative core scaffolds used in the synthesis of the next 

generation of anti-adhesion ligands. 

3.3 Synthesis of Alternative Scaffold Glycoconjugates 

3.3.1 1,4-Substituted Glycoconjugate 

A 1,4-substitued analogue 3.15 of the lead compound 2.78 was synthesised (Scheme 

3.3), where the divalent galactosyl moieties were linked to the aromatic core through 

a triazolyl linkage. Here, terephthalic acid 3.12 was reacted with propargyl amine 

using freshly prepared DMTMM to give the diamide 3.13 in 81 % yield. The resulting 
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divalent scaffold was reacted with galactosyl azide 2.40 using CuAAC methodology 

under microwave irradiation, resulting in a 73 % yield of the protected 

glycoconjugate 3.14. The deacetylation of this compound was accomplished under 

mild basic conditions to give compound 3.15 in excellent yield. 

Scheme 3.3: Synthesis of 1,4-benzene core divalent galactosyl 3.15. Reagents and 

conditions: i) DMTMM, propargylamine, DMF, N2, 16 h, 81 %; ii) galactosyl azide 2.40, 

CuSO4.H2O/Na Asc, CH3CN/H2O, 100 °C in MW, 10 min, 73 %; iii) methanol, NEt3, H2O, 45 °C, 

6 h, 94 %. 

3.3.2 Squaramide Glycoconjugates 

A series of analogues of lead compound 2.78 (compounds 3.20-3.22) featuring a 

squaramide as the core scaffold were synthesised (Scheme 3.4). These analogues are 

a relevant comparison to the benzene core glycoconjugates described in Chapter 2. 

In this series of analogues, all three compounds are divalent with terminal 

galactosides. 3.20 has the galastosyl moieties bonded through the anomeric position 

to a triazolyl linkage to the squaramide core. 3.21 has an O-ethylene spacer in 

addition to the triazole linkage between the galactosyl moieties and the core. 3.22 

has lactosyl moieties bonded through the anomeric position to a triazolyl linkage to 

the squaramide core.  

The syntheses of these squaramide analogues are shown in Scheme 3.4. Diethyl 

squarate 3.2 was reacted with propargylamine to give N,N-dipropargyl squaramide 

3.16 in 81 % yield. The mechanism of this reaction is shown in Scheme 3.5. Here, the 

3.12 3.13 

  3.14 

  3.15 
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propargylamine attacks an α-carbon of the diethyl squarate 3.2, forming an enolate 

intermediate. The ketone group then reforms and the ethoxy leaving group departs, 

which is protonated to give EtOH as a by-product. The reaction is repeated on the 

other α-carbon to give the desired product 3.16. CuAAC reaction of compound 3.16 

with tetra-O-acetyl-1-β-azido-galactoside 2.40, tetra-O-acetyl-1-β-O-2-azidoethyl-

galactoside 2.47 and hepta-O-acetyl-1-β-azido-lactoside 2.43 produced divalent 

compounds 3.17, 3.18 and 3.19, respectively. The acetyl protecting groups were 

removed under mild basic conditions to give the corresponding deprotected 

compounds 3.20, 3.21 and 3.22. All these derivatives display terminal galactosides. 

Scheme 3.4: Synthesis of divalent galactosyl squaramides 3.20, 3.21 and 3.22. Reagents 

and conditions: i) propargylamine, NEt3, EtOH, 16 h, 81 %; ii) CuSO4.5H2O/Na Asc, 

CH3CN/H2O, 100 °C in MW, 10 min, and (a) 2,3,4,6-tetra-O-acetyl-1--azido-galactoside 

2.40, 81 % for 3.17; (b) tetra-O-acetyl-1-β-O-2-azidoethyl-galactoside 2.47, 80 % for 3.18; 

(c) hepta-O-acetyl-1-β-azido-lactoside 2.43, 75 % for 3.19; iii) methanol, NEt3, H2O, 45 °C, 6 

h, 77-99 %. 

3.16 3.2 
3.17 

3.18 

3.19 

3.20 

3.21 

3.22 
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Scheme 3.5:  Reaction mechanism of commercially available diethyl squarte and 

propargylamine to give the diamide 3.16. 

3.3.2.1 Gelation Ability 

Previous research in the group of Dr. Trinidad Velasco-Torrijos has shown the ability 

of O-glycolipid squaramide compounds of forming low molecular weight gelators 

(LMWGs). These compounds (JRO-SQ-1 and JRO-SQ-2, Figure 3.8) had a squaramide 

core, with a galactose moiety on one side and a lipid chain (C16) on the other side. It 

was found that the acetylated derivative JRO-SQ-1 showed a preference to form 

opaque gels with relatively high polarity solvents such at EtOAc, MeCN, EtOH and a 

solvent mixture of EtOH:H2O (1:1) with critical gelation concentrations (CGCs) 

ranging from 0.7 to 1.7 w/v %. On the other hand, the deacetylated derivative JRO-

SQ-2, which features free hydroxyl groups, was able to form a transparent gel in 

EtOH:H2O (1:1) with 0.1 w/v % and excellent rheological properties.213  

 

 

Figure 3.8: Structure of O-glycolipid squaramide LMWGs JRO-SQ-1 and JRO-SQ-2.213 

The gelation ability of the acetylated compounds 3.17 and 3.18, and the deacetylated 

compounds 3.20 and 3.21 were then tested. Compound 3.17 formed a partial gel in 

EtOH after heating to 50 °C and sonication at a concentration of 20 mg/mL. 

3.2 

3.16 

JRO-SQ-1 JRO-SQ-2 
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Compound 3.17 also formed sprinkle-shaped aggregates in EtOAc when heated to 50 

°C and allowed to cool. The other compounds 3.18, 3.20 and 3.21 did not show any 

significant results when testing their gelation ability. This confirms the requirement 

of having a lipid chain in the formation of LMWGs. 

3.3.3 Norbornene Glycoconjugates 

A series of analogues of lead compound 2.78 with a norbornene core were also 

synthesised (Scheme 3.6). For this family of compounds, 5-norbornene dicarboxylic 

acids 3.23 and 3.24 were used as starting materials. Using different isomers of the 

starting material resulted in two divalent galactosyl compounds with a different 

spatial presentation of the galactosyl moieties. One of the derivatives 3.29 has a trans 

orientation of the diamides, while the other derivative 3.30 has a cis orientation of 

the amides. Inadvertently, a monovalent galactosyl derivative 3.31 was also 

synthesised.   

The synthesis of the norbornene core glycoconjugates are shown in Scheme 3.6. 5-

Norbornene-2-endo,3-exo-dicarboxylic acid (trans) 3.23 and the cis-5-norbornene-

endo-2,3-dicarboxylic acid 3.24 were reacted with propargylamine with TBTU used 

as the coupling reagent to give the diamides 3.25 and 3.26. CuAAC reaction of 3.25 

and 3.26 with tetra-O-acetyl-1-β-azido-galactoside 2.40 produced the peracetylated 

divalent compounds 3.27 and 3.28, repectively. Interestingly, neither the trans-

product 3.27 or the cis-product 3.28 showed symmetry. This can be seen in the 1H 

NMR spectra shown in Figure 3.9. It can be clearly seen for both compounds that the 

triazolyl hydrogen is not represented by one peak (at 7.8 ppm), indicating that the 

triazolyl protons are not in equivalent magnetic environments. In the trans-product 

3.27 the anomeric proton (H-1) of the galactosyl moieties appears as a doublet, while 

in the cis-product 3.28 the anomeric proton (H-1) appears as a multiplet. This 

suggests that in the trans-product 3.27 the two galactosyl moieties are in the same 

magnetic environment, while in the cis-product 3.28 the two galactosyl moieties are 

in different environments. In the cis-product 3.28 the sugars are in closer proximity 

to one another and have an influence on the environment of the other galactosyl 

moiety. 
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Scheme 3.6: Synthesis of divalent and monovalent galactosyl norbornenes 3.29, 3.30 and 

3.31. Reagents and conditions: i) propargylamine, TBTU, NEt3, DMF, N2, 48 h, 79-93 %; ii) 

2,3,4,6-tetra-O-acetyl-1--azido-galactoside 2.40, CuSO4.5H2O/Na Asc, CH3CN/H2O, 100 °C 

in MW, 20 min, 54-74 %; iii) methanol, NEt3, H2O, 45 °C, 6 h; iv) Amberlite H+ resin, 30 min, 

quantitative yield. 
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Figure 3.9: 1H NMR spectra of compounds 3.27 and 3.28 in CDCl3. 

The acetyl protecting groups were removed under mild basic conditions to give the 

corresponding deprotected compounds 3.29 and 3.30. To purify the deprotected 

glycoconjugates, the reaction mixtures are generally treated with Amberlite H+ resin. 

Interestingly, treatment of the acetylated cis-norbornene compound 3.28 with 

Amberlite H+ resulted in the departure of one of the galactosyl-triazolyl moieties and 

formation of the monovalent glycoconjugate 3.31. To further analyse this 

occurrence, two divalent, non-glycosylated cis-compounds 3.32 and 3.33 were 

synthesised (Scheme 3.7). Both these compounds were treated with Amberlite H+, 1 

M HCl and then 5 M HCl. It was found that both compounds 3.32 and 3.33 stayed 

Triaz-Hs 

Triaz-Hs 

H-1 

H-1 

3.27
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intact and the monovalent derivatives were not formed. This indicates the need for 

the presence of triazolyl-sugar moieties for this intramolecular elimination to take 

place. We assume this did not occur in the case of the trans-compound 3.27, since 

the triazolyl-galactosyl groups are not in close proximity as in the cis-compound 3.28.  

 

Scheme 3.7: Synthesis of divalent non-glycosylated cis-compounds 3.32 and 3.33. Reagents 

and conditions: i) propylamine, TBTU, NEt3, DMF, N2, 16 h, 82 %; ii) benzylamine, TBTU, 

NEt3, DMF, N2, 16 h, 97 %. 

3.4 Biological Evaluation 

The biological evaluation of compounds 3.15, 3.20-3.22 and 3.29-3.31 was again 

carried out in collaboration with Prof. Kevin Kavanagh in the Medical Mycology 

laboratory in the Biology Department of Maynooth University. The work in this 

section was carried out by me and 4th Year research project student Matthew Dwyer. 

A similar range of adherence assays, as discussed in Chapter 2, were carried out at 

different concentrations of the alternative scaffold glycoconjugates. All assays were 

compared to the initial lead compound 2.78. Exclusion, competition and 

displacement assays, which were described in Section 2.4, were carried out using all 

of the second generation glycoconjugates. Toxicity assays confirmed that all 

compounds tested are non-toxic to the C. albicans at the concentrations used in the 

adherence assays. 
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3.4.1 1,4-Aromatic Scaffolds 

First the exclusion assay, where the yeast were pre-treated with the glycoconjugates 

2.78 and 3.15, was carried out. At 13.8 μM, compound 2.78 (at 10 mg/mL) caused 42 

% reduction in adherence, while compound 3.15 (at 9 mg/mL) showed 33.5 % 

reduction in adherence (Figure 3.10 a). This assay was then repeated at lower 

concentrations of compound 3.15, 1.38 μM and 0.138 μM. It was found that at both 

the lower concentrations of compound 3.15 there was a 61 % reduction in adherence 

(Figure 3.10 b). The exclusion assay, where the BEC were pre-treated with the 

glycoconjugates, showed that compound 2.78 reduced the adherence by 41.5 %, 

while compound 3.15 reduced adherence by 25 %. 

 

Figure 3.10: Results from the exclusion assay where the yeast were pre-treated: a) Shows 

the average number of yeast attached per BEC for compound 2.78 and 3.15 at 13.8 μM; b) 

Shows the average number of yeast attached per BEC for compound 3.15 at varying 

concentration (13.8 μM, 1.38 μM and 0.138 μM). 

The competition assay, where all three components (the yeast, BEC and 

glycoconjugates) are co-incubated showed a similar trend as the previous assay: 

compound 3.15 did not reduce the adherence as well as compound 2.78. The 

competition assay was carried at 13.8 μM, 1.38 μM and 0.138 μM of the synthetic 

glycoconjugates. The average percentage decrease in adhesion is shown in Figure 

3.11 a. Interestingly, both compounds show greatest anti-adhesive properties at 1.38 

μM. 

The displacement assay showed a better response for compound 3.15. In this assay 

the yeast and BECs were co-incubated first and the glycoconjugates were 
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subsequently added. The first control shown in Figure 3.11 (b) involved the 

assessment of the binding of C. albicans to BECs prior to exposure to the 

glycoconjugates (and DMSO in the control). Control 2 shows the average number of 

yeast attached per BEC after the second filtration. The results show a 56 % reduction 

in adherence for 2.78 at 0.138 μM compared to control 1 and a 36 % reduction 

compared to control 2, and a 63 % reduction of 3.15 compared to control 1 and a 48 

% reduction compared to control 2 (Figure 3.10 b). 

 

Figure 3.11: a) Results from competition assay showing the percentage decrease in 

adhesion of compound 2.78 and 3.15; b) Results from displacement assay showing the 

average number of yeast attached per BEC for compound 3.15 at 0.138 μM. 

3.4.2 Squaramides  

The exclusion assay where the yeast were pre-treated (Figure 3.12 a) showed that 

compound 2.78 has the best anti-adhesive properties, reducing adherence by 45 %. 

Compound 3.21 and 3.22 show similar results, reducing adherence by 33-34 %. 

Compound 3.20 does not perform as well as the other squaramides, showing a 27 % 

reduction in adhesion. When the BEC are pre-treated with the glycoconjugates, the 

percentage reduction is smaller for all compounds tested (Figure 3.12 b). This 

indicates that the glycoconjugates are interacting with the C. albicans more 

efficiently than with the BECs.  
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Figure 3.12: Results from exclusion assay where a) the yeast are pre-treated and b) the BEC 

are pre-treated. All compounds were tested at 13.8 μM. 

In the competitive assay, compound 2.78 showed the best results, inhibiting 

adhesion by 36 %. Compounds 3.21 and 3.22 showed similar results again, inhibiting 

adhesion by 29-30 %. Consistently, compound 3.20 showed the lowest decrease in 

adhesion (11 %). 

The displacement assay was carried out on the two best-performing squaramide 

compounds, 3.21 and 3.22, and the results are shown in Figure 3.13. As a result of 

this second filtration, 14 % of yeast were blocked from adhering. Compounds 3.21 

and 3.22 recorded a reduction of 35 % and 39 %, respectively. Taking into account 

the results from the control after the second filtration, compound 3.21 showed a 21 

% reduction and compound 3.22 showed a 25 % reduction. The results from the 

displacement assay of compound 2.78 (Section 2.4.2.3) show that this compound 

displaced yeast cells from BECs more efficiently than compounds 3.21 and 3.22. 
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Figure 3.13: Shows the results from the displacement assay, where C. albicans and BECs 

were co-incubated and compounds 3.21 and 3.22 (concentration 13.8 μM) were 

subsequently added; control 1 involved the assessment of the binding of C. albicans to 

BECs prior to exposure; control 2 shows the average number of yeast attached per BEC 

after the second filtration. 

3.4.3 Norborenes  

The exclusion assay where the yeast were pre-treated showed good results for the 

norbornene analogues 3.29-3.31 (Figure 3.14 a). The norbornenes were compared 

to the initial lead compound 2.78 which reduced adherence by 51 % in this particular 

assay. The trans-norbornene compound 3.29 and the monovalent derivative 3.31 

showed similar results, where they reduced the adherence by 46 % and 43 %, 

respectively. The cis-norbornene compound 3.30 showed very promising results in 

this assay, as it caused an inhibition of adherence greater than the lead compound 

2.78. Compound 3.30 reduced the adherence by 65 %.  

In the competition assay (Figure 3.14 b), the two divalent norbornenes 3.29 and 3.30 

showed similar results, causing an inhibition of adhesion of the yeast to the BECs 

greater than the lead compound 2.78. The monovalent derivative 3.31 did not 

significantly inhibit the adhesion (17 % inhibition).  
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Figure 3.14: a) Results from exclusion assay where the norbornene analogues 3.29-3.31 are 

compared to the lead compound 2.78 at 13.8 μM; b) Results from competition assay 

showing the percentage decrease in adhesion of C. albicans to BEC compared to the 

control. 

Finally, the norbornene analogues were tested using the displacement assay (Figure 

3.15). Similarly to previous displacement assays there are two controls. The first 

control is involved in the assessment of the binding of C. albicans to BECs prior to 

exposure to the glycoconjugates (and DMSO in the control). Control 2 shows the 

average number of yeast attached per BEC after the second filtration.  Comparing the 

average number of yeast attached per BEC for the norbornene analogues to the 

those in the control, we obtained the following results. The divalent trans-

norbornene 3.29 and the monovalent norbornene compound 3.31 show very similar 

results. Compounds 3.29 and 3.31 showed a 23 % reduction in adherence compared 

to control 1, and only 7-8 % reduction compared to control 2. The divalent cis-

norbornene compound 3.30 showed the best results with 45 % reduction in 

adherence compared to control 1, and 34 % reduction compared to control 2.  
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Figure 3.15: Shows the results from the displacement assay, where C. albicans and BECs 

were co-incubated and compounds 3.29-3.31 (concentration 13.8 μM) were subsequently 

added; control 1 involved the assessment of the binding of C. albicans to BECs prior to 

exposure; control 2 shows the average number of yeast attached per BEC after the second 

filtration. 

3.5 Conclusion 

The effect of molecular scaffolds in the anti-adhesion activity against C. albicans of 

divalent triazolyl-galactosides was investigated. A range of analogues of the lead 

compound from Chapter 2, compound 2.78, were synthesised and tested for their 

anti-adhesive properties. The 1,4-disubstitued aromatic glycoconjugate 3.15 was 

readily synthesised using similar methodology as the original lead compound. This 

compound performed moderately well in the adherence assays, exhibiting marginally 

lower anti-adhesive properties than compound 2.78 in the exclusion and competition 

assays. In the displacement assay, compound 3.15 displaced a larger percentage of 

yeast from the BEC than 2.78. However, since this compound cannot be further 

derivatized, no further studies were carried out.  

A series of divalent squaramide analogues were also synthesised. Diethyl squarate 

was used as the starting material, which was reacted with proparglyamine to give the 

divalent squaramide scaffold 3.16. CuAAC methodology was used to conjugate the 

sugars to the scaffold, and deacetylation gave the desired glycoconjugates 3.20-3.22. 
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The more rigid galactosyl compound 3.20 proved to be least active in the adherence 

assays, while the more flexible galactosyl compound 3.21 and the lactosyl compound 

3.22 both displayed better results in the assays. Since these two compounds have 

similar anti-adherence properties, this suggests that they display the terminal 

galactosyl moieties in a similar orientation.  Compounds 3.21 and 3.22 did not 

perform as well as 2.67 in the adherence assays. This could indicate that the three-

dimensional presentation of the galactosyl moieties in compound 2.78 is better at 

interacting with the receptor, that mediates adhesion between the C. albicans and 

the BEC, than the presentation of the terminal galactosyl moieties in the squaramide 

derivatives 3.20-3.22. 

The synthesis of the norbornene core glycoconjugates began with 5-norbornene-2-

endo, 3-exo-dicarboxylic acid (trans) or cis-5-norbornene-endo-2,3-dicarboxylic acid, 

which were reacted with propargylamine to give the two divalent norbornene 

scaffolds 3.25 and 3.26. CuAAC methodology was used to join the sugars to the 

scaffold to give the peracetylated divalent compounds 3.27 and 3.28. The 

deacetylation of the glycoconjugates gave the desired compounds 3.29 and 3.30. 

During the purification of the cis-compound 3.30, the monovalent norbornene 

compound 3.31 was formed. The anti-adherence properties of the three norbornene 

compounds were then tested using the same adherence assays. The cis-compound 

3.30 consistently showed the best results in all three adherence assays, having the 

ability to displace up to 45 % of yeast already attached to the BECs. This compound 

also showed better results than the initial lead compound 2.78 in the exclusion and 

competition assays. 

In conclusion, in an effort to find a glycoconjugate with better anti-adhesive 

properties than our initial divalent AGC 2.78, we found a potential candidate in the 

divalent cis-norbornene compound 3.30. These results show a promising new 

scaffold (norbornene) that can be considered in the development of new anti-

adhesion ligands, which has the potential to be further derivatized with fluorescent 

labels and other chemically reactive groups. There is also the possibility to form 

polymers with this compound using the ROMP technique outlined in Section 3.1.2 to 

create polyvalent anti-adhesion ligands.
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4.1 Introduction 

4.1.1 Multivalent Effect 

The initiation of a multitude of human diseases are mediated by protein-

carbohydrate recognition. In particular, as discussed previously, for a microbe to 

infect its host, it first adheres to the host cell using proteins that interact with 

carbohydrate epitopes displayed on the host cell surface. The development of small-

molecule inhibitors of the adhesion process has been extensively studied for a 

number of years and reviewed in earlier chapters. The use of glycoconjugates as anti-

adhesion ligands is desirable since they are intended to be non-cytotoxic and could 

be applied to a wide variety of human diseases. However, as mentioned before, 

carbohydrates interact with their protein receptors with very low affinity, with 

millimolar to micromolar dissociation constants. Consequently, one of the major 

focuses of current carbohydrate research includes the development of strategies for 

increasing the lectin-ligand binding affinities to levels required for therapeutic use.214 

In nature, carbohydrate ligands are expressed multiple times on the cell surface to 

counteract this problem, leading to stronger interactions. This phenomenon has 

become known as the ‘multivalent effect’ or ‘cluster glycoside effect’ (depicted in 

Figure 4.1), which was first reported by Lee and co-workers in 1995.215 A large variety 

of multivalent carbohydrate ligands have been designed, synthesised and tested to 

determine the efficacy of the multivalent effect. A strong cluster glycoside effect 

requires two components: a lectin with clustered sugar binding sites and a 

multivalent ligand that can present sugars with proper orientation and spacing.215 

There are numerous examples of this in the literature, some of which will be 

discussed in the following sections. 
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Figure 4.1: The Multivalent Effect can be described as the increase of the biological 

response observed for compounds possessing more than one bioactive units connected to 

a common scaffold compared to the sum of the contributions given by the individual 

bioactive molecules.216 

It is known that multivalent carbohydrate ligands have higher affinity for lectins than 

their monovalent counterparts. The method by which this is achieved is not well 

understood. However, there are four main mechanisms thought to be involved in this 

process: 

1. Simple multivalent enhancement effects can be described by a statistical or 

proximity effect arising from when multiple ligands are closely clustered 

around a receptor.  

2. The intramolecular, or chelate, binding effect, where a bivalent ligand will 

interact with a bivalent receptor with higher affinity than the monovalent 

equivalent. This is well excepted in chemistry, particularly in inorganic 

chemistry where countless natural and synthetic metal complexes with 

multidentate ligands are known. This effect can also be applied to protein-

carbohydrate interactions, where there is an entropic and enthalpic 

advantage when using multivalent ligands. When a multivalent ligand is 

binding, the entropic barrier is overcome by the first binding event, and all 

subsequent binding interactions can proceed with smaller entropic penalties. 

This results in stronger binding due to lower entropic penalties.  

3. Multivalent ligands can also bind multivalent receptors intermolecularly, 

which may lead to the formation of aggregates that precipitate from solution. 

These aggregates can be stabilized by different forces, including protein-



Chapter 4 

116 
 

protein interactions. This irreversible precipitation is kinetically very 

favourable.  

4. Steric stabilization involves the binding of a large species near the surface of 

a carbohydrate binding protein, which may prevent the approach of other 

macromolecules. This effect would be most significant for polymeric ligands 

and ligands that offer substantial steric bulk, and is also more significant in 

aggregation assays where the approach of multiple macromolecules form the 

basis of the assay.217 

The strength of the protein-carbohydrate interaction may be difficult to determine. 

However, a wide variety of assays have been developed for the measurement of 

these binding constants.217 The most common techniques include:  

 The inhibition of hemagglutination assay: The multivalent nature of the 

carbohydrate-lectin interaction often leads to crosslinking and aggregate 

formation. Agglutination of red blood cells is caused by lectin-red blood cell 

crosslinking and is the basis of the hemagglutination inhibition assay.218  

 The enzyme-linked lectin assay (ELLA): This assay is performed on microtiter 

plates in a manner analogous to the common ELISA (enzyme-linked 

immunosorbent assay) technique in which enzyme-linked reagents are used 

to detect specific carbohydrate moieties on the surface of viable cells in 

suspension using soluble substrates. The amount of lectin binding may be 

determined quantitatively using automated ELISA plate readers.219  

 Isothermal titration microcalorimetry (ITC): This technique provides insights 

into the thermodynamic basis for the enhanced affinities of multivalent 

glycosides binding to lectins. ITC measurements provides values for the 

binding enthalpy, H, the association constant, Ka, and the number of binding 

sites on the protein. From the measurements of Ka, the free energy of binding, 

G, can be calculated. The entropy of binding, S, can then be obtained from 

H and G. Thus, ITC measurements can determine the complete 

thermodynamics of binding of a carbohydrate to a lectin.220  

 Surface-plasmon resonance (SPR) imaging: This is an optical technique that is 

used to spatially monitor localized differences in the reflectivity of incident 
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light from a prism-gold film interface that result from molecules adsorbing to 

or desorbing from the gold film. SPR imaging can be used to study the 

interactions of carbohydrate arrays with proteins adsorbing from solution 

without the use of reporter groups (such as fluorescent, radioactive or 

enzymatic groups).221 

4.1.2 Design of Multivalent Inhibitors of Adhesion 

Multivalent glycoconjugates with various valencies and spatial arrangement of 

ligands have been developed to increase the affinity of the carbohydrate-protein 

interactions. The multivalent glycoconjugates can have defined molecular structures 

built around scaffolds such as calixarenes, dendrimers, cyclodextrins, cyclopeptides 

and fullerenes, or have higher valencies such as polymers, nanoparticles and 

quantum dots. A wide variety of scaffolds are required since the biological activity of 

these multivalent glycoconjugates is unpredictable. 

We know the scaffold plays an important role in the biological activity of multivalent 

glycoconjugates, but the linker between the glycoconjugates to the scaffold is also 

important.222 Oligo(ethyleneglycol)s have commonly been utilised as linkers in the 

design of multivalent glycoconjugates. These are used due to their water solubility, 

the availability of various lengths, and due to the presence of the alcohol functional 

groups they can be easily derivatized to alternative functional groups or can be used 

directly in the formation of glycosidic bonds. They also provide some flexibility to 

multivalent ligands due to the sp3 hybridized orbitals of the carbon and oxygen 

atoms. Triethylene glycol is the one of the most commonly used 

oligo(ethyleneglycol)s used as a linker in multivalent glycoconjugates.  

There are numerous examples in the literature of the increased affinity of multivalent 

ligands for lectins, in comparison to their monovalent counterparts. Most studies 

involve isolated plant and bacterial lectins, where the techniques to measure the 

affinity, mentioned above, can be performed. The following are some examples of 

the development of multivalent ligands that have higher affinity for their targets than 

monovalent derivatives. 
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4.1.2.1 Plant Lectin: ConA inhibitors 

Most plant lectins are simple lectins composed of small number of subunits and are 

of moderate size. Many of these are well-studied since they are readily available in 

large quantities. They show a wide range of specificities and have been used as model 

systems for the study of protein-carbohydrate interactions. Concanavalin A (ConA) is 

a lectin extracted from the jack-bean that binds specifically to terminal α-D-mannosyl 

and α-D-glucosyl residues. It consists of four subunits in a tetrahedral orientation, 

where the binding sites are 72 Å apart (shown in Figure 4.2). 

The study of the effect of multivalent ligands on ConA began by Roy et al.137 when 

divalent mannosides such as that previously shown in Figure 2.2 and now in Figure 

4.2 (compound 2.4) was found to be 19 times more potent per sugar in an enzyme-

linked lectin assay (ELLA) than the monovalent reference compound allyl α-D-

mannoside. The potency of multivalent glycoconjugates must be compared to the 

potency of the relative monosaccharide, since an increase in affinity is real only if the 

increase is sustained when it is expressed as a relative potency per sugar ligand. 

Hexavalent ruthenium complexes 4.1 were then developed where the relative 

potency per sugar was increased further to 37 times more potent.223 Kiessling and 

coworkers224 prepared polyvalent systems consisting of mannosylated polymers 4.2. 

These polymers were synthesised by ring opening metathesis polymerization 

(ROMP), which was discussed in Section 3.1.2, where a mannosylated norbornene-

imide derivative was the monomer. Polymers of varying length were synthesised and 

evaluated using the hemagglutination inhibition assay for their affinity to ConA. An 

increase in potency was observed in relation to the length of the polymer chain. The 

decamer showed a 200-fold enhancement, while the 143-mer had a maximum 

potency increase of 2000 relative to the monomer. This increase in potency was 

expected to be due to the chelation effect, which is possible for the longer polymers 

which can reach multiple binding sights simultaneously, and also to statistical effects, 

due to the presence of multiple mannose residues in close proximity. 

Large dendrimers have also been tested for their binding to ConA. PAMAM 

(polyamidoamine) dendrimers with terminal mannose residues 4.3 yielded 

enhancements of up to 600-fold per sugar in a hemagglutination inhibition assay. 
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This effect is due to chelation and statistical effects, along with aggregation. 

Nanoparticles with mannose and glucose linked residues were also prepared and 

evaluated as multivalent ConA ligands.225 The most potent particle 4.4 contained 680 

mannose moieties on the surface. The relative increase in affinity of each sugar was 

more than 100-fold stronger as an inhibitor than monovalent methyl α-D-mannoside. 

More effective particles for ConA interaction were found to be based on the self-

assembly of rod-shaped tetra(p-phenylene)-based vesicles and micelles.226 Micelles 

derived from compound 4.5 were 1800-fold more potent per sugar than α-D-

mannoside. The mode of action of these particles was observed by TEM, where 

sizeable spherical aggregates of ConA molecules attached to the micelles were 

detected.  

 

Figure 4.2 : Structure of ConA with bound mannose derivatives and the structures of selected 

ConA ligands/inhibitors.227 Adapted with permission from The Royal Society of Chemistry. 
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4.1.2.2 Bacterial Adhesin: BC2L-A from Burkholderia cenocepacia 

The B. cenocepacia bacterium contains three soluble carbohydrate-binding proteins, 

including B. cenocepacia lectin A (BC2L-A). This lectin binds to oligomannose-type N-

glycan structures to adhere to host cells. Renaudet and co-workers228 designed 

several mannosylated glycoclusters and glycodendrimers with varying valencies and 

core scaffolds and their structures are shown in Figure 4.3. Highly efficient CuAAC 

protocols were used to attach mannosyl moieties to tetra- and hexavalent 

‘regioselectively addressable functionalized template’ (RAFT) cyclopeptides R4 and R6 

respectively, tetravalent lysine-based dendrons D4, and to hexavalent 

cyclotriphosphazene-based cores P6. These were then used to create tetracosavalent 

(24-valent) glycodendrimers. The hexavalent cyclopeptide R6 was functionalized with 

the tetravalent cyclopeptide to give RR24, and with the lysine-based dendron D4 to 

give RD4. The phosphazene core P6 was conjugated to both the tetravalent 

cyclopeptide R4 to give PR24 and to the lysine-based dendron D4 to give PD24. The 

interactions of these glycoclusters and glycodendrimers with BC2L-A were 

determined using isothermal titration calorimetry.  

The tetra- and hexavalent compounds formed complexes with the lectin, where all 

of the mannose residues were involved in the binding. However, there was not a 

huge increase in affinity observed compared to the monovalent interaction. Of these 

glycoclusters, it was found that the hexavalent cyclopeptide (R6) compound showed 

the best binding properties (Kd = 199 nM), where each sugar residue was three times 

more potent than methyl α-D-mannoside. 

The tetracosavalent compounds (RR24 and PD24) were then tested. It was found that 

the core scaffold did not affect the binding affinity. However, the scaffold used to 

present the sugars at the periphery had a significant effect. In the compounds where 

the mannose residues are connected to the more flexible lysine-based dendron there 

is stronger binding. Compound PD24 was found to have the lowest binding constant 

of this study (Kd = 51 nM), which is the highest affinity currently known for a fully 

synthetic multivalent glycodendrimer binding to BC2L-A. Further analysis of the 

binding found that the high affinity arises from an aggregative binding mode and not 

a chelate complex. This is because BC2L-A is a dimer where the two sugar-binding 
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pockets are located on opposite sides of the protein. This prevents the ligand 

interacting with both sites at the same time. The flexibility of compound PD24 allows 

it to interact with multiple protein monomers (up to 15 simultaneously).

 

 

Figure 4.3: Structure of tetra-, hexa- and tetracosavalent glycoclusters used as ligands for 

BC2L-A lectin in B. cenocepacia reprinted from Renaudet et al.228 Reprinted with 

permission. 
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4.1.2.3 Bacterial Adhesins: LecA and LecB in Pseudomonas aeruginosa 

The bacterial adhesins LecA and LecB have been some of the most extensively 

studied lectins in relation to inhibition of adherence. Many multivalent 

glycoconjugates have been designed and synthesised to interact with these two 

lectins,229 including those shown in Section 2.1.4.2. Vidal and coworkers161 designed 

calix[4]arene-based glycoclusters functionalized with galactosides or fucosides 

(structure shown in Figure 2.8). Triethylene glycol was used as the linker to connect 

the carbohydrate moieties to the multivalent core scaffold, since they provide 

flexibility and water solubility. Many other multivalent ligands have been synthesised 

for inhibiting the binding of LecA with a huge diversity of core scaffolds, including 

high-valency galactosylated polymers 4.15, fullerenes 4.8, glyconanoparticles 4.14 

and glycodendrimers 4.17. The galactosylated helical poly(phenylacetylene) 

polymers 4.15 showed high affinity towards LecA of 4-5 μM per galactose with an 

IC50 of 9 μM from haemagluttination inhibition assay, however ITC measurements 

were hindered by aggregation processes.230 The fullerene-based dodecavelent 

glycocluster 4.8 displayed inhibition in the micromolar range using the 

hemagglutination assay. An ELLA assay provided an IC50 value of 0.04 μM, 

representing the concentration required to reduce the binding of LecA to the 

galactosylated surface by 50 %. The relative potency per sugar moiety was 458, 

calculated as the ratio of the relative potency to the valency.231 The gold 

nanoparticles 4.14 exhibits a 2800-fold increase in ligand activity compared with the 

galactose ligand in free solution in ITC assays. A Kd of 50 nM was also determined.232 

Chabre and coworkers233 designed and synthesised a family of C-galactopyranoside 

clusters and dendrimers containing up to 27 terminal epitopes. In this study, the 

nonavalent C-galactoconjugate 4.17 was deemed the best overall multivalent 

inhibitor (Kd = 230 nM). The number of LecA monomers per molecule of this ligand 

(n=0.18) suggests that not all of the nine galactosyl residues are involved in binding, 

but rather a mixture of 5-7 lectin monomers being bound to each nonavalent ligand. 

A 409-fold increase in efficiency compared to β-Gal-OMe and 639-fold increase 

compared to the monovalent azide starting material was observed.  
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Excellent results were also obtained with β-peptoids 4.7 (linear) and 4.9 (cyclic),234 

calix[6]arenes 4.10,234 porphyrins 4.11234, calix[4]arenes 4.12,235 resorcin[4]arenes 

4.6236 and glycopeptide dendrimers 4.16 (structures shown in Figure 4.4). The 1,3-

alternate conformer of calix[4]arene resulted in the most efficient and greatest 

increase in affinity, due to a chelate-binding mode. Two galactose residues 

interacting with two neighbouring binding sites in a single LecA tetramer was 

confirmed in an atomic force microscopy study.237 Also, a recent study showed that 

the divalent ligand 4.13, with a rigid spacer based on the alternation of glucose 

moieties linked at the 1 and 4 positions by triazolyl groups, was capable of inducing 

a chelation effect with LecA. Numerous analogues were synthesised and tested, and 

it was found that the linker had great importance and only compound 4.13 had the 

appropriate linker-length for achieving an inhibitory potency increase of 545-fold 

over the reference compound.238  
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Figure 4.4: Diverse multivalent glycoconjugates as LecA high affinity ligands.229 Reprinted 

with permission from The Royal Society of Chemistry. 

The influence of the linker between the multivalent core and the carbohydrate 

moiety in multivalent ligands has also been studied. Another study by Vidal and 

coworkers239 investigated the influence of linker lengths on a series of LecA-targeting 

glycoclusters (general structure in Figure 4.5). The influence of two linker arms 

(Linker 1 and Linker 2) was determined. Linker 1 was connected to the core scaffold, 

which in this case was a mannopyranoside, and consisted of varying lengths of 
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ethylene glycol, such as propyl (Pro), diethyleneglycolmethylene (EG2M), and 

triethyleneglycolmethylene (EG3M) (structures shown in Figure 4.5). Linker 2 

connected to the carbohydrate moiety and these consisted of aromatic based linkers, 

such as phenyl, furanyl, thiophenyl, pyridinyl or tyrosinyl groups. Triazolyl groups 

were used to connect the two linkers. A cyanine fluorescent-dye (Cy3) was also 

introduced to allow for multiplexing on carbohydrate microarrays, to allow 

qualitative and quantitative screening of the LecA binding partners. A general trend 

was observed where the longer ethylene glycol linker resulted in higher affinity for 

the lectin, while for linker 2, phenyl and tyrosinyl groups, showed the best affinity for 

LecA. A low nano-molar (Kd = 19 nM) ligand with a tyrosine-based linker arm was 

identified after this SAR study and is now considered to be a new lead for the design 

of anti-infectous agents against P. aeruginosa lung infection. 

 

Figure 4.5: Structure of mannose-centred galactoclusters with aromatic aglycons.239 

Adapted with permission from John Wiley and Sons. 

4.1.2.4 Fungal Adhesin: FleA from Aspergillus fumigatus 

A similar phenomenom is also seen in some fungal lectins. FleA adhesin in A. 

fumigatus was discussed in Section 2.1.4.3. Multivalent structures designed by 

Varrot, Goudin and co-workers166 were discussed (structures shown in Figure 2.10). 
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In this study, the monovalent fucoside 2.18 had low affinity for the lectin (Kd = 140 

μM), whereas the octavalent fucoside 2.19 was highly potent (Kd = 0.04 μM), where 

these thermodynamic parameters of binding were measured using isothermal 

titration microcalorimetry. The linker length between the fucose residues was also 

important for binding to the adjacent binding site on the lectin. 

4.2 Chapter Objective 

The aim of this chapter is to develop multivalent displays of the initial lead compound 

2.78 with the intention to increase the potency and the inhibition of the adhesion of 

C. albicans to BEC. As the structure of the target lectin in C. albicans is not known, 

ligand optimization requires the screening of diverse multivalent structures with 

different valencies, degree of rigidity/flexibility, linkers and architectures. A large 

choice of molecular scaffolds are available to do so. In this study, we have focused 

on (i) aromatic centred scaffolds, (ii) linear peptoid scaffolds and (iii) cyclopeptide 

and (iv) polylysine based scaffolds (shown in Figure 4.6). Lead compound 2.78 was 

modified with a suitable linker to facilitate connection with these scaffolds using 

CuAAC methodology. These four displays vary significantly in the orientation, the 

valency and the flexibility of the carbohydrate moieties, which is necessary to find 

the optimum display to interact efficiently with molecular targets in C. albicans and 

achieve increased anti-adhesion activities.  
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Figure 4.6: Structure of core scaffolds used in the synthesis of the next generation of 

multivalent anti-adhesion ligands for C. albicans. 

4.3 Synthesis of Multivalent Glycoconjugates 

4.3.1 Aromatic Scaffold 

The initial approach was to develop divalent and trivalent displays of the lead 

compound 2.78 grafted onto an aromatic core, resulting in compounds with four and 

six galactose residues, respectively. Compound 2.113 is an acetylated derivative of 

the divalent galactoside which contains a free amine group on the aromatic centre. 

Direct coupling of this compound to the previously used 1,3-dicarboxylic acid 2.68, 

was first attempted using the coupling reagent TBTU (Scheme 4.5). Since this reaction 

showed no formation of the product 4.18, the carboxylic acid was converted to the 
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acyl chloride using oxalyl chloride and then reacted with compound 2.113. Again, 

there was no product formed. 

The reaction of compound 2.113 with the 1,4-dicarboxlic acid 3.12 was then 

attempted (Scheme 4.5), since this would result in a less sterically hindered product 

4.19. This was carried out using the same conditions as for the 1,3-dicarboxylic acid. 

No product was formed in this reaction. This is possibly due to steric factors or the 

fact that the aniline in compound 2.113 is quite deactivated, electron poor and 

weakly nucleophilic. 

 

Scheme 4.5: Synthesis of divalent displays of initial lead compound. Reagents and 

conditions: i) TBTU, DMF, N2, 16 h, No product isolated; ii) oxalyl chloride, THF:DMF (10:1), 

30 mins – 16 h, No product isolated. 

To overcome these problems, an azide derivative 4.21 (Scheme 4.6) was developed. 

Compound 2.113 was reacted with bromoacetyl bromide to give the bromo-

derivative 4.20, which was reacted with sodium azide to give the desired azide 

derivative 4.21. Using the CuAAC conditions described in Chapter 2 and 3, the 

grafting of compound 4.21 onto the aromatic alkynyl diamides, 1,3-scaffold 2.69 and 

1,4-scaffold 3.13, was attempted. The reaction of the azide derivative 4.21 with 1,3-

scaffold 2.69 did not show the formation of any product 4.22. Interestingly, the 

reaction of the azide derivative 4.21 with the 1,4-scaffold 3.13 resulted in the 

formation of the desired product 4.23, which was detected by MS. However, this 

product was extremely insoluble and did not allow proper purification or 

characterization. Deprotection of crude 4.23 under basic conditions did not improve 
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the solubility problem. Due to its insolubility, this compound could not be used in the 

biological assays. 

 

Scheme 4.6: Reagents and conditions: i) Bromoacetyl bromide, NEt3, anhydrous DCM, 16 h, 

83 %; ii) NaN3, anhydrous DMF, N2, 80 °C, 16 h, quant %; iii) CuSO4.5H2O/Na Asc, 

CH3CN/H2O, MW, 100 °C, 15 mins, No product formed; iv) CuSO4.5H2O/Na Asc, CH3CN/H2O, 

MW, 100 °C, 15 mins. 

Due to the difficulty in developing multivalent scaffolds with aromatic centres 

directly from the aniline 2.113 or the azide 4.21, it was decided to include a linker to 

join the divalent galactoside to the aromatic core (Scheme 4.7). A linker was designed 

starting from triethylene glycol 4.24, which was alkynated on one end using propargyl 

bromide to give compound 4.25240. To ensure mono-alkynation, the reaction was 

carried out with 3 equivalents of the triethylene glycol 4.24 and 1 equivalent of the 

propargyl bromide. This was then tosylated to protect the other hydroxyl group 

yielding compound 4.26241. Using CuAAC conditions the linker was then reacted with 

the azide derivative 4.21 giving compound 4.27. The tosyl group was then replaced 

by an azide using NaN3 to give compound 4.28. This key synthetic intermediate 

consisted of the acetylated divalent galactoside with a triethylene glycol linker 

functionalized with an azide available to conjugate to different alkynated scaffolds. 
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Scheme 4.7: Synthesis of azide derivative 4.16. Reagents and conditions: i) propargyl 

bromide, NaH, anhydrous THF, N2 16 h, 75 %; ii) TsCl, KOH, DCM, 0 °C, 2 h, 87 %; iii) 4.26, 

CuSO4.5H2O/Na Asc, CH3CN/H2O, MW, 100 °C, 30 mins, 74 %; iv) NaN3, CH3CN, DMF, 80 °C, 

24 h, 95 %. 

Compound 4.28 was then used to generate a trivalent display of the initial lead 

divalent galactoside. Using CuAAC conditions, compound 4.28 was reacted with the 

trivalent scaffold 2.103 to give compound 4.29, which was then deprotected under 

mild basic conditions to give the desired compound 4.30, presenting a radial display 

of the divalent galactoside with six terminal galactose residues (Scheme 4.8). A 

comparison of the 1H NMR spectra of compounds 4.28 and 4.29 is shown in Figure 

4.7, with the major difference between the spectra being the broadness of the signals 

in the trivalent display of the divalent galactoside 4.29, compared to the sharp peaks 

observed in the azide derivative 4.28. 
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Scheme 4.8: Synthesis of trivalent display of the initial lead compound built around an 

aromatic-core 4.30. Reagents and conditions: i) CuSO4.5H2O/Na Asc, CH3CN/H2O, MW, 100 

°C, 30 mins, 72 %; ii) MeOH, NEt3, H2O, 45˚C, 6 h, 82 %. 
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Figure 4.7: 1H NMR of compounds 4.28 and 4.29 in CDCl3. 

4.3.2 Linear Scaffold 

To display the initial lead compound in a different multivalent presentation, a linear 

scaffold was considered.  β-Peptides have been used as artificial backbones to display 

diverse side chains capable of mimicking bioactive peptides,242, 243 which do not 

undergo hydrolysis in the presence of peptidases and proteases.244 β-Peptoids are a 

newer class of synthetic polyamides, which are structurally related to β-peptides 

where the amino acid side chain is switched from the β-carbon to the amide 

nitrogen.245 β-peptoid scaffolds designed by Faure and coworkers have been used to 

create linear and cyclic displays of side chains and carbohydrates.246 The synthesis of 

β-peptoids involves a two-step iterative methodology. Acryloyl chloride is reacted 

with an amine to give an α, β-unsaturated amide. This is then reacted with a primary 

amine in an aza-Michael addition to give a secondary amine (mechanisms shown in 

Scheme 4.10). Repeating these steps several times results in the synthesis of β-

peptoid oligomers.246 
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To prepare the linear peptoid scaffold, literature procedures were followed. Tert-

butyl acrylate 4.31 was reacted with propargylamine to give N-propargyl-

functionalized β-alanine 4.32246, the key building block for the synthesis of the β-

peptoid oligomer (Scheme 4.9). From this monomer, elongation according to the 

two-step procedure was continued until the desired length was reached. Compound 

4.32 was reacted with acryloyl chloride to give the α, β-unsaturated amide 4.33246. 

Variable temperature 1H NMR experiments were carried out on this compound 

(Figure 4.8) to assess its conformational flexibility. Interestingly, at low temperatures, 

there are two sets of signals for the CH2 (4.0 - 4.2 ppm) and the CH (2.1 – 2.4 ppm) of 

the propargyl group (indicated in Figure 4.8). This suggests that this compound has 

two main conformers due to the presence of the amide group (structures shown in 

Figure 4.8). Free rotation around the C-N bond of the amide group is prevented at 

low temperatures, locking the structure in two distinct conformations. However, 

when the temperature is increased the two signals begin to coalesce into one broad 

set of signals, as the compound has sufficient energy to rotate around the C-N bond 

of the amide more readily and interchange between the two conformers. Other 

studies have shown the presence of amide bond conformers or rotamers in -

peptoids.247 

From this NMR data it is possible to determine activation energy parameters for the 

isomerisation of the amides through determination of the temperature at which the 

NMR resonances of two exchanging species coalesce.248 This coalescence 

temperature (Tc) is used, along with the maximum peak separation in the low 

temperature NMR (in Hz). From this information the activation energy barrier 

(G‡) can be calculated. Gutowsky showed that the rate of rotation, kc, at Tc is given 

by Eq. 1: 

𝑘𝑐 =
𝜋(∆v)

√2
 

With 40.6 Hz (the distance between the two CH signals at 278 K), this results in 

kc = 90.2 Hz. Then if the value of kc is substituted into the following version of the 

Eyring equation, the value of G‡
 can be determined using Eq. 2: 

Eq. 1 
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∆𝐺‡ = 19.12 𝑇𝑐 (10.32 + log 𝑇𝑐 − log 𝑘𝑐) 

Applying the observed values in the spectra of compound 4.33 for the above 

equations, considering the CH signal at 2.1 – 2.4 ppm, with kc = 90.2 Hz and Tc = 318 

K, gives G‡ ≈ 66 kJ/mol or 16 kcal/mol, which is typical for amides (G‡ = 11 -21 

kcal/mol)249. Hence, it requires 16 kcal/mol of energy for the amide to isomerize 

between the two conformations. 

Following the NMR study of the α, β-unsaturated amide 4.33, this compound was 

then reacted with propargylamine to give the dimer 4.34246, which was reacted with 

acryloyl chloride to give the α, β-unsaturated amide 4.35246. This was continued until 

the tetramer 4.38246 was reached, where the secondary amine was acetylated to give 

4.39234 to prevent further reaction. All the intermediate compounds, along with the 

final linear scaffold 4.39, show the same trend in the NMR as discussed previously. 

Indicating that at room temperature, there are several conformations of the scaffold 

present.  

 

 

Eq. 2 
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Scheme 4.9: Synthesis of the linear scaffold 4.39. Reagents and conditions: i) dry methanol, 

N2, 50 ˚C, 24 h, quant yield; ii) DIPEA, dry DCM, 0 ˚C, 1 h, 86–95 %; iii) Acetic anhydride, 

DCM, 5 h, 97 %. 

 

Scheme 4.10: Mechanism for the amide bond formation and the aza-Micheal addition 

reaction to form the -peptoid oligomers. 
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Figure 4.8: Structure of the two main rotamers of compound 4.33 and VT 1H NMR spectra 

of α, β-unsaturated amide 4.33 in CDCl3. 

To assess the suitability of the linear scaffold 4.39 in CuAAC conditions, first it was 

reacted with galactosyl azide 2.40, resulting in tetravalent galactoside 4.40, which 

was deprotected to give tetravalent galactoside 4.41 (Scheme 4.11). Then the azide 

derivative 4.28 was conjugated to the linear scaffold to give compound 4.42, which 

was deprotected resulting in 4.43, a tetravalent display of the lead compound with 

eight galactose residues. Both compounds 4.41 and 4.43, together with aromatic 

hexagalactoside 4.30, will be tested for their anti-adhesive properties against C. 

albicans. 
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Scheme 4.11: Synthesis of a multivalent display of the initial lead compound with a linear 

scaffold 4.43. Reagents and conditions: i) CuSO4.5H2O/Na Asc, CH3CN/H2O, MW, 100 °C, 30 

mins, 58-68 %; ii) MeOH, NEt3, H2O, 45˚C, 6 h, 82-92 %. 

4.3.3 Cyclopeptide Scaffold 

Lysine-containing cyclodecapeptides called ‘regioselectively addressable 

functionalized templates’ (RAFT) were first described as stable scaffolds for the de 

novo design of proteins or as peptidomimics.250 These scaffolds have a defined and 

constrained structure, and the presence of the amino acid lysine in the amino acid 

sequence allows chemical reactions. In addition, due to their planar structure, these 

reactions can be performed on the upper or lower face of the scaffold, depending on 
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the position of the functional lysine amino acids. Using these lysine side-chain 

addressable sites, these scaffolds have been extensively used to display 

carbohydrates in a multivalent manner.251 In order to improve the recognition 

properties of the cyclopeptide-based glycoclusters towards lectins, newer 

generations with higher valency and varying levels of rigidity have been developed 

by Renaudet and coworkers. A modular chemoselective strategy was used to 

introduce either a flexible polylysine framework or a constrained cyclopeptide onto 

the RAFT core, providing two different hyperbranched skeletons in a controlled 

manner. Biologically relevant carbohydrates were then conjugated to obtain a new 

series of glycodendrimer-like structures.252 These structures have been used to 

generate highly potent ligands for interactions with different lectins, such as 

described in Section 4.1.2.2. 

A collaboration with the group of Prof. Renaudet involved the use of the RAFT 

scaffolds for the multivalent presentation of lead compound 2.67, during a research 

visit to his laboratory in Université Grenoble Alpes. Since the RAFT scaffolds that their 

team suggested were functionalized with azides, a new derivative of the lead 

compound functionalised with a linker bearing an alkyne had to be developed to 

allow for CuAAC conjugation. Our initial approach involved the reaction of tosylated 

compound 4.27 with propargyl bromide to introduce the alkyne. However, the harsh 

basic conditions (NaH) required for this conversion resulted in side reactions, where 

no product could be isolated. Hence, a new strategy was required (Scheme 4.12). In 

this case triethylene glycol 4.24 was reacted with propargyl bromide to give the 

dialkynated compound 4.45. This was then reacted with the azide derivative 4.21 

using CuAAC conditions. To promote reaction with only one alkynyl group, this 

reaction was carried out in dilute conditions. However, some product 4.46 was 

formed as a result of CuAAC reaction at both ends of the linker. These compounds 

could be separated by column chromatography to obtain the purified compound 

4.48, which was deprotected under mild basic conditions to give the desired 

compound 4.49. This compound consists of the acetylated divalent galactoside with 

a triethylene glycol linker appended with an alkyne available to conjugate to different 



Chapter 4 

139 
 

scaffolds functionalized with azides. Compound 4.46 was also deprotected to give 

compound 4.47. 

 

Scheme 4.12: Synthesis of the alkynated derivative of the lead compound 4.49. Reagents 

and conditions: i) NaH, anhydrous THF, N2, 1 h, propargyl bromide, 24 h, No product 

formed; ii) NaH, anhydrous THF, N2, 1 h, propargyl bromide, 48 h, 92 %; iii) CuSO4.5H2O/Na 

Asc, CH3CN/H2O, MW, 100 °C, 10 mins, 45 %; iv) MeOH, NEt3, H2O, 45˚C, 6 h, 90 %. 
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The following reactions were carried out in the laboratory of Prof. Renaudet in the 

Université Grenoble Alpes. The cyclopeptide 4.50 (Scheme 4.13) used in this 

synthesis is a decapeptide, functionalized with four azides on the lysine residues on 

the scaffold. A highly efficient CuAAC protocol was used to connect compound 4.49 

to the cyclopeptide scaffold, involving the use of CuSO4.H2O, THPTA (3(tris(3-

hydroxypropyltriazolylmethyl)amine)) and sodium ascorbate as the catalytic system. 

UPLC was used to determine the endpoint of the reaction (typically 1 hour), and the 

product was purified using semi-preparative RP-HPLC to give compound 4.51. This 

compound consists of 4-copies of the lead compound 2.78 connected to the 

cyclopeptide core. 

This glycocluster 4.51 was then reacted with N-succinimidyl pentynoate under basic 

conditions to functionalize the underside of the RAFT scaffold with an alkyne group 

giving compound 4.52. This was then coupled to another azide-functionalized RAFT 

4.50 using the same CuAAC conditions to give the glycodendrimer 4.53 shown in 

Figure 4.9. This glycodendrimer 4.53 consists of 16 copies of the lead compound 

attached to rigid cyclopeptide cores, resulting in the display of 32 galactose residues. 

A hexavalent glycocluster was also synthesised in a similar manner (Scheme 4.14). 

The cyclopeptide used in this case was a cyclic, dodecapeptide, functionalized with 

six azides 4.54. CuAAc conditions were used to conjugate compound 4.49 to the 

hexavalent RAFT scaffold 4.54, which was purified to give compound 4.55. This 

hexavalent glycocluster 4.55 displays 6 copies of the lead compound 2.78 resulting 

in the presentation of 12 galactose residues. 

The tetravalent cyclopeptide-based glycocluster 4.51, the hexavalent cyclopeptide-

based glycocluster 4.55 and the hexadecavalent cyclopeptide-based glycodendrimer 

4.53 will be tested in the adherence assays to determine their anti-adhesive 

properties against C. albicans. 
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Scheme 4.13: Synthesis of tetravalent glycocluster 4.51 and the alkynated glycocluster 

4.52. Reagents and conditions: i) CuSO4.5 H2O/Na Asc, THPTA, DMF/PBS buffer (pH 7.5), rt, 

1 h, 65 %; ii) N-succinimidyl pentynoate, DIPEA, DMF (pH 9), rt, 1 h, 97 %. 
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Figure 4.9: Structure of the hexadecavalent glycodendrimer 4.53 (Yield: 89 %). 
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Scheme 4.14: Synthesis of hexavalent glycocluster 4.55. Reagents and conditions: 

CuSO4.5 H2O/Na Asc, THPTA, DMF/PBS buffer (pH 7.5), rt, 1 h, 34 %. 

4.3.4 Polylysine-Based Scaffold 

A similar procedure as that used in the synthesis of glycodendrimer 4.53 was used to 

synthesis the glycodendrimer 4.59 shown in Figure 4.10. A polylysine-based scaffold 

4.56 (Scheme 4.15) was used, which was also functionalized with four azide groups. 

The same CuAAC conditions were used to conjugate the alkynated compound 4.49 

to the polylysine-based scaffold 4.56 to give the glycocluster 4.57, consisting of 4 

copies of the lead compound. This was then reacted with N-succinimidyl pentynoate 

under basic conditions to functionalize the lysine-based scaffold with an alkyne group 

giving compound 4.58. This was then coupled to another azide-functionalized 

polylysine scaffold 4.56 using the same CuAAC conditions to give the glycodendrimer 

4.59 shown in Figure 4.10, which, like glycodendrimer 4.53, has 16 copies of the lead 
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compound. However, this glycocluster 4.59 provides a more flexible display of the 32 

galactose residues. 

The tetravalent polylysine-based glycocluster 4.57 and the hexadecavalent 

polylysine-based glycodendrimer 4.59 will be tested in the adherence assays to 

determine their anti-adhesive properties against C. albicans. 
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Scheme 4.15: Synthesis of tetravalent glycocluster 4.57 and the alkynated derivative 4.58. 

Reagents and conditions: i) CuSO4.5 H2O/Na Asc, THPTA, DMF/PBS buffer (pH 7.5), rt, 1 h, 

78 %; ii) N-succinimidyl pentynoate, DIPEA, DMF (pH 9), rt, 1 h, 82 %. 
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Figure 4.10: Structure of the hexadecavalent glycodendrimer 4.59 (Yield: 87 %). 

 

 4.4 Conclusion  

The objective of this chapter was to design and synthesise multivalent displays of the 

initial lead compound 2.78. Different scaffolds were utilized since ligand optimization 

requires the screening of compounds with different valencies, flexibilities and 

carbohydrate presentation, to find the optimum structure required to inhibit the 

adhesion of C. albicans to BEC. Since the adhesin present in the Candida with which 
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compound 2.78 is interacting is unknown, several scaffolds with different valencies 

and geometrical presentation of lead compound 2.78 were explored to find the 

optimum structure. Hence, multivalent displays of compound 2.78 built around an 

aromatic-core, a linear peptoid scaffold, cyclopeptide scaffold and a polylysine-based 

scaffold were synthesised. 

Initial experiments to attach the lead compound directly to aromatic-scaffolds were 

unsuccessful, possibly due to steric bulk and the weak nucleophilicity of the aniline 

involved. The azide derivative of the lead compound 4.21 was successfully 

conjugated to the divalent 1,4-alkynated scaffold 3.13, however due to the 

insolubilty of the acetylated product, deprotection and biological evaluation was not 

possible. Therefore, a linker, derived from triethylene glycol 4.24, was developed to 

connect the lead compound to the aromatic scaffold. Hence compound 4.28 was 

synthesised, which consisted of the acetylated divalent galactoside with a linker 

functionalized with an azide. This was then conjugated to the aromatic scaffold, 

resulting in the successful synthesis of the trivalent display of the lead compound 

4.30 built around an aromatic core. This also allowed the effective grafting of the 

lead compound onto the linear scaffold, resulting in a tetravalent display of the initial 

lead compound 4.43. 

On a research visit to Université Grenoble Alpes, the lead compound functionalized 

with an alkyne triethylene glycol linker 4.49 was successfully grafted onto 

cyclopeptide and polylysine-based scaffolds, resulting in the formation of tetravalent 

cyclopeptide 4.51, hexadecavalent cyclopeptide 4.53, hexavalent cyclopeptide 4.56, 

tetravalent polylysine-based dendron 4.57 and hexadecavalent polylysine-based 

dendron 4.59. All the compounds synthesised here utilized a highly efficient CuAAC 

methodology, connecting the alkynated derivative 4.49 to the different scaffolds 

functionalized with azides. 

All the multivalent compounds synthesised and shown in this chapter will be tested 

for their anti-adhesive properties, with the hope that they will inhibit the adhesion 

of C. albicans to BEC more effectively than the initial lead compound 2.78. Depending 

on the results from the adherence assay more multivalent displays may be 

synthesised to optimize the interaction between the ligands and the yeast.
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5.1 Introduction 

5.1.1 Bioconjugation 

Bioconjugation involves the formation of a stable covalent bond between two 

molecules, where at least one of them is a biomolecule. The process of creating 

bioconjugates is usually carried out using chemically reactive agents that can be used 

to couple to specific functional groups on one or more of the molecules being 

conjugated. Bioconjugation forms the basis for affinity cross-linking. In this 

application, the conjugate may contain one or more affinity molecules, which can be 

used to target, capture, or detect another biomolecule. The applications of affinity 

cross-linking can include: 1) assay and quantification of target analytes; 2) detection, 

tracking and imaging of biomolecules; 3) affinity-mediated purification, capture and 

scavenging of biomolecules; 4) catalysis and chemical modification using immobilized 

ligands; 5) therapeutics and in vivo diagnostics using targeted bioconjugates.253 

Most bioconjugation methods utilize common organic chemical principals to form 

stable covalent bonds to link the bioconjugate reagents to the biomolecule of 

interest. For example, reactive groups able to couple with amine-containing 

molecules are the most common functional groups present on crosslinking or 

modification reagents. The primary coupling reactions for modification of amines 

proceed by two main routes; acylation forming stable amides or alkylation forming 

secondary amine bonds. Thiol, carboxylate, hydroxyl, aldehyde and ketone reactions 

are also used to form bioconjugates. Cycloaddition reactions, including Diels-Alder 

reactions and CuAAC reactions, can also be used. Photoreactive groups, induced to 

couple with target molecules by exposure to UV light, are becoming increasingly 

popular in this field. These groups are relatively non-reactive in typical 

thermochemical processes, until they are photolyzed. Due to these properties, 

molecules containing a photoreactive group can be used in highly controlled 

reactions, where labelling reactions can be induced by UV light at predetermined 

points in the experimental protocol. Covalent bonds can therefore be formed after 

binding of photo-labelled ligands to receptors or after some other biochemical 

process takes place.  
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5.1.2 Photoaffinity Labelling (PAL) 

Photoaffinity labelling (PAL) is a method of bioconjugation that has become a 

commonly used technique in medicinal chemistry254 and drug discovery for the 

identification of new drug targets and molecular interactions.255 In PAL, a chemical 

probe is used to covalently bind to its target after being activated by light. Protein-

ligand interactions may be studied using this technique, such as identifying unknown 

targets of ligands, assisting in the elucidation of protein structure, functions and 

conformational changes, in addition to identifying novel or alternative binding sites 

in proteins.  

The technique involves incorporating a photoreactive group within an otherwise 

reversibly binding ligand. This photoreactive group forms an extremely reactive 

intermediate when exposed to a specific wavelength of light. The reactive 

intermediate quickly reacts with and binds to the closest molecule, which preferably 

will be the target protein. This method was first reported by Westheimer et al.256 in 

1962, where aliphatic diazo groups were incorporated into the enzyme chymotrypsin 

by acylation. Intramolecular crosslinks were formed by photolysis. 

5.1.2.1 Photoaffinity Probes 

A photoaffinity probe must include particular criteria. The probe must be stable in 

the dark at a range of pHs, be structurally similar to the ligand molecule with 

comparable affinity for the target protein and have minimum steric interference 

when binding. The photoaffinity probe must contain a photoreactive group that 

undergoes activation at wavelengths of light that do not damage biological 

molecules, but still form highly reactive intermediates, with the ability of cross-

linking many functional groups to form stable bonds.  

In general, photoaffinity probes contain three vital components: 

1. The pharmacophoric or affinity group – responsible for reversible binding to 

the target proteins. 

2. A photoreactive group – required for permanent attachment to the target 

after photoactivation. 
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3. An identification or reporter tag – involved in the detection and isolation of 

the target protein. 

The photoaffinity probes can be designed in three distinct ways and are shown in 

Figure 5.1. First, the pharmacorphore, photogroup and reporter tags may all be 

incorporated in one molecule, isolated from each other and connected by linkers 

(Figure 5.1 a). Secondly, the photogroup may be directly connected within the 

pharmacophore, with both being isolated from the reporter tag (Figure 5.1 b). Finally, 

the photoaffinity probe may consist of two distinct moieties, where the 

pharmacophore and photogroup are in one molecule and the reporter tag is part of 

another molecule, which are subsequently conjugated. CuAAC methodology has 

been used very often for this purpose, with one molecule being designed to have an 

alkyne handle and the other possessing a terminal azide (Figure 5.1 c).  

 

Figure 5.1: General design for photoaffinity probes. Adapted from a review by Smith and 

Collins.255  

The most common photoreactive groups used in the PAL technique include 

phenylazides, phenyldiazirines and benzophenones, and their structures are shown 

in Figure 5.2. Other groups have also been used, such as enones, diazo groups, 

sulphur radicals, diazocarbonyls, nitrobenzenes, diazonium salts as well as alkyl 

derivatives of azides and diazirines. Phenylazides are frequently used in PAL since 

they are easily synthesised and are commercially available. However, the short 

wavelengths (250-350 nm) required to form the reactive nitrene intermediate can 

damage biological molecules such as proteins. Also, the nitrene intermediate is less 

reactive than other intermediates such as carbenes, may rearrange to form 

a) 

c) 

b) 
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undesired side products, and azides may be reduced to amines by thiols.  Substituted 

arylazides (e.g. tetrafluorophenyazide) have been developed to improve their 

photoaffinity suitability.  

Benzophenone derivatives are also commercially available and can be easily 

prepared. They form a reactive triplet diradical when irradiated with light at longer 

wavelengths (350-360 nm) reducing the risk of damage of biomolecules. However, 

they often require a longer irradiation period, which may increase nonspecific 

labelling. Also, since they are rather bulky, they may interfere with the interaction 

between the pharmacophore and the target protein. Arlydiazirines are the most 

common photoreactive group, in particular, the trifluoromethyl derivative. They also 

require a higher wavelength (350-355 nm) to form carbene species, which are 

extremely reactive and have a short half-life, allowing it to rapidly form covalent 

cross-links to biomolecules. However, due to this high reactivity, carbenes are often 

quenched by water, which can decrease the photoaffinity yields but can be an 

advantage as it may minimize nonspecific binding. Aliphatic diazirines are also used 

in PAL when there are spatial limitations due to their smaller size.257 

 

Figure 5.2: Structure of photoreactive groups commonly used in PAL and their reactive 

intermediate formed after exposed to the light at the wavelengths indicated.255  
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An identification or reporter tag is involved in the detection and isolation of the 

target protein, which can be directly or indirectly incorporated to the photoprobe. 

Radioactive reporter tags have been used in PAL, for example 125I and 3H, since they 

are small and cause minimal structural change to the photoprobe. However, due to 

short half-lives they can degrade quickly, but most importantly they do not offer a 

direct method to isolate the labelled proteins. Fluorescent reporter tags have also 

been utilised in PAL. Fluorophores, such as fluorescein, rhodamine and BODIPY 

(boron dipyrromethane), have been used. However, they can be easily 

photobleached.255, 258  

Affinity tags are most commonly used in PAL, where biotin is most frequently 

employed due to its high affinity for avidin (Kd = 10-15 mol/L). Avidin is a tetrameric 

biotin binding protein produced by birds, reptiles and amphibians. Streptavidin, a 

protein purified from Streptomyces avidinii, also has a very high affinity for biotin, 

with Kd = 10-14 mol/L, which is one of the strongest non-covalent interactions known 

in nature. Avidin has only a 30 % sequence identity to streptavidin, however it has an 

almost identical secondary, tertiary and quaternary structure. Avidin, unlike 

streptavidin, is glycosylated, positively charged, has pseudo-catalytic activity and has 

a higher tendency to aggregate. Also, streptavidin is a better biotin-conjugate binder, 

avidin has a lower binding affinity than streptavidin when biotin is conjugated to 

another molecule. Since streptavidin is unglycosylated and has a neutral pI, it results 

in a lower amount of nonspecific binding.259 Hence, streptavidin is used more 

frequently in PAL than avidin. Streptavidin magnetic beads are superparamagnetic 

particles covalently coupled to highly pure form of streptavidin. These beads can be 

used to capture biotin labelled substrates including antigens, antibodies and nucleic 

acids, and in PAL they can be used to capture the target protein. 

The general protocol for PAL experiments is as follows: 

1. Cells or cell lysates are treated with the photoaffinity probes. 

2. An incubation period allows time for the probes to interact to their target 

proteins. 
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3. The samples are irradiated with light at a specific wavelength to active the 

photogroup, which forms the reactive intermediate that forms covalent 

bonds with the closest molecule to it (target protein ideally). 

4. If the experiment is carried out using cells, they are lysed. 

5. CuAAC methodology is used to conjugate the probe to the reporter tag. 

6. Labelled proteins are separated from the rest of the proteome by affinity 

purification using the reporter tag. If biotin is used as the reporter tag, 

streptavidin beads are used to extract labelled proteins. 

7. Analysis using SDS-PAGE and MS, allows the identification of the labelled 

proteins.255  

5.1.2.2 Carbene-mediated PAL involving Carbohydrates 

Carbene-mediated PAL has been used to study small molecule-protein and 

macromolecule-protein interactions, such as protein-protein, nucleic acid-protein, 

lipid-protein, steroid-protein and carbohydrate-protein interactions. It is known that 

carbohydrates play a crucial role in a wide range of biological processes; however, 

there are many carbohydrate-protein interactions that remain unknown, mostly due 

to the low-affinity interactions. Carbene-mediated PAL has been used to investigate 

the biological role of carbohydrates using diazirine-based photoactive tags. 

Kohler et al.260 has carried out extensive research in this area, where a series of 

photosugars containing diazirines have been synthesized including a sialic acid 

analogue 5.1 and an N-acetylmannosamine analogue 5.2. These photosugars have 

been successfully incorporated into the cell surface. Carbene mediated PAL has been 

used to study the interactions between sialic acids and sialic acid recognising 

proteins.260 

Sakurai, Minuzo and co-workers261, 262 have developed a series of photoaffinity probes 

containing lactose moieties and different photoreactive groups, such as aryl azide, 

benzophenone, alkyldiazirine and trifluoromethylphenyldiazirine (TPD), which have 

been synthesised to determine the efficiency and selectivity of using PAL techniques 

to study carbohydrate binding interactions with lectins. Lactose is known to bind to 

the lectin peanut agglutinin (Kd = 770 μM). The diazirinyl lactose analogue 5.3 showed 
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low yield of cross-linking but showed high ligand-dependent reactivity. The TPD 

analogue 5.4 showed higher crosslinking efficiency than the alkyldiazirinyl derivative 

5.5 when tested using a single binding protein. However, when tested in a cell lysate 

sample the alkyldiazirinyl derivative 5.5 showed significantly more selectivity than 

the TPD analogue 5.4.  

 

Figure 5.3: Structure of diazirine analogues of carbohydrates. 

5.1.2.3 Photoaffinity Probes for the lectin FimH 

For photolabelling of FimH, three mannosides 5.6-5.8 were designed which contain 

different photoactive functional groups. From crystallographic data it was found that 

for a mannoside to bind to the carbohydrate binding domain in FimH, the photolabels 

must be included into the aglycon part of the molecules. In addition, orthogonally 

protected mannosyl peptides were introduced as bifunctional scaffolds to combine 

a photoreactive functional group with an affinity label within the same mannoside 

5.9 and 5.10 (similar to the design of the photoprobe in Figure 5.1 a). All of these 

compounds were tested as inhibitors of FimH-mediated adhesion of E. coli to a 

mannan-coated surface by ELISA. This assay found that all photoactive mannosides 

tested had inhibition equal to or better to that of α-D-mannoside.263, 264 

To test the capability of the photoactive mannosides in crosslinking reactions, a 

model peptide angiotensin II (DRVYIHPF) was used. MS-MS experiments revealed 

that the two diazirines 5.7 and 5.10 gave a 1:1 photoaddition product of peptide and 

photolabel, resulting from the insertion of the carbene into the hydroxyl group in the 

5.1 5.2 5.3 

5.4 

5.5 



Chapter 5 

156 
 

side chain of the angiotensin tyrosine (Y). These two mannosides were then tested 

using FimH, which resulted in the 1:1 photo-crosslinked products with the expected 

mass. When the biotinylated mannoside 5.10 was used for photolabelling of FimH, 

the photo-crosslinked product could be detected by affinity staining using a 

streptavidine-HRP (horseradish peroxidase) conjugate. Hence, biotin-labelled 

photoactive mannosides provides a feasible method for identification of 

carbohydrate binding sites on mannose specific lectins such as FimH using the PAL 

methodology.  

 

Figure 5.4: Three α-mannoside analogues with different photoactive groups 5.6, 5.7 and 

5.8, and biotinylated mannosides 5.9 and 5.10 suitable for PAL.265  

5.1.2.4 Photoaffinity Probes for the lectin RCA120 

Chang et al.266 designed photoaffinity probes to study the interaction and selectivity 

for the probe to the castor bean lectin RCA120 (Ricinus communis Agglutinin). A 

monovalent and a trivalent analogue of the probe were designed to demonstrate the 

importance of multivalent ligand binding in lectin labelling (Figure 5.5). The 

monovalent photoaffinity probe 5.11 displayed a significant decrease in the band 

intensity in the Western blot assay compared to the trivalent photoaffinity probe 

5.12, suggesting the superior photolabelling efficiency of 5.12. In this study it was 

found that the compound 5.12 selectively labelled RCA120 in a protein mixture and 

5.6 5.7 5.8 

5.9 5.10 
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also in E. coli lysates. This compound was also able to label ASGP-R 

(asialoglycoprotein receptor) on the surface of HepG2 cells. ASGP-R is a 

carbohydrate-binding protein located on hepatocytes which mediates the 

endocytosis of plasma glycoproteins where the terminal sialic acid residues are 

removed revealing terminal galactose or GalNAc. Furthermore, transient and weak 

protein-protein interactions between the LacNAc moiety of ovalbumin (OVA) and the 

carbohydrate binding chain of RCA120 were detected using compound 5.12. 

 

  

Figure 5.5: a) Structure of the monovalent 5.11 and trivalent 5.12 photoaffinity probes 

designed by Chang et al.266; b) a diagram depicting the PAL technique using the trivalent 

photoaffinity probe 5.12 adapted from Chang et al. 266 Adapted with permission from the 

American Chemical Society.  

 

a) 

b) Biotin 

Streptavidin coated 

magnetic beads 
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5.2 Chapter Objective 

The objective of this chapter is to develop two photoaffinity probes based on lead 

compound 2.78 identified in Chapter 2. These will be used in an attempt to identify 

the target on the cell surface of C. albicans with which the glycoconjugates in 

previous chapters are interacting. Since the biological tests will be carried out on live 

cells, we chose to design the photoaffinity probe with an approach similar to that in 

Figure 5.1 (c), where the probe consists of two distinct units. In this model, one unit 

contains the photogroup connected to the pharmacophoric group with an additional 

alkyne handle, and the other contains the reporter tag possessing a terminal azide. 

The pharmacophoric group is the divalent galactoside 2.78 identified in Chapter 2. 

Locating a site on the lead compound from which to build the rest of the probe and 

optimizing the photoreactivity of the molecule can be difficult tasks. However, from 

the work described in  Chapter 2 and Chapter 4, we have developed synthetic routes 

to functionalize compound 2.78 in the 5-position of the aromatic scaffold. Hence, this 

is the position we chose to link the photogroup and the alkyne handle. This is also a 

favourable position since we know from preliminary adherence assays that having 

additional groups in this position does not significantly affect the anti-adherence 

properties of the glycoconjugates.  

Since it is difficult to predict which phototag would have the best activity, two PAL 

probes (structure shown in Figure 5.6) were designed in an effort to optimize the 

photoreactivity of the photoaffinity probes. Both probes contain the divalent 

galactoside 2.78 and the alkyne handle but have different photogroups, one with a 

benzophenone and one with a diazirine moiety. The benzophenone derivatives are 

relatively easy to prepare and handle but can be too bulky, while the diazirine 

derivatives may be more difficult to prepare but are sterically smaller, which may be 

beneficial in the PAL technique. 
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Figure 5.6: General structure of the PAL probes, where the blue hexagon represents the 

pharmacophoric group and the red star represents the photoactive group. Structures of 

PAL Probe 1 and PAL Probe 2 as also shown. 

5.3 Synthesis of Photoaffinity Probes to Target C. albicans 

5.3.1 Strategy 1 

The design of the photoaffinity probes contains the divalent galactosyl anti-

adherence ligand 2.78 as the pharmacophoric group that will elicit specific binding 

with the C. albicans adhesin. As discussed in previous chapters, the primary amine 

derivative of the acetylated divalent galactoside 2.113 was available. It was decided 

to utilise the chemistry involved in the synthesis of the linear peptoid scaffold 4.39 

in Chapter 4, where aza-Michael conjugate addition was used to react primary amine 

groups with α,β-unsaturated compounds. Hence, acroylyl chloride was reacted with 

compound 2.113 in basic conditions to give the α,β-unsaturated derivative 5.13 with 

a moderate yield (Scheme 5.1). The reaction of compound 5.13 with propargylamine, 

using anhydrous methanol as the solvent, resulted in deacetylation and the 

formation of compound 5.14. This is unfavourable, since the protected hydroxyl 

groups are required for following reactions. Numerous articles report the need of a 

protic polar solvent for aza-Michael addition reactions to occur, stating that the 

hydrogen-bond donor ability of the solvent significantly effects the reaction.267, 268 

However, polar aprotic solvents, such as THF and DCM, have also been used to carry 

out aza-Michael addition reactions, although the rate at which they occur is much 
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lower.269 The reaction was attempted using anhydrous THF as the solvent, however 

no product was formed. Anhydrous solvent was used to minimize the deactylation of 

the galactose moieties. Adding equivalents of water, a polar protic solvent, also did 

not cause the reaction to proceed. DCM was also tested as the solvent, similarly no 

product was formed. 

N,N’-bis[3,5-bis(trifluoromethyl)phenyl]thiourea (or Schreiner’s thiourea) has been 

utilized as an organocatalyst in many reactions, due to its ability to activate 

substrates and stabilize partially developing negative charges since it possesses two 

hydrogen bond donors.270 Hence, this organocatalyst was added to the reaction 

mixture of the aza-Michael addition reaction. Using the catalyst in DCM formed no 

product, even after it was heated to 50 °C. Toluene was added to allow the mixture 

to be heated further. The reaction mixture was heated to 90 °C for 16 h, however 

again no product was formed. Acetic acid has also been utilized as a co-catalyst in 

aza-Micheal addition reactions271 and can also be used as a polar protic solvent. 

Hence the reaction of compound 5.13 with propargylamine was tried using a 1:1 

DCM:acetic acid solvent system. After heating the reaction mixture to 50 °C 

overnight, no product was formed. 

Finally, the reaction was attempted using tert-butanol as the solvent. This is a polar 

protic solvent, but due to steric bulk is not a good nucleophile to partake in 

deacetylating the galactose moieties. The reaction mixture was first heated to 50 °C 

for 16 hours, which formed no product. More equivalents of propargylamine (5 

equiv) were added, however still no product formed. Phenol has been used as an 

additive in aza-Micheal addition reactions. The phenol acts as a proton donor and 

activates the Micheal acceptor by H-bonding.267 Hence, three equivalents of phenol 

were added to the reaction mixture, and finally traces of the product were formed. 

The use of the MW further increased the yield of the reaction. After trying many 

conditions, the optimum conditions for the reaction to form compound 5.15 were 

found to involve the use of a mixture of tert-butanol and DCM as the solvent, 4 

equivalents of propargylamine, 3 equivalents of the additive phenol and using MW 

irradiation at 100 °C for 1 hour. The sequential addition of propargylamine was also 
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found to be important. Four additions of propargylamine each followed by MW 

irradiation at 100 °C for 1 hour resulted in the largest yield of the product at ~70 %. 

 

 

Scheme 5.1: Synthesis of compound 5.15. Reagents and conditions: i) acroylyl chloride, 

DIPEA, N2, DCM, 0 °C, 3 h, 57 %; ii) propargylamine, dry MeOH, 50 °C iii) propargylamine, 

tert-butanol, DCM, phenol, MW @ 100 °C, 1 h x 4, 69 %. 

5.3.2 Strategy 2 

Due to the difficulties of optimizing the aza-Michael reaction shown in Scheme 5.1, 

an alternative approach was also employed. In this approach the phototag with the 

alkyne handle is synthesised first (Scheme 5.2) and then coupled to the divalent 

galactoside compound 2.113 (Scheme 5.4). In this approach N-propargyl-

functionalized β-alanine 4.32246, the key building block for the synthesis of the linear 

peptoid scaffold in Chapter 4, is utilized. Compound 4.32 is coupled to the 

benzophenone derivative, 3-benzoylbenzoic acid 5.16, using TBTU as the coupling 

reagent (Scheme 5.2).  

5.13 

5.14 – undesired product 

2.113 

5.15 – desired product 
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Scheme 5.2: Synthesis of the phototag 5.19. Reagents and conditions: i) TBTU, NEt3, DMF, 

N2, 16 h, rt, 48 %; ii) TFA:DCM 1:2, 3 h, quant %; iii) anhydrous TFA:DCM 1:2, N2, 3 h, quant 

%. 

The tert-butyl group in compound 5.17 must then be removed to allow the coupling 

to compound 2.113. The general procedure to remove a tert-butyl group involves the 

use of trifluoroacetic acid (TFA). When compound 5.17 was treated with TFA (1:2 

TFA:DCM), the tert-butyl group was removed to reveal the carboxylic acid, however 

under these conditions, we found that the terminal alkyne group was also converted 

to a methyl ketone forming compound 5.18. After a literature search, it was found 

that Chen et al.272 have used TFA in the hydration of alkynes to form methyl ketones. 

This reaction requires the presence of H2O (1 equivalent) and the proposed 

mechanism involves the formation of an alkenyl cation intermediate, which 

undergoes nucleophilic addition by CF3COO- to produce the enol trifluoroacetate, 

which subsequently undergoes successive hydrolysis and keto-enol tautomerism to 

form the methyl ketone (Scheme 5.3).  

5.16 4.32 

5.17 

5.18 

5.19 
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Scheme 5.3: Proposed mechanism of TFA-mediated alkyne hydration reaction.272 

Hence, an alternative method to remove the tert-butyl ester group was required. The 

use of bases, such as NaOH and NEt3, and acids, such as HCl, required heating, which 

led to the formation of side products. Therefore, the reaction using TFA was re-

attempted using anhydrous conditions, since the absence of water would prevent 

the formation of the methyl ketone product. The TFA was subsequently pre-dried 

over anhydrous NaSO4, anhydrous DCM was used as the solvent and the reaction was 

carried out under N2. This resulted in the removal of the tert-butyl group to expose 

the carboxylic acid and did not form the methyl ketone product like observed in non-

anhydrous conditions. Hence, the phototag compound 5.19 was formed, which 

contains the benzophenone photogroup, an alkyne handle, along with the carboxylic 

acid functional group to allow coupling to the aniline compound 2.113. The coupling 

of compound 2.113 with the phototag 5.19 was carried out using TBTU as the 

coupling reagent which gave the acetylated compound 5.20 (Scheme 5.4). This was 

then deprotected using mild basic conditions to give the PAL probe 5.21. This probe 

consists of the pharmacophoric divalent galactoside, a benzophenone photoactive 

group and an alkyne handle. 
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Scheme 5.4: Synthesis of photactive probe 5.21. Reagents and conditions: i) TBTU, NEt3, 

DMF, N2, 16 h, rt, 49 %; ii) NEt3, MeOH/H2O, 45 °C, 92 %. 

A photoactive probe 5.28 with a diazirine photogroup was then developed. To obtain 

the diazirine with a carboxylic acid functional group to allow coupling, a literature 

procedure was followed.273 Levulinic acid 5.22 was reacted with ammonia in 

methanol to give the diaziridine acid 5.23, which was oxidised to form the diazirine 

5.24 (Scheme 5.5). The N-propargyl-functionalized β-alanine 4.32246 was utilized 

again, and was coupled to the diazirine 5.24 using TBTU as the coupling reagent. To 

remove the tert-butyl group, the anhydrous conditions outlined previously were 

employed to give the second phototag 5.26. This phototag 5.26 was then coupled to 

the aniline compound 2.113 using TBTU as the coupling reagent which gave the 

acetylated compound 5.27, which was deprotected using mild basic conditions to 

give the PAL probe 5.28 (Scheme 5.6). This probe consists of the pharmacophoric 

divalent galactoside, a diazirine photoactive group and an alkyne handle. 

 

5.19 

5.20 

5.21 

2.113 
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Scheme 5.5: Synthesis of Phototag 5.26. Reagents and conditions: i) 7 N ammonia in 

MeOH, 3 h on ice, hydroxylamine-O-sulfonic acid, 16 h, rt; ii) MeOH, NEt3, I2 beads, 5 mins x 

2, 0 °C, 42 %; iii) TBTU, NEt3, DMF, N2, 16 h, rt, 46 %; iv) anhydrous TFA:DCM 1:2, N2, 3 h, 

quant %. 

 

 

Scheme 5.6: Synthesis of photactive probe 5.28. Reagents and conditions: i) TBTU, NEt3, 

DMF, N2, 16 h, rt, 47 %; ii) NEt3, MeOH/H2O, 45 °C, 93 %. 
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4.32 5.25 
5.26 
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5.4 Conclusion  

Two photoaffinity labelling (PAL) probes were successfully synthesised. These two 

probes were structurally similar, consisiting of the pharmacophoric group (the 

divalent galactoside 2.78 identified as the lead compound in Chapter 2), an alkyne 

handle and a photogroup. The two analogues synthesised differed only in the identity 

of the photogroup, where PAL probe 1 contains a benzophenone photoactive tag, 

and PAL probe 2 contains a diazirine photoactive tag.  

Problems were encountered when using the first strategy to develop the PAL probes. 

During the aza-Michael reaction, which was used to introduce the propargylamine 

group to the α,β-unsaturated derivative 5.13, the acetyl groups were deprotected 

when using methanol as the solvent. Finally, after numerous different reaction 

conditions, solvents, and additives, the correct combination was discovered for the 

synthesis compound 5.15.  

Due to the difficulties encountered in the initial strategy, a second strategy was also 

developed to synthesis the photoaffinity probes. In this approach, the photoactive 

tag with an alkyne handle was synthesised first and then coupled to the acetylated 

divalent galactoside 2.113. Hence, the benzophenone functionalized with a 

carboxylic acid 5.16 was coupled to the N-propargyl-functionalized β-alanine 4.32246. 

Removal of the tert-butyl ester group also presented some difficulties with the 

formation of the methyl ketone compound 5.18. However, utilising anhydrous 

conditions eliminated this problem and allowed the formation of the Phototag 1 

(5.19). For the synthesis of Phototag 2 (5.26), the diazirine tag was first synthesised 

using literature procedures, which was then coupled to the N-propargyl-

functionalized β-alanine 4.32246. Exposure of the carboxylic acid functional group 

using anhydrous conditions gave Phototag 2 (5.26). Both Phototags 1 & 2 could then 

be coupled to the aniline of the divalent galactoside 2.113. Deprotection then gave 

the two PAL probes 5.21 and 5.28. 
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6.1 Conclusion 

The aim of the research described in this thesis was to develop novel compounds to 

tackle fungal infections, in particular in the treatment of C. albicans infection. Since 

carbohydrate interactions are vitally important in the adhesion process of fungi to 

host cells, a series of glycoconjugates were developed to interfere with this process 

and block the adhesion of the yeast to BEC with the aim to prevent infection. 

Chapter 2 described a SAR study to screen a small library of aromatic glycoconjugates 

to determine the structural features required to inhibit the adherence of pathogenic 

C. albicans. Different sugar moieties usually involved in host-pathogen recognition at 

the host cell surface (i.e galactose, fucose, mannose, glucosamine and 

galactosamine) were investigated. Different valency glycoconjugates with linkers 

that modified the distance and orientation of the sugar moieties were also tested. 

After a series of adherence assays (exclusion, competitive and displacement), the 

divalent galactoside 2.78 was found to be the most effective at inhibiting the 

adherence of the C. albicans to the BEC. Fluorescence studies indicate that the 

potential target of this compound was in the cell wall of the fungi, due to the strong 

localized fluorescence surrounding each yeast cell. Taking this into account, the 

target could be a fungal cell wall lectin, due to the high specificity observed for the 

type of sugar in the anti-adhesion ligand. 

In an effort to increase the potency of the lead compound, a variety of analogues of 

this compound with alternative scaffolds were synthesised (Chapter 3). A series of 

divalent squaramide analogues were designed, synthesised and evaluated as anti-

adhesion ligands. However, since there was no increase in the anti-adhesive 

properties of these compounds, a different core scaffold was tried. Two divalent 

galactosides and a monovalent derivative, with a norbornene core were synthesised 

and evaluated as anti-adhesion ligands. The cis-norbornene compound 3.30 

consistently showed the best results in all three adherence assays, even having better 

activity than the initial lead compound in the exclusion and competitive assays. The 

norbornene scaffold provides an interesting framework that could be derivatized in 

different ways to incorporate different functional groups, such as fluorescent labels 
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and other chemically reactive groups. Also, due to the polymerizing ability of 

substituted norbornene compounds, polyvalent anti-adhesion ligands could be 

synthesised to increase the potency of these norbornene-based glycoconjugates. 

Future work in this project involves the polymerizing of the norbornene compounds 

and testing the ability of the polymers to inhibit the adhesion process. 

The objective of Chapter 4 was to design and synthesise multivalent displays of the 

initial lead compound, to increase the potency of the ligand by utilizing the 

‘Multivalent Effect’. A variety of scaffolds were used to develop multivalent displays 

of the lead compound to investigate the optimum structure required to inhibit the 

adhesion of C. albicans to BEC. Hence, multivalent displays of compound 2.78 built 

around an aromatic-core, a linear peptoid scaffold, cyclopeptide scaffold and a 

polylysine-based scaffold were synthesised. This resulted in a wide variety of displays 

of the divalent galactoside, with varying valencies. These compounds vary from the 

trivalent aromatic scaffold exhibiting six galactose moieties to the cyclopeptide and 

polylysine based dendrimers, which display 32 galactose moieties (16 copies of the 

lead compounds). Future work will involve the biological evaluation of these 

compounds to determine if the multivalent effect can be utilized to increase the 

potency of the lead compound. If promising results are obtained, further 

optimization would be carried out to identify the prefered valency, flexibility and 

sugar-display to inhibit the adhesion process more effectively.  

In Chapter 5, two photoaffinity labelling (PAL) probes were successfully synthesised. 

We hope to use these photoaffinity probes 5.21 and 5.28, in conjugation with a 

reporter tag, to identify the target in the C. albicans with which the glycoconjugates 

discussed in this thesis are interacting. Identifying this target would provide 

invaluable information on the adhesins responsible for the adhesion of C. albicans to 

BEC. If the target adhesin is known, high affinity anti-adhesion ligands may be 

developed to tackle the emerging problem of antifungal resistance.  
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6.2 Future Plans 

There are many future plans for this project. First, the research group of Dr. Trinidad 

Velasco-Torrijos will continue to search for a small molecule analogues of compound 

2.78 with higher biological activity. However, this is a difficult task since C. albicans 

has numerous adhesins on it’s cell surface, so blocking one adhesin may never inhibit 

the adhesion process fully. In an effort to overcome this, the biological assays will be 

carried out with combinations of the AGCs from Chapter 2. The intention is that they 

could inhibit numerous adhesins at the same time, increasing the potency of the 

ligands as individuals. We also intend on testing these AGCs on different pathogens. 

It has been reported that C. albicans and P. aeruginosa have some similar adhesins, 

hence, these AGCs could also have good anti-adhesion properties against this other 

pathogen. 

In relation to the compounds outlined in Chapter 3 we intend on carrying out further 

work with the norbornene compounds. The possibility of forming polymers of these 

compounds would be very interesting since this would provide a multivalent display 

of these compounds and could significantly inhibit the adhesion process. Also, in the 

synthesis of compound 3.30, the cis-norbornene derivate, the monovalent 

glycoconjugate 3.31 was inadvertently formed. When compound 3.30 was treated 

with Amberlite H+, it displaced one of the galactose-triazolyl residues. We think this 

is an interesting avenue to pursue, since using this displacement, a smart drug-

delivery system could be developed. With this in mind, we intend on testing the anti-

fungal properties of the galactosyl-triazolyl residues to have dual inhibition system.  

The future work relating to Chapter 4, will involve the biological evaluation of the 

multivalent compounds. From the results of these assays, further multivalent 

displays of the lead compound will be synthesised to find the optimum display of the 

lead compound to have the highest percentage of adhesion inhibition. 

The compounds from Chapter 5 will be used try identify the adhesin in the cell wall 

of the C. albicans with which these compounds are interacting. First, they will be 

tested using module lectins to determine the cross-linking ability of these 

compounds. For example, peanut agglutin, a lectin known to bind Gal-β(1-3)-GalNAc,  
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will be treated with compounds 5.21 and 5.28. The lectin will be subjected to UV light 

and the photo-labelled compounds will hopefully cross-link to the protein. As a 

negative control, the compounds will also be exposed to concanavalin A (ConA), a 

lectin know to bind α-D-mannosyl and α-D-glucosyl groups. Following on from 

successful results in these experiments, compounds 5.21 and 5.28 will be exposed to 

the C. albicans cells and the photocrosslinking experiment will be tested. From this 

experiment, we hope to identify the lectin involved in the adhesion process. 

 

  

https://en.wikipedia.org/wiki/Mannose
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7.1 General Procedures and Instrumentation 

All chemicals purchased were reagent grade and used without further purification, 

unless stated otherwise. DCM was distilled over CaH2 and THF was distilled over Na 

wire and benzophenone. Anhydrous DMF was purchased from Sigma Aldrich. 

Molecular sieves used for glycosylation and coupling were 3 Å and were dried in the 

oven at 100 °C at ambient pressure prior to use. Reactions were monitored using thin 

layer chromatography (TLC) on Merck Silica Gel F254 plates. Detection was effected 

by visualisation in UV light and/or charring in a mixture of 5 % sulphuric acid-EtOH, 

in a potassium permanganate solution (3 g KMnO4, 20 g K2CO3, 5 mL 5 % aqueous 

NaOH and 300 mL H2O), or in a ninhydrin solution (0.3 g ninhydrin, 3 mL conc. H2SO4 

and 100 mL n-butanol). Evaporation under reduced pressure was always effected 

with the bath temperature kept at or below 60 °C. NMR spectra were obtained a 

Bruker Ascend 500 spectrometer operated at 500 MHz for 1H NMR analysis and 125 

MHz for 13C analysis at 293 K, unless otherwise stated. The residual solvent peak was 

used as an internal standard. Chemical shifts () were reported in ppm. Proton and 

carbon signals were assigned with the aid of 2D NMR experiments (COSY, HSQC, 

HMBC, 15N HSQC, 15N HMBC) and DEPT experiments for novel compounds. The 

following abbreviations were used to explain the observed multiplicities; s (singlet), 

bs (broad siniglet), d (doublet), appd (apparent doublet), t (triplet), appt (apparent 

triplet), q (quartet), m (multiplet), bs (broad singlet). As used commonly in 

carbohydrate chemistry, the multiplicity of signals are reported as observed and not 

the expected multiplicity. Flash chromatography was performed with Merck Silica 

Gel 60. CEM Discover Microwave Synthesizer was used to carry out reactions 

requiring microwave irradiation. Optical rotations were obtained using AA-100 

polarimeter. [α]D values were given in 10-1 cm2g-1. High performance liquid 

chromatography (HPLC, Waters Alliance 2695) was performed in final compounds 

and indicated purity of ca. 95 %. High resolution mass spectrometry (HRMS) was 

performed on an Agilent-LC 1200 Series coupled to a 6210 Agilent Time-Of-Flight 

(TOF) or mass spectrometer equipped with an electrospray source in both positive 

and negative (ESI +/-) modes. Infrared spectra were obtained as a film on NaCl plates, 

as KBr disks or via ATR as a solid on a zinc selenide crystal in the region 4000-400 cm-
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1 on a Perkin Elmer Spectrum 100 FT-IR spectrophotometer. UV-Vis spectra were 

recorded in a Perkin Elmer precisely Lambda 35 UV/Vis spectrometer. Compounds 

were lyophilized on a Labconco FreeZone 1 Freeze Dry system. 

7.2 Experimental Procedures 

7.2.1 Experimental Procedures for Chapter 2 

2,3,4,6-Tetra-O-acetyl-1-β-azido-D-galactopyranoside (2.40) 

 

TMSN3 (1.68 mL, 12.809 mmol, 2.5 equiv) was added to a solution of β-D-galactose 

pentaacetate 2.36 (2.00 g, 5.12 mmol) in anhydrous DCM (20 mL). SnCl4 (0.3 mL, 2.56 

mmol, 0.5 equiv) was added to this solution and the reaction mixture was stirred at 

rt for 18 h. Sat. NaHCO3 solution (30 mL) was added and the suspension was extracted 

with DCM (2 x 30 mL). The combined organic layers were dried over MgSO4, filtered 

and concentrated in vacuo to afford 2.40 as a white solid which was recrystallized 

from EtOH giving the pure product 2.41 as white crystals (1.86 g, 97 %). 1H NMR (500 

MHz, CDCl3) δ 5.42 (d, J = 3.3 Hz, 1H, H-4), 5.18 – 5.13 (m, 1H, H-2), 5.03 (dd, J = 10.3, 

3.4 Hz, 1H, H-3), 4.59 (d, J = 8.8 Hz, 1H, H-1), 4.20 – 4.13 (m, 2H, H-6 and H-6’), 4.01 

(appt, J = 6.6 Hz, 1H, H-5), 2.16 (s, 3H, OAc), 2.09 (s, 3H, OAc), 2.06 (s, 3H, OAc), 1.98 

(s, 3H, OAc). 

The NMR data is in agreement with the data reported in the literature.183 

2,3,4,6-Tetra-O-acetyl-1-β-azido-D-glucopyranoside (2.41) 

 

TMSN3 (1.68 mL, 12.809 mmol, 2.5 equiv) was added to a solution of β-D-glucose 

pentaacetate 2.37 (2.00 g, 5.12 mmol) in anhydrous DCM (20 mL). SnCl4 (0.3 mL, 2.56 

mmol, 0.5 equiv) was added to this solution and the reaction mixture was stirred at 

rt for 18 h. Sat. NaHCO3 solution (30 mL) was added and the suspension was extracted 

2.36 2.40 

2.37 2.41 
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with DCM (2 x 30 mL). The combined organic layers were dried over MgSO4, filtered 

and concentrated in vacuo. The crude product was obtained as a white solid, which 

was recrystallized from EtOH giving the pure product 2.41 as white crystals (1.79 g, 

94 %). 1H NMR (500 MHz, CDCl3) δ 5.21 (t, J = 9.5, 1H, H-3), 5.09 (t, J = 9.7 Hz, 1H, H-

4), 4.94 (t, J = 9.2 Hz, 1H, H-2), 4.64 (d, J = 8.9 Hz, 1H, H-1), 4.26 (dd, J = 12.5, 4.8 Hz, 

1H, H-6), 4.16 (dd, J = 12.4, 2.1 Hz, 1H, H-6’), 3.79 (ddd, J = 10.1, 4.7, 2.2 Hz, 1H, H-5), 

2.09 (s, 3H, OAc), 2.07 (s, 3H, OAc), 2.02 (s, 3H, OAc), 2.00 (s, 3H, OAc). 

The NMR data is in agreement with the data reported in the literature.183  

2,3,4,6-Tetra-O-acetyl-1-α-azido-D-mannopyranoside (2.42) 

 

TMSN3 (1.1 mL, 8.19 mmol, 2.5 equiv) was added to a solution of α-D-mannose 

pentaacetate 2.38 (1.279 g, 3.28 mmol) in anhydrous DCM (15 mL). SnCl4 (0.2 mL, 

1.64 mmol, 0.5 equiv) was added to this solution and the reaction mixture was stirred 

at rt for 18 h. Sat. NaHCO3 solution (20 mL) was added and the suspension was 

extracted with DCM (2 x 30 mL). The combined organic layers were washed with 

brine (20 mL), dried over MgSO4, filtered and concentrated in vacuo to afford 2.42 as 

a clear colourless oil which was used without further purification (1.18 g, 97 %). 1H 

NMR (500 MHz, CDCl3) δ 5.29 (s, 1H, H-1), 5.22 (s, 1H, H-2), 5.18 – 5.08 (m, 2H, H-3 

and H-4), 4.18 (dd, J = 12.7, 5.8 Hz, 1H, H-6), 4.06 – 4.01 (m, 2H, H-5 and H-6’), 2.04 

(s, 3H, OAc), 1.98 (s, 3H, OAc), 1.93 (s, 3H, OAc), 1.86 (s, 3H, OAc). 

The NMR data is in agreement with the data reported in the literature.185 

4-O-(2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl)-2,3,6-tri-O-acetyl-1--azido-D-

glucopyranoside (2.43) 

 

2.38 2.42 
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TMSN3 (0.97 mL, 7.37 mmol, 2.5 equiv) was added to a solution of β-D-lactose 

octaacetate 2.39 (2.00 g, 2.95 mmol) in anhydrous DCM (20 mL). SnCl4 (0.17 mL, 1.47 

mmol, 0.5 equiv) was added to this solution and the reaction mixture was stirred at 

rt for 18 h. Sat. NaHCO3 solution (30 mL) was added and the suspension was extracted 

with DCM (2 x 30 mL). The combined organic layers were dried over MgSO4, filtered 

and concentrated in vacuo to afford the crude product, which was purified by silica 

gel column chromatography (EtOAc:Pet Ether 1:1) to give the pure product 2.43 as 

an off-white solid (1.54 g, 79 %). Rf= 0.71 (DCM:MeOH 9:1). 1H NMR (500 MHz, CDCl3) 

δ 5.23 (d, J = 3.3 Hz, 1H, H-4 Gal), 5.10 (dd, J = 11.6, 6.8 Hz, 1H, H-3 Glc), 4.98 (dd, J = 

10.2, 8.0 Hz, 1H, H-2 Gal), 4.87 (dd, J = 10.4, 3.3 Hz, 1H, H-3 Gal), 4.74 (t, J = 9.1, 4.0 

Hz, 1H, H-2 Glc), 4.56 (d, J = 8.8 Hz, 1H, H-1 Glc), 4.43 (d, J = 8.0 Hz, 1H, H-1 Gal), 4.06 

– 3.95 (m, 4H, H-6 and H-6’ Gal and Glc), 3.82 (t, J = 6.7 Hz, 1H, H-5 Gal), 3.73 (t, J = 

9.4 Hz, 1H, H-4 Glc), 3.67 – 3.61 (m, 1H, H-5 Glc), 2.03 (s, 3H, OAc), 2.02 (s, 3H, OAc), 

1.96 (s, 3H, OAc), 1.95 (s, 3H, OAc), 1.94 (s, 3H, OAc), 1.92 (s, 3H, OAc), 1.85 (s, 3H, 

OAc). 

The NMR data is in agreement with the data reported in the literature.184  

2,3,4-Tri-O-acetyl-1-β-azido-L-fucopyranoside (2.45) 

 

TMSN3 (1.98 mL, 15.05 mmol, 2.5 equiv) was added to a solution of β-L-fucose 

tetraaacetate 2.44 (2.00 g, 6.02 mmol) in anhydrous DCM (20 mL). SnCl4 (0.35 mL, 

3.01 mmol, 0.5 equiv) was added to this solution and the reaction mixture was stirred 

at rt for 18 h. Sat. NaHCO3 solution (30 mL) was added and the suspension was 

extracted with DCM (2 x 30 mL). The combined organic layers were dried over MgSO4, 

filtered and concentrated in vacuo to afford 2.45 as an off-white solid which was used 

without further purification (1.59 g, 84 %). 1H NMR (500 MHz, CDCl3) δ 5.26 (d, J = 3.3 

Hz, 1H, H-4), 5.14 (dd, J = 10.2, 8.8 Hz, 1H, H-2), 5.03 (dd, J = 10.3, 3.4 Hz, 1H, H-3), 

4.57 (d, J = 8.7 Hz, 1H, H-1), 3.90 (q, J = 6.4 Hz, 1H, H-5), 2.19 (s, 3H, OAc), 2.08 (s, 3H, 

OAc), 1.98 (s, 3H, OAc), 1.25 (d, J = 6.4 Hz, 3H, CH3). 

2.44 2.45 
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The NMR data is in agreement with the data reported in the literature.183  

2-Chloroethyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (2.46)  

 

 

A solution of β-D-galactose pentaacetate 2.36 (2.00 g, 5.12 mmol) and 2-

chloroethanol (0.45 mL, 6.66 mmol, 1.3 equiv) in anhydrous DCM (20 mL) with 3 Å 

molecular sieves (3.00 g) was stirred under N2 in an ice bath for 15 min. A freshly 

prepared solution of BF3.OEt2 (1.2 mL, 9.73 mmol, 1.9 equiv) in anhydrous DCM (2 

mL) was added dropwise over a period of 30 min via cannula. When addition was 

complete, the mixture was allowed to reach rt and stirred overnight. The molecular 

sieves were filtered using fluted filter paper, the solids were washed with DCM (10 

mL) and the filtrate was washed with a sat. NaHCO3 solution (2 x 20 mL). The 

combined aqueous layers were extracted with DCM (20 mL), the combined organic 

layers were washed with brine (20 mL) and distilled water (20 mL), dried over MgSO4, 

filtered and concentrated in vacuo. The crude product was obtained as a white solid, 

which was recrystallized from EtOH giving the pure product 2.46 as white crystals 

(0.85 g, 40 %). 1H NMR (500 MHz, CDCl3) δ 5.39 (d, J = 2.7 Hz, 1H, H-4), 5.22 (dd, J = 

10.4, 8.0 Hz, 1H, H-2), 5.02 (dd, J = 10.5, 3.4 Hz, 1H, H-3), 4.53 (d, J = 7.9 Hz, 1H, H-1), 

4.20 – 4.08 (m, 3H, H-6, H-6’and OCH), 3.91 (t, J = 6.4 Hz, 1H, H-5), 3.76 (dt, J = 11.2, 

6.6 Hz, 1H, OCH), 3.62 (dd, J = 6.3, 5.2 Hz, 2H, CH2Cl), 2.15 (s, 3H, OAc), 2.07 (s, 3H, 

OAc), 2.05 (s, 3H, OAc), 1.98 (s, 3H, OAc). 

The NMR data is in agreement with the data reported in the literature.186 

 2-Azidoethyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (2.47)  

 

2.36 2.46 
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A solution of 2-chloroethyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside 2.46 (850 

mg, 2.069 mmol) and NaN3 (269 mg, 4.138 mmol, 2 equiv) in anhydrous DMF (30 mL) 

was stirred at 80 °C in a round bottomed flask equipped with a condenser and a CaCl2 

drying tube. After 16 h, the solvent was removed under reduced pressure. The crude 

product was dissolved in DCM (30 mL) and washed with brine (3 x 20 mL). The organic 

phases were combined, dried over MgSO4 and concentrated in vacuo to give a clear 

syrup that turned into a white solid 2.47 upon exposure to high vacuum, which was 

reacted without further purification (518 mg, 60 %). 1H NMR (500 MHz, CDCl3) δ 5.33 

(dd, J = 3.4, 1.1 Hz, 1H, H-4), 5.17 (dd, J = 10.5, 8.0 Hz, 1H, H-2), 4.97 (dd, J = 10.5, 3.4 

Hz, 1H, H-3), 4.51 (d, J = 8.0 Hz, 1H, H-1), 4.15-4.04 (m, 2H, H-6 and H-6’), 3.98 (ddd, 

J = 10.7, 4.8, 3.5 Hz, 1H, OCH), 3.88 (td, J = 6.6, 1.1 Hz, 1H, H-5), 3.64 (ddd, J = 10.8, 

8.4, 3.4 Hz, 1H, OCH), 3.44 (ddd, J = 13.3, 8.4, 3.5 Hz, 1H, CHN3), 3.25 (ddd, J = 13.4, 

4.8, 3.4 Hz, 1H, CHN3), 2.09 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.98 (s, 3H, OAc), 1.92 (s, 

3H, OAc). 

The NMR data is in agreement with the data reported in the literature.186 

 2-Acetamido-2-deoxy-3,4,6-tri-O-acetyl-1-β-azido-D-galactopyranoside (2.52) 

 

2-Chloro-1,3-dimethylimidazolium chloride (DMC) (0.940 g, 5.56 mmol, 3 equiv) was 

added to a mixture of N-acetyl-D-galactosamine 2.48 (0.410 g, 1.85 mmol), 2,6-

lutidine (1.3 mL, 11.10 mmol, 6 equiv) and NaN3 (1.203 g, 18.50 mmol, 10 equiv) in 

D2O (10 mL). The reaction was stirred for 3 days at 6 °C. The solvent was removed in 

vacuo, CH3Cl:MeOH (3:1, 10 mL) was added and was sonicated for 5 mins. The solid 

was removed by filtration and the filtrate was concentrated in vacuo. The crude 

product was dissolved in H2O (20 mL) and washed with DCM (2 x 20 mL). Amberlite 

OH- was added to the aqueous layer, it was filtered and concentrated in vacuo. The 

crude product was purified by silica gel column chromatography (CHCl3:MeOH 4:1) 

to give product 2.50 (0.356 g, 78 %). 2-Acetamido-2-deoxy-β-D-galactopyranosyl 

azide 2.50 (0.356 g, 1.45 mmol) was immediately reacted with acetic anhydride in 

pyridine (1:1, 10 mL) for 3 h. The solvent was removed in vacuo to yield a clear 

2.48 2.50 2.52 
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colourless oil, which was dissolved in DCM (20 mL) and washed with brine (2 x 20 

mL), dried over MgSO4 and concentrated in vacuo to give the crude product which 

was purified by silica gel column chromatography (EtOAc:Pet Ether 1:1) to give the 

pure product 2.52 as a colourless oil (0.458 g, 85 %). 1H NMR (500 MHz, CDCl3) δ 6.09 

(d, J = 8.9 Hz, 1H, NH), 5.36 (dd, J = 3.3, 0.8 Hz, 1H, H-4), 5.23 (dd, J = 11.2, 3.4 Hz, 1H, 

H-3), 4.79 (d, J = 9.2 Hz, 1H, H-1), 4.15 – 4.13 (m, 2H, H-6 and H-6’), 4.07 – 3.97 (m, 

2H, H-5 and H-2), 2.14 (s, 3H, NHOAc), 2.03 (s, 3H, OAc), 1.98 (s, 3H, OAc), 1.96 (s, 3H, 

OAc). 

The NMR data is in agreement with the data reported in the literature.274 

2-Acetamido-2-deoxy-3,4,6-tri-O-acetyl-1-β-azido-D-glucopyranoside (2.53) 

 

2-Chloro-1,3-dimethylimidazolium chloride (DMC) (1.076 g, 6.36 mmol, 3 equiv) was 

added to a mixture of N-acetyl-D-glucosamine 2.49 (0.469 g, 2.12 mmol), 2,6-lutidine 

(1.5 mL, 12.72 mmol, 6 equiv) and NaN3 (1.378 g, 21.20 mmol, 10 equiv) in D2O (10 

mL). The reaction was stirred for 3 days at 6 °C. The solvent was removed under 

reduced pressure, CH3Cl:MeOH (3:1, 10 mL) was added and was sonicated for 5 mins. 

The solid was removed by filtration and the filtrate was concentrated in vacuo. The 

crude product was dissolved in H2O (20 mL) and washed with DCM (2 x 20 mL). 

Amberlite OH- was added to the aqueous layer, it was filtered and concentrated 

under reduced pressure. The crude product was purified by silica gel column 

chromatography (CHCl3:MeOH 4:1) to give product 2.51 (0.392 g, 75 %). 2-

Acetamido-2-deoxy-β-D-glucopyranosyl azide 2.51 (0.392 g, 1.59 mmol) was 

immediately reacted with acetic anhydride in pyridine (1:1, 10 mL) for 3 h. The 

solvent was evaporated under reduced pressure to yield a clear colourless oil, which 

was dissolved in DCM (20 mL) and washed with brine (2 x 20 mL), dried over MgSO4 

and concentrated in vacuo to give a clear syrup (0.533 g, 90 %). 1H NMR (500 MHz, 

CDCl3) δ 6.33 (d, J = 9.0 Hz, 1H, NH), 5.26 (dd, J = 10.5, 9.5 Hz, 1H, H-3), 5.06 (appt, J 

= 9.7 Hz, 1H, H-4), 4.80 (d, J = 9.3 Hz, 1H, H-1), 4.23 (dd, J = 12.4, 5.0 Hz, 1H, H-6), 4.13 

(dd, J = 12.4, 2.2 Hz, 1H, H-6’), 3.90 (appdd, J = 10.5, 9.2 Hz, 1H, H-2), 3.81 (ddd, J = 

2.49 2.51 2.53 
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10.1, 4.9, 2.3 Hz, 1H, H-5), 2.06 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.99 (s, 3H, OAc), 1.94 

(s, 3H, NHAc). 

The NMR data is in agreement with the data reported in the literature.275 

N-(Prop-2-yn-1-yl)-3-propionamidobenzamide (2.56) 

 

3-aminobenzoic acid 2.54 (2 g, 14.6 mmol) was dissolved in anhydrous THF (15 mL) 

under N2 and propionyl chloride (3.19 mL, 36.5 mmol) was added dropwise. The 

mixture was allowed to stir for 5 min and NEt3 (6.1 mL, 43.8 mmol) was added slowly. 

The reaction was left to stir for 16 h. The solvent was removed in vacuo. The crude 

mixture was dissolved in ethyl acetate (30 mL), washed with 0.5 M HCl (30 mL), and 

dried (MgSO4). The mixture was filtered and the solvent was removed under reduced 

pressure to yield the product 3-(propionylamino)benzoic acid 2.55 as an off-white 

solid (0.637 g, 23 %) which was used without further purification. Compound 2.55 

(0.307 g, 1.59 mmol) and TBTU (0.56 g, 1.75 mmol) were dissolved in anhydrous DMF 

(15 mL) under N2. NEt3 (0.3 mL, 2.38 mmol) was added, and the reaction mixture was 

stirred for 10 min on ice. Propargylamine (0.15 mL, 2.38 mmol) was added, and the 

reaction was stirred for 16 h at rt. The solvent was removed in vacuo. The crude 

mixture was dissolved in ethyl acetate (30 mL), washed with 0.5 M HCl (30 mL), sat. 

NaHCO3 (30 mL) and brine (30 mL), and dried (MgSO4). The mixture was filtered and 

the solvent was removed in the rotatory evaporator to yield product 2.56 as a pale 

yellow solid (0.359 g, 98 %). 1H NMR (500 MHz, d6-DMSO): δ 9.99 (s, 1H, NHCH2CCH), 

8.86 (s, 1H, NHCOC2H5), 8.04 (s, 1H, Ar-H), 7.77 (d, J = 8.2 Hz, 1H, Ar-H), 7.48 (d, J = 

7.7 Hz, 1H, Ar-H), 7.37 (t, J = 7.9 Hz, 1H, Ar-H), 4.03 (dd, J = 5.5, 2.4 Hz, 2H, CH2CCH), 

3.10 (t, J = 2.3 Hz, 1H, CH2CCH), 2.32 (q, J = 7.5 Hz, 2H, CH2CH3), 1.08 (t, J = 7.5 Hz, 3H, 

CH2CH3). 13C NMR (125 MHz, d6-DMSO): δ 172.6 (COC2H5), 166.4 (CONHCH2-triaz), 

139.9 (Ar-C), 135.0 (Ar-C), 129.1 (Ar-CH), 122.3 (Ar-CH), 121.8 (Ar-CH), 118.9 (Ar-CH), 

81.8 (CH2CCH), 73.2 (CH2CCH), 30.0 (CH2CH3), 29.0 (CH2CCH), 10.1 (CH2CH3). IR (KBr): 

2.54 
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3365, 3321, 3298, 3117, 2977, 2942, 1690, 1652, 1562 cm-1. HRMS (ESI+): m/z calcd 

for C13H15N2O2 +H+ [M+H]+ 231.1134, found 231.1135. 

N-(2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-ylmethylamide)-N’-

propyl-3-aminobenzene-1-carboxamide (2.57) 

 

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution of 2.40 (266 mg, 0.476 mmol) and 2.56 (100 mg, 0.432 mmol) in 

acetone/H2O (4 mL/ 2mL). The reaction was allowed to stir at room temperature for 

16 h. The solvent was removed in vacuo. The residue was dissolved in DCM (30 mL), 

washed with water (20 mL x 3), and dried (MgSO4). The mixture was filtered and the 

solvent was removed in vacuo to yield the crude product, which was purified by silica 

gel column chromatography (DCM:MeOH 98:2-93:7) to give the pure product 2.57 as 

an off-white solid (235 mg, 83%). Rf= 0.45 (DCM:MeOH 9:1). [α]D
19

 -6.9 (c 0.9, DCM). 

1H NMR (500 MHz, CDCl3): δ 8.62 (s, 1H, NHCOC2H5), 7.95 (s, 1H, triaz-H), 7.89 – 7.78 

(m, 2H, Ar-H x 2), 7.72 (s, 1H, NHCH2-triaz), 7.48 (d, J = 7.4 Hz, 1H, Ar-H), 7.28 (t, J = 

7.8 Hz, 1H, Ar-H), 5.91 (d, J = 9.2 Hz, 1H, H-1), 5.56 (m, 2H, H-2 and H-4), 5.34 – 5.24 

(m, 2H, H-3), 4.68 (dd, J = 14.5, 3.5 Hz, 2H, CH2-triaz), 4.31 (t, J = 6.1 Hz, 1H, H-5), 4.15 

(dd, J = 11.5, 6.8 Hz, 2H, H-6 and H-6’), 2.39 (q, J = 7.4 Hz, 2H, CH2CH3), 2.18 (s, 3H, 

OAc), 2.00 (s, 6H, OAc x2), 1.82 (s, 3H, OAc), 1.18 (t, J = 7.5 Hz, 3H, CH2CH3). 13C NMR 

(125 MHz, CDCl3): δ 173.0 (NHCOC2H5), 170.4 (CO of OAc), 170.1 (CO of OAc), 169.9 

(CO of OAc), 169.1 (CO of OAc), 167.5 (CONHCH2-triaz), 145.4 (C-triaz), 138.8 (Ar-C), 

134.5 (Ar-C), 129.1 (Ar-CH), 123.1 (Ar-CH), 122.3 (Ar-CH), 121.6 (CH-triaz), 118.5 (Ar-

CH), 86.1 (C-1), 73.9 (C-5), 70.8 (C-3), 68.0 (C-2), 66.9 (C-4), 61.2 (C-6), 35.3 (CH2-triaz), 

30.4 (CH2CH3), 20.6 (CH3 of OAc), 20.6 (CH3 of OAc), 20.5 (CH3 of OAc), 20.2 (CH3 of 

OAc), 9.6 (CH2CH3). IR (film on NaCl): 3311, 2980, 1753, 1652, 1591, 1553 cm-1. HRMS 

(ESI+): m/z calcd for C27H34N5O11 +H+ [M+H]+ 604.2255, found 604.2262. 

2.56 

2.40 
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N-(2,3,4-Tri-O-acetyl-β-L-fucopyranosyl-1,2,3-triazol-4-ylmethylamide)-N’-propyl-

3-aminobenzene-1-carboxamide (2.58) 

 

Copper sulphate pentahydrate (10 mg) and sodium ascorbate (20 mg) were added to 

a solution of 2.45 (75 mg, 0.239 mmol) and 2.56 (50 mg, 0.217 mmol) in acetone/H2O 

(4 mL/ 2mL). The reaction was allowed to stir at room temperature for 16 h. The 

solvent was removed in vacuo. The residue was dissolved in DCM (30 mL), washed 

with water (20 mL x 3), and dried (MgSO4). The mixture was filtered and the solvent 

was removed in vacuo to yield the crude product, which was purified by silica gel 

column chromatography (DCM:MeOH 98:2-93:7) to give the pure product 2.58 as an 

off-white solid (90 mg, 76 %). Rf=0.56 (DCM:MeOH 9:1). [α]D
20

: +16.1 (c 1, DCM). 1H 

NMR (500 MHz, CDCl3): δ 8.32 (s, 1H, NHCOC2H5), 7.90 (s, 1H, triaz-H), 7.87 (d, J = 8.0 

Hz, 1H, Ar-H), 7.77 (s, 1H, Ar-H), 7.46 (m, 2H, Ar-H and NHCH2-triaz), 7.28 (t, J = 8.0 

Hz, 1H, Ar-H), 5.78 (d, J = 9.2 Hz, 1H, H-1), 5.52 – 5.46 (m, 1H, H-2), 5.35 (d, J = 2.9 Hz, 

1H, H-4), 5.24 (dd, J = 10.3, 3.4 Hz, 1H, H-3), 4.66 (dd, J = 15.2, 5.6 Hz, 2H, CH2-triaz), 

4.11 (q, J = 6.4 Hz, 1H, H-5), 2.37 (q, J = 7.5 Hz, 2H, CH2CH3), 2.20 (s, 3H, OAc), 1.97 (s, 

3H, OAc), 1.81 (s, 3H, OAc), 1.26 – 1.13 (m, 6H, C6-H3 and CH2CH3). 13C NMR (125 

MHz, CDCl3): δ 171.8 (COC2H5), 169.5 (CO of OAc), 168.9 (CO of OAc), 168.2 (CO of 

OAc), 166.4 (CONHCH2-triaz), 144.3 (C-triaz), 137.8 (Ar-C), 133.6 (Ar-C), 128.2 (Ar-

CH), 122.1 (Ar-CH), 121.4 (Ar-CH), 120.4 (CH-triaz), 117.4 (Ar-CH), 85.3 (C-1), 71.7 (C-

5), 70.2 (C-3), 68.9 (C-4), 67.2 (C-2), 34.4 (CH2-triaz), 29.5 (CH2CH3), 19.7 (CH3 of OAc), 

19.5 (CH3 of OAc), 19.3 (CH3 of OAc), 15.0 (C-6), 8.6 (CH2CH3). IR (film on NaCl): 3308, 

3146, 3085, 2985, 2941, 2248, 1750, 1647, 1591, 1553 cm-1. HRMS (ESI+): m/z calcd 

for C25H32N5O9 + H+ [M+H]+ 546.2200, found 546.2197. 
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N-[2-O-(2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl)-ethyl-1,2,3-triazol-4-

ylmethylamide)-N’-propyl-3-aminobenzene-1-carboxamide (2.59) 

 

Copper sulphate pentahydrate (10 mg) and sodium ascorbate (20 mg) were added to 

a solution of 2.47 (71 mg, 0.694 mmol) and 2.56 (39 mg, 0.6307 mmol) in 

acetone/H2O (4 mL/ 2mL). The reaction was allowed to stir at room temperature for 

16 h. The solvent was removed in vacuo. The residue was dissolved in DCM (30 mL), 

washed with water (20 mL x 3), and dried (MgSO4). The mixture was filtered and the 

solvent was removed in vacuo to yield the crude product, which was purified by silica 

gel column chromatography (DCM:MeOH 98:2-93:7) to give the pure product 2.59 as 

an off-white solid (97 mg, 88 %). Rf=0.36 (DCM:MeOH 9:1). [α]D
23

 -3.1 (c 1, DCM). 1H 

NMR (500 MHz, CDCl3): δ 8.41 (s, 1H, NHCOC2H5), 7.90 (d, J = 8.0 Hz, 1H, Ar-H), 7.80 

(s, 1H, Ar-H), 7.63 (s, 1H, triaz-H), 7.56 (t, J = 5.1 Hz, 1H, NHCH2-triaz), 7.46 (d, J = 7.7 

Hz, 1H, Ar-H), 7.27 (t, J = 8 Hz, 1H, Ar-H), 5.34 (dd, J = 3.4, 1.0 Hz, 1H, H-4), 5.11 (dd, 

J = 12.5, 6.2 Hz, 1H, H-2), 4.96 (dd, J = 10.5, 3.4 Hz, 1H, H-3), 4.69 –4.59 (m, 2H, CH2-

triaz), 4.56 – 4.44 (m, 2H, CH2CH2O), 4.42 (d, J=7.9, 1H, H-1), 4.18 (dt, J = 10.5, 4.1 Hz, 

1H, CHO-Gal), 4.08 (dd, J = 11.3, 6.6 Hz, 2H, H-6 and H-6’), 3.95 – 3.85 (m, 2H, CHO-

Gal and H-5), 2.36 (q, J = 7.5 Hz, 2H, CH2CH3), 2.09 (s, 3H, OAc), 1.99 (s, 3H, OAc), 1.93 

(s, 3H, OAc), 1.90 (s, 3H, OAc), 1.16 (t, J = 7.6 Hz, 3H, CH2CH3). 13C NMR (125 MHz, 

CDCl3): δ 172.8 (COC2H5), 170.4 (CO of OAc), 170.2 (CO of OAc), 170.0 (CO of OAc), 

169.7 (CO of OAc), 167.3 (CONHCH2-triaz), 144.5 (C-triaz), 138.9 (Ar-C), 134.6 (Ar-C), 

129.1 (Ar-CH), 123.8 (CH-triaz), 123.0 (Ar-CH), 122.2 (Ar-CH), 118.5 (Ar-CH), 100.9 (C-

1), 70.9 (C-5), 70.6 (C-3), 68.6 (C-2), 67.5 (CH2CH2O-Gal), 66.9 (C-4), 61.2 (C-6), 50.1 

(CH2CH2O-Gal), 35.5 (CH2-triaz), 30.5 (CH2CH3), 20.6 (CH3 of OAc), 20.6 (CH3 of OAc), 

20.6 (CH3 of OAc), 20.5 (CH3 of OAc), 9.6 (CH2CH3). IR (film on NaCl): 3312, 3146, 2980, 

2.56 

2.47 

2.59 
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2941, 2250, 2111, 1750, 1649, 1591, 1552 cm-1. HRMS (ESI+): m/z calcd for C29H37-

N5O12 + H+ [M+H]+ 648.2517, found 648.2581. 

N-(β-D-Galactopyranosyl-1,2,3-triazol-4-ylmethylamide)-N’-propyl-3-

aminobenzene-1-carboxamide (2.60) 

 

2.57 (110 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 °C for 6 h. The solution was cooled, 

Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered and the solvent was removed in vacuo. The residue was dried under high 

vacuum and lyophilized to give the pure product 2.60 as a fluffy white solid (73 mg, 

92 %). [α]D
19

 +11.6 (c 0.7, H2O). 1H NMR (500 MHz, D2O): δ 8.09 (s, 1H, triaz-H), 7.55 

(t, J = 1.8 Hz, 1H, Ar-H), 7.34 (ddd, J = 8.0, 2.1, 1.0 Hz, 1H, Ar-H), 7.32 – 7.29 (m, 1H, 

Ar-H), 7.21 (t, J = 7.9 Hz, 1H, Ar-H), 5.53 (d, J = 9.2 Hz, 1H, H-1), 4.48 (s, 2H, CH2-triaz), 

4.07 (t, J = 9.5 Hz, 1H, H-2), 3.93 (dd, J = 3.3, 0.6 Hz, 1H, H-4), 3.83 (td, J = 6.0, 0.8 Hz, 

1H, H-5), 3.72 (dd, J = 9.8, 3.3 Hz, 1H, H-3), 3.62 (d, J = 6.1 Hz, 2H, H-6 and H-6’), 2.24 

– 2.18 (q, J = 7.7 Hz, 2H, CH2CH3), 0.99 (t, J = 7.6 Hz, 3H, CH2CH3). 13C NMR (125 MHz, 

D2O): δ 176.5 (NHCOC2H5), 169.7 (CONHCH2-triaz), 145.0 (C-triaz), 137.5 (Ar-C), 133.7 

(Ar-C), 129.4 (Ar-CH), 124.8 (Ar-CH), dos sant5 (Ar-CH), 123.1 (CH-triaz), 119.8 (Ar-

CH), 88.2 (C-1), 78.3 (C-5), 72.9 (C-3), 69.8 (C-2), 68.6 (C-4), 60.9 (C-6), 34.9 (CH2-triaz), 

29.8 (CH2CH3), 9.2 (CH2CH3). IR (ATR): 3268, 1643, 1588, 1542 cm-1. HRMS (ESI+): m/z 

calcd for C19H26N5O7 +H+ [M+H]+ 436.1882, found 436.1826. 

 

 

 

2.57 2.60 
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N-(β-L-Fucopyranosyl-1,2,3-triazol-4-ylmethylamide)-N’-propyl-3-aminobenzene-

1-carboxamide (2.61) 

 

2.58 (87 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 °C for 6 h. The solution was cooled, 

Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered and the solvent was removed in vacuo. The residue was dried under high 

vacuum and lyophilized to give the pure product 2.61 as a yellow solid (63 mg, 94 %). 

[α]D
23

 -6.3 (c 0.6, H2O). 1H NMR (500 MHz, d6-DMSO): δ 10.02 (s, 1H, NHCOC2H5), 9.01 

(t, J = 5.6 Hz, 1H, NHCH2-triaz), 8.07 (m, 2H, triaz-H and Ar-H), 7.82 (d, J = 8.2 Hz, 1H, 

Ar-H), 7.56 (d, J = 7.7 Hz, 1H, Ar-H), 7.40 (t, J = 7.9 Hz, 1H, Ar-H), 5.47 (d, J = 9.2 Hz, 

1H, H-1), 5.20 (d, J = 5.9 Hz, 1H, OH), 4.96 (d, J = 5.4 Hz, 1H, OH), 4.67 (d, J = 5.7 Hz, 

1H, OH), 4.61 – 4.49 (m, 2H, CH2-triaz), 3.99 (dd, J = 15.0, 9.1 Hz, 1H, H-2), 3.89 (q, J 

= 6.4 Hz, 1H, H-5), 3.56 (m, 2H, H-3 and H-4), 2.36 (q, J = 7.6 Hz, 2H, CH2CH3), 1.16 (d, 

J = 6.4 Hz, 3H, C6-H3), 1.12 (t, J = 7.5 Hz, 3H, CH2CH3). 13C NMR (125 MHz, d6-DMSO): 

δ 172.6 (COC2H5), 166.7 (CONHCH2-triaz), 145.6 (C-triaz), 139.9 (Ar-C), 135.3 (Ar-C), 

129.1 (Ar-CH), 122.3 (Ar-CH), 122.0 (Ar-CH), 122.0 (CH-triaz), 119.0 (Ar-CH), 88.5 (C-

1), 74.4 (C-3), 73.7 (C-5), 71.6 (C-4), 69.5 (C-2), 35.4 (CH2-triaz), 30.0 (CH2CH3), 16.9 

(C-6), 10.1 (CH2CH3). IR (KBr): 3401, 2925, 1645, 1589, 1542 cm-1. HRMS (ESI+): m/z 

calcd for C19H25N7O7 + H+ [M+H]+ 436.1832, found 436.1849. 

N-[2-O-(β-D-Galactopyranosyl)-ethyl-1,2,3-triazol-4-ylmethylamide)-N’-propyl-3-

aminobenzene-1-carboxamide (2.62) 

 

2.58 2.61 

2.59 2.62 
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2.62 (122 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 °C for 6 h. The solution was cooled, 

Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered and the solvent was removed in vacuo. The residue was dried under high 

vacuum and lyophilized to give the pure product 2.56 as an off-white solid (104 mg, 

87 %). [α]D
24

 +3.8 (c 1, MeOH). 1H NMR (500 MHz, D2O): δ 8.00 (s, 1H, triaz-H), 7.75 

(s, 1H, Ar-H), 7.56-7.53 (m, 2H, Ar-H), 7.40 (t, J = 7.8 Hz, 1H, Ar-H), 4.50-4.46 (m, 4H, 

CH2-triaz and CH2CH2), 4.29-4.20 (m, 2H, H-1 and CHCH2), 4.15-4.10 (m, 1H, CHCH2), 

3.89 (s, 1H, H-4), 3.80-3.40 (m, 5H, H-6, H-6’, H-2, H-3 and H-5), 2.33 (s, 2H, CH2CH3), 

1.08 (s, 3H, CH2CH3). 13C NMR (125 MHz, D2O) δ 176.9 (COC2H5), 168.8 (CONHCH2-

triaz), 144.4 (C-triaz), 137.3 (Ar-C), 134.0 (Ar-C), 130.7 (Ar-CH), 127.8 (Ar-CH), 126.6 

(Ar-CH), 125.2 (CH-triaz), 122.1 (Ar-CH), 103.0 (C-1), 75.1 (C-5), 72.6 (C-3), 70.6 (C-2), 

68.5 (C-4), 67.8 (CH2CH2), 60.9 (C-6), 50.8 (CH2CH2), 34.8 (CH2-triaz), 29.8 (CH2CH3), 

9.3 (CH2CH3). IR (KBr): 3400, 2934, 2615, 1648, 1590, 1549 cm-1. HRMS (ESI+): m/z 

calcd for C21H29N5O8 + H+ [M+H]+ 480.2094, found 480.2107. 

N,N’-Di(prop-2-yn-1-yl)-5-propionamidoisophthalamide (2.69) 

 

5-aminoisophathalic acid 2.67 (5.00 g, 27.6 mmol) was dissolved in anhydrous THF 

(60 mL) under N2 and propionyl chloride (2.7 mL, 30.4 mmol) was added dropwise. 

The mixture was allowed to stir for 5 min and NEt3 (5 mL, 35.8 mmol) was added 

slowly. The reaction was left to stir for 22 h. The solvent was removed under reduced 

pressure, and the residue was dissolved in hot methanol. The insoluble material was 

filtered off and the filtrate was concentrated in vacuo to give 5-

propionoamidoisophthalic acid 2.68, which was used without further purification 

(5.03 g, 77 %). 5-propionoamidoisophthalic acid 2.68 (0.78 g, 3.27 mmol) and 

DMTMM (1.99 g, 7.20 mmol) were suspended in anhydrous DMF (25 mL) under N2. 

After 10 min, propargylamine (0.46 mL, 7.2 mmol) was added and the reaction 

mixture went clear. It was left to stir at rt for 16 h. The reaction mixture was poured 

2.67 
2.68 2.69 
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into ice/water (30 mL) and the precipitate formed, which was then filtered and dried 

in the fume cupboard to give 2.69 as a white amorphous solid (0.79 g, 78%). 1H NMR 

(500 MHz, d6-DMSO): δ 10.15 (s, 1H, NHCOC2H5), 8.94 (t, J = 5.3 Hz, 2H, NHCH2CCH), 

8.18 (s, 2H, Ar-H), 7.93 (s, 1H, Ar-H), 4.11-4.00 (m, 4H, NHCH2CCH), 3.13 (s, 2H, 

NHCH2CCH), 2.35 (q, J = 7.5 Hz, 2H, CH2CH3), 1.10 (t, J = 7.5 Hz, 3H, CH2CH3). 13C NMR 

(125 MHz, d6-DMSO): δ 172.8 (COC2H5), 166.2 (CONHCH2CCH), 140.0 (Ar-C), 135.3 

(Ar-C), 121.4 (Ar-CH), 120.7 (Ar-CH), 81.6 (CH2CCH), 73.4 (CH2CCH), 29.1 (CH2CH3), 

10.0 (CH2CH3). IR (KBr): 3289.16, 3241.00, 3093.06, 2977.14, 2116.87, 1682.50, 

1570.58 cm-1. HRMS (ESI+): m/z calcd for C17H17N3O3 +H+ [M+H]+ 312.1343, found 

312.1361. 

N,N’-Di-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-

ylmethylamide)-N’’-propyl-5-aminobenzene-1,3-dicarboxamide (2.78) 

 

Copper sulphate pentahydrate (40 mg) and sodium ascorbate (80 mg) were added to 

a solution of 2.40 (534 mg, 1.43 mmol) and 2.69 (212 mg, 0.68 mmol) in CH3CN/H2O 

(4 mL/ 2mL). The reaction was allowed to stir in the MW at 100 ⁰C until deemed 

complete by TLC analysis (10 mins). The solvent was removed in vacuo. The residue 

was dissolved in DCM (30 mL), washed with water (20 mL x 3), and dried (MgSO4). 

The mixture was filtered and the solvent was removed in vacuo to yield the crude 

product, which was purified by silica gel column chromatography (DCM:MeOH 98:2-

93:7) to give the pure product 2.70 as a sticky, yellow solid (608 mg, 84%). Rf = 0.29 

(DCM: methanol 9:1). [α]D
21

 -4.3 (c 0.7, DCM). 1H NMR (500 MHz, CDCl3): δ 9.09 (s, 

1H, NHCOC2H5), 8.21 (s, 2H, NHCH2-triaz), 7.97-7.95 (overlapping of 2 s, 4H, Ar-H and 

triaz-H), 7.78 (s, 1H, Ar-H), 5.89 (d, J = 9.2 Hz, 2H, H-1), 5.54 (t, J = 9.7 Hz, 2H, H-2), 

5.49 (d, J = 3.2 Hz, 2H, H-4), 5.27 (dd, J = 10.3, 3.2 Hz, 2H, H-3),  4.68-4.50 (m, 4H, CH2-

triaz), 4.29 (t, J = 6.5 Hz, 2H, H-5), 4.16 – 4.05 (m, 4H, H-6 and H-6’), 2.30 (q, J = 7.5 

Hz, 2H, CH2CH3), 2.14 (s, 3H, OAc), 1.93 (s, 6H, OAc x 2), 1.76 (s, 3H, OAc), 1.06 (t, J = 

2.69 2.70 

2.40 



Chapter 7 

188 
 

7.5 Hz, 3H, CH2CH3). 13C NMR (125 MHz, CDCl3): δ 173.4 (COC2H5), 170.4 (CO of OAc), 

170.2 (CO of OAc), 169.9 (CO of OAc), 169.3 (CO of OAc), 166.9 (CONHCH2-triaz), 

145.4 (C-triaz), 139.1 (Ar-C), 134.7 (Ar-C), 121.7 (CH-triaz), 121.4 (Ar-CH), 120.9 (Ar-

CH), 86.0 (C-1), 73.8 (C-5), 70.8 (C-3), 68.1 (C-2), 67.0 (C-4), 61.2 (C-6), 35.3 (CH2-triaz), 

30.2 (CH2CH3), 20.6 (CH3 of OAc), 20.6 (CH3 of OAc), 20.5 (CH3 of OAc), 20.2 (CH3 of 

OAc), 9.4 (CH2CH3). IR (film on NaCl): 3290, 2979, 2940, 2120, 1753, 1655, 1599, 1536 

cm-1. HRMS (ESI+): m/z calcd. for C45H56N9O21 +H+ [M+H]+ 1058.3591,  found 

1058.3602. 

N,N’-Di-(2,3,4-tri-O-acetyl-β-L-fucopyranosyl-1,2,3-triazol-4-ylmethylamide)-N’’-

propyl-5-aminobenzene-1,3-dicarboxamide (2.71) 

 

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution of 2.45 (106 mg, 0.34 mmol) and 2.69 (50 mg, 0.16 mmol) in CH3CN/H2O 

(4 mL/ 2mL). The reaction was allowed to stir in the MW at 100 ⁰C until deemed 

complete by TLC analysis (10 mins). The solvent was removed in vacuo. The residue 

was dissolved in DCM (30 mL), washed with water (20 mL x 3), and dried (MgSO4). 

The mixture was filtered and the solvent was removed in vacuo to yield the crude 

product, which was purified by silica gel column chromatography (DCM:MeOH 98:2-

93:7) to give the pure product 2.71 as a yellow solid (93 mg, 62 %). Rf=0.44 

(DCM:MeOH 9:1). [α]D
19

 +1.6 (c 0.9, DCM). 1H NMR (500 MHz, CDCl3): δ 8.37 (s, 1H, 

NHCOC2H5), 7.97 (s, 2H, triaz-H), 7.94 (s, 2H, Ar-H), 7.83 (t, J = 5.1 Hz, 2H, CONHCH2-

triaz), 7.70 (s, 1H, Ar-H), 5.84 (d, J = 9.2 Hz, 2H, H-1), 5.58 – 5.51 (m, 2H, H-2), 5.38 (d, 

J = 3.3 Hz, 2H, H-4), 5.27 – 5.23 (m, 2H, H-3), 4.74-4.58 (m, 4H, CH2-triaz), 4.15 (q, J = 

6.4 Hz, 2H, H-5), 2.38 (qd, J = 7.7, 3.7 Hz, 2H, CH2CH3), 2.22 (s, 6H, OAc), 1.99 (s, 6H, 

OAc), 1.83 (s, 6H, OAc), 1.24 (d, J = 6.4 Hz, 6H, C6-H3), 1.17 (t, J = 7.5 Hz, 3H, CH2CH3). 

13C NMR (125 MHz, CDCl3): δ 172.8 (NHCOC2H5), 170.5 (CO of OAc), 169.9 (CO of 

OAc), 169.4 (CO of OAc), 166.7 (CONHCH2-triaz), 145.5 (C-triaz), 139.1 (Ar-C), 135.0 

(Ar-C), 121.4 (CH-triaz), 121.2 (Ar-CH), 120.5 (Ar-CH), 86.3 (C-1), 72.8 (C-5), 71.3 (C-

2.69 2.71 

2.45 
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3), 69.9 (C-4), 68.2 (C-2), 35.5 (CH2-triaz), 30.4 (CH2CH3), 20.7 (CH3 of OAc), 20.5 (CH3 

of OAc), 20.3 (CH3 of OAc), 16.1 (C-6), 9.5 (CH2CH3). IR (film on NaCl): 3318, 2924, 

1749, 1656, 1535 cm-1. HRMS (ESI+): m/z calcd for C41H51N9O17 + H+ [M+H]+ 942.9130, 

found 942.9142. 

N, N’-Di-[2-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-ethyl-1,2,3-triazol-4-

ylmethylamide)-N’’-propyl-5-aminobenzene-1,3-dicarboxamide (2.72) 

 

Copper sulphate pentahydrate (40 mg) and sodium ascorbate (80 mg) were added to 

a solution of 2.47 (604 mg, 1.45 mmol) and 2.69 (180 mg, 0.58 mmol) in CH3CN/H2O 

(4 mL/ 2mL). The reaction was allowed to stir in the MW at 100 ⁰C until deemed 

complete by TLC analysis (10 mins). The solvent was removed in vacuo. The residue 

was dissolved in DCM (30 mL), washed with water (20 mL x 3), and dried (MgSO4). 

The mixture was filtered and the solvent was removed in vacuo to yield the crude 

product, which was purified by silica gel column chromatography (DCM:MeOH 98:2-

93:7) to give the pure product 2.72 as a sticky, yellow solid (545 mg, 82 %). Rf = 0.38 

(DCM:MeOH 9:1). [α]D
25

 -9.1 (c 1.1, DCM). 1H NMR (500 MHz, CDCl3): δ 9.11 (s, 1H, 

NHCOC2H5), 8.14 (s, 2H, CONHCH2-triaz), 7.96 (s, 2H, Ar-H), 7.64 (appd, J = 16.6 Hz, 

3H, Ar-H and triaz-H), 5.30 (d, J = 3.2 Hz, 2H, H-4), 5.07 (dd, J = 10.3, 8.1 Hz, 2H, H-2), 

4.94 (dd, J = 10.5, 3.2 Hz, 2H, H-3), 4.66 – 4.36 (m, 10H, CH2-triaz and CH2CH2O and 

H-1), 4.15 (dd, J = 13.6, 6.4 Hz, 2H, CHO-Gal), 4.09-4.01 (m, 4H, H-6 and H-6’), 3.88 

(ap t, J = 6.4 Hz, 4H, CHO-Gal and H-5), 2.27 (d, J = 7.0 Hz, 2H, CH2CH3), 2.06 (s, 6H, 

OAc), 1.95 (s, 6H, OAc), 1.89 (appd, J = 2.1 Hz, 12H, OAc x 2), 1.03 (t, J = 7.3 Hz, 3H, 

CH2CH3). 13C NMR (125 MHz, CDCl3): δ 173.2 (NHCOC2H5), 170.4 (CO of OAc), 170.2 

(CO of OAc), 170.0 (CO of OAc), 169.7 (CO of OAc), 166.8 (CONHCH2-triaz), 144.7 (C-

triaz), 139.3 (Ar-C), 134.7 (Ar-C), 123.6 (CH-triaz), 121.1 (Ar-CH), 120.2 (Ar-CH), 100.8 

(C-1), 70.7 (C-5), 70.6 (C-3), 68.5 (C-2), 67.5 (CH2CH2O), 66.9 (C-4), 61.1 (C-6), 50.00 

(CH2CH2O), 35.5 (CH2-triaz), 30.2 (CH2CH3), 20.7 (CH3 of OAc), 20.6 (CH3 of OAc), 20.6 

(CH3 of OAc), 20.5 (CH3 of OAc), 9.5 (CH2CH3). IR (film on NaCl): 3311, 3148, 3071, 

2.69 2.72 

2.47 
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2980, 1750, 1656, 1599, 1543 cm-1. HRMS (ESI+): m/z calcd for C49H64N9O23 + H+ 

[M+H]+ 1146.4115, found 1146.4208. 

N,N’-Di-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyl-1,2,3-triazol-4-

ylmethylamide)-N’’-propyl-5-aminobenzene-1,3-dicarboxamide (2.73) 

 

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution of 2.42 (67 mg, 0.18 mmol) and 2.69 (27 mg, 0.09 mmol) in CH3CN/H2O (4 

mL/ 2mL). The reaction was allowed to stir in the MW at 100 ⁰C until deemed 

complete by TLC analysis (10 mins). The solvent was removed in vacuo. The residue 

was dissolved in DCM (30 mL), washed with water (20 mL x 3), and dried (MgSO4). 

The mixture was filtered and the solvent was removed in vacuo to yield the crude 

product, which was purified by silica gel column chromatography (DCM:MeOH 98:2-

93:7) to give the pure product 2.73 as a sticky, yellow solid (110 mg, 82 %).Rf = 0.42 

(DCM:MeOH 9:1). [α]D
22

 +3 (c 1, DCM). 1H NMR (500 MHz, CDCl3): δ 8.93 (s, 1H, 

NHCOC2H5), 8.23 (s, 2H, NHCH2-triaz), 7.94 (s, 2H, triaz-H), 7.78 (s, 2H, Ar-H), 7.55 (s, 

1H, Ar-H), 6.11 (s, 2H, H-1), 5.99 (s, 2H, H-2), 5.90 (d, J = 9.8 Hz, 2H, H-3), 5.41 (t, J = 

9.6 Hz, 2H, H-4), 4.65 –4.54 (m, 4H, CH2-triaz), 4.27 (dd, J = 12.5, 2.9 Hz, 2H, H-6), 4.05 

(dd, J = 12.4, 3 Hz, 2H, H-6’), 3.97 (dd, J = 6.0, 3.5 Hz, 2H, H-5), 2.48 – 2.33 (m, 4H, 

CH2CH3), 2.17 (d, J = 1.2 Hz, 6H, OAc), 2.06 (d, J = 1.6 Hz, 6H, OAc), 2.02 – 1.96 (m, 

12H, OAc x2), 1.14 (dd, J = 9.4, 5.5 Hz, 6H, CH2CH3). 13C NMR (125 MHz, CDCl3): δ 

173.5 (COC2H5), 170.7 (CO of OAc), 170.0 (CO of OAc), 169.9 (CO of OAc), 169.7 (CO 

of OAc), 166.6 (CONHCH2-triaz), 145.6 (C-triaz), 138.9 (Ar-C), 134.4 (Ar-C), 123.5 (CH-

triaz), 121.4 (Ar-CH), 120.2 (Ar-CH), 84.2 (C-1), 71.8 (C-5), 69.3 (C-3), 68.3 (C-2), 65.6 

(C-4), 61.7 (C-6), 35.1 (CH2-triaz), 30.3 (CH2CH3), 20.8 (CH3 of OAc), 20.7 (CH3 of OAc), 

20.7 (CH3 of OAc), 20.6 (CH3 of OAc), 20.4 (CH3 of OAc), 9.5 (CH2CH3). IR (film on NaCl): 

3429, 2115, 1748, 1646 cm-1. HRMS (ESI+): m/z calcd for C45H56N9O21 + H+ [M+H]+ 

1058.3591, found 1058.3593. 

2.69 
2.73 

2.42 
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N,N’-Di-[{4-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-2,3,6-tri-O-acetyl-β-D- 

glucopyranosyl}-1,2,3-triazol-4-ylmethylamide]-N’’-propyl-5-aminobenzene-1,3-

dicarboxamide (2.74) 

 

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution of 2.43 (62 mg, 0.09 mmol) and 2.69 (14 mg, 0.05 mmol) in CH3CN/H2O (4 

mL/ 2mL). The reaction was allowed to stir in the MW at 100 ⁰C until deemed 

complete by TLC analysis (10 mins). The solvent was removed in vacuo. The residue 

was dissolved in DCM (30 mL), washed with water (20 mL x 3), and dried (MgSO4). 

The mixture was filtered and the solvent was removed in vacuo to yield the crude 

product, which was purified by silica gel column chromatography (DCM:MeOH 98:2-

93:7) to give the pure product 2.74 as a sticky, yellow solid (102 mg, 72 %). Rf = 0.62 

(DCM:MeOH 9:1). [α]D
22

 +11 (c 1, DCM). 1H NMR (500 MHz, CDCl3): δ 8.55 (s, 1H, 

NHCOC2H5), 7.93 – 7.84 (m, 6H, NHCH2-triaz, triaz-H and Ar-H), 7.68 (s, 1H, Ar-H), 5.84 

(d, J = 9.2 Hz, 2H, H-1 Gal), 5.53 – 5.45 (m, 2H, H-2 Gal), 5.40 (dd, J = 11.2, 7.2 Hz, 2H, 

H-3 Gal), 5.35 (dd, J = 7.0, 3.5 Hz, 2H, H-4 Glc), 5.11 (dd, J = 10.3, 7.9 Hz, 2H, H-2 Glc), 

5.02 – 4.96 (m, 2H, H-3 Glc), 4.66-4.60 (m, 4H, CH2-triaz), 4.57 (d, J = 7.9 Hz, 2H, H-1 

Glc), 4.47 (dd, J = 11.1, 7.8 Hz, 2H, H-6 Glc), 4.18 – 4.05 (m, 6H, H-6’ Glc and H-6 and 

H-6’ Gal), 4.04 – 3.99 (m, 2H, H-4 Gal), 3.93 (dd, J = 14.4, 8.4 Hz, 4H, H-5 Gal and H-5 

Glc), 2.40 (q, J = 7.2 Hz, 2H, CH2CH3), 2.19 – 1.92 (m, 42H, OAc x 14), 1.19 (t, J = 7.5 

Hz, 2H, CH2CH3). 13C NMR (125 MHz, CDCl3): δ 173.1 (COC2H5), 170.4 (CO of OAc), 

170.1 (CO of OAc), 170.1 (CO of OAc), 169.6 (CO of OAc), 169.5 (CO of OAc), 169.1 

(CO of OAc), 166.6 (CONHCH2-triaz), 145.6 (C-triaz), 138.9 (Ar-C), 134.7 (Ar-C), 121.5 

(CH-triaz), 121.2 (Ar-CH), 120.7 (Ar-CH), 101.1 (C-1 Glc), 85.5 (C-1 Gal), 76.0 (C-5 Gal), 

75.6 (C-4 Gal), 72.6 (C-3 Gal), 70.9 (C-3 Glc), 70.8 (C-2 Gal), 70.7 (C-5 Glc) , 69.1 (C-2 

Glc), 66.7 (C-4 Glc), 61.9 (C-6 Glc), 60.8 (C-6 Gal), 35.5 (CH2-triaz), 30.4 (CH2CH3), 20.7 

(CH3 of OAc), 20.6 (CH3 of OAc), 20.6 (CH3 of OAc), 20.5 (CH3 of OAc), 20.4 (CH3 of 

OAc), 9.5 (CH2CH3). IR (film on NaCl): 3293, 2942, 1749, 1656, 1599, 1537 cm-1. HRMS 

(ESI+): m/z calcd for C69H88N9O37 + H+ [M+H]+ 1634.5281, found 1634.5287. 
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N,N’-Di-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl-1,2,3-triazol-4-ylmethylamide)-

N’’-propyl-5-aminobenzene-1,3-dicarboxamide (2.75) 

 

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution of 2.41 (105 mg, 0.28 mmol) and 2.69 (42 mg, 0.13 mmol) in CH3CN/H2O 

(4 mL/ 2mL). The reaction was allowed to stir in the MW at 100 ⁰C until deemed 

complete by TLC analysis (10 mins). The solvent was removed in vacuo. The residue 

was dissolved in DCM (30 mL), washed with water (20 mL x 3), and dried (MgSO4). 

The mixture was filtered and the solvent was removed in vacuo to yield the crude 

product, which was purified by silica gel column chromatography (DCM:MeOH 98:2-

93:7) to give the pure product 2.75 as a sticky, white solid (110 mg, 77 %). Rf = 0.44 

(DCM:MeOH 9:1). [α]D
25

: +17.27˚ (c 1.1, DCM). 1H NMR (500 MHz, CDCl3) δ 8.68 (s, 1H, 

NHCOC2H5), 8.06 (s, 2H, triaz-H), 7.94 (s, 2H, NHCH2CCH), 7.86 (s, 2H, Ar-H), 7.61 (s, 

1H, Ar-H), 5.94 (d, J = 9.3 Hz, 2H, H-1), 5.63 (t, J = 9.4 Hz, 2H, H-2), 5.42 (t, J = 9.5 Hz, 

2H, H-3), 5.30 (t, J = 9.8 Hz, 2H, H-4), 4.75-4.58 (m, 4H, CH2-triaz), 4.33-4.20 (m, 2H, 

H-6), 4.20-4.05 (m, 4H, H-6’ and H-5), 2.37 (d, J = 6.6 Hz, 2H, CH2CH3), 2.05 (s, 6H, 

OAc), 2.00 (s, 6H, OAc), 1.96 (s, 6H, OAc), 1.79 (s, 6H, OAc), 1.16 (t, J = 7.2 Hz, 3H, 

CH2CH3). 13C NMR (125 MHz, CDCl3) δ 173.4 (COC2H5), 170.5 (CO of OAc), 170.0 (CO 

of OAc), 169.4 (CO of OAc), 169.2 (CO of OAc), 166.9 (CONHCH2CCH), 145.7 (C-triaz), 

139.1 (Ar-C), 134.6 (Ar-C), 121.9 (CH-triaz), 121.3 (Ar-CH), 120.6 (Ar-CH), 85.7 (C-1), 

75.0 (C-5), 72.8 (C-3), 70.5 (C-2), 67.8 (C-4), 61.7 (C-6), 35.4 (CH2-triaz), 30.2 (CH2CH3), 

20.6 (CH3 of OAc), 20.5 (CH3 of OAc), 20.1 (CH3 of OAc), 9.4 (CH2CH3). ATR: 3595, 3312, 

3070, 2943, 1754, 1649, 1543, 1451, 1370, 1231, 1042, 925 cm-1. HRMS (ESI+): m/z 

calculated for C45H55N9O21 + H+ [M+H+]: 1058.3531, found 1058.3599. 

 

 

 

2.69 2.75 
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N,N’-Di-(2-Acetamido-2-deoxy-3,4,6-tri-O-acetyl-β-D-galactopyranosyl-1,2,3-

triazol-4-ylmethylamide)-N’’-propyl-5-aminobenzene-1,3-dicarboxamide (2.76) 

 

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution of 2.52 (286 mg, 0.768 mmol) and 2.69 (140 mg, 0.366 mmol) in CH-

3CN/H2O (4 mL/ 2mL). The reaction was allowed to stir in the MW at 100 ⁰C until 

deemed complete by TLC analysis (10 mins). The solvent was removed in vacuo. The 

residue was dissolved in DCM (30 mL), washed with water (20 mL x 3). A precipitate 

formed in the aqueous layer, which was filtered to give the pure product 2.76 as an 

off-white solid (219 mg, 57 %). Rf = 0.24 (DCM:MeOH 9:1). [α]D
25

 -20.9 (c 1.1, 

DCM:MeOH 1:1). 1H NMR (500 MHz, DMSO) δ 10.15 (s, 1H, NHCOC2H5), 9.04 (t, J = 

5.8 Hz, 2H, NHCH2-triaz), 8.21 (s, 2H, Ar-H), 8.08 – 7.97 (m, 5H, triaz-H, Ar-H and 

NHAc), 6.02 (d, J = 9.9 Hz, 2H, H-1), 5.38 (d, J = 3.3 Hz, 2H, H-4), 5.27 (dd, J = 10.9, 3.4 

Hz, 2H, H-3), 4.62 – 4.44 (m, 8H, H-2, H-5 and CH2-triaz), 4.11 (dd, J = 11.6, 5.2 Hz, 1H, 

H-6), 3.98 (dd, J = 11.5, 7.1 Hz, 1H, H-6’), 2.35 (q, J = 7.5 Hz, 2H, CH2CH3), 2.17 (s, 3H, 

CH3 of OAc), 1.98 (s, 3H, CH3 of OAc), 1.93 (s, 3H, CH3 of OAc), 1.61 (s, 3H, CH3 of 

NHAc), 1.10 (t, J = 7.5 Hz, 3H, CH2CH3). 13C NMR (125 MHz, DMSO) δ 172.4 (COC2H5), 

170.0 (CO of OAc), 169.9 (CO of OAc), 169.6 (CO of NHAc), 169.5 (CO of OAc), 166.0 

(CONHCH2-triaz), 144.9 (C-triaz), 135.0 (Ar-C), 134.9 (Ar-C), 121.8 (CH-triaz), 120.9 

(Ar-CH), 120.3 (Ar-CH), 85.4 (C-1), 72.9 (C-5), 70.3 (C-3), 66.7 (C-4), 61.6 (C-6), 48.3 

(C-2), 34.7 (CH2-triaz), 30.0 (CH2CH3), 22.4 (CH3 of NHAc), 20.5 (CH3 of OAc), 20.4 (CH3 

of OAc), 20.3 (CH3 of OAc), 9.5 (CH2CH3). ATR: 3315, 1749, 1669, 1548, 1449, 1373, 

1237, 1101, 1048, 923, 602 cm-1. HRMS (ESI+): m/z calculated for C45H57N11O19 + H+ 

[M+H+]: 1056.3910, found 1056.3906. 
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N,N’-Di-(2-Acetamido-2-deoxy-3,4,6-tri-O-acetyl-β-D-glucopyranosyl-1,2,3-triazol-

4-ylmethylamide)-N’’-propyl-5-aminobenzene-1,3-dicarboxamide (2.77) 

 

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution of 2.53 (89 mg, 0.23 mmol) and 2.69 (35 mg, 0.11 mmol) in CH3CN/H2O (4 

mL/ 2mL). The reaction was allowed to stir in the MW at 100 ⁰C until deemed 

complete by TLC analysis (10 mins). The solvent was removed in vacuo. The residue 

was dissolved in DCM (30 mL), washed with water (20 mL x 3), and dried (MgSO4). 

The mixture was filtered and the solvent was removed in vacuo to yield the crude 

product, which was purified by silica gel column chromatography (DCM:MeOH 98:2-

93:7) to give the pure product 2.77 as a yellow solid (60 mg, 42 %). Rf = 0.36 

(DCM:MeOH 9:1). [α]D
26

 -30 (c 0.4, DCM). 1H NMR (500 MHz, d5-Pyr): δ 10.87 (s, 1H, 

NH), 9.88 (t, J = 5.6 Hz, 2H, NH), 9.74 (d, J = 9.0 Hz, 2H, NH), 8.90 (s, 2H, triaz-H), 8.62 

(s, 2H, Ar-H), 8.57 (s, 1H, Ar-H), 6.77 (d, J = 9.9 Hz, 2H, H-1), 6.06 (t, J = 9.6 Hz, 2H, H-

3 or 4), 5.61 (t, J = 9.7 Hz, 2H, H-2), 5.23 – 5.14 (m, 2H, H-3 or 4), 4.48 (dd, J = 12.3, 

5.0 Hz, 2H, H-6), 4.38 (d, J = 8.2 Hz, 2H, H-5), 4.32 (d, J = 12.3 Hz, 2H, H-6’), 2.43 (q, J 

= 7.5 Hz, 2H, CH2CH3), 2.10 (s, 3H, OAc), 2.01 (s, 3H, OAc), 1.89 (s, 3H, OAc), 1.72 (s, 

3H, OAc), 1.19 (t, J = 7.6 Hz, 3H, CH2CH3). IR (ATR): 3305, 3078, 2924, 2850, 1743, 

1667, 1651, 1529 cm-1. HRMS (ESI+): m/z calcd for C45H57N11O19 + H+ [M+H] + 

1056.3910, found 1056.3942. 

N,N’-Di-(β-D-galactopyranosyl-1,2,3-triazol-4-ylmethylamide)-N’’-propyl-5-

aminobenzene-1,3-dicarboxamide (2.78) 

 

2.70 (83 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 °C for 6 h. The solution was cooled, 

2.69 2.77 

2.53 

2.70 2.78 
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Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered and the solvent was removed in vacuo. The residue was dried under high 

vacuum and lyophilized to give the pure product 2.78 as a white amorphous solid (60 

mg, 94 %). [α]D
25

 +12.7 (c 0.5, H2O). 1H NMR (500 MHz, D2O): δ 8.24 (s, 2H, triaz-H), 

7.85 (s, 2H, Ar-H), 7.79 (s, 1H, Ar-H), 5.66 (d, J = 8.8 Hz, 2H, H-1), 4.64 (s, 4H, CH2-

triaz), 4.20 (t, J = 9.2 Hz, 2H, H-2), 4.08 (d, J = 8.6 Hz, 2H, H-4), 3.97 (s, 2H, H-5), 3.86 

(d, J = 9.7 Hz, 2H, H-3), 3.75 (d, J = 4.7 Hz, 2H, H-6 and H-6’), 2.37 (d, J = 7.4 Hz, 2H, 

CH2CH3), 1.12 (t, J = 7.3 Hz, 3H, CH2CH3). 13C NMR (125 MHz, D2O): δ 176.8 (COC2H5), 

169.0 (CONHCH2-triaz), 145.2 (C-triaz), 138.2 (Ar-C), 134.6 (Ar-C), 123.0 (CH-triaz), 

122.9 (Ar-CH), 122.1 (Ar-CH), 88.1 (C-1), 78.3 (C-5), 72.9 (C-3), 69.8 (C-2), 68.6 (C-4), 

60.9 (C-6), 35.1 (CH2-triaz), 29.9 (CH2CH3), 9.2 (CH2CH3). IR (KBr): 3368, 2940, 2121, 

1649, 1598, 1546 cm-1. HRMS (ESI+): m/z calcd. for C29H40N9O13 +H+ [M+H]+ 722.2746, 

found 722.2730.  

N,N’-Di-(β-L-fucopyranosyl-1,2,3-triazol-4-ylmethylamide)-N’’-propyl-5-

aminobenzene-1,3-dicarboxamide (2.79) 

 

2.71 (113 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 °C for 6 h. The solution was cooled, 

Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered and the solvent was removed in vacuo. The residue was dried under high 

vacuum to give the pure product 2.79 as a pale yellow, sticky solid (76 mg, 92 %). 

[α]D
23

 +4.3 (c 0.4, H2O). 1H NMR (500 MHz, D2O): δ 8.22 (d, J = 4.1 Hz, 2H, triaz-H), 7.88 

(d, J = 1.5 Hz, 2H, Ar-H), 7.81 (s, 1H, Ar-H), 5.65 – 5.61 (d, J = 9.2 Hz, 2H, H-1), 4.65 (s, 

4H, CH2-triaz), 4.15 (t, J = 9.5 Hz, 2H, H-2), 4.08 – 4.02 (m, 2H, H-5), 3.90 – 3.82 (m, 

4H, H-3 and H-4), 2.37 (q, J = 7.6 Hz, 2H, CH2CH3), 1.25 – 1.22 (m, 6H, C6-H3), 1.12 (t, 

J = 7.6 Hz, 3H, CH2CH3). 13C NMR (125 MHz, D2O): δ 176.6 (COC2H5), 168.7 (CONHCH2-

triaz), 144.8 (C-triaz), 138.2 (Ar-C), 134.4 (Ar-C), 123.0 (CH-triaz), 122.7 (Ar-CH), 121.9 

(Ar-CH), 88.1 (C-1), 74.4 (C-5), 73.1 (C-3), 71.2 (C-4), 69.5 (C-2), 35.0 (CH2-triaz), 29.9 

2.71 2.79 
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(CH2CH3), 15.5 (C-6), 9.1 (CH2CH3). IR (ATR): 3261, 2917, 2851, 1646, 1601, 1536 cm-

1. HRMS (ESI+): m/z calcd for C29H39N9O11 + H+ [M+H]+ 690.6910, found 690.6923. 

N,N’-Di-[2-O-(β-D-galactopyranosyl)-ethyl-1,2,3-triazol-4-ylmethylamide)-N’’-

propyl-5-aminobenzene-1,3-dicarboxamide (2.80) 

 

2.72 (71 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 °C for 6 h. The solution was cooled, 

Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered and the solvent was removed in vacuo. The residue was dried under high 

vacuum to give the pure product 2.80 as a pale brown sticky solid (55 mg, 91 %). [α]D
20

 

+2.9 (c 0.3, H2O). 1H NMR (500 MHz, D2O): δ 8.10 (s, 2H, triaz-H), 8.00 (d, J = 1.5 Hz, 

2H, Ar-H), 7.93 (s, 1H, Ar-H), 4.73 – 4.67 (m, 8H, CH2-triaz and CH2CH2), 4.39 – 4.27 

(m, 4H, H-1 and CHCH2), 4.18 – 4.10 (m, 2H, CHCH2), 3.90 (dd, J = 3.4, 0.8 Hz, 2H, H-

4), 3.77 – 3.68 (m, 4H, H-6 and H-6’), 3.68 – 3.61 (m, 2H, H-5), 3.59 (dd, J = 9.9, 3.4 

Hz, 2H, H-3), 3.48 (dd, J = 10.0, 7.8 Hz, 2H, H-2), 2.47 (q, J = 7.6 Hz, 2H, CH2CH3), 1.20 

(td, J = 7.6, 1.6 Hz, 3H, CH2CH3). 13C NMR (125 MHz, D2O): δ 176.8 (COC2H5), 168.8 

(CONHCH2-triaz), 144.3 (C-triaz), 138.1 (Ar-C), 134.6 (Ar-C), 124.8 (CH-triaz), 123.0 

(Ar-CH), 122.1 (Ar-CH), 103.0 (C-1), 75.1 (C-5), 72.6 (C-3), 70.6 (C-2), 68.5 (C-4), 60.9 

(C-6), 35.0 (CH2-triaz), 29.9 (CH2CH3), 9.2 (CH2CH3). IR (KBr): 3365, 3323, 3117, 3053, 

2977, 2942, 2882, 1691, 1651, 1614, 1564 cm-1. HRMS (ESI+): m/z calcd for C33H48N-

9O15 + H+ [M+H]+ 810.3270, found 810.3322. 

N,N’-Di-(α-D-mannopyranosyl-1,2,3-triazol-4-ylmethylamide)-N’’-propyl-5-

aminobenzene-1,3-dicarboxamide (2.81) 

 

2.72 2.80 
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2.73 (70 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 °C for 6 h. The solution was cooled, 

Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered and the solvent was removed in vacuo. The residue was dried under high 

vacuum to give the pure product 2.81 as a pale yellow, sticky solid (42 mg, 88 %). 

[α]D
22

 +19.1 (c 0.4, H2O). 1H NMR (500 MHz, D2O): δ 8.14 (s, 2H, triaz-H), 7.85 (s, 2H, 

Ar-H), 7.78 (s, 1H, Ar-H), 6.08 (s, 2H, H-1), 4.75 (s, 2H, H-2), 4.64 (s, 4H, CH2-triaz), 

4.14 (dd, J = 9.0, 3.2 Hz, 2H, H-3), 3.86 – 3.74 (m, 6H, H-4 and H-6 and H-6’), 3.38 – 

3.29 (m, 2H, H-5), 2.37 (q, J = 7.6 Hz, 2H, CH2CH3), 1.12 (t, J = 7.6 Hz, 3H, CH2CH3). 13C 

NMR (125 MHz, D2O): δ 176.4 (COC2H5), 168.5 (CONHCH2-triaz), 145.0 (C-triaz), 138.2 

(Ar-C), 134.4 (Ar-C), 123.7 (CH-triaz), 122.4 (Ar-CH), 121.7 (Ar-CH), 86.7 (C-1), 76.2 (C-

5), 70.6 (C-3), 68.3 (C-2), 66.6 (C-4), 60.5 (C-6), 35.0 (CH2-triaz), 29.9 (CH2CH3), 9.1 

(CH2CH3). IR (KBr): 3375, 2941, 1649, 1555 cm-1. HRMS (ESI+): m/z calcd for C29H40N-

9O13 + H+ [M+H]+ 722.2746, found 722.2740. 

N,N’-Di-[{4-O-(β-D-galactopyranosyl)-β-D-glucopyranosyl}-1,2,3-triazol-4-

ylmethylamide]-N’’-propyl-5-aminobenzene-1,3-dicarboxamide (2.82) 

 

2.74 (91 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 °C for 6 h. The solution was cooled, 

Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered and the solvent was removed in vacuo. The residue was dried under high 

vacuum to give the pure product 2.82 as a white solid (65 mg, 90 %). [α]D
17

 +1.5 (c 0.6, 

H2O). 1H NMR (500 MHz, D2O): δ 8.16 (s, 2H, triaz-H), 7.91 (s, 2H, Ar-H), 7.84 (s, 1H, 

Ar-H), 5.72 (d, J = 9.2 Hz, 2H, H-1 Glc), 4.64 (s, 4H, CH2-triaz), 4.45 (d, J = 7.8 Hz, 2H, 

H-1 Gal), 4.00 (t, J = 9.0 Hz, 2H, H-2 Glc), 3.93 – 3.87 (m, 3H, H-6 Glc and H-4 Gal), 

3.85 – 3.79 (m, 4H, H-3 Glc, H-4 Glc, H-5 Glc and H-6’ Glc), 3.78 – 3.65 (m, 4H, H-6 

Gal, H-6’ Gal and H-5 Gal), 3.65 – 3.57 (m, 2H, H-3 Gal), 3.56 – 3.49 (m, 2H, H-2 Gal), 

2.38 (q, J = 7.6 Hz, 1H, CH2CH3), 1.12 (dd, J = 9.4, 5.8 Hz, 3H, CH2CH3). 13C NMR (125 

MHz, D2O): δ 168.8 (CONHCH2-triaz), 145.0 (C-triaz), 138.2 (Ar-C), 134.4 (Ar-C), 123.1 

2.74 2.82 
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(CH-triaz), 122.8 (Ar-CH), 102.8 (C-1 Gal), 87.2 (C-1 Glc), 77.6 (C-4/5 Glc), 77.2 (C-4/5 

Glc), 75.3 (C-5 Gal), 74.4 (C-3 Glc), 72.4 (C-3 Gal), 71.9 (C-2 Glc), 70.9 (C-2 Gal), 68.5 

(C-4 Gal), 61.0 (C-6 Gal), 59.7 (C-6 Glc), 35.0 (CH2-triaz), 29.8 (CH2CH3), 9.1 (CH2CH3). 

IR (KBr): 3412, 2923, 2125, 1644, 1548 cm-1. HRMS (ESI+): m/z calcd for C41H60N9O23 

+ H+ [M+H]+ 1046.3802, found 1046.2788. 

N,N’-Di-(β-D-glucopyranosyl-1,2,3-triazol-4-ylmethylamide)-N’’-propyl-5-

aminobenzene-1,3-dicarboxamide (2.83) 

 

2.75 (145 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 °C for 6 h. The solution was cooled, 

Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered and the solvent was removed in vacuo. The residue was dried under high 

vacuum to give the pure product 2.83 as a white solid (95 mg, 96 %). [α]D
20

 0.0 (c 0.95, 

H2O). 1H NMR (500 MHz, D2O) δ 8.19 (s, 2H, triaz-H), 7.83 (d, J = 1.5 Hz, 2H, Ar-H), 

7.76 (d, J = 1.4 Hz, 1H, Ar-H), 5.71 (d, J = 9.2 Hz, 2H, H-1), 4.62 (s, 4H, CH2-triaz), 3.98 

(t, J = 9.2 Hz, 2H, H-2), 3.87 (d, J = 10.7 Hz, 2H, H-6), 3.77 – 3.66 (m, 6H, H-6’ and H-4 

and H-3), 3.60 (t, J = 9.3 Hz, 2H, H-5), 2.38 – 2.32 (m, 2H, CH2CH3), 1.12 (t, J = 7.6 Hz, 

3H, CH2CH3). 13C NMR (125 MHz, D2O) δ 176.4 (COC2H5), 168.5 (CONHCH2CCH), 144.8 

(CH2CCH), 138.2 (Ar-C), 134.3 (Ar-C), 123.3 (CH2CCH), 122.4 (Ar-CH), 121.7 (Ar-CH), 

87.5 (C-1), 78.9 (C-3/4), 75.9 (C-3/4), 72.3 (C-2), 69.0 (C-5), 60.5 (C-6), 35.0 (CH2CCH), 

29.9 (CH2CH3), 20.4, 9.1 (CH2CH3). ATR: 3261, 2922, 1648, 1598, 1542, 1447, 1421, 

1335, 1287, 1211, 1098, 1044, 896 cm-1. HRMS (ESI+): m/z calculated for C29H39N9O13 

+ H+ [M+H+]: 722.2746, found 722.2763. 

 

 

 

2.75 2.83 
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N,N’-Di-(2-Acetamido-2-deoxy-β-D-galactopyranosyl-1,2,3-triazol-4-

ylmethylamide)-N’’-propyl-5-aminobenzene-1,3-dicarboxamide (2.84) 

 

2.76 (245 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 °C for 6 h. The solution was cooled, 

Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered and the solvent was removed in vacuo. The residue was dried under high 

vacuum to give the pure product 2.84 as a white solid (172 mg, 92 %). 1H NMR (500 

MHz, D2O) δ 8.29 (s, 2H, triaz-H), 7.97 (s, 2H, Ar-H), 7.91 (s, 1H, Ar-H), 5.79 (d, J = 9.7 

Hz, 2H, H-1), 4.68 (s, 4H, CH2-triaz), 4.46 (t, J = 10.2 Hz, 2H, H-2), 4.13 (d, J = 3.1 Hz, 

2H, H-4), 4.05 – 3.98 (m, 2H, H-3 and H-5), 3.90 – 3.79 (m, 2H, H-6 and H-6’), 2.44 (q, 

J = 7.6 Hz, 2H, CH2CH3), 1.80 (s, 3H, CH3 of NHAc), 1.18 (t, J = 7.6 Hz, 3H, CH2CH3). 13C 

NMR (125 MHz, D2O) δ 176.5 (COC2H5), 174.3 (CO of NHAc), 168.6 (CONHCH2-triaz), 

144.6 (C-triaz) 138.2 (Ar-C), 134.5 (Ar-C), 122.9 (CH-triaz), 122.7 (Ar-CH), 121.9 (Ar-

CH), 87.0 (C-1), 78.4 (C-5), 70.6 (C-3), 67.7 (C-4), 61.0 (C-6), 52.0 (C-2), 34.8 (CH2-triaz), 

29.8 (CH2CH3), 21.9 (CH3 of NHAc), 9.1 (CH2CH3). HRMS (ESI+): m/z calculated for 

C33H45N11O13 + H+ [M+H+]: 804.3277, found 804.3268. 

N,N’-Di-(2-Acetamido-2-deoxy-β-D-glucopyranosyl-1,2,3-triazol-4-

ylmethylamide)-N’’-propyl-5-aminobenzene-1,3-dicarboxamide (2.85) 

 

2.77 (145 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 °C for 6 h. The solution was cooled, 

Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered and the solvent was removed in vacuo. The residue was dried under high 

vacuum to give the pure product 2.85 as a pale yellow, sticky solid (34 mg, 75 %). 

2.76 2.84 

2.77 2.85 
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[α]D
22

 -5.2 (c 0.3, H2O). 1H NMR (500 MHz, D2O): δ 8.20 (s, 2H, triaz-H), 8.01 (t, J = 3.9 

Hz, 2H, Ar-H), 7.96 – 7.89 (m, 1H, Ar-H), 5.86 (d, J = 9.7 Hz, 2H, H-1), 4.72 – 4.66 (m, 

4H, CH2-triaz), 4.27 (t, J = 10.0 Hz, 2H, H-2), 4.01 – 3.64 (m, 10H, H-3, H-4, H-5, H-6 

and H-6’), 2.48 (q, J = 7.6 Hz, 2H, CH2CH3), 1.79 (s, 3H, NHAc), 1.21 (t, J = 7.6 Hz, 3H, 

CH2CH3). 13C NMR (126 MHz, D2O) δ 172.3 (COC2H5), 169.3 (CO of NHAc), 165.9 

(CONHCH2-triaz), 144.7 (C-triaz), 139.5 (Ar-C), 134.9 (Ar-C), 121.5 (C-triaz), 121.0 (Ar-

CH), 120.2 (Ar-CH), 85.9 (C-1), 80.1 (C-5), 74.0 (C-3), 70.0 (C-4), 60.6 (C-6), 54.4 (C-2), 

34.8 (CH2-triaz), 29.5 (CH2CH3), 22.7 (CH3 of NHAc), 9.6 (CH2CH3). HRMS (ESI+): m/z 

calcd for C33H45N11O13 + Na+ [M+Na]+ 826.3096, found 826.3102. 

2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosylamine (2.96) 

 

H2 gas was bubbled through a suspension of 2.40 (500 mg, 1.339 mmol) and Pd/C (50 

mg, 10 % w/w) in EtOAc (20 mL). It was left to stir for 18 h at rt. The mixture was then 

filtered through celite, which was washed with EtOAc (20 mL). The filtrate was 

concentrated in vacuo to afford product 2.96 as a white, foamy solid which was used 

without further purification (437 mg, 98 %). 1H NMR (500 MHz, CDCl3) δ 5.21 (d, J = 

3.5 Hz, 1H, H-4), 4.92 – 4.79 (m, 2H, H-2 and H-3), 4.01 (d, J = 8.7 Hz, 1H, H-1), 3.97-

3.85 (m, 2H, H-6 and H-6’), 3.77 (t, J = 6.7 Hz, 1H, H-5), 2.08 (s, 1H, NH2), 1.98 (s, 3H, 

OAc), 1.90 (s, 3H, OAc), 1.87 (s, 3H, OAc), 1.80 (s, 3H, OAc). 

The NMR data is in agreement with the data reported in the literature.194 

N,N’-Di-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-N’’-propyl-5-aminobenzene-

1,3-dicarboxamide (2.97) 

 

2.40 2.96 

2.75 2.97 

2.96 
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5-propionamidoisophthalic acid 2.75 (0.133 g, 5.61 mmol) and TBTU (0.396 g, 1.23 

mmol) were dissolved in DMF (10 mL) under N2. NEt3 (0.312 mL, 2.24 mmol) was 

added and the mixture was allowed to stir for 15 mins. 2,3,4,6-tetra-O-acetyl-β-D-

galactopyranosylamine 2.96 (0.487 g, 1.40 mmol) was dissolved in DMF (5 mL) and 

was added to the reaction mixture. The solution was stirred for 24 h. The crude 

mixture was dissolved in DCM (30 mL), washed with 0.5 M HCl (30 mL), sat. NaHCO3 

(30 mL) and brine (30 mL), and dried (MgSO4). The mixture was filtered and the 

solvent was removed in vacuo to yield the crude product, which was purified by silica 

gel column chromatography (EtOAc) to give the pure product: sticky yellow solid (343 

mg, 68 %). Rf = 0.64 (DCM:MeOH 9:1). [α]D
25

 -18.1 (c 1.1, DCM)..1H NMR (500 MHz, 

CDCl3): δ 8.41 (s, 1H, NH), 8.23 (s, 2H, Ar-H), 7.86 (s, 1H, Ar-H), 7.54 (d, J = 9.1 Hz, 2H, 

NH), 5.59 (t, J = 8.9 Hz, 2H, H-1), 5.47 (d, J = 1.5 Hz, 2H, H-4), 5.31–5.29 (m, 4H, H-2 

and H-3), 4.20 (t, J = 6.6 Hz, 2H, H-5), 4.16–4.05 (m, 4H, H-6 and H6‘), 2.42 

(q, J = 7.5 Hz, 2H, CH2CH3), 2.17 (s, 6 H, CH3 of OAc), 2.01 (s, 6H, CH3 of OAc), 1.99 (s, 

6H, CH3 of OAc), 1.97 (s, 6H, CH3 of OAc), 1.22 (t, J = 7.5 Hz, 3H, CH2CH3).  13C NMR 

(125 MHz, CDCl3) δ 172.8 (COC2H5), 171.3 (CO of OAc), 170.5 (CO of OAc), 170.2 (CO 

of OAc), 170.1 (CO of OAc), 166.2 (CONH-Gal), 139.7 (Ar-C), 134.3 (Ar-C), 121.9 (Ar-

CH), 120.7 (Ar-CH), 79.0 (C-1), 72.4 (C-5), 71.1 (C-2/C-3), 68.6 (C-2/C-3), 67.4 (C-4), 

61.3 (C-6), 30.5 (CH2CH3), 20.8 (CH3 of OAc), 20.7 (CH3 of OAc), 20.7 (CH3 of OAc), 20.6 

(CH3 of OAc), 9.4 (CH2CH3). IR (film on NaCl): 3338.9, 1750.6, 1602.2, 1535.2, 1370.1, 

1228.3, 1083.4, 1052.1, 956.25, 909.15, 802.3 cm-1. HRMS (ESI+): m/z calculated for 

C39H50N3O21 + H+ [M+H+]: 896.2931, found 896.2956. 

N,N’-Di-(β-D-galactopyranosyl)-N’’-propyl-5-aminobenzene-1,3-dicarboxamide 

(2.98) 

 

2.97 (44 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 °C for 6 h. The solution was cooled, 

2.97 2.98 
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Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered and the solvent was removed in vacuo. The residue was dried under high 

vacuum to give the pure product 2.98 as a white solid (26 mg, 96 %). [α]D
20

 +10.0 (c 

1, MeOH). 1H NMR (500 MHz, D2O): δ 8.04 (d, J = 1.4 Hz, 2H, Ar-H), 8.03 (d, J = 1.5 Hz, 

1H, Ar-H), 5.10 (d, J = 8.4 Hz, 2H, H-1), 3.97 (d, J = 3.0 Hz, 2H, H-4), 3.82 (t, J = 6.2 Hz, 

2H, H-5), 3.79 – 3.67 (m, 8H, H-2, H-3, H-6, H-6’), 2.47 – 2.37 (m, 2H, CH2CH3), 1.19 – 

1.11 (m, 3H, CH2CH3). 13C NMR (125 MHz, D2O) δ 176.9 (COC2H5), 170.2 (CONH-Gal), 

137.6 (Ar-C), 134.4 (Ar-C), 124.1 (Ar-CH), 123.0 (Ar-CH), 80.5 (C-1), 77.0 (C-5), 73.5 (C-

3), 69.3 (C-2), 68.7 (C-4), 61.0 (C-6), 29.9 (CH2CH3) 9.2 (CH2CH3). HRMS (ESI+): m/z 

calcd for C23H34N3O13 + H+ [M+H]+ 560.2086, found 560.2072. 

N-2,3,4,6-Tetra-O-acetyl-β-D-mannopyranosyl-1,2,3-triazol-4-ylmethylamide-N’-

prop-2-yn-1-yl-N’’-propyl-5-aminobenzene-1,3-dicarboxamide (2.99) 

 

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution of 2.42 (131 mg, 0.349 mmol) and 2.69 (435 mg, 1.40 mmol) in 

acetonitrile/H2O (7 mL/ 3.5mL). The reaction was allowed to stir in the MW at 100 ⁰C 

until deemed complete by TLC analysis (10 mins). The solvent was removed in vacuo. 

The crude mixture was purified by silica gel column chromatography (EtOAc:Pet 

Ether 1:1 2%-5% MeOH) and triturated with hot water to give the pure product 2.99 

as a yellow, sticky solid (91 mg, 34 %). Rf = 0.45 (DCM:MeOH 9:1). [α]D
23+12.1 (c 0.9, 

MeOH). 1H NMR (500 MHz, CDCl3): δ 9.15 (s, 1H, NHCOC2H5), 8.13 (s, 1H, NHCH2-

triaz), 8.07 (s, 1H, Ar-H), 8.02 (s, 1H, Ar-H), 7.87 (s, 1H, triaz-H), 7.78 (s, 1H, Ar-H), 7.68 

(s, 1H, NHCH2-triaz), 6.04 (s, 1H, H-1), 5.91 – 5.84 (m, 2H, H-2 and H-3), 5.40 (t, J = 9.5 

Hz, 1H, H-4), 4.73 – 4.58 (m, 2H, CH2-triaz), 4.27 (dd, J = 12.5, 4.7 Hz, 1H, H-6), 4.13 

(s, 2H, CH2CCH), 4.03 (d, J = 10.6 Hz, 1H, H-6’), 3.96 – 3.87 (m, 1H, H-5), 2.36 (q, J = 

7.4 Hz, 2H, CH2CH3), 2.19 (d, J = 7.6 Hz, 1H, CH2CCH), 2.17 (s, 3H, OAc), 2.05 (s, 3H, 

2.69 
2.99 

2.42 
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OAc), 2.02 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.11 (t, J = 7.5 Hz, 3H, CH2CH3). 13C NMR 

(125 MHz, CDCl3): δ 173.5 (COC2H5), 170.6 (CO of OAc), 170.0 (CO of OAc), 169.7 (CO 

of OAc), 169.6 (CO of OAc), 166.8 (CONHCH2-triaz), 166.7 (CONHCH2CCH), 145.4 (C-

triaz), 139.3 (Ar-C), 134.6 (Ar-C), 123.4 (CH-triaz), 121.4 (Ar-CH x 2), 120.7 (Ar-CH), 

84.0 (C-1), 79.7 (CH2CCH), 71.9 (C-5), 69.3 (C-2/C-3), 68.3 (C-2/C-3), 65.6 (C-4), 61.7 

(C-6), 35.3 (CH2-triaz), 30.3 (CH2CCH), 29.7 (CH2CH3), 29.3 (CH2CCH), 20.8 (CH3 of 

OAc), 20.7 (CH3 of OAc), 20.7 (CH3 of OAc), 20.6 (CH3 of OAc), 9.4 (CH2CH3). IR (film 

on NaCl): 3289, 3082, 2981, 1751, 1653, 1598, 1535 cm-1. HRMS (ESI+): m/z calcd for 

C29H39N9O13 + Na+ [M+Na]+ 744.2565, found 744.2575. 

N-2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-ylmethylamide-N’-

2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyl-1,2,3-triazol-4-ylmethylamide- N’’-

propyl-5-aminobenzene-1,3-dicarboxamide (2.100) 

 

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution of 2.40 (50 mg, 0.134 mmol) and 2.99 (77 mg, 0.112 mmol) in acetone/H2O 

(4 mL/ 2mL). The reaction was allowed to stir in the MW at 100 ⁰C until deemed 

complete by TLC analysis (10 mins). The solvent was removed in vacuo. The residue 

was dissolve in DCM (30 mL), washed with water (20 mL x 3), and dried (MgSO4). The 

mixture was filtered and the solvent was removed in vacuo to yield the crude 

product, which was purified by silica gel column chromatography (DCM:MeOH 98:2-

93:7) to give the pure product 2.100 as a yellow, sticky solid (100 mg, 84 %). Rf = 0.48 

(DCM:MeOH 9:1). [α]D
21

 +9.0 (c 1, DCM). 1H NMR (500 MHz, CDCl3): δ 8.89 (s, 1H, NH), 

8.20 (s, 1H, NH), 8.14 (s, 2H, triaz-H), 8.02 (m, 3H, Ar-H x 2 and NH), 7.81 (s, 1H, Ar-

H), 6.22 (d, J = 1.8 Hz, 1H, H-1 Man), 6.12 (dd, J = 3.6, 2.0 Hz, 1H, H-2 Man), 6.09 – 

6.02 (m, 2H, H-3 Man and H-1 Gal), 5.75 (t, J = 9.7 Hz, 1H, H-2 Gal), 5.67 (dd, J = 3.3, 

0.7 Hz, 1H, H-4 Gal), 5.55 (dd, J = 12.5, 6.8 Hz, 1H, H-2 Gal), 5.44 – 5.39 (m, 1H, H-3 

Gal), 4.87 – 4.71 (m, 4H, CH2-triaz x 2), 4.47 – 4.39 (m, 2H, H-6 Man and H-5 Gal), 4.29 

2.99 2.100 

2.40 
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(dd, J = 11.5, 6.5 Hz, 2H, H-6 and H-6’ Gal), 4.22 – 4.15 (m, 1H, H-6’ Man), 4.09 (ddd, 

J = 9.6, 4.4, 2.5 Hz, 1H, H-5 Man), 2.52 (q, J = 7.4 Hz, 2H, CH2CH3), 2.32 (d, J = 4.0 Hz, 

6H, OAc x 2), 2.20 (s, 3H, OAc), 2.16 (s, 3H, OAc), 2.14 (s, 3H, OAc), 2.12 (s, 6H, OAc x 

2), 1.96 (s, 3H, OAc), 1.28 (t, J = 7.5 Hz, 3H, CH2CH3 ). 13C NMR (125 MHz, CDCl3): δ 

173.4 (COC2H5), 170.8 (CO of OAc), 170.5 (CO of OAc), 170.3 (CO of OAc), 170.0 (CO 

of OAc), 170.0 (CO of OAc), 169.8 (CO of OAc), 169.4 (CO of OAc), 166.9 (CONHCH2-

triaz), 166.8 (C’ONHCH2-triaz), 145.8 (C-triaz), 145.7 (C’-triaz), 139.2 (Ar-C), 134.9 (Ar-

C), 134.8 (Ar-C), 123.6 (Ar-CH), 121.6 (CH-triaz), 120.7 (Ar-CH), 86.3 (C-1 Gal), 84.2 (C-

1 Man), 74.1 (C-5 Gal), 72.0 (C-5 Man), 71.0 (C-3 Gal), 69.4 (C-3 Man), 68.5 (C-2 Man), 

68.2 (C-2 Gal), 67.1 (C-4 Gal), 65.8 (C-4 Man), 61.9 (C-6 Man), 61.3 (C-6 Gal), 35.6 

(CH2-triaz), 35.4 (CH2-triaz), 30.5 (CH2CH3), 20.9 (CH3 of OAc), 20.8 (CH3 of OAc), 20.8 

(CH3 of OAc), 20.8 (CH3 of OAc), 20.7 (CH3 of OAc), 20.4 (CH3 of OAc), 9.6 (CH2CH3). IR 

(film on NaCl): 3311, 3147, 3082, 2981, 1750, 1657, 1599, 1548 cm-1. HRMS (ESI+): 

m/z calcd for C45H56N9O21 + H+ [M+H+]: 1058.3591, found 1058.3607. 

N-β-D-Galactopyranosyl-1,2,3-triazol-4-ylmethylamide-N’-α-D-mannopyranosyl-

1,2,3-triazol-4-ylmethylamide)-N’’-propyl-5-aminobenzene-1,3-dicarboxamide 

(2.101) 

 

2.100 (138 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 °C for 6 h. The solution was cooled, 

Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered and the solvent was removed in vacuo. The residue was dried under high 

vacuum to give the pure product 2.101 as a pale yellow solid (84 mg, 89 %). [α]D
26

  

+13.1 (c 0.8, H2O). 1H NMR (500 MHz, D2O): δ 8.23 (s, 1H, triaz-H), 8.14 (s, 1H, triaz-

H’), 7.85 (s, 1H, Ar-H), 7.83 (s, 1H, Ar-H), 7.77 (s, 1H, Ar-H), 6.07 (d, J = 2.2 Hz, 1H, H-

1 Man), 5.65 (d, J = 9.2 Hz, 1H, H-1 Gal), 4.72 (dd, J = 6.4, 3.6 Hz, 1H, H-2 Man), 4.62 

(s, 4H, CH2-triaz x 2), 4.18 (t, J = 9.5 Hz, 1H, H-2 Gal), 4.10 (dd, J = 9.0, 3.4 Hz, 1H, H-3 

Man), 4.06 (d, J = 3.2 Hz, 1H, H-4 Gal), 3.96 (t, J = 6.0 Hz, 1H, H-5 Gal), 3.85 (dd, J = 

2.100 2.101 
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9.8, 3.2 Hz, 1H, H-3 Gal), 3.81 – 3.70 (m, 5H, H-4 Man, H-6, H-6’ Gal, H-6, H-6’ Man), 

3.30 (ddd, J = 8.9, 5.1, 1.7 Hz, 1H, H-5 Man), 2.35 (q, J = 7.6 Hz, 2H, CH2CH3), 1.10 (t, 

J = 7.6 Hz, 3H, CH2CH3). 13C NMR (125 MHz, D2O): δ 176.3 (COC2H5), 168.4 (CONHCH2-

triaz), 144.7 (C-triaz x 2), 138.2 (Ar-C), 134.2 (Ar-C), 123.8 (CH-triaz), 123.1 (C’H-triaz), 

122.3 (Ar-CH), 121.7 (Ar-CH), 88.2 (C-1 Gal), 86.8 (C-1 Man), 78.3 (C-5 Gal), 76.2 (C-2 

Man), 72.9 (C-3 Gal), 70.5 (C-3 Man), 69.8 (C-2 Gal), 68.6 (C-4 Gal), 68.3 (C-2 Man), 

66.6 (C-4 Man), 60.9 (C-6 Gal), 60.5 (C-6 Man), 35.0 (CH2-triaz), 34.9 (CH2-triaz), 29.8 

(CH2CH3), 9.1 (CH2CH3). IR (ATR): 3259, 2922, 2597, 1648, 1600, 1536 cm-1. HRMS 

(ESI+): m/z calcd for C29H39N9O13 + Na+ [M+Na]+ 744.2565, found 744.2575. 

N, N’, N’’-Tri(prop-2-yn-1-yl)benzene-1, 3, 5-tricarboxamide (2.103) 

 

Benzene-1,3,5-tricarbonyl trichloride 2.102 (1.00 g, 3.76 mmol) was dissolved in 

anhydrous DCM (10 mL) under N2. A solution of propargylamine (0.84 mL, 13.18 

mmol) and NEt3 (1.84 mL, 18.18 mmol) in anhydrous DCM (5 mL) was added to the 

acid chloride solution. The reaction was cooled on ice. After the addition was 

complete, the reaction mixture was allowed to stir for 3 h. The product precipitated 

from the solution. The solvent was removed in vacuo and the product was 

recrystallized from hot ethanol (the crystalline material contained propargyl amine 

salts). H2O (20 mL) was added and the mixture was stirred for 10 min, it was then 

filtered to give the pure product 2.103 as a pale yellow solid (532 mg, 44 %). 1H NMR 

(500 MHz, DMSO) δ 9.23 – 9.15 (m, 3H, NH), 8.46 (s, 3H, Ar-H), 4.11-4.05 (m, 6H, 

CH2CCH), 3.14 (t, J = 2.5 Hz, 3H, CH2CCH). 

The NMR data is in agreement with the data reported in the literature.233 

 

 

2.102 2.103 
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N,N’,N’’-Tri-[2-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-ethyl-1,2,3-triazol-

4-ylmethylamide)-benzene-1,3,5-tricarboxamide (2.104) 

 

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution of 2.40 (180 mg, 0.482 mmol) and 2.103 (50 mg, 0.156 mmol) in 

acetone/H2O (4 mL/ 2mL). The reaction was allowed to stir at room temperature for 

16 h. The solvent was removed in vacuo. The residue was dissolved in DCM (30 mL), 

washed with water (20 mL x 3), and dried (MgSO4). The mixture was filtered and the 

solvent was removed in vacuo to yield the crude product, which was purified by silica 

gel column chromatography (DCM:MeOH 98:2-93:7) to give the pure product 2.104 

as an off-white solid (158 mg, 71 %). Rf = 0.42 (DCM:MeOH 9:1). [α]D
18

 -11.7 (c 1, 

DCM). 1H NMR (500 MHz, CDCl3): δ 8.20 (s, 3H, Ar-H), 8.05 (t, J = 5.3 Hz, 3H, NHCH2-

triaz), 8.00 (s, 3H, triaz-H), 5.94 (d, J = 9.3 Hz, 3H, H-1), 5.63 (t, J = 9.8 Hz, 3H, H-2), 

5.54 (d, J = 2.7 Hz, 3H, H-4), 5.28 (dd, J = 10.3, 3.4 Hz, 3H, H-3), 4.80-4.63 (m, 6H, CH2-

triaz), 4.31 (t, J = 6.8 Hz, 3H, H-5), 4.16 (d, J = 7.0 Hz, 4H, H-6 and H-6’), 2.20 (s, 9H, 

OAc), 2.00 (overlapping of 2 s, 18H, OAc x 2), 1.78 (s, 9H, OAc). 13C NMR (125 MHz, 

CDCl3): δ 169.3 (CO of OAc), 169.1 (CO of OAc), 168.8 (CO of OAc), 168.2 (CO of OAc), 

165.0 (CONHCH2-triaz), 144.4 (C-triaz), 133.8 (Ar-C), 127.6 (Ar-CH), 120.6 (CH-triaz), 

85.2 (C-1), 72.9 (C-5), 69.9 (C-3), 67.1 (C-2), 65.9 (C-4), 60.0 (C-6), 34.5 (CH2-triaz), 

19.6 (CH3 of OAc), 19.6 (CH3 of OAc), 19.5 (CH3 of OAc), 19.2 (CH3 of OAc). IR (KBr): 

3396, 3147, 2976, 2252, 2113, 1748, 1649, 1548 cm-1. HRMS (ESI+): m/z calcd for 

C60H73N12O30 + H+ [M+H]+ 1441.4556, found 1442.4567. 

 

 

 

2.103 2.104 
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N,N’,N’’-Tri-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-

ylmethylamide)-benzene-1,3,5-tricarboxamide (2.108) 

 

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution 2.45 (52 mg, 0.1638 mmol) and 2.103 (17 mg, 0.0528 mmol) in 

acetone/H2O (4 mL/ 2mL). The reaction was allowed to stir at room temperature for 

16 h. The solvent was removed in vacuo. The residue was dissolved in DCM (30 mL), 

washed with water (20 mL x 3), and dried (MgSO4). The mixture was filtered and the 

solvent was removed in vacuo to yield the crude product, which was purified by silica 

gel column chromatography (DCM:MeOH 98:2-93:7) to give the pure product 2.105 

as a yellow sticky solid (93 mg, 72 %). [α]D
20

 +24.7 (c 0.9, DCM). 1H NMR (500 MHz, 

CDCl3): δ 8.22 (s, 3H, Ar-H), 8.06 (s, 3H, NHCH2-triaz), 8.00 (s, 3H, triaz-H), 5.89 (d, J = 

9.2 Hz, 3H, H-1), 5.55 (t, J = 9.7 Hz, 3H, H-2), 5.36 (d, J = 3.0 Hz, 3H, H-4), 5.25 (dd, J = 

10.2, 3.3 Hz, 3H, H-3), 4.78-4.58 (m, 6H, CH2-triaz), 4.17 (q, J = 6.2 Hz, 3H, H-5), 2.21 

(s, 9H, OAc), 1.98 (s, 9H, OAc), 1.77 (s, 9H, OAc), 1.21 (d, J = 6.3 Hz, 9H, C6-H3). 13C 

NMR (125 MHz, CDCl3): δ 169.5 (CO of OAc), 168.9 (CO of OAc), 168.2 (CO of OAc), 

165.1 (CONHCH2-triaz), 144.4 (C-triaz), 135.4 (Ar-C), 127.7 (Ar-CH), 120.6 (CH-triaz), 

85.3 (C-1), 71.7 (C-5), 70.2 (C-3), 68.9 (C-4), 67.2 (C-2), 34.4 (CH2-triaz), 19.7 (CH3 of 

OAc), 19.6 (CH3 of OAc), 19.3 (CH3 of OAc), 15.0 (C-6). IR (KBr): 3411, 2989, 2942, 

2115, 1751, 1659, 1537 cm-1. HRMS (ESI+): m/z calcd for C52H67N12O20 + H+ [M+H]+ 

1179.4595, found 1179.4610. 

N,N’,N’’-Tri-(2,3,4,-tri-O-acetyl-β-D-fucopyranosyl-1,2,3-triazol-4-ylmethylamide)-

benzene-1,3,5-tricarboxamide (2.106) 

 

2.45 

2.103 2.105 

2.103 

2.47 

2.106 
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Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution of 2.47 (113 mg, 0.27 mmol) and 2.103 (28 mg, 0.087 mmol) in 

acetone/H2O (4 mL/ 2mL). The reaction was allowed to stir at room temperature for 

16 h. The solvent was removed in vacuo. The residue was dissolved in DCM (30 mL), 

washed with water (20 mL x 3), and dried (MgSO4). The mixture was filtered and the 

solvent was removed in vacuo to yield the crude product, which was purified by silica 

gel column chromatography (DCM:MeOH 98:2-50:50)  to give the pure product 2.106 

as an off-white solid (69 mg, 50 %). [α]D
23

 -5.8 (c 0.7, DCM). 1H NMR (500 MHz, CDCl3): 

δ 8.22 (s, 3H, NHCH2-triaz), 8.16 (s, 3H, triaz-H), 7.67 (s, 3H, Ar-H), 5.34 (d, J = 3.2 Hz, 

3H, H-4), 5.12 (dd, J = 10.4, 8.0 Hz, 3H, H-2), 4.98 (dd, J = 10.5, 3.4 Hz, 3H, H-3), 4.79 

– 4.50 (m, 12H, CH2-triaz and CH2CH2O), 4.47 (d, J = 7.9 Hz, 3H, H-1), 4.28 – 4.18 (m, 

3H, CHO-Gal), 4.15-4.03 (m, 6H, H-6 and H-6’), 4.00-3.86 (m, 6H, CHO-Gal and H-5), 

2.11 (s, 9H, OAc), 2.00 (s, 9H, OAc), 1.93 (s, 18H, OAc x 2). 13C NMR (125 MHz, CDCl3): 

δ 170.4 (CO of OAc), 170.1 (CO of OAc), 170.0 (CO of OAc), 169.7 (CO of OAc), 165.9 

(CONHCH2-triaz), 144.7 (C-triaz), 134.6 (Ar-C), 128.5 (CH-triaz), 123.6 (Ar-CH), 100.9 

(C-1), 70.6 (C-5), 68.6 (C-3), 67.5 (C-2), 67.0 (CH2CH2O-Gal), 61.2 (C-4), 50.1 (C-6), 35.5 

(CH2-triaz), 20.7 (CH3 of OAc), 20.6 (CH3 of OAc), 20.6 (CH3 of OAc), 20.5 (CH3 of OAc). 

IR (film on NaCl): 3391, 2939, 1748, 1661, 1537 cm-1. HRMS (ESI+): m/z calcd for 

C66H84N12O33 + H+ [M+H]+ 1573.5342, found 1574.5422. 

N, N’, N’’-Tri-(β-D-galactopyranosyl-1,2,3-triazol-4-ylmethylamide)-benzene-1,3,5-

tricarboxamide (2.107) 

 

2.104 (110 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 °C for 6 h. The solution was cooled, 

Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered and the solvent was removed in vacuo. The residue was dried under high 

vacuum to give the pure product 2.107 as a sticky yellow solid (63 mg, 89 %). [α]D
23

 

+11.1 (c 0.6, H2O). 1H NMR (500 MHz, D2O): δ 8.24 (s, 3H, triaz-H), 8.19 (s, 3H, Ar-H), 

2.104 2.107 
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5.65 (d, J = 9.2 Hz, 3H, H-1), 4.64 (s, 6H, CH2-triaz), 4.19 (t, J = 9.5 Hz, 3H, H-2), 4.06 

(d, J = 3.2 Hz, 3H, H-4), 3.96 (t, J = 6.1 Hz, 3H, H-5), 3.85 (dd, J = 9.8, 3.3 Hz, 3H, H-3), 

3.76-3.72 (m, 6H, H-6 and H-6’). 13C NMR (125 MHz, D2O): δ 168.1 (CONHCH2-triaz), 

144.8 (C-triaz), 134.3 (Ar-C), 129.2 (Ar-CH), 123.2 (CH-triaz), 88.2 (C-1), 78.3 (C-5), 

73.0 (C-3), 69.8 (C-2), 68.6 (C-4), 60.9 (C-6), 35.1 (CH2-triaz). IR (KBr): 3402, 1658, 

1539, cm-1. HRMS (ESI+): m/z calcd for C36H48N12O18 + H+ [M+H]+ 937.3288, found 

937.3201. 

N,N’,N’’-Tri-(β-L-fucopyranosyl-1,2,3-triazol-4-ylmethylamide)-benzene-1,3,5-

tricarboxamide (2.108) 

 

2.105 (85 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 °C for 6 h. The solution was cooled, 

Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered and the solvent was removed in vacuo. The residue was dried under high 

vacuum to give the pure product 2.108 as a sticky, yellow solid (53 mg, 88 %). [α]D
21.5

 

-5.6 (c 0.5, H2O). 1H NMR (500 MHz, D2O): δ 8.26 (s, 3H, Ar-H), 8.25 (s, 3H, triaz-H), 

5.66 (d, J = 9.2 Hz, 3H, H-1), 4.70 (s, 6H, CH2-triaz), 4.19 (t, J = 9.4 Hz, 3H, H-2), 4.10 – 

4.06 (m, 3H, H-5), 3.91 (dd, J = 3.4, 0.8 Hz, 3H, H-4), 3.88 (dd, J = 9.7, 3.4 Hz, 3H, H-3), 

1.28 – 1.26 (m, 9H, C6-H3). 13C NMR (125 MHz, D2O): δ 168.3 (CONHCH2-triaz), 144.9 

(C-triaz), 134.3 (Ar-C), 129.2 (Ar-CH), 123.0 (CH-triaz), 88.1 (C-1), 74.4 (C-5), 73.1 (C-

3), 71.2 (C-4), 69.5 (C-2), 35.1 (CH2-triaz), 15.6 (C-6). IR (KBr): 3381, 1659, 1536 cm-1. 

HRMS (ESI+): m/z calcd for C38H54N12O15 + Na+ [M+Na]+ 941.3729, found 941.3709. 

N, N’, N’’-Tri-[2-O-(β-D-galactopyranosyl)-ethyl-1,2,3-triazol-4-ylmethylamide)-

benzene-1,3,5-tricarboxamide (2.109) 

 

2.105 2.108 

2.106 2.109 



Chapter 7 

210 
 

2.106 (60 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 °C for 6 h. The solution was cooled, 

Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered and the solvent was removed in vacuo. The residue was dried under high 

vacuum to give the pure product 2.109 as a pale yellow solid (34 mg, 83 %). [α]D
20

 

+5.9 (c 0.7, H2O). 1H NMR (500 MHz, D2O): δ 8.31 (bs, 3H, triaz-H), 8.18 (s, 2H, Ar-H), 

8.12 (s, 1H, Ar-H), 4.71 (bs, 6H, CH2-triaz), 4.58-4.56 (m, 3H, CHCH2), 4.37 – 4.26 (m, 

6H, H-1 and CHCH2), 4.12 (m, 3H, CHCH2), 3.96 – 3.90 (m, 3H, CHCH2), 3.87 (d, J = 3.3 

Hz, 3H, H-4), 3.76 – 3.68 (m, 6H, H-6 and H-6’), 3.65 – 3.60 (m, 3H, H-5), 3.59-3.56 (m, 

3H, H-3), 3.49–3.42 (m, 3H, H-2). 13C NMR (125 MHz, D2O): δ 167.8 (CONHCH2-triaz), 

143.8 (C-triaz), 134.4 (Ar-C), 129.3 (CH-triaz), 125.3 (Ar-CH), 103.0 (C-1), 75.1 (C-5), 

72.8 (H-3), 70.6 (C-2), 68.6 (C-4), 67.8 (CH2CH2), 60.9 (C-6), 51.0 (CH2CH2), 34.8 (CH2-

triaz). IR (ATR): 3267, 2931, 1655, 1537 cm-1. HRMS (ESI+): m/z calcd for C42H60N12O21 

+ H+ [M+H]+ 1069.4074, found 1069.4091. 

5-[[(1,1-Dimethylethoxy)carbonyl]amino]-1,3-benzenedicarboxylic acid (2.110) 

 

5-Aminoisophthalic acid 2.67 (1.0 g, 5.5 mmol) was dissolved in aqueous NaOH (1N, 

10 mL) at 0 ⁰C. Di-tert-butyl dicarbonate (1.32 g, 6.05 mmol) was dissolved in 1,4-

dioxane (12 mL), which was added dropwise to the other solution over 2 h. The 

reaction mixture was stirred at 0-5 ⁰C for 3 h, and then left to stir overnight at room 

temperature. The reaction mixture was evaporated to half it’s original volume in 

vacuo and then cooled in an ice-bath. The solution was acidified to pH 5 with a 20 % 

aqueous KHSO4 (w/v, 20 g in 100 mL) solution. The precipitated was filtered and 

washed with water. The product was allowed to dry in the fumehood overnight to 

give the pure product 2.110 as an off-white solid (1.338 g, 86 %). 1H NMR (500 MHz, 

DMSO) δ 9.79 (s, 1H, NH), 8.30 (appd, J = 1.5 Hz, 2H, Ar-H), 8.08 (appt, J = 1.6 Hz, 1H, 

Ar-H), 1.48 (s, 9H, C(CH3)3). 

The NMR data is in agreement with the data reported in the literature.276 

2.67 2.110 
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N,N’-Di(prop-2-yn-1-yl)-5-[[(1,1-Dimethylethoxy)carbonyl]amino]isophthalamide 

(2.111) 

 

2.110 (0.5 g, 1.77 mmol) and DMTMM (1.082 g, 3.91 mmol) were suspended in 

anhydrous THF (20 mL) under N2. After 10 mins, propargylamine (0.25 mL) was added 

leaving a cloudy solution. The reaction mixture was allowed to stir for 48 h. Water 

was added until the solution went clear. The solution was then washed with EtOAc 

(30 mL x2). The organic layer was concentrated in vacuo and the product was purified 

using column chromatography (Pet Ether:EtOAc 2:1) to give 2.111 as a white solid 

(0.595 g, 95 %). 1H NMR (500 MHz, DMSO) δ 9.65 (s, 1H, NHBoc), 8.90 (t, J = 5.6 Hz, 

2H, NHCH2CCH), 8.02 (s, 2H, Ar-H), 7.83 (s, 1H, Ar-H), 4.04 (dd, J = 5.6, 2.5 Hz, 4H, 

CH2CCH), 3.11 (t, J = 2.5 Hz, 2H, CH2CCH), 1.48 (s, 9H, C(CH3)3).  

The NMR data is in agreement with the data reported in the literature.277 

N,N’-Di-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-

ylmethylamide)-N’’-tert-tbutoxycarbonyl-5-aminobenzene-1,3-dicarboxamide 

 

Copper sulphate pentahydrate (60 mg) and sodium ascorbate (120 mg) were added 

to a solution of 2.40 (1.267 g, 3.39 mmol) and 2.111 (0.574 g, 1.62 mmol) in 

acetone/H2O (4 mL/ 2mL). The reaction was allowed to stir at room temperature for 

16 h. The solvent was removed in vacuo. The residue was dissolved in DCM (30 mL), 

washed with water (20 mL x 3), and dried (MgSO4). The mixture was filtered and the 

solvent was removed in vacuo to yield the crude product, which was purified by silica 

gel column chromatography (DCM:MeOH 98:2-93:7) to give the pure product 2.112 

white solid (1.255 g, 71 %). Rf = 0.38 (DCM:MeOH 9:1). [α]D
20

 -6.5 (c 1.1, H2O). 1H NMR 

(500 MHz, CDCl3): δ 8.08 (s, 2H, Ar-H), 7.98 – 7.84 (m, 4H, triaz-H and NHCH2-triaz), 

2.110 2.111 

2.111 2.112 

2.40 
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7.81 (bs, 2H, Ar-H and NHBoc), 5.95 (d, J = 9.2 Hz, 2H, H-1), 5.48 (t, J = 9.7 Hz, 4H, H-

2 and H-4), 5.27 (dd, J = 10.3, 3.1 Hz, 2H, H-3), 4.74-4.52 (m, 4H, CH2-triaz), 4.31 (t, J 

= 6.4 Hz, 2H, H-5), 4.09 (dd, J = 11.5, 6.4 Hz, 4H, H-6 and H-6’), 2.14 (s, 6H, OAc), 1.92 

(overlapping of 2 s, 12H, OAc x 2), 1.72 (s, 6H, OAc), 1.41 (s, 9H, Boc). 13C NMR (125 

MHz, CDCl3): δ 170.3 (CO of OAc), 170.1 (CO of OAc), 169.8 (CO of OAc), 169.0 (CO of 

OAc), 166.7 (CONHCH2-triaz), 152.8 (CO of Boc), 145.5 (C-triaz), 139.9 (Ar-C), 134.9 

(Ar-C), 121.8 (CH2-triaz), 120.5 (Ar-CH), 119.3 (Ar-CH), 86.0 (C-1), 73.8 (C-5), 70.8 (C-

3), 68.1 (C-2), 67.0 (C-4), 61.2 (C-6), 35.3 (CH2-triaz), 28.2 (CH3 of Boc), 20.6 (CH3 of 

OAc), 20.8 (CH3 of OAc), 20.5 (CH3 of OAc), 20.1 (CH3 of OAc). IR (film on NaCl): 3434, 

2106, 1752, 1648, 1558 cm-1. HRMS (ESI+): m/z calcd for C47H59N9O22 + H+ [M+H]+ 

1102.3853, found 1102.3847. 

N, N’-Di-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-

ylmethylamide)-5-aminobenzene-1,3-dicarboxamide (2.113) 

 

Compound 2.12 (0.725 g, 0.658 mmol) was dissolved in DCM (5 mL) and was cooled 

to 0 ⁰C in an ice-bath. TFA (1.5 mL) was added and the reaction mixture was stirred 

at rt for 2 h. DCM (40 mL) was added to the reaction mixture, it was washed with sat. 

NaHCO3 (40 mL) and brine (40 mL), and dried (MgSO4). The mixture was filtered, and 

the solvent was removed in vacuo to yield the product 2.113 which was used without 

further purification: pale yellow solid (0.689 g, 99 %). Rf = 0.53 (DCM:MeOH 9:1). 

[α]D
24

 -4.3 (c 0.9, DCM). 1H NMR (500 MHz, CDCl3): δ 7.95 (s, 4H, triaz-H, NHCH2-triaz), 

7.43 (s, 1H, Ar-H), 7.17 (s, 2H, Ar-H), 5.96 (d, J = 9.2 Hz, 2H, H-1), 5.50 (m, 4H, H-2 and 

H-4), 5.29 (dd, J = 10.3, 3.3 Hz, 2H, H-3), 4.75-4.53 (m, 4H, CH2-triaz), 4.32 (t, J = 6.5 

Hz, 2H, H-5), 4.23 – 4.00 (m, 4H, H-6 and H-6’), 2.16 (s, 6H, OAc), 1.94 (s, 12H, OAc), 

1.73 (s, 6H, OAc). 13C NMR (125 MHz, d6-DMSO) δ 170.5 (CO of OAc), 170.4 (CO of 

OAc), 169.9 (CO of OAc), 169.0 (CO of OAc), 167.1 (CONHCH2-triaz), 146.1 (C-triaz), 

135.6 (Ar-C), 122.8 (CH-triaz), 115.7 (Ar-CH) 113.8 (Ar-CH) 84.7 (C-1), 73.4 (C-5), 71.0 

(C-3), 68.1 (C-2), 67.8 (C-4), 62.0 (C-6), 35.1 (CH2NH), 21.0 (CH3 of OAc), 20.9 (CH3 of 

OAc), 20.8 (CH3 of OAc), 20.5 (CH3 of OAc). IR (film on NaCl): 3434, 2103, 1751, 1642, 

2.112 2.113 
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1534 cm-1. HRMS (ESI+): m/z calcd for C42H51N9O20 + H+ [M+H]+ 1002.3329, found 

1002.3323. 

N, N’-Di-(β-D-galactopyranosyl-1,2,3-triazol-4-ylmethylamide)-5-(fluorescein-

thiourea)-benzene-1,3-dicarboxamide (2.115) 

 

Compound 2.113 (0.087 g, 0.087 mmol) was dissolved in acetone (10 mL). FITC (0.034 

g, 0.087 mmol) was added and the reaction mixture was allowed to stir overnight in 

the dark. Further FITC (0.034 g, 0.087 mmol) was added and the reaction mixture was 

allowed to stir in the MW at 50 ⁰C for 1 h. The solvent was removed in vacuo to leave 

the crude product 2.114. Rf = 0.47 (DCM:MeOH 8.5:1.5). The crude product was then 

deprotected. It was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir at 45 ⁰C for 6 h. The solvent was 

removed in vacuo. Crude product was then triturated with chloroform to give 

product 2.115. 1H NMR analysis (Figure 2.32) showed that ~40 % of the product was 

fluorescently labelled with FITC. HRMS (ESI+): m/z calcd for C47H46N10O17S + H+ [M+H]+ 

1055.2841, found 1055.2863. 

7.2.2 Experimental Procedures for Chapter 3 

N’-Di(prop-2-yn-1-yl)terephthalamide (3.13) 

 

Terephthalic acid 3.12 (200 mg, 1.204 mmol) and DMTMM (733 mg, 2.649 mmol) 

were suspended in anhydrous DMF (15 mL) under N2. Propargylamine (0.169 mL, 

2.649 mmol) was added to the reaction mixture, which went clear upon addition. The 

2.113 2.114 

2.115 

3.12 3.13 
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reaction was allowed to stir for 16 h. The reaction mixture was poured into ice/water 

(20 mL). The resulting precipitate was filtered and washed with cold water. The pure 

product was allowed to dry overnight in the fume cupboard to give the pure product 

3.13 as a white solid (234 mg, 81 %). 1H NMR (500 MHz, DMSO) δ 9.05 (t, J = 5.5 Hz, 

2H, NH), 7.93 (s, 4H, Ar-H), 4.07 (dd, J = 5.5, 2.5 Hz, 4H, CH2CCH), 3.13 (t, J = 2.5 Hz, 

2H, CH2CCH). 13C NMR (125 MHz, DMSO) δ 165.8 (CO), 136.7 (Ar-C), 127.8 (Ar-CH), 

81.6 (CH2CCH), 73.5 (CH2CCH), 29.0 (CH2CCH). IR (ATR): 3278, 3237, 1619, 1534, 1493, 

1439, 1352, 1309, 1279, 1224, 1160, 1063, 991, 710 cm-1. HRMS (ESI+): m/z 

calculated for C14H12N2O2 + Na+ [M+Na+]: 263.0796, found 263.0795. 

N, N’-Di-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-

ylmethylamide)-terephthalamide (3.14) 

 

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution of 2.40 (187 mg, 0.501 mmol) and 3.13 (55 mg, 0.229 mmol) in CH3CN/H2O 

(4 mL/ 2 mL). The reaction was allowed to stir in the MW at 100 ⁰C until deemed 

complete by TLC analysis (10 min). The solvent was removed in vacuo. The residue 

was dissolved in DCM (30 mL), washed with water (20 mL x 3), and dried (MgSO4). 

The mixture was filtered and the solvent was removed in vacuo to yield the crude 

product, which was purified by silica gel column chromatography (DCM:MeOH 98:2-

95:5) to give the pure product 3.14 as an off-white solid (164 mg, 73 %). Rf= 0.36 

(DCM:MeOH 9:1). [α]D
24

  -10.9 (c 1.1, DCM). 1H NMR (500 MHz, CDCl3) δ 7.95 (s, 2H, 

triaz-H), 7.83 (s, 4H, Ar-H), 7.34 – 7.27 (m, 2H, NHCH2-triaz), 5.85 (d, J = 9.3 Hz, 2H, H-

1), 5.58 – 5.51 (m, 4H, H-2 and H-4), 5.27 (dd, J = 10.3, 3.4 Hz, 2H, H-3), 4.82 – 4.64 

(m, 4H, CH2-triaz), 4.28 – 4.23 (m, 2H, H-5), 4.20-4.10 (m, 4H, H-6 and H-6’), 2.22 (s, 

6H, OAc), 2.03 (s, 6H, OAc), 2.01 (s, 6H, OAc), 1.86 (s, 6H, OAc). 13C NMR (125 MHz, 

CDCl3) δ 170.3 (CO of OAc), 170.0 (CO of OAc), 169.8 (CO of OAc), 169.0 (CO of OAc), 

166.6 (CONH), 145.1 (C-triaz), 136.7 (Ar-C), 127.4 (Ar-CH), 121.3 (CH-triaz), 86.3 (C-

1), 74.1 (C-5), 70.7 (C-3), 68.1 (C-2/C-4), 66.8 (C-2/C-4), 61.2 (C-6), 35.4 (CH2-triaz), 

2.40 
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20.7 (CH3 of OAc), 20.6 (CH3 of OAc), 20.5 (CH3 of OAc), 20.2 (CH3 of OAc). IR (ATR): 

3380, 1743, 1644, 1533, 1495, 1431, 1368, 1212, 1046, 923 cm-1. HRMS (ESI+): m/z 

calculated for C42H50N8O20 + Na+ [M+Na+]: 1009.3039, found 1009.3032. 

N, N’-Di-(β-D-galactopyranosyl-1,2,3-triazol-4-ylmethylamide)-terephthalamide 

(3.15) 

 

3.14 (100 mg, 0.101 mmol) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 

mL) was added, and the reaction mixture was allowed to stir at 45 ⁰C for 6 h. The 

solution was cooled, Amberlite H+ was added and the mixture was allowed to stir for 

30 mins. The solution was filtered, and the solvent was removed in vacuo. Excess 

NEt3 was removed using the Schlenk line. The product was freeze-dried over night to 

yield the pure product 3.15 as a white solid (59 mg, 90 %). [α]D
23

 +13.8 (c 0.8, H2O). 

1H NMR (500 MHz, D2O) δ 8.15 (s, 2H, triaz-H), 7.54 (s, 4H, Ar-H), 5.56 (d, J = 9.2 Hz, 

2H, H-1), 4.47 (s, 4H, CH2-triaz), 4.11 (t, J = 9.5 Hz, 2H, H-2), 3.96 (d, J = 3.2 Hz, 2H, H-

4), 3.85 (t, J = 6.1 Hz, 2H, H-5), 3.76 (dd, J = 9.8, 3.3 Hz, 2H, H-3), 3.64 (d, J = 6.2 Hz, 

4H, H-6 and H-6’). 13C NMR (125 MHz, D2O) δ 168.9 (CO), 144.6 (C-triaz), 135.9 (Ar-

C), 127.4 (Ar-CH), 123.2 (CH-triaz), 88.2 (C-1), 78.3 (C-5), 72.9 (C-3), 69.8 (C-2), 68.6 

(C-4), 60.9 (C-6), 34.8 (CH2-triaz). IR (film on NaCl): 3290, 1636, 1542, 1498, 1293, 

1091, 1053, 890 cm-1. HRMS (ESI+): m/z calculated for C26H34N8O12 + Na+ [M+Na+]: 

673.2194, found 673.2206. 

3,4-Di-(prop-2-yn-1-ylamino)cyclobut-3-ene-1,2-dione (3.16) 

 

Ethyl squarate 3.2 (0.2 mL, 1.35 mmol), propargylamine (0.18 mL, 2.8 mmol) and 

triethylamine (0.75 mL, 5.4 mmol) were allowed to stir in ethanol (2 mL) for 16 h at 

room temperature. A precipitate formed, which was filtered using a sintered glass 

funnel, washed with ethanol and allowed to dry to give the pure product 3.16 in 

3.14 3.15 

3.2 3.16 
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quantitative yield as a pale yellow solid (254 mg). 1H NMR (500 MHz, DMSO) δ 7.79 

(s, 2H, NH), 4.34 (d, J = 3.8 Hz, 4H, CH2CCH), 3.36 (t, J = 2.5 Hz, 2H, CH2CCH). 13C NMR 

(125 MHz, DMSO) δ 183.26 (CO), 167.84 (C=C), 81.03 (CH2CCH), 75.71 (CH2CCH), 

33.23 (CH2CCH). IR (ATR): 3280, 3149, 2922, 1801, 1648, 1551, 1472, 1415, 1343, 

1298, 1272, 1132, 972, 915, 827, 747, 670 cm-1. HRMS (ESI+): m/z calculated for 

C10H8N2O2 + Na+ [M+Na+]: 211.0483, found 211.0479. 

3,4-Di-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-

ylmethylamino)cyclobut-3-ene-1,2-dione (3.17) 

 

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution of 2.40 (375 mg, 1.004 mmol) and 3.16 (90 mg, 0.478 mmol) in CH3CN/H2O 

(4 mL/ 2mL). The reaction was allowed to stir in the MW at 100 ⁰C until deemed 

complete by TLC analysis (typically 10 min). The solvent was removed in vacuo. The 

residue was dissolved in DCM (30 mL), washed with water (3 x 20 mL), and dried 

(MgSO4). The mixture was filtered and the solvent was removed in vacuo to yield the 

crude product, which was purified by silica gel column chromatography (DCM:MeOH 

98:2-93:7) to give the pure product 3.17 as an off-white solid (362 mg, 81 %).  Rf=0.5 

(DCM:MeOH 9:1). [α]D
27

 -8.0 (c 1, DCM). 1H NMR (500 MHz, DMSO) δ 8.27 (s, 2H, triaz-

H), 7.84 (s, 2H, NHCH2-triaz), 6.25 (d, J = 9.3 Hz, 2H, H-1), 5.59 (t, J = 9.6 Hz, 2H, H-2), 

5.46 – 5.40 (m, 2H, H-3 and H-4), 4.85-4.75 (m, 4H, CH2-triaz), 4.59 – 4.54 (m, 2H, H-

5), 4.15-4.10 (m, 2H, H-6), 4.05-4.00 (m, 2H, H-6’), , 2.18 (s, 6H, OAc), 1.99 (s, 6H, 

OAc), 1.94 (s, 6H, OAc), 1.80 (s, 6H, OAc). 13C NMR (125 MHz, DMSO) δ 183.3 (CO), 

170.4 (CO of OAc), 170.4 (CO of OAc), 169.9 (CO of OAc), 169.0 (CO of OAc), 145.1 (C-

triaz), 123.0 (CH-triaz), 84.7 (C-1), 73.4 (C-5), 70.9 (C-3/4), 68.2 (C-2), 67.8 (C-3/4), 

62.0 (C-6), 38.9 (CH2-triaz), 21.0 (CH3 of OAc), 20.9 (CH3 of OAc), 20.8 (CH3 of OAc), 

20.4 (CH3 of OAc). IR (film on NaCl): 3155, 2938, 2121, 1754, 1653, 1581, 1431, 1371, 

1220, 1052, 923, 598 cm-1. HRMS (ESI+): m/z calculated for C38H46N8O20 + Na+ 

[M+Na+]: 957.2726, found 957.2741. 

2.40 3.16 
3.17 
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3,4-Di-(2-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-ethyl-1,2,3-triazol-4-

ylmethylamino)cyclobut-3-ene-1,2-dione (3.18) 

 

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution of 2.40 (227 mg, 0.540 mmol) and 3.16 (49 mg, 0.259 mmol) in CH3CN/H2O 

(4 mL/ 2mL). The reaction was allowed to stir in the MW at 100 ⁰C until deemed 

complete by TLC analysis (10 min). The solvent was removed in vacuo. The residue 

was dissolved in DCM (30 mL), washed with water (20 mL x 3), and dried (MgSO4). 

The mixture was filtered and the solvent was removed in vacuo to yield the crude 

product, which was purified by silica gel column chromatography (DCM:MeOH 98:2-

93:7) to give the pure product 3.18 as a yellow solid (197 mg, 80 %). Rf= 0.5 

(DCM:MeOH 9:1). [α]D
22

 -3.8 (c 1.05, DCM). 1H NMR (500 MHz, CDCl3) δ 8.06 (s, 2H, 

NHCH2-triaz), 7.78 (s, 2H, triaz-H), 5.38 (d, J = 3.4 Hz, 2H, H-4), 5.15 (dd, J = 10.4, 8.0 

Hz, 2H, H-2), 5.04 – 4.86 (m, 6H, H-3 and CH2-triaz), 4.68 – 4.53 (m, 4H, CH2CH2O), 

4.51 (d, J = 7.9 Hz, 2H, H-1), 4.25 – 4.18 (m, 2H, CHO-Gal), 4.15-4.07 (m, 4H, H-6 and 

H-6’), 4.02 – 3.94 (m, 2H, CHO-Gal), 3.92 (t, J = 6.6 Hz, 2H, H-5), 2.17 (s, 6H, OAc), 2.04 

(s, 6H, OAc), 1.98 (s, 6H, OAc), 1.96 (s, 6H, OAc). 13C NMR (125 MHz, CDCl3) δ 183.6 

(CO), 170.4 (CO of OAc), 170.2 (CO of OAc), 170.1 (CO of OAc), 169.4 (CO of OAc), 

167.7 (NHCCO), 144.7 (C-triaz), 124.4 (CH-triaz), 100.9 (C-1), 70.9 (C-5), 70.6 (C-3), 

68.5 (C-2), 67.3 (CH2CH2O), 66.9 (C-4), 61.1 (C-6), 50.3 (CH2CH2O), 38.6 (CH2-triaz), 

20.7 (CH3 of OAc), 20.7 (CH3 of OAc), 20.5 (CH3 of OAc). IR (film on NaCl): 3261, 2964, 

1750, 1677, 1602, 1535, 1432, 1370, 1227, 1175, 1139, 1059 cm-1. HRMS (ESI+): m/z 

calculated for C42H54N8O22 + Na+ [M+Na+]: 1045.3250, found 1045.3249. 

3,4-Di-[{4-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-2,3,6-tri-O-acetyl-β-D- 

glucopyranosyl}-1,2,3-triazol-4-ylmethylamino]cyclobut-3-ene-1,2-dione (3.19) 

 

2.47 
3.16 3.18 

2.43 3.16 
3.19 
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Copper sulphate pentahydrate (30 mg) and sodium ascorbate (60 mg) were added to 

a solution of 2.43 (664 mg, 0.478 mmol) and 3.16 (90 mg, 1.004 mmol) in CH3CN/H2O 

(4 mL/ 2mL). The reaction was allowed to stir in the MW at 100 ⁰C until deemed 

complete by TLC analysis (typically 10 min). The solvent was removed in vacuo. The 

residue was dissolved in DCM (30 mL), washed with water (20 mL x 3), and dried 

(MgSO4). The mixture was filtered and the solvent was removed in vacuo to yield the 

crude product, which was purified by silica gel column chromatography (DCM:MeOH 

98:2-93:7) to give the pure product 3.19 as a white solid (529 mg, 75 %). Rf= 0.27 

(DCM:MeOH 9:1). [α]D
24

 +7.0 (c 1.0, DCM). 1H NMR (500 MHz, CDCl3) δ 8.23 (s, 2H, 

NHCH2-triaz), 8.09 (s, 2H, triaz-H), 6.07 (d, J = 6.4 Hz, 2H, H-1 Gal), 5.49 – 5.38 (m, 4H, 

H-2 Gal and H-3 Gal), 5.36 (d, J = 3.3 Hz, 2H, H-4 Glc), 5.11 (dd, J = 10.2, 8.0 Hz, 2H, H-

2 Glc), 4.99 (dd, J = 10.4, 3.3 Hz, 2H, H-3 Glc), 4.94 (apps, 4H, CH2-triaz), 4.58 (d, J = 

7.9 Hz, 2H, H-1 Glc), 4.51 (d, J = 11.6 Hz, 2H, H-6 Glc), 4.28 – 4.05 (m, 10H, H-6’ Glc, 

H-5 Gal, H-4 Gal, H-6 and H-6’ Gal), 4.03 – 3.92 (m, 2H, H-5 Glc), 2.14 (s, 6H, OAc), 

2.06 (s, 6H, OAc), 2.04 (appd, 18H, 3 x OAc), 1.95 (s, 6H, OAc), 1.76 (s, 6H, OAc). 13C 

NMR (125 MHz, CDCl3) δ 183.6 (CO), 170.4 (CO of OAc), 170.2 (CO of OAc), 170.0 (CO 

of OAc), 169.9 (CO of OAc), 169.7 (CO of OAc), 169.2 (CO of OAc), 168.9 (CO of OAc), 

167.6 (NHCCO), 145.1 (C-triaz), 123.5 (CH-triaz), 101.2 (C-1 Glc), 85.4 (C-1 Gal), 75.9 

(C-4/5 Gal), 75.6 (C-4/5 Gal), 72.6 (C-3 Gal), 71.0 (C-3 Glc), 70.8 (C-2 Gal), 70.7 (C-5 

Glc), 69.1 (C-2 Glc), 66.8 (C-4 Glc), 61.9 (C-6 Glc), 60.8 (C-6 Gal), 38.4 (CH2-triaz), 20.9 

(CH3 of OAc), 20.8 (CH3 of OAc), 20.7 (CH3 of OAc), 20.6 (CH3 of OAc), 20.5 (CH3 of 

OAc), 20.3 (CH3 of OAc), 20.1 (CH3 of OAc). IR (film on NaCl): 3478, 3263, 2964, 1753, 

1597, 1536, 1370, 1227, 1048 cm-1. HRMS (ESI+): m/z calculated for C62H78N8O36 + 

Na+ [M+Na+]: 1533.4416, found 1533.3743. 

3,4-Di-(β-D-galactopyranosyl-1,2,3-triazol-4-ylmethylamino)cyclobut-3-ene-1,2-

dione (3.20) 

 
3.17 3.20 
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3.17 (167 mg, 0.179 mmol) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 

mL) was added, and the reaction mixture was allowed to stir at 45 ⁰C for 6 h. The 

solution was cooled, Amberlite H+ was added and the mixture was allowed to stir for 

30 mins. The solution was filtered, and the solvent was removed in vacuo. Excess 

NEt3 was removed using the Schlenk line. The product was freeze-dried over night to 

yield the pure product 3.20 as a white solid (82 mg, 77 %). [α]D
22 +3.0 (c 1, DMSO). 1H 

NMR (500 MHz, DMSO) δ 8.24 (s, 2H, triaz-H), 7.88 (bs, 2H, NHCH2-triaz), 5.54 (d, J = 

9.2 Hz, 2H, H-1), 5.28 (d, J = 6.0 Hz, 2H, OH), 5.05 (d, J = 5.7 Hz, 2H, OH), 4.87 (s, 4H, 

CH2-triaz), 4.74 (t, J = 5.7 Hz, 2H, OH), 4.69 (d, J = 5.6 Hz, 2H, OH), 4.07 (td, J = 9.3, 6.3 

Hz, 2H, H-2), 3.83 – 3.79 (m, 2H, H-4), 3.76 (t, J = 6.1 Hz, 2H, H-5), 3.63 – 3.49 (m, 6H, 

H-3, H-6 and H-6’). 13C NMR (125 MHz, DMSO) δ 183.2 (CO), 167.9 (NHCCO), 144.8 

(C-triaz), 122.3 (CH-triaz), 88.6 (C-1), 78.9 (C-5), 74.2 (C-3), 69.8 (C-2), 68.9 (C-4), 60.9 

(C-6), 39.1 (CH2-triaz). IR (ATR): 3370, 2940, 2502, 1794, 1652, 1551, 1432, 1368, 

1287, 1095, 1053, 1024, 892, 700 cm-1. HRMS (ESI+): m/z calculated for C22H30N8O12 

+ Na+ [M+Na+]: 621.1881, found 621.1896. 

3,4-Di-(2-O-(β-D-galactopyranosyl)-ethyl-1,2,3-triazol-4-ylmethylamino)cyclobut-

3-ene-1,2-dione (3.21) 

 

3.18 (150 mg, 0.147 mmol) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 

mL) was added, and the reaction mixture was allowed to stir at 45 ⁰C for 6 h. The 

solution was cooled, Amberlite H+ was added and the mixture was allowed to stir for 

30 mins. The solution was filtered, and the solvent was removed in vacuo. Excess 

NEt3 was removed using the Schlenk line. The product was freeze-dried over night to 

yield the pure product as a white solid (95 mg, 94 %). [α]D
22 +12.0 (c 1, H2O).  1H NMR 

(500 MHz, D2O) δ 8.01 (s, 2H, triaz-H), 4.85 (s, 4H, CH2-triaz), 4.62 (t, J = 5.0 Hz, 4H, 

O-CH2CH2), 4.27 (d, J = 7.9 Hz, 2H, H-1), 4.25 – 4.20 (m, 2H, O-CH-CH2), 4.09 – 4.02 

(m, 2H, O-CH-CH2), 3.84 (d, J = 3.4 Hz, 2H, H-4), 3.70 – 3.63 (m, 4H, H-6 and H-6’), 3.59 

(dd, J = 7.4, 4.8 Hz, 2H, H-5), 3.54 (dd, J = 9.9, 3.5 Hz, 2H, H-3), 3.41 (dd, J = 9.9, 7.9 

Hz, 2H, H-2). 13C NMR (125 MHz, D2O) δ 182.22 (CO), 168.0 (CCO), 144.5 (C-triaz), 

3.18 3.21 
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124.70 (CH-triaz), 102.95 (C-1), 75.07 (C-5), 72.54 (C-3), 70.51 (C-2), 68.48 (C-4), 67.95 

(O-CH2CH2), 60.85 (C-6), 50.38 (O-CH2CH2), 38.82 (CH2-triaz). IR (ATR): 3269, 2924, 

1800, 1662, 1591, 1531, 1427, 1338, 1224, 1140, 1042, 889, 826, 775 cm-1. HRMS 

(ESI+): m/z calculated for C26H38N8O14 + H+ [M+H+]: 686.2586, found 687.2576. 

3,4-Di-[{4-O-(β-D-galactopyranosyl)-β-D-glucopyranosyl}-1,2,3-triazol-4-

ylmethylamino]cyclobut-3-ene-1,2-dione (3.22) 

 

3.19 (276 mg, 0.188 mmol) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 

mL) was added, and the reaction mixture was allowed to stir at 45 ⁰C for 6 h. The 

solution was cooled, Amberlite H+ was added and the mixture was allowed to stir for 

30 mins. The solution was filtered, and the solvent was removed in vacuo. Excess 

NEt3 was removed using the Schlenk line. The product was freeze-dried over night to 

yield the pure product as a white solid (172 mg, 99 %). [α]D
22

 +10 (c 1, H2O). 1H NMR 

(500 MHz, D2O) δ 8.11 (s, 2H, triaz-H), 5.70 – 5.59 (m, 2H, H-1), 4.81 (s, 4H, CH2-triaz), 

4.47 (d, J = 7.9 Hz, 1H, H-1 Glc), 4.40 (d, J = 7.8 Hz, 1H, H-1 Glc), 3.99 – 3.42 (m, 24H). 

13C NMR (125 MHz, D2O) δ 182.3 (CO), 168.2 (CCO), 144.9 (C-triaz), 123.3 (CH-triaz), 

102.9 (C-1 Glc), 96.4 (C-1 Glc), 87.5 (C-1 Gal), 78.9, 77.7, 77.4, 75.9, 75.4, 75.1, 74.5, 

72.8, 72.5, 72.2, 71.9, 71.9, 70.9, 70.5, 69.2, 68.9, 68.7, 68.6, 68.3, 61.2, 61.1, 61.0, 

60.4, 59.7, 38.8 (CH2-triaz).  IR (ATR): 3300, 2939, 2452, 1803, 1670, 1585, 1516, 1379, 

1015 cm-1. HRMS (ESI+): m/z calculated for C34H50N8O22 + Na+ [M+Na+]: 945.2937, 

found 945.2967. 

Bicyclo[2.2.1]hept-5-ene-2-endo,3-exo-2,3-dicarboxamide, N-(prop-2-yn-1-yl) 

(3.25) 

 

3.19 3.22 

3.23 3.25 
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5-Norbornene-2-endo,3-exo-dicarboxylic acid 3.23 (200 mg, 1.098 mmol) and TBTU 

(881 mg, 2.7 mmol) were dissolved in anhydrous DMF (15 mL) under N2. NEt3 (0.38 

mL, 2.7 mmol) and propargylamine (0.15 mL, 2.3 mmol) were added after 10 mins. 

The reaction was allowed to stir for 48 h. The DMF was removed in vacuo, the 

resulting residue was dissolved in DCM (20 mL) and washed with brine (3 x 20 mL), 

dried over MgSO4, filtered and concentrated in vacuo to yield the crude product. This 

was then purified by silica gel column chromatography (1:1-1.5:1 EtOAc:Pet Ether) to 

give the pure product 3.25 as a white solid (260 mg, 93 %). Rf=0.25 (1:1 EtOAc:Pet. 

Ether). 1H NMR (500 MHz, MeOD) δ 6.29 (dd, J = 5.6, 3.1 Hz, 1H, He/f), 6.05 (dd, J = 

5.6, 2.8 Hz, 1H, He/f), 4.04 – 3.87 (m, 4H, CH2CCH), 3.26 (dd, J = 4.6, 3.7 Hz, 1H, Hb/c), 

3.21 (d, J = 0.6 Hz, 1H, Ha/d), 2.95 (dd, J = 1.9, 1.1 Hz, 1H, Ha/d), 2.59 – 2.55 (m, 3H, 

CH2CCH and Hb/c), 1.82 (d, J = 8.4 Hz, 1H, Hg), 1.41 (dq, J = 8.4, 1.7 Hz, 1H, Hg’). 13C 

NMR (125 MHz, MeOD) δ 174.8 (CO), 173.7 (CO), 137.4 (Ce/f), 134.1 (Ce/f), 70.6 

(CH2CCH), 70.4 (CH2CCH), 48.5 (Ca/d), 48.1 (Cb/c), 47.1 (Cb/c), 47.0 (Cg), 46.1 (Ca/d), 28.3 

(CH2CCH), 28.1 (CH2CCH), 13.1. IR (ATR): 3284, 1635, 1531, 1447, 1333, 1276, 1215, 

1031, 862 cm-1. HRMS (ESI+): m/z calculated for C15H16N2O2 + Na+ [M+Na+]: 279.1109, 

found 279.1119. 

Bicyclo[2.2.1]hept-5-ene-2,3-endo-2,3-dicarboxamide, N-(prop-2-yn-1-yl) (3.26) 

 

Cis-5-Norbornene-2-endo,3-exo-dicarboxylic acid 3.24 (300 mg, 1.65 mmol) and 

TBTU (1.323 g, 4.12 mmol) were dissolved in anhydrous DMF (15 mL) under N2. 

Triethylamine (0.57 mL, 4.12 mmol) and propargylamine (0.22 mL, 3.46 mmol) were 

added after 10 mins. The reaction was allowed to stir for 48 h. The DMF was removed 

in vacuo, the resulting residue was dissolved in DCM (20 mL) and washed with brine 

(3 x 20 mL) and sat. NaHCO3 (2 x 20 mL), dried of MgSO4, filtered and concentrated 

in vacuo to yield the crude product. This was then purified by silica gel column 

chromatography (1:1-1.5:1 EtOAc:Pet Ether) to give the pure product 3.26 as a white 

3.24 3.26 
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solid (334 mg, 79 %). Rf=0.08 (1:1 EtOAc:Pet. Ether). 1H NMR (500 MHz, DMSO) δ 7.70 

(t, J = 5.3 Hz, 2H, NH), 6.09 (d, J = 1.8 Hz, 2H, He and Hf), 3.82 – 3.64 (m, 4H, CH2CCH), 

3.12 – 3.09 (m, 2H, Hb and HC), 3.04 (t, J = 2.5 Hz, 2H, CH2CCH), 2.96 – 2.94 (m, 2H, Ha 

and Hd), 2.08 (s, 1H), 1.25 – 1.19 (m, 1H). 13C NMR (125 MHz, DMSO) δ 171.5 (CO), 

134.9 (Ce and Cf), 81.9 (CH2CCH), 73.2 (CH2CCH), 50.1 (Cb and Cc), 48.9 (Cg), 46.7 (Ca 

and Cd), 28.4 (CH2CCH). IR (ATR): 3286, 1654, 1525, 1415, 1333, 1278, 1256, 1226, 

1098, 1029, 908, 846 cm-1. HRMS (ESI+): m/z calculated for C15H16N2O2 + Na+ [M+Na+]: 

279.1109, found 279.1105. 

Bicyclo[2.2.1]hept-5-ene-2-endo,3-exo-2,3-dicarboxamide, N-(2,3,4,6-tetra-O-

acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-ylmethylamino) (3.27) 

 

Copper sulphate pentahydrate (30 mg) and sodium ascorbate (60 mg) were added to 

a solution of 2.40 (700 mg, 1.87 mmol) and 3.25 (229 mg, 0.893 mmol) in CH3CN/H2O 

(4 mL/ 2mL). The reaction was allowed to stir in the MW at 100 ⁰C until deemed 

complete by TLC analysis (20 min). The solvent was removed in vacuo. The residue 

was dissolved in DCM (30 mL), washed with water (20 mL x 3), and dried (MgSO4). 

The mixture was filtered and the solvent was removed in vacuo to yield the crude 

product, which was purified by silica gel column chromatography (DCM:MeOH 98:2-

93:7) to give the pure product 3.27 as an off-white solid (488 mg, 54 %). Rf=0.58 

(DCM:MeOH 9:1). [α]D
23

 -6.0 (c 1, DCM). 1H NMR (500 MHz, CDCl3) δ 7.82-7.74 (m, 2H, 

triaz-H and triaz-H’), 7.17 (dt, J = 9.0, 5.8 Hz, 1H, NHCH2-triaz), 6.93 (dt, J = 24.9, 5.7 

Hz, 1H, NH’CH2-triaz), 6.16 (td, J = 5.7, 3.2 Hz, 1H, He/f), 6.08 – 6.02 (m, 1H, He/f), 5.82 

(d, J = 9.2, 2H, H-1), 5.52 – 5.42 (m, 4H, H-2 and H-4), 5.24 (dd, J = 10.3, 3.2 Hz, 2H, H-

3), 4.49 – 4.37 (m, 4H, CH2-triaz x 2), 4.29 – 4.18 (m, 2H, H-5), 4.18 – 4.04 (m, 4H, H-

6 and H-6’), 3.11 – 3.00 (m, 2H, Ha/d and Hb/c), 2.97 (s, 1H, Ha/d), 2.40 (dd, J = 12.7, 3.7 

Hz, 1H, Hb/c), 2.18 – 2.13 (m, 6H, OAc), 1.98 – 1.92 (m, 12H, OAc), 1.86 – 1.75 (m, 6H, 

OAc), 1.75 – 1.70 (m, 1H, Hg), 1.41 (d, J = 8.5 Hz, 1H, Hg’). 13C NMR (125 MHz, CDCl3) 

2.40 
3.25 3.27 
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δ 173.7 and 173.6 (CO-NHCH2), 172.6 and 172.5 (C’O-NHCH2), 169.3 (CO of OAc), 

169.1 (CO of OAc), 169.0 (CO of OAc), 168.8 (CO of OAc), 168.1 (CO of OAc), 168.0 

(CO of OAc), 144.7 and 144.6 (C-triaz), 136.6 and 136.5(Ce/f), 134.0 and 133.9 (Ce/f), 

119.9 and 119.7 (CH-triaz), 85.2 (C-1), 73.0 (C-5), 69.8 and 69.7 (C-3), 67.1 and 67.0 

(C-2/4), 66.0 (C-2/4), 60.3 and 60.2 (C-6), 49.4 and 49.2 (Cb/c), 47.6 (Cb/c), 47.2 (Cg), 

45.5 and 45.3 (Ca/d), 44.1 and 44.0 (Ca/d), 34.0 and 33.9 (CH2-triaz), 19.7 (CH3 of OAc), 

19.6 (CH3 of OAc), 19.5 (CH3 of OAc), 19.3 (CH3 of OAc), 19.2 (CH3 of OAc). IR (ATR): 

3387, 2972, 1745, 1651, 1526, 1368, 1210, 1044, 923, 733 cm-1. HRMS (ESI+): m/z 

calculated for C43H54N8O20 + H+ [M+H+]: 1003.3533, found 1003.3555. 

Bicyclo[2.2.1]cis-hept-5-ene-2,3-endo-2,3-dicarboxamide, N-(2,3,4,6-tetra-O-

acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-ylmethylamino) (3.28) 

 

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution of 2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl azide 2.40 (211 mg, 1.87 

mmol) and cis-5-Norbornene-endo-2,3-dicarboxylic acid 3.26 (69 mg, 0.893 mmol) in 

CH3CN/H2O (4 mL/ 2mL). The reaction was allowed to stir in the MW at 100 ⁰C until 

deemed complete by TLC analysis (20 min). The solvent was removed in vacuo. The 

residue was dissolved in DCM (30 mL), washed with water (20 mL x 3), and dried 

(MgSO4). The mixture was filtered and the solvent was removed in vacuo to yield the 

crude product, which was purified by silica gel column chromatography (DCM:MeOH 

98:2-93:7) to give the pure product 3.28 as an off-white solid (200 mg, 74 %). Rf=0.41 

(DCM:MeOH 9:1). [α]D
22

 -6.4 (c 1.1, DCM). 1H NMR (500 MHz, CDCl3) δ 7.83 (s, 1H, 

triaz-H), 7.79 (s, 1H, triaz-H’), 6.97 (t, J = 5.5 Hz, 1H, NHCH2-triaz), 6.83 (t, J = 5.6 Hz, 

1H, NHCH2-triaz), 6.35-6.22 (m, 2H, He and Hf), 5.83 – 5.77 (m, 2H, H-1 and H-1’), 5.52 

– 5.46 (m, 4H, H-2, H-2’, H-4 and H-4’), 5.24 – 5.18 (m, 2H, H-3 and H-3’), 4.42 – 4.01 

2.40 3.26 

3.28 
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(m, 10H, CH2-triaz x2, H-5, H-5’, H-6, H-6’, H-6’’ and H-6’’’), 3.25 – 3.17 (m, 2H, Hb and 

Hc), 3.06 (app s, 2H, Ha and Hd), 2.16 (s, 6H, OAc), 2.01 – 1.88 (m, 12H, OAc x 4), 1.80 

(m, 6H, OAc), 1.43 – 1.23 (m, 2H, Hg and Hg’). 13C NMR (125 MHz, CDCl3) δ 171.7 (CO), 

171.7 (CO), 169.3 (CO of OAc), 169.3 (CO of OAc), 169.1 (CO of OAc), 168.9 (CO of 

OAc), 168.8 (CO of OAc), 167.9 (CO of OAc), 167.9 (CO of OAc), 144.6 (C-triaz), 144.5 

(C’-triaz), 134.6 (Ce/f), 134.2 (Ce/f), 120.4 (CH-triaz), 120.2 (CH-triaz), 85.1 (C-1), 72.9 

(C-5), 69.9 (C-3), 67.0 (C-2/4), 65.9 (C-2/4), 60.2 (C-6), 60.1 (C-6’), 50.5 (Cb/c), 50.3 

(Cb/c), 48.7 (Cg), 46.1 (Ca and Cd), 33.7 (CH2-triaz), 19.7 (CH3 of OAc), 19.6 (CH3 of OAc), 

19.6 (CH3 of OAc), 19.5 (CH3 of OAc), 19.2 (CH3 of OAc). IR (ATR): 3392, 2967, 1746, 

1663, 1527, 1368, 1211, 1045, 922 cm-1. HRMS (ESI+): m/z calculated for C43H54N8O20 

+ Na+ [M+Na+]: 1025.3352, found 1025.3387. 

Bicyclo[2.2.1]hept-5-ene-2-endo,3-exo-2,3-dicarboxamide, N-(β-D-

galactopyranosyl-1,2,3-triazol-4-ylmethylamino) (3.29) 

 

3.27 (375 mg, 0.374 mmol) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 

mL) was added, and the reaction mixture was allowed to stir at 45 ⁰C for 6 h. The 

solution was cooled, and the solvent was removed in vacuo. The product was dried 

under high vacuum and lyophilized for 3 nights to yield the pure product 3.29 (242 

mg, 97 %). [α]D
19

:  11.0˚ (c 1, H2O). 1H NMR (500 MHz, D2O) δ 8.18 (s, 1H, triaz-H), 8.15 

8.18 (s, 1H, triaz-H’), 6.33 – 6.28 (m, 1H, He/Hf), 6.05 – 5.99 (m, 1H, He/Hf), 5.71-5.67 

(m, 2H, H-1), 4.53 – 4.43 (m, 4H, CH2-triaz), 4.19 (appt, J = 9.5 Hz, 2H, H-2), 4.08 (appd, 

J = 3.3 Hz, 2H, H-4), 3.99 (appt, J = 6.1 Hz, 2H, H-5), 3.87 (dd, J = 9.8, 3.3 Hz, 2H, H-3), 

3.78 (appd, J = 6.0 Hz, 4H, H-6 and H-6’), 3.25 – 3.19 (m, 2H, Ha/Hd and Hb/Hc), 3.01 

(s, 1H, Ha/Hd), 2.53 (d, J = 4.1 Hz, 1H, Hb/Hc), 1.66 (d, J = 8.6 Hz, 1H, Hg), 1.42 (d, J = 

7.6 Hz, 1H, Hg’). 13C NMR (125 MHz, D2O) δ 176.8 (CO), 175.8 (C’O), 145.2 (C-triaz), 

138.2 (Ce/f), 134.6 (Ce/f), 123.1 (CH-triaz), 88.2 (C-1), 78.4 (C-5), 73.0 (C-3), 69.8 (C-2), 

68.7 (C-4), 60.9 (C-6), 48.6 (Cb/Cc), 48.2 (Ca/Cd), 47.8 (Cb/Cc), 47.5 (Cg), 46.4 (Ca/Cd), 

3.27 3.29 



Chapter 7 

225 
 

34.6 (CH2-triaz), 34.5 (C’H2CCH). IR (ATR): 3282, 2929, 1760, 1642, 1535, 1355, 1300, 

1243, 1089, 1052, 986, 889 cm-1. HRMS (ESI+): m/z calculated for C27H38N8O12 + Na+ 

[M+Na+]: 689.2507, found 689.2490.  

Bicyclo[2.2.1]cis-hept-5-ene-2,3-endo-2,3-dicarboxamide, N-(β-D-

galactopyranosyl-1,2,3-triazol-4-ylmethylamino) (3.30) 

 

3.28 (265 mg, 0.264 mmol) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 

mL) was added, and the reaction mixture was allowed to stir at 45 ⁰C for 6 h. The 

solution was cooled, and the solvent was removed in vacuo. The product was dried 

under high vacuum and lyophilized for 3 nights to yield the pure product 3.30 (169 

mg, 96 %). [α]D
18 +14.0 (c 1, H2O). 1H NMR (500 MHz, D2O) δ 8.32 (s, 1H, triaz-H), 8.18 

(s, 1H, triaz-H’), 5.92-5.86 (m, 2H, He and Hf), , 5.74 (d, J = 9.2 Hz, 1H, H-1), 5.68 (d, J 

= 9.2 Hz, 1H, H-1’), 4.68 (s, 4H, CH2-triaz), 4.29 – 4.18 (m, 4H, H-2 and H-2’), 4.13 (dd, 

J = 3.3, 0.6 Hz, 1H, H-4), 4.11 (dd, J = 3.3, 0.6 Hz, 1H, H-4’), 4.06 – 3.99 (m, 2H, H-5 

and H-5’), 3.92 (dd, J = 9.8, 3.3 Hz, 1H, H-3), 3.89 (dd, J = 9.8, 3.3 Hz, 1H, H-3’), 3.81 

(appdd, J = 7.4, 6.2 Hz, 4H, H-6, H-6’, H-6’’ and H-6’’’), 3.50 (dd, J = 3.0, 1.5 Hz, 2H, Hb 

and Hc), 3.35 (dd, J = 2.5, 1.2 Hz, 2H, Ha and Hd), 1.67 (dt, J = 8.9, 1.6 Hz, 1H, Hg), 1.60 

(d, J = 8.9 Hz, 1H, Hg’). 13C NMR (125 MHz, D2O) δ 180.8 (CO), 143.4 (C-triaz), 142.3 

(C’-triaz), 134.3 (Ce and Cf), 124.0 (CH-triaz), 123.6 (CH2CC’H), 88.0 (C-1), 87.9 (C’-1), 

78.4 (C-5), 78.3 (C’-5), 73.1 (C-3), 73.0 (C’-3), 69.7 (C-2), 69.7 (C’-2), 68.6 (C-4), 68.6 

(C’-4), 60.9 (C-6), 60.8 (C’-6), 51.9 (Cg), 45.7 (Cb and Cc), 44.9 (Ca and Cd), 32.8 (CH2-

triaz). IR (ATR): 3293, 2932, 1764, 1688, 1560, 1401, 1336, 1232, 1091, 1051, 886, 

815, 728 cm-1. HRMS (ESI+): m/z calculated for C27H38N8O12 + Na+ [M+Na+]: 689.2507, 

found 689.2501.  

3.28 3.30 
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N-(β-D-Galactopyranosyl-1,2,3-triazol-4-ylmethyl)bicylco[2.2.1]cis-hept-5-ene-2,3-

endo-dicarboximide (3.31) 

 

3.28 (155 mg, 0.155 mmol) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 

mL) was added, and the reaction mixture was allowed to stir at 45 ⁰C for 6 h. The 

solution was cooled, Amberlite H+ was added and the mixture was allowed to stir for 

30 mins. The solution was filtered, and the solvent was removed in vacuo. 

Monovalent-imide analogue 3.31 was formed (63 mg, 100 %). [α]D
26

 +5 (c 1.2, MeOH). 

1H NMR (500 MHz, D2O) δ 8.10 (s, 1H, triaz-H), 5.85-5.79 (m, 2H, He and Hf), 5.60 (d, 

J = 9.2 Hz, 1H, H-1), 4.61 (s, 2H, CH2-triaz), 4.13 (t, J = 9.5 Hz, 1H, H-2), 4.03 (dd, J = 

3.3, 0.7 Hz, 1H, H-4), 3.93 (td, J = 6.0, 0.8 Hz, 1H, H-5), 3.81 (dd, J = 9.8, 3.3 Hz, 1H, H-

3), 3.72 (d, J = 6.1 Hz, 2H, H-6 and H-6’), 3.44 – 3.41 (m, 2H, Hb and Hc), 3.28 – 3.26 

(m, 2H, Ha and Hd), 1.62 – 1.49 (m, 2H, Hg and Hg’). 13C NMR (125 MHz, D2O) δ 180.8 

(CO), 142.4 (C-triaz), 134.3 (Ce and Cf), 124.1 (CH-triaz), 88.0 (C-1), 78.4 (C-5), 73.1 (C-

3), 69.8 (C-2), 68.7 (C-4), 60.9 (C-6), 52.0 (Cg), 45.8 (Cb and Cc), 45.0 (Ca and Cd), 32.9 

(CH2-triaz). IR (ATR): 3346, 2943, 1765, 1686, 1399, 1336, 1168, 1091, 1050, 883, 727 

cm-1. HRMS (ESI+): m/z calculated for C18H22N4O7 + Na+ [M+Na+]: 429.1386, found 

429.1362.  

Bicyclo[2.2.1]hept-5-ene-2,3-endo-2,3-dicarboxamide, N-(propyl) (3.32) 

 

3.28 
3.31 
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Cis-5-Norbornene-2-endo,3-exo-dicarboxylic acid 3.24 (75 mg, 0.412 mmol) and 

TBTU (0.330 g, 1.029 mmol) were dissolved in anhydrous DMF (5 mL) under N2. NEt3 

(0.14 mL, 1.029 mmol) and propylamine (0.07 mL, 0.865 mmol) were added after 10 

mins. The reaction was allowed to stir for 16 h. A further equivalent of TBTU (0.132 

g), NEt3 (0.06 mL) and propylamine (0.03 mL) were added to the reaction mixture and 

the solution was heated to 50 °C for 5 h. The DMF was removed in vacuo, the 

resulting residue was dissolved in DCM (20 mL) and washed with brine (20 mL x 3) 

and sat NaHCO3 (20 mL x 2), dried (MgSO4), filtered and concentrated in vacuo to 

yield the crude product. This was then purified by silica gel column chromatography 

(2:1 EtOAc:Pet Ether to 100 % EtOAc) to give the pure product 3.32 as an off-white 

solid (89 mg, 82 %). Rf= 0.24 (2:1 EtOAc:Pet Ether). 1H NMR (500 MHz, CDCl3) δ 6.76 

(t, J = 5.0 Hz, 2H, NH), 6.30 (t, J = 1.9 Hz, 2H, He and Hf), 3.16 – 3.13 (m, 2H, Hb and 

Hc), 3.08 – 2.96 (m, 6H, Ha, Hd and CH2-NHCO), 1.43 – 1.34 (m, 5H, CH2CH3 and Hg), 

1.23 – 1.17 (m, 1H, Hg’), 0.82 (t, J = 7.4 Hz, 6H, CH2CH3). 13C NMR (125 MHz, CDCl3) δ 

172.1 (CO), 134.6 (Ce and Cf), 51.1 (Cb and Cc), 48.8 (Cg), 46.5 (Ca and Cd), 40.3 (CH2-

NHCO), 21.6 (CH2CH3), 10.5 (CH2CH3). IR (ATR): 3300, 2966, 2933, 1650, 1546, 1464, 

1369, 1336, 1258, 1226, 903 cm-1. HRMS (ESI+): m/z calculated for C15H24N2O2 + H+ 

[M++]: 265.1916, found 265.1929. 

Bicyclo[2.2.1]hept-5-ene-2,3-endo-2,3-dicarboxamide, N-(benzyl) (3.33) 

 

Cis-5-Norbornene-2-endo,3-exo-dicarboxylic acid 3.24 (75 mg, 0.412 mmol) and 

TBTU (0.330 g, 1.029 mmol) were dissolved in anhydrous DMF (5 mL) under N2. NEt3 

(0.14 mL, 1.029 mmol) and benzylamine (0.1 mL, 0.865 mmol) were added after 10 

mins. The reaction was allowed to stir for 16 h. A further equivalent of TBTU (0.132 

g), NEt3 (0.06 mL) and propargylamine (0.04 mL) were added to the reaction mixture 

and the solution was heated to 50 °C for 5 h. The DMF was removed in vacuo, the 

3.24 3.33 



Chapter 7 

228 
 

resulting residue was dissolved in DCM (20 mL) and washed with brine (20 mL x 3) 

and NaHCO3 (20 mL x 2), dried (MgSO4), filtered and concentrated in vacuo to yield 

the crude product. This was then purified by silica gel column chromatography (2:1 

EtOAc:Pet Ether to 100 % EtOAc) to give the pure product 3.33 as an off-white solid 

(144 mg, 97 %). Rf= 0.26 (2:1 EtOAc:Pet Ether). 1H NMR (500 MHz, CDCl3) δ 7.35 – 

7.16 (m, 10H, Ar-H x 10), 6.96 (bs, 2H, NH), 6.31 (s, 2H, He and Hf), 4.27-4.13 (m, 4H, 

CH2-NHCO), 3.19 (s, 2H, Hb and Hc), 3.04 (s, 2H, Ha and Hd), 1.41 (d, J = 8.3 Hz, 1H, Hg), 

1.17 (d, J = 7.8 Hz, 1H, Hg’). 13C NMR (125 MHz, CDCl3) δ 173.0 (CO), 138.3 (Ar-C), 

135.7 (Ce and Cf), 128.6 (Ar-CH), 127.7 (Ar-CH), 127.3 (Ar-CH), 52.0 (Cb and Cc), 49.9 

(Cg), 47.4 (Ca and Cd), 43.5 (CH2-NHCO). IR (ATR): 3269, 3068, 2966, 1646, 1547, 1455, 

1335, 1229, 1062, 1028, 907 cm-1. HRMS (ESI+): m/z calculated for C23H24N2O2 + H+ 

[M+H+]: 361.1916, found 361.1938. 

7.2.3 Experimental for Chapter 4 

N, N’-Di-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-

ylmethylamide)-N’’-(2-bromoacetamido)-5-aminobenzene-1,3-dicarboxamide 

(4.20) 

 

2.113 (1.128 g, 1.13 mmol) was dissolved in dry DCM (20 mL). NEt3 (0.19 mL, 

1.35mmol) was added to this solution. Bromoacetyl bromide (0.12 mL, 1.35 mmol) 

was dissolved in dry DCM (5 mL) in a separate round-bottom flask. The first solution 

was added to the second dropwise via a cannula and the resulting reaction mixture 

was allowed to stir for 16 h. The reaction mixture was washed with water (20 mL), 

HCl (1 N, 20 mL), sat. NaHCO3 solution (20 mL), followed by brine (20 mL). The organic 

phase was dried (MgSO4) and the solvent was removed in vacuo to obtain the pure 

product 4.20 without further purification as a brown, sticky solid (1.056 g, 83 %). Rf= 

0.65 (DCM, 5% MeOH). [α]D
24

 -4.0 (c 1.0, DCM). 1H NMR (500 MHz, CDCl3) δ 9.10 (s, 

1H, NHCOCH2Br), 8.09 – 7.90 (m, 6H, triaz-H, CONHCH2-triaz and Ar-H), 7.75 (s, 1H, 

Ar-H), 5.93 (d, J = 9.2 Hz, 2H, H-1), 5.60 (t, J = 9.7 Hz, 2H, H-2), 5.54 (d, J = 2.9 Hz, 2H, 

2.113

 
 2.4 

4.20

 
 2.4 
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H-4), 5.32 – 5.26 (m, 2H, H-3), 4.75-4.59 (m, 4H, CH2-triaz), 4.31 (t, J = 6.4 Hz, 2H, H-

5), 4.22 – 4.11 (m, 4H, H-6 and H-6’), 3.98 (s, 2H, CH2-Br), 2.21 (s, 6H, OAc), 2.00 (m, 

12H, OAc x 2), 1.82 (s, 6H, OAc). 13C NMR (125 MHz, CDCl3) δ 170.4 (CO of OAc), 170.1 

(CO of OAc), 169.8 (CO of OAc), 169.4 (CO of OAc), 166.5 (CONHCH2-triaz), 165.0 

(COCH2Br), 145.6 (C-triaz), 138.3 (Ar-C), 135.0 (Ar-C), 121.6 (CH-triaz), 121.4 (Ar-CH), 

121.2 (Ar-CH), 86.2 (C-1), 74.0 (C-5), 70.8 (C-3), 68.1 (C-2), 66.8 (C-4), 61.2 (C-6), 35.5 

(CH2-triaz), 29.6 (NHCOCH2Br), 20.7 (CH3 of OAc), 20.6 (CH3 of OAc), 20.5 (CH3 of OAc), 

20.3 (CH3 of OAc). IR (film on NaCl): 3345, 3087, 2975, 1752, 1651, 1536, 1446, 1371, 

1227, 1063, 924 732 cm-1. HRMS (ESI+): m/z calculated for C44H52BrN12O21 + H+ 

[M+H+]: 1122.2539, found 1122.2545. 

N, N’-Di-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-

ylmethylamide)-N’’-(2-azidoacetamido)-5-aminobenzene-1,3-dicarboxamide 

(4.21) 

 

4.20 (231 mg, 0.206 mmol) and NaN3 (30 mg, 0.412 mmol) were dissolved in 

anhydrous DMF (10 mL) and heated to 80 °C. The reaction mixture was allowed to 

stir for 16 h. The solvent was removed in vacuo, and the resulting residue was re-

dissolved in DCM (20 mL) and was washed with brine (20 mL x 3). The organic phase 

was dried over MgSO4 and the solvent was removed in vacuo to obtain the pure 

product 4.21 without further purification as a yellow solid (1.056 g, 83 %). Rf= 0.41 

(DCM:MeOH 9:1). [α]D
22

 -5.6 (c 0.9, DCM). 1H NMR (500 MHz, CDCl3) δ 9.10 (s, 1H, 

NHCOCH2N3), 8.18 (s, 2H, NHCH2CCH), 8.02 (s, 2H, Ar-H), 7.97 (s, 2H, CH-triaz), 7.82 

(s, 1H, Ar-H), 5.95 (d, J = 9.2 Hz, 2H, H-1), 5.61 (t, J = 9.7 Hz, 2H, H-2), 5.56 (d, J = 3.1 

Hz, 2H, H-4), 5.32 (dd, J = 10.1, 3.5 Hz, 2H, H-3), 4.73-4.60 (m, 4H, CH2-triaz), 4.67  

(ddd, J = 20.4, 15.4, 5.5 Hz, 4H, CH2-triaz), 4.34 (t, J = 6.6 Hz, 2H, H-5), 4.23 – 4.13 (m, 

4H, H-6 and H-6’), 4.06 (s, 2H, CH2-N3), 2.21 (s, 6H, OAc), 2.01 (s, 12H, OAc x 2), 1.82 

(s, 6H, OAc). 13C NMR (125 MHz, CDCl3) δ 170.4 (CO of OAc), 170.1 (CO of OAc), 169.9 

(CO of OAc), 169.3 (CO of OAc), 166.5 (CONHCH2CCH), 166.3 (COCH2N3), 145.5 (C-

4.20
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triaz), 138.0 (Ar-C), 134.9 (Ar-C), 121.6 (Ar-CH and CH-triaz), 121.4 (Ar-CH), 86.1 (C-

1), 73.9 (C-5), 70.8 (C-3), 68.1 (C-2), 66.9 (C-4), 61.2 (C-6), 52.5 (CH2N3), 35.4 (CH2-

triaz), 20.7 (CH3 of OAc), 20.6 (CH3 of OAc), 20.5 (CH3 of OAc), 20.2 (CH3 of OAc). IR 

(film on NaCl): 3342, 2942, 2110, 1747, 1655, 1528, 1427, 1368, 1211, 1046, 923, 733 

cm-1. HRMS (ESI+): m/z calculated for C44H52N12O21 + Na+ [M+Na+]: 1107.3268, found 

1107.3303. 

2-[2-(2-Propargyloxyethoxy)ethoxy]ethanol (4.25) 

 

Triethylene glycol 4.24 (1 mL, 7.48 mmol, 3 equiv) was diluted with dry THF (10 mL) 

under N2. The solution was cooled to 0°C and NaH (60% oil dispersion) (0.1 g, 2.49 

mmol) was added portion-wise. The reaction was allowed to warm up to rt and was 

stirred for 20 mins. Propargyl bromide (0.27 mL, 2.49 mmol) was added dropwise. 

The reaction mixture was allowed to stir overnight. Column chromatography (100% 

EtOAc) eluted the pure product 4.25 as a clear oil (0.292 g, 75 %). (Rf=0.42: EtOAc) 1H 

NMR (500 MHz, CDCl3) δ 4.09 – 4.08 (m, 2H, CH2CCH), 3.63 – 3.53 (m, 10H, CH2 x 5), 

3.50 – 3.46 (m, 2H, CH2-OH), 3.11 (s, 1H, OH), 2.39 (t, J = 2.8 Hz, 1H, CH2CCH). 

The NMR data is in agreement with the data reported in the literature.240 

2-(2-(2-Propargyloxyethoxy)ethoxy)ethyl-4-methylbenzenesulfonate (4.26) 

 

4.25 (0.288 g, 1.53 mmol) was dissolved in DCM (5 mL). TsCl (0.321 g, 1.68 mmol, 1.1 

equiv) was added and the mixture was cooled to 0 °C on ice. KOH (0.343 g, 6.12 mmol, 

4 equiv) was added slowly after grinding. The mixture was vigorously stirred for 2 h. 

The mixture was poured onto ice-water and extracted with DCM (3 x20 mL). The 

combined organic layers were dries over MgSO4, filtered and concentrated in vacuo 

to give the pure product 4.26 as a clear oil (0.457 g, 87 %). 1H NMR (500 MHz, CDCl3) 

δ 7.79 (d, J = 8.3 Hz, 2H, Ar-H), 7.33 (d, J = 8.2 Hz, 2H, Ar-H), 4.18 (d, J = 2.4 Hz, 2H, 

4.24

 
 2.4 
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CH2CCH), 4.16 – 4.13 (m, 2H, CH2OTs), 3.69 – 3.65 (m, 4H, CH2 x 2), 3.65 – 3.61 (m, 

2H, CH2), 3.58 (s, 4H, CH2 x 2), 2.43 (s, 3H, CH3-Ar), 2.42 (t, J = 2.4 Hz, 1H, CH2CCH). 

The NMR data is in agreement with the data reported in the literature.241 

N, N’-Di-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-ylmethyl 

amide)-N’’-(2-4-((2-(2-(2-(4-methylbenzenesulfonate)ethoxy)ethoxy)ethoxy) 

methyl)-1H-1,2,3-triazol-1-yl)acetamido)-5-aminobenzene-1,3-dicarboxamide 

(4.27) 

 

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution 4.21 (0.516 g, 0.476 mmol) and 4.26 (0.163 g, 0.476 mmol) in CH3CN/H2O 

(4 mL/ 2 mL). The reaction was allowed to stir in the MW at 100 ⁰C until deemed 

complete by TLC analysis (15 min). The solvent was removed in vacuo. The residue 

was dissolved in DCM (30 mL), washed with brine (20 mL x 3), and dried (MgSO4). The 

mixture was filtered and the solvent was removed in vacuo to yield the crude 

product, which was purified by silica gel column chromatography (DCM:MeOH 98:2-

95:5) to give the pure product as a yellow solid (0.307 g, 74 %). Rf= 0.45 (DCM:MeOH 

9:1). [α]D
22

 -5 (c 1, DCM). 1H NMR (500 MHz, CDCl3) δ 9.82 (s, 1H, NHCOCH2-triaz), 

8.16 (s, 2H, CONHCH2-triaz), 7.97 (s, 2H, CH-triaz), 7.84 (appd, J = 2.8 Hz, 3H, Ar-H x 2 

and CH-triaz), 7.76 (s, 1H, Ar-H), 7.69 (d, J = 8.3 Hz, 2H, Ar-H of OTs), 7.26 (d, J = 8.1 

Hz, 2H, Ar-H of OTs), 5.89 (d, J = 9.2 Hz, 2H, H-1), 5.60 (t, J = 9.7 Hz, 2H, H-2) 5.50 (d, 

J = 2.9 Hz, 2H, H-4), 5.26 (dd, J = 10.3, 3.3 Hz, 2H, H-3), 5.21 (s, 2H, CH2), 4.67 – 4.55 

(m, 6H, CONHCH2-triaz and NHCOCH2-triaz), 4.28 (t, J = 6.6 Hz, 2H, H-5), 4.20-4.10 (m, 

4H, H-6 and H-6’),  4.11 (qd, J = 11.5, 6.6 Hz, 2H, H-6 and H-6’), 4.06 – 4.04 (m, 2H, 

CH2), 3.65 – 3.59 (m, 2H, CH2), 3.58 – 3.54 (m, 4H, CH2 x 2), 3.48 (s, 2H, CH2), 2.37 (s, 

3H, CH3 of OTs), 2.14 (s, 6H, CH3 of OAc), 1.96 (s, 6H, CH3 of OAc), 1.95 (s, 6H, CH3 of 

OAc), 1.75 (s, 6H, CH3 of OAc). 13C NMR (125 MHz, CDCl3) δ 170.4 (CO of OAc), 170.1 
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(CO of OAc), 169.9 (CO of OAc), 169.3 (CO of OAc), 166.6 (CONHCH2CCH), 164.5 

(COCH2N3), 145.4 (C-triaz), 144.9 (Ar-C of OTs), 144.8 (CHCN3), 138.1 (Ar-C), 134.8 (Ar-

C), 132.7 (Ar-C of OTs), 129.9 (Ar-CH of OTs), 127.9 (Ar-CH of OTs), 125.3 (CHCN3), 

121.9 (CH-triaz), 121.6 (Ar-CH), 121.3 (Ar-CH), 86.0 (C-1), 73.8 (C-5), 70.9 (C-3), 70.5 

(CH2), 70.4 (CH2), 70.3 (CH2), 69.7 (CH2), 69.4 (CH2), 68.6 (CH2), 68.0 (C-2), 66.9 (C-4), 

64.3 (NHCOCH2N3), 61.1 (C-6), 52.8 (CH2), 35.4 (CH2-triaz), 21.6 (CH3 of OAc), 20.6 

(CH3 of OAc), 20.5 (CH3 of OAc), 20.2 (CH3 of OAc). IR (film on NaCl): 3344, 3091, 2939, 

1754, 1657, 1599, 1535, 1448, 1370, 1223, 1176, 1095, 1054, 924 cm-1. HRMS (ESI+): 

m/z calculated for C60H74N12O27S + Na+ [M+Na+]: 1449.4405, found 1449.4332. 

N, N’-Di-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-

ylmethylamide)-N’’-(2-4-((2-(2-(2-azidoethoxy)ethoxy)ethoxy)methyl)-1H-1,2,3-

triazol-1-yl)acetamido)-5-aminobenzene-1,3-dicarboxamide (4.28) 

 

Compound 4.27 (183 mg, 0.128 mmol) and NaN3 (17 mg, 0.256 mmol) were dissolved 

in anhydrous DMF (10 mL) and heated to 80 °C. The reaction mixture was allowed to 

stir for 16 h. The solvent was removed in vacuo, and the resulting residue was 

dissolved in DCM (20 mL) and was washed with brine (20 mL x 3). The organic phase 

was dried (MgSO4) and the solvent was removed in vacuo to obtain the pure product 

without further purification as a yellow solid (167 g, 100 %). Rf= 0.42 (DCM:MeOH 

9:1). [α]D
22

 -3 (c 1, DCM). 1H NMR (500 MHz, CDCl3) δ 9.79 (s, 1H, NHCH2N3), 8.13 (s, 

2H, NHCH2-triaz), 7.94 (s, 2H, CH-triaz), 7.82 (s, 1H, CH-triaz), 7.77 (s, 2H, Ar-H), 7.70 

(s, 1H, Ar-H), 5.85 (d, J = 9.2 Hz, 2H, H-1), 5.57 (t, J = 9.8 Hz, 2H, H-2), 5.47 (d, J = 2.7 

Hz, 2H, H-4), 5.25 – 5.15 (m, 4H, H-3 and CH2), 4.66 – 4.48 (m, 6H, CH2-triaz x 3), 4.24 

(t, J = 6.3 Hz, 2H, H-5), 4.13 – 4.04 (m, 4H, H-6 and H-6’), 3.67 – 3.47 (m, 8H, CH2 x 4), 

3.27 – 3.24 (m, 2H, CH2), 2.12 (s, 6H, CH3 of OAc), 1.94 (s, 6H, CH3 of OAc), 1.93 (s, 

6H, CH3 of OAc), 1.73 (s, 6H, CH3 of OAc). 13C NMR (125 MHz, CDCl3) δ 170.5 (CO of 
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OAc), 170.2 (CO of OAc), 170.0 (CO of OAc), 169.4 (CO of OAc), 166.7 (CONHCH2-

triaz), 164.5 (COCH2N3), 145.6 (C-triaz), 145.0 (CHCN3), 134.9 (Ar-C), 125.4 (CHCN3), 

121.9 (CH-triaz), 121.7 (Ar-CH), 121.3 (Ar-CH), 86.2 (C-1), 74.0 (C-5), 71.0 (C-3), 70.6 

(CH2 x 2), 70.0 (CH2), 69.9 (CH2), 68.1 (C-2), 67.0 (C-4), 64.5 (NHCOCH2N3), 61.2 (C-6), 

50.7 (CH2), 35.5 (CH2-triaz), 20.7 (CH3 of OAc x 2), 20.6 (CH3 of OAc), 20.4 (CH3 of OAc). 

IR (film on NaCl): 3335, 3088, 2924, 2109, 1754, 1658, 1600, 1534, 1447, 1370, 1222, 

1054, 924 cm-1. HRMS (ESI+): m/z calculated for C53H67N15O24 + Na+ [M+Na+]: 

1320.4381, found 1320.4375. 

Acetylated Aromatic-Centred Trivalent Glycoconjugate (4.29) 

  

Copper sulphate pentahydrate (20 mg) and sodium ascorbate (40 mg) were added to 

a solution of compound 4.28 (40 mg,  0.0311 mmol) and N, N’, N’’-tri(prop-2-yn-1-

yl)benzene-1, 3, 5-tricarboxamide 2.106 (10 mg, 0.0311 mmol) in CH3CN/H2O (4 mL/ 

2 mL). The reaction was allowed to stir in the MW at 100 ⁰C until deemed complete 

by TLC analysis (20 min). The solvent was removed in vacuo. The residue was 

dissolved in DCM (30 mL), washed with brine (20 mL x 3), and dried (MgSO4). The 

mixture was filtered and the solvent was removed in vacuo to yield the crude 

product, which was purified by silica gel column chromatography (DCM:MeOH 98:2-

95:5) to give the pure product as a yellow solid (94 mg, 72 %). Rf= 0.48 (DCM:MeOH 

9:1). [α]D
23

 -5.0˚ (c= 0.5, DCM). 1H NMR (500 MHz, CDCl3) δ 10.22 – 9.50 (m, 3H, NH), 

8.52 – 7.62 (m, 28H, Ar-H’s, CH-triaz’s, NH’s), 5.94 – 5.84 (m, 6H, H-1), 5.65 – 5.58 (m, 

6H, H-2), 5.51 (bs, 6H, H-4), 5.30 – 5.25 (m, 12H, H-3), 4.74 – 4.48 (m, 20H, CH2-triaz), 

4.30 (bs, 10H, H-5 and CH2’s), 4.22 – 4.02 (m, 16H, H-6 and H-6’), 3.90-3.30 (m, 30H, 
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CH2’s), 2.16 (s, 18H, OAc), 1.97 (s, 36H, OAc), 1.76 (s, 18H, OAc). 13C NMR (125 MHz, 

CDCl3) δ 170.4, 170.2, 170.0, 168.8, 145.7, 138.3, 135.2, 130.1, 128.0, 122.2, 121.3, 

86.2, 77.4, 77.2, 76.9, 73.9, 71.0, 70.5, 68.1, 67.0, 61.2, 54.0, 53.9, 43.1, 41.1, 35.5, 

29.8, 29.4, 22.8, 20.7, 20.6, 20.3, 14.2. HRMS (ESI+): m/z calculated for C177H216N48O75 

+ 3H+ [M+3H]3+: 1405.4855, found 1405.4834. 

Tert-butyl 3-(prop-2-yn-1-ylamino)propanoate (4.32) 

 

 

Tert-butyl acrylate 4.31 (0.64 mL, 4.38 mmol) was dissolved in methanol previously 

dried over 4 Å molecular sieves (10 mL) under N2. Propargylamine (0.6 mL, 8.76 

mmol) was added to the solution, and the mixture was warmed to 50 °C and was 

allowed to stir for 24 h. The methanol and propargylamine were removed in vacuo 

to yield the pure product 4.32 in quantitative yield as an orange/brown liquid (0.821 

g). 1H NMR (500 MHz, CDCl3) δ 3.38 (d, J = 2.4 Hz, 2H, CH2CCH), 2.87 (t, J = 6.5 Hz, 2H, 

CH2CH2), 2.40 (t, J = 6.5 Hz, 2H, CH2CH2), 2.18 (t, J = 2.4 Hz, 1H, CH2CCH), 1.59 (bs, 1H, 

NH), 1.41 (s, 9H, C(CH3)3). 13C NMR (125 MHz, CDCl3) δ 171.9 (CO), 82.0 (C), 80.6 (C), 

71.4 (CH), 44.1 (CH2), 38.1 (CH2), 35.7 (CH2), 28.1 (C(CH3)3). 

1H NMR and 13C NMR spectroscopic data corresponded to that found in the 

literature.246 

Tert-butyl 3-(N-(prop-2-yn-1-yl)acrylamido)propanoate (4.33) 

 

 

4.32 (0.821 g, 4.48 mmol) was dissolved in dry DCM (20 mL) under N2 at 0 °C. Acryloyl 

chloride (0.44 mL, 5.38 mmol) and N,N-diisopropylethylamine (1.56 mL, 8.96 mmol) 

were added to the solution. The reaction mixture was allowed to stir for 1 hour, and 

the solution was washed with water (20 mL x 2). The organic phase was dried over 
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MgSO4 and concentrated under reduced pressure to give the crude product, which 

was purified by silica gel column chromatography (cyclohexane:ethyl acetate 3:2) to 

give the pure product 4.33 as a yellow liquid (0.758 g, 72 %). 1H NMR (500 MHz, CDCl3) 

δ 6.65-6.52 (m, 1H, CH2=CHCO), 6.42-6.25 (m, 1H, CH=CHCO), 5.76-5.65 (m, 1H, 

CH’=CHCO), 4.28 (s, 1H, CH2CCH rotamer 1), 4.17 (s, 1H, CH2CCH rotamer 2), 3.81 – 

3.65 (m, 2H, CH2CH2), 2.58 (d, J = 6.4 Hz, 2H, CH2CH2), 2.30 (s, 1H, CH2CCH rotamer 

1), 2.22 (s, 1H, CH2CCH rotamer 2), 1.43 (s, 9H, C(CH3)3). 

1H NMR spectroscopic data corresponded to that found in the literature.278 

Tert-butyl 3-(N-(prop-2-yn-1-yl)-3-(prop-2-yn-1-ylamino)propanamido)propanoate 

(4.34) 

 

 

4.33 (0.758, 3.19 mmol) was dissolved in methanol previously dried over 4 Å 

molecular sieves (20 mL) under N2. Propargylamine (0.31 mL, 4.79 mmol) was added 

to the solution, and the mixture was warmed to 50 °C and was allowed to stir for 24 

h. The methanol and propargylamine was removed in vacuo to yield the pure product 

4.34 in quantitative yield as a dark yellow liquid (0.934 g). 1H NMR (500 MHz, CDCl3) 

δ 4.19 (d, J = 2.4 Hz, 2H, CH2CCH rotamer 2), 4.09 (d, J = 2.4 Hz, 2H, CH2CCH rotamer 

1), 3.68 (t, J = 7.3 Hz, 2H, CH2), 3.63 (t, J = 6.9 Hz, 2H, CH2), 3.41 – 3.39 (m, 4H, CH2), 

2.95 (t, J = 6.1 Hz, 4H, CH2), 2.60 (td, J = 6.1, 2.7 Hz, 4H, CH2), 2.54 (dt, J = 14.1, 7.2 

Hz, 4H, CH2), 2.27 (t, J = 2.4 Hz, 1H, CH rotamer 1), 2.20 – 2.18 (m, 1H, CH rotamer 2 

and ), 1.92 (bs, 1H, NH), 1.42 (s, 9H, C(CH3)3), 1.41 (s, 9H, C(CH3)3). 13C NMR (125 MHz, 

CDCl3) δ 171.8 (CH2CCH), 171.5 (CH2CCH), 171.3 (CO), 170.2 (CO), 82.0, 81.4 (C(CH3)3), 

80.8 (C(CH3)3), 78.9, 78.6, 72.7 (CH rotamer 1), 71.9 (CH rotamer 2), 71.4 (CH), 44.3 

(CH2), 44.2 (CH2), 43.0 (CH2 rotamer 1), 42.8 (CH2 rotamer 2), 38.4 (CH2CCH rotamer 

1), 38.3 (CH2), 34.5 (CH2), 34.1 (CH2CCH rotamer 2), 33.3 (CH2), 33.1 (CH2), 28.1 

(C(CH3)3), 28.0 (C(CH3)3). 

1H NMR and 13C NMR spectroscopic data corresponded to that found in the 

literature.246 
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Tert-butyl 3-(N-(prop-2-yn-1-yl)-3-(N-(prop-2-yn-1-yl)acrylamido)propanamido)  

propanoate (4.35) 

 

 

4.34 (0.905 g, 3.09 mmol) was dissolved in dry DCM (20 mL) under N2 at 0 °C. Acryloyl 

chloride (0.30 mL, 3.71 mmol) and N,N-diisopropylethylamine (1.07 mL, 6.18 mmol) 

were added to the solution. The reaction mixture was allowed to stir for 1 hour, and 

the solution was washed with water (20 mL x 2). The organic phase was dried over 

MgSO4 and concentrated under reduced pressure to give the crude product, which 

was purified by silica gel column chromatography (cyclohexane:ethyl acetate 3:2) to 

give the pure product 4.35 as a yellow liquid (0.729 g, 68 %). 1H NMR (500 MHz, CDCl3) 

δ 6.77-6.53 (m, 1H, HC=C), 6.44 – 6.27 (m, 1H, HC=C), 5.73 (t, J = 9.1 Hz, 1H, HC=C), 4.34 – 

4.17 (m, 1H), 4.15 – 4.07 (m, 2H), 3.87 (t, J = 7.4 Hz, 1H), 3.77 (q, J = 5.8 Hz, 1H), 3.73 – 3.58 

(m, 2H), 2.88-2.74 (m, 2H), 2.54 (t, J = 6.9 Hz, 2H), 2.32 – 2.17 (m, 2H), 2.03 (d, J = 1.2 Hz, 1H), 

1.43 (bs, 9H, C(CH3)3). 

1H NMR spectroscopic data corresponded to that found in the literature.278 

Tert-butyl 3-(N-(prop-2-yn-1-yl)-3-(N-(prop-2-yn-1-yl)-3-(prop-2-yn-1-

ylamino)propanamido) propanamido)propanoate (4.36) 

 

 

4.35 (0.710 g, 2.05 mmol) was dissolved in methanol previously dried over 4 Å 

molecular sieves (20 mL) under N2. Propargylamine (0.26 mL, 4.10 mmol) was added 

to the solution, and the mixture was warmed to 50 °C and was allowed to stir for 24 

h. The methanol and propargylamine was removed in vacuo to yield the pure product 

as a dark yellow liquid (0.782 g, 95 %). 1H NMR (500 MHz, CDCl3) δ 4.25 – 4.17 (m, 3H), 

4.10 (dd, J = 4.6, 2.5 Hz, 1H), 3.83 – 3.77 (m, 1H), 3.74 – 3.61 (m, 3H), 3.42 (dd, J = 4.5, 2.5 Hz, 

2H), 2.97 (t, J = 6.1 Hz, 2H), 2.83 – 2.71 (m, 2H), 2.66 – 2.60 (m, 2H), 2.59 – 2.49 (m, 2H), 2.35 

– 2.24 (m, 1H), 2.21 (ddt, J = 9.4, 4.5, 2.4 Hz, 2H), 1.44 (bs, 9H, C(CH3)3). 
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1H NMR spectroscopic data corresponded to that found in the literature.246 

Tert-butyl 3-(N-(prop-2-yn-1-yl)-3-(N-(prop-2-yn-1-yl)-3-(N-(prop-2-yn-1-yl)acrylamido) 

propanamido)propanamido)propanoate (4.37) 

 

 

4.36 (0.754 g, 1.88 mmol) was dissolved in dry DCM (20 mL) under N2 at 0 °C. Acryloyl 

chloride (0.18 mL, 2.25 mmol) and N,N-diisopropylethylamine (0.24 mL, 3.76 mmol) 

were added to the solution. The reaction mixture was allowed to stir for 1 hour, and 

the solution was washed with water (20 mL x 2). The organic phase was dried over 

MgSO4 and concentrated under reduced pressure to give the crude product, which 

was purified by silica gel column chromatography (cyclohexane:ethyl acetate 3:2) to 

give the pure product 4.37 as a yellow liquid (0.557 g, 65 %). 1H NMR (500 MHz, CDCl3) 

δ 6.70-6.56 (m, 1H, HC=C), 6.44 – 6.29 (m, 1H, HC=C), 5.73 (s, 1H, HC=C), 4.31 (s, 1H), 4.26 – 

4.22 (m, 2H), 4.22 – 4.18 (m, 2H), 3.89 (s, 1H), 3.79 (t, J = 6.6 Hz, 2H), 3.73 – 3.62 (m, 4H), 

2.87-2.72 (m, 4H), 2.58-2.52 (m, 2H), 2.35 – 2.19 (m, 3H), 1.46 – 1.41 (m, 9H, C(CH3)3). 

1H NMR spectroscopic data corresponded to that found in the literature.278 

Tert-butyl 5,9,13-trioxo-4,8,12-tri(prop-2-yn-1-yl)-4,8,12,16-tetraazanonadec-18-ynoate 

(4.38) 

 

 

4.37 (0.542 g, 1.19 mmol) was dissolved in methanol previously dried over 4 Å 

molecular sieves (20 mL) under N2. Propargylamine (0.15 mL, 2.38 mmol) was added 

to the solution, and the mixture was warmed to 50 °C and was allowed to stir for 24 

h. The methanol and propagylamine was removed in vacuo to yield the pure product 

4.38 as a dark yellow liquid (0.498 g, 82 %). 1H NMR (500 MHz, CDCl3) δ 4.25 – 4.17 

(m, 5H), 4.15 – 4.09 (m, 1H), 3.79 (dt, J = 14.7, 6.4 Hz, 2H), 3.75 – 3.59 (m, 5H), 3.46 

– 3.41 (m, 2H), 3.01 – 2.95 (m, 2H), 2.76 (q, J = 7.0, 5.8 Hz, 3H), 2.68 – 2.60 (m, 2H), 
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2.56 (dt, J = 14.0, 6.9 Hz, 2H), 2.33 – 2.17 (m, 4H), 1.58 (bs, 1H, NH), 1.47 – 1.42 (m, 

9H, C(CH3)3). 

1H NMR spectroscopic data corresponded to that found in the literature.246, 278 

Tert-butyl 16-acetyl-5,9,13-trioxo-4,8,12-tri(prop-2-yn-1-yl)-4,8,12,16-

tetraazanonadec-18-ynoate (4.39) 

 

 

4.38 (0.490 g, 0.96 mmol) was dissolved in DCM (20 mL). Acetic anhydride (0.91 mL, 

9.6 mmol) was added to the solution. The reaction mixture was allowed to stir for 6 

h at rt and was concentrated under reduced pressure. The crude mixture was 

dissolved in ethyl acetate (20 mL) and was washed with sat NaHCO3 (20 mL x 2) and 

brine (20 mL x 2). The organic layer was dried (MgSO4), filtered and then 

concentrated in vacuo. The crude product was purified by silica gel column 

chromatography (DCM:MeOH 9:1) to give the pure product as a pale-yellow oil (515 

mg, 97 %). 1H NMR (500 MHz, CDCl3) δ 4.24 – 4.06 (m, 8H), 3.83 – 3.70 (m, 3H), 3.72 

– 3.60 (m, 5H), 2.91 – 2.68 (m, 6H), 2.55 (dt, J = 14.4, 6.9 Hz, 2H), 2.37 – 2.23 (m, 2H), 

2.24 – 2.10 (m, 4H), 1.43 (m, 9H, C(CH3)3). 13C NMR (125 MHz, CDCl3) δ 171.5, 171.2, 

170.9, 170.1, 81.7, 81.6, 81.4, 80.9, 78.9, 78.9, 78.6, 72.9, 72.8, 72.6, 72.5, 72.5, 72.1, 

71.9, 71.7, 44.4, 44.2, 43.9, 43.7, 43.6, 43.5, 43.0, 42.8, 39.8, 39.1, 39.0, 38.9, 38.6, 

38.4, 34.8, 34.5, 34.4, 34.3, 34.1, 32.2, 31.8, 29.7, 28.1, 21.8, 21.5. HRMS (ESI+): m/z 

calculated for C30H40N4O6 + H+ [M+H+]:553.3026, found 553.3015. 

1H NMR and 13C NMR spectroscopic data corresponded to that found in the 

literature.234 
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2,6,10,14-Tetraoxo-3,7,11,15-tetrakis((1-(2,3,4,6-tetra-O-acetyl-β-D-

galactopyranosyl -1H-1,2,3-triazol-4-yl)methyl)-3,7,11,15-tetraazaoctadecan-18-

oic acid (4.40) 

 

 

Copper sulphate pentahydrate (40 mg) and sodium ascorbate (80 mg) were added to 

a solution of galactose azide 2.40 (567 mg, 1.520 mmol) and 4.39 (200 mg, 0.362 

mmol) in CH3CN/H2O (4 mL/ 2 mL). The reaction was allowed to stir in the MW at 100 

⁰C for 20 mins (10 mins x 2). The solvent was removed in vacuo. The residue was 

dissolved in DCM (30 mL), washed with brine (20 mL x 3), and dried (MgSO4). The 

mixture was filtered and the solvent was removed in vacuo to yield the crude 

product, which was purified by silica gel column chromatography (DCM:MeOH 98:2-

95:5) to give the pure product 4.40 as a yellow sticky solid (503 mg, 68 %). Rf= 0.47 

(DCM:MeOH 9:1). [α]D
27 -4.71 (c 0.85, DCM). 1H NMR (500 MHz, CDCl3) δ 7.98 – 7.77 

(m, 4H, triaz-H), 5.98 – 5.74 (m, 4H, H-1), 5.59 – 5.42 (m, 8H, H-2 and H-4), 5.37 – 5.18 

(m, 4H, H-3), 4.81 – 4.49 (m, 8H, CH2 x4), 4.35 – 4.08 (m, 12H, H-5, H-6 and H-6’), 3.83 

– 3.53 (m, 8H, CH2 x4), 3.02 – 2.68 (m, 6H, CH2 x3), 2.65 – 2.47 (m, 2H, CH2), 2.27 – 

2.21 (m, 12H, OAc), 2.20 – 2.15 (m, 3H, NAc), 2.06 – 1.98 (m, 24H, OAc), 1.92 – 1.80 

(m, 12H, OAc), 1.47 – 1.40 (m, 9H, C(CH3)3). 13C NMR (125 MHz, CDCl3) δ 171.3, 170.3, 

170.1, 169.8, 168.8, 144.8, 144.6, 122.3, 122.2, 86.3, 77.3, 77.0, 76.8, 74.0, 70.8, 68.0, 

66.8, 61.1, 45.2, 44.2, 40.8, 34.6, 31.9, 31.8, 28.1, 22.0, 21.5, 20.7, 20.6, 20.5, 20.2. 

IR (ATR): 2938, 1746, 1638, 1423, 1368, 1211, 1157, 1091, 1044, 952, 922, 841, 733 

cm-1. HRMS (ESI+): m/z calculated for C86H116N16O42 + Na+ [M+Na+]: 2067.7331, found 

2067.7223. 
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2,6,10,14-Tetraoxo-3,7,11,15-tetrakis((1-(β-D-galactopyranosyl -1H-1,2,3-triazol-4-

yl)methyl)-3,7,11,15-tetraazaoctadecan-18-oic acid (4.41) 

 

 

Compound 4.40 (452 mg, 0.221 mmol) was dissolved in methanol/H2O (4 mL, 2 mL). 

NEt3 (0.1 mL) was added, and the reaction mixture was allowed to stir at 45 ⁰C for 6 

h. The solution was cooled, Amberlite H+ was added and the mixture was allowed to 

stir for 30 mins. The solution was filtered, and the solvent was removed in vacuo. 

Excess NEt3 was removed using the Schlenk line. The product was freeze-dried over 

night to yield the pure product 4.41 as a white fluffy solid (267 mg, 92 %). [α]D
24 14.0 

(c 0.5, H2O). 1H NMR (500 MHz, D2O) δ 8.23 – 8.16 (m, 2H), 8.08 (s, 2H), 5.64 – 5.54 

(m, 4H, H-1), 4.65 – 4.42 (m, 8H, CH2-triaz and CH2), 4.19 – 4.06 (m, 4H, H-2), 4.01 

(appdd, J = 5.2, 3.2 Hz, 4H, H-4), 3.97 – 3.86 (m, 4H, H-5), 3.85 – 3.76 (m, 4H, H-3), 

3.75 – 3.61 (m, 12H, H-6, H-6’ and CH2 x 2), 3.58 – 3.51 (m, 4H), 2.80 – 2.46 (m, 8H, 

CH2 x 4), 2.13 – 2.04 (m, 1H), 1.16 (s, 3H, CH3). 13C NMR (126 MHz, DMSO) δ 173.1, 

170.5, 170.3, 144.6, 122.5, 122.3, 88.6, 88.5, 78.9, 75.6, 74.2, 69.9, 68.9, 60.9, 58.6, 

45.7, 44.7, 43.8, 43.0, 42.9, 39.9, 22.1, 21.7, 9.0. IR (film on NaCl): 3299, 2916, 1719, 

1620, 1451, 1421, 1365, 1224, 1087, 1053, 885 cm-1. HRMS (ESI+): m/z calculated for 

C50H76N16O26 + Na+ [M+Na+]: 1339.5014, found 1339.5032. 

Acetylated Tetravalent β-Peptoid Glycocluster (4.42) 

 

4.40

 
 2.4 

4.41

 
 2.4 

4.39

 
 2.4 

4.28

 
 2.4 

4.42

 
 2.4 



Chapter 7 

241 
 

 

Copper sulphate pentahydrate (40 mg) and sodium ascorbate (80 mg) were added to 

a solution of 4.28 (30 mg, 0.0231 mmol) and 4.39 (13 mg, 0.0231 mmol) in 

CH3CN/H2O (4 mL/ 2 mL). The reaction was allowed to stir in the MW at 100 ⁰C for 

10 mins x 2. The solvent was removed in vacuo. The residue was dissolved in DCM 

(30 mL), washed with brine (20 mL x 3), and dried (MgSO4). The mixture was filtered 

and the solvent was removed in vacuo to yield the crude product, which was purified 

by silica gel column chromatography (DCM:MeOH 98:2-95:5) to give the pure 

product as a yellow sticky solid (77 mg, 58 %). Rf= 0.48 (DCM:MeOH 9:1). [α]D
24 -7 (c 

1, DCM). 1H NMR (500 MHz, CDCl3) δ 10.08 (s, 4H, NHCOCH2-triaz), 8.56 – 7.59 (m, 

36H, NHCH2CCH x 8, CH2CCH x 16 and Ar-H x 12), 5.91 (s, 8H, H-1), 5.63 (t, J = 10.2 Hz, 

8H, H-2), 5.53 (s, 8H, H-4), 5.28 (appd, J = 10.2 Hz, 16H, H-3 and CH2 x 4), 4.80 – 4.39 

(m, 6H, CH2-triaz, CH2’s), 4.38-4.05 (m, H, H-5 and H-6, CH2’s), 3.86 – 3.31 (m, 13H, 

CH2’s), 3.11 – 2.31 (m, 4H, CH2’s), 2.18 (s, 7H, OAc and NAc), 1.99 (s, 15H, OAc ), 1.79 

(s, 6H, OAc), 1.43 (s, 9H, C(CH3)3). 13C NMR (125 MHz, CDCl3) δ 170.59, 170.35, 170.09, 

122.1, 121.6, 120.7, 86.3 (C-1), 74.1 (C-5), 71.1 (C-3), 71.0 (CH2), 70.7 (CH2), 70.6 

(CH2), 70.5 (CH2), 69.8 (CH2), 69.3 (CH2), 68.2 (C-2), 67.1 (C-4), 64.7 (CH2), 61.3 (C-6), 

52.9 (CH2), 50.3 (CH2), 44.2 (CH2), 43.5 (CH2), 43.2 (CH2), 42.8 (CH2), 40.0 (CH2), 39.8 

(CH2), 38.7 (CH2), 35.5 (CH2-triaz), 34.3 (CH2), 33.8 (CH2), 32.1 (CH2), 29.89, 28.3 

(C(CH3)), 21.7 (CH3 of NHAc), 20.84 (CH3 of OAc), 20.72 (CH3 of OAc), 20.45 (CH3 of 

OAc), 1.21. IR (film on NaCl): 3392, 2927, 1753, 1647, 1536, 1448, 1370, 1223, 1092, 

1060, 923, 732 cm-1. MALDI-TOF-MS [M+H]+: m/z calculated for C242H309N64O102 +H+: 

5744.104, found 5744.346.  

Tetravalent β-Peptoid Glycocluster (4.43) 
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Compound 4.42 (70 mg, 0.0122 mmol) was dissolved in methanol/H2O (4 mL, 2 mL). 

NEt3 (0.1 mL) was added, and the reaction mixture was allowed to stir at 45 ⁰C for 6 

h. The solution was cooled, Amberlite H+ was added and the mixture was allowed to 

stir for 30 mins. The solution was filtered, and the solvent was removed in vacuo. 

Excess NEt3 was removed using the Schlenk line. The product was freeze-dried over 

night to yield the pure product 4.43 as a white fluffy solid (44 mg, 82 %). 1H NMR (500 

MHz, D2O) δ 8.62 – 7.72 (m, 28H, Ar-H and triaz-H), 5.69 (s, 10H, H-1 and CH2s), 5.47 

(s, 6H, CH2s), 4.74 – 4.44 (m, 24H, CH2-triaz and CH2s), 4.22 (s, 14H, H-2 and CH2s), 

4.11 (appd, J = 20.3 Hz, 14H, H-4 and CH2s), 3.99 (s, 8H, H-5), 3.88 (appd, J = 9.8 Hz, 

14H, H-3 and CH2s), 3.84 – 3.36 (m, 60H, H-6, H-6’ and CH2s), 2.99 – 2.31 (m, 24H, 

CH2s), 1.99 – 1.86 (m, 3H CH3). 13C NMR (125 MHz, DMSO) δ 171.1, 170.9, 166.1, 

166.0, 165.1, 162.8, 145.5, 144.3, 139.1, 135.6, 126.2, 124.0, 122.3, 121.7, 88.5, 78.9, 

74.2, 70.2, 70.1, 70.0, 69.8, 69.5, 69.4, 69.1, 68.9, 63.9, 60.9, 60.7, 52.6, 49.9, 49.8, 

45.9, 40.5, 40.4, 40.2, 40.0, 39.9, 39.7, 39.5, 36.3, 35.4, 31.3, 28.2, 9.1. IR (ATR): 3301, 

2925, 1650, 1540, 1443, 1388, 1253, 1092, 1055, 891 cm-1. MALDI-TOF-MS [M+H]+: 

m/z calculated for C242H309N64O102 +Na+: 4422.7465, found 4422.807. 

Triethylene glycol dipropargyl ether (4.45) 

 

Triethylene glycol (1 mL, 7.33 mmol) was dissolved in dry THF under N2. NaH (60 % 

dispersion in oil, 1.172 g, 29.3 mmol) was added and the reaction mixture was 

allowed to stir for 1 h. Propargyl bromide (mL, mmol) was added and the reaction 

mixture was allowed to stir for at rt for 48 h. The solvent was removed in vacuo and 

the resulting residue was dissolved in DCM (20 mL) and washed with water (10 mL x 

2), dried (MgSO4), filtered and concemtrated in vacuo. The crude product was 

purified by silica gel column chromatography (EtOAc:Pet Ether 2:1) to give the pure 

product as a yellow oil (1.526 g, 92 %). 1H NMR (500 MHz, CDCl3) δ 4.20 (d, J = 2.4 Hz, 

4H, CH2CCH), 3.72 – 3.51 (m, 12H, OCH2 x 6), 2.42 (t, J = 2.4 Hz, 2H, CH2CCH). 

1H NMR and 13C NMR spectroscopic data corresponded to that found in the 

literature.279 
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N,N’-Di-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-ylmethyl 

amide)-N’’-(2-4-((2-(2-(2-(prop-2-yn-1-yloxy)ethoxy)ethoxy)ethoxy)methyl)-1H-

1,2,3-triazol-1-yl)acetamido)-5-aminobenzene-1,3-dicarboxamide (4.28) 

 

5 mL of a solution of compound 4.21 (prepared by dissolving 293 mg in 22 mL CH3CN 

and 5 mL of water, [1 mM]) was combined with 5 mL of a solution of compound 4.45 

(prepared by dissolving 223 mg in 22 mL CH3CN and 5 mL of water, [36 mM]) in a 

microwave flask. To this solution, 0.5 mL of a solution of sodium ascorbate (prepared 

by dissolving 180 mg in 2 mL of water) were added, followed by 0.5 mL of a solution 

of copper sulfate pentahydrate (prepared by dissolving 70 mg in 2 mL of water). The 

mixture was allowed to react in the MW at 100 ⁰C for 10 mins. TLC was used to 

monitor the reaction; staining the TLC using potassium permanganate solution 

displayed the product as a bright yellow spot, whereas the starting compound 4.21 

was a white spot and the di-click product was a brown spot on the TLC plate after 

staining. This procedure was repeated until all the stock solutions was used to give a 

pale yellow solid (160 mg, 45 %). Rf= 0.65 (DCM:MeOH 9:1). [α]D
23 -1 (c 1, DCM). 1H 

NMR (500 MHz, CDCl3) δ 9.63 (s, 1H, NHCOCH2-triaz), 8.10 (bs, 2H, CONHCH2-triaz), 

7.91 (s, 2H, CH-triaz), 7.80 (s, 1H, CH’-triaz), 7.78 (s, 2H, Ar-H), 7.73 (s, 1H, Ar-H), 5.85 

(d, J = 9.2 Hz, 2H, H-1), 5.57 (t, J = 9.8 Hz, 2H, H-2), 5.47 (d, J = 2.7 Hz, 2H, H-4), 5.23 

– 5.19 (m, 4H, H-3 and CH2), 4.65 – 4.56 (m, 6H, CH2-triaz), 4.24 (t, J = 6.3 Hz, 2H, H-

5), 4.13 – 4.04 (m, 6H, H-6, H-6’ and OCH2CCH), 3.61 – 3.53 (m, 12H, 3 x OCH2CH2O), 

2.32 (s, 1H, CCH), 2.12 (s, 6H, CH3 of OAc), 1.94 (s, 12H, CH3 of OAc), 1.73 (s, 6H, CH3 

of OAc). 13C NMR (125 MHz, CDCl3) δ 169.3 (CO of OAc), 169.1 (CO of OAc), 168.9 (CO 

of OAc), 168.4 (CO of OAc), 165.6 (CONHCH2-triaz), 163.3 (COCH2-triaz), 144.5 (C-

triaz), 143.9 (C-triaz), 137.1 (Ar-C), 133.9 (Ar-C), 124.2 (CH-triaz), 120.7 (CH-triaz and 

Ar-CH ), 120.4 (Ar-CH), 85.1 (C-1), 78.5 (CCH), 73.9 (C-5), 72.8 (CCH), 69.7 (C-3), 69.4 
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(CH2 x 2), 69.2 (CH2), 68.8 (CH2), 68.0 (C-2), 67.0 (C-4), 65.9 (NHCOCH2N3), 60.1 (C-6), 

57.3 (OCH2CCH), 52.4 (CH2), 34.5 (CH2-triaz), 19.6 (CH3 of OAc x 2), 19.5 (CH3 of OAc), 

19.2 (CH3 of OAc). IR (film on NaCl): 3290, 3145, 2917, 2115, 1752, 1657, 1535, 1447, 

1370, 1225, 1093, 1054, 924 cm-1. HRMS (ESI+): m/z calculated for C56H70N12O25 + Na+ 

[M+Na+]: 1333.4473, found 1333.4456. 

N, N’-Di-(β-D-galactopyranosyl-1,2,3-triazol-4-ylmethylamide)-N’’-(2-4-((2-(2-(2-

(prop-2-yn-1-yloxy)ethoxy)ethoxy)ethoxy)methyl)-1H-1,2,3-triazol-1-yl) 

acetamido)-5-aminobenzene-1,3-dicarboxamide (4.29) 

 

Compound 4.48 (150 mg, 0.114 mmol) was dissolved in methanol/H2O (4 mL, 2 mL). 

NEt3 (0.1 mL) was added, and the reaction mixture was allowed to stir at 45 ⁰C for 6 

h. The solution was cooled, Amberlite H+ was added and the mixture was allowed to 

stir for 30 mins. The solution was filtered, and the solvent was removed in vacuo. 

Excess NEt3 was removed using the Schlenk line. The product was freeze-dried over 

night to yield the pure product 4.43 as a white solid (100 mg, 90 %). [α]D
23 +7 (c 1, 

MeOH:H2O 1:1). 1H NMR (500 MHz, D2O) δ 8.19 (s, 2H, CH-triaz), 8.02 (s, 1H, CH-

triaz), 7.86 (s, 2H, Ar-H), 7.78 (s, 1H, Ar-H), 5.58 (d, J = 9.3 Hz, 2H, H-1), 5.34 (s, 2H, 

CH2), 4.58 (s, 2H, CH2-triaz), 4.55 (s, 4H, CH2-triaz), 4.13 (t, J = 9.8 Hz, 2H, H-2), 4.02 

(s, 2H, OCH2CCH), 3.99 (s, 2H, H-4), 3.89 (m, 2H, H-5), 3.79-3.77 (m, 2H, H-3), 3.68-

3.63 (m. 4H, H-6 and H-6’), 3.61 (bs, 2H, OCH2), 3.57-3.53 (m, 10H, 3 x CH2), 2.67 (s, 

1H, CCH). 13C NMR (125 MHz, CDCl3) δ  168.4  (CONHCH2-triaz), 166.1 (COCH2-triaz), 

144.9 (C-triaz), 144.2 (C-triaz), 137.6 (Ar-C), 134.6 (Ar-C), 126.6 (CH-triaz), 123.1 (CH-

triaz), 123.4 (Ar-CH x2), 88.1 (C-1), 78.3 (C-5), 73.1 (C-3), 69.8 (C-2), 69.5 (CH2), 69.3 

(CH2), 68.6 (C-4), 68.6, 68.5 (2 x CH2), 63.1 (NHCOCH2N3), 60.1 (C-6), 57.8 (OCH2CCH), 

52.5 (CH2), 34.1 (CH2-triaz). IR (ATR): 3269, 2927, 2491, 1704, 1645, 1598, 1538, 1447, 
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1347, 1227, 1090, 1052, 890 cm-1. HRMS (ESI+): m/z calculated for C40H54N12O17 + Na+ 

[M+Na+]: 997.3628, found 997.3615. 

Tetravalent RAFT Glycocluster (4.51) 

 

 

A solution of CuSO4.5H2O (0.79 mg, 0.0032 mmol), THPTA (2.8 mg, 0.0064 mmol), 

and sodium ascorbate (3.8 mg, 0.0192 mmol) in PBS buffer (400 μL, pH 7.5) was 

added to a solution of the 4.50 (7.2 mg, 0.0064 mmol) and 4.49 (2.74 mL of 10 mg/mL 

solution in PBS, 0.0282 mmol) in 500 μL of DMF. The mixture was degassed under 

argon and stirred at room temperature for 1 hour. UPLC analysis showed the reaction 

was not complete. A further 2 equivalents of 4.49 was added (1.24 mL of 10 mg/mL 

solution in PBS, 0.013 mmol). The mixture was degassed under argon and stirred at 

room temperature for 1 hour. UPLC analysis showed complete coupling. Chelex resin 

was added to the reaction mixture, which was stirred for an additional 30 min and 

purified by semipreparative RP-HPLC (5-40 % CH3CN in 15 mins) to afford the desired 

compound 4.51 as a white fluffy solid after lyophilization (21 mg, 65 %). 1H NMR (500 

MHz, D2O) δ 8.47 (s, 1H), 8.22 (s, 8H), 8.05 (s, 4H), 7.95 – 7.85 (m, 8H), 7.87 – 7.71 

(m, 8H), 5.64 (d, J = 9.2 Hz, 8H), 5.37 (s, 8H), 4.59 (s, 26H), 4.50 (s, 9H), 4.44 – 4.31 

(m, 5H), 4.31 – 4.18 (m, 19H), 4.08 (d, J = 3.3 Hz, 8H), 4.07-4.00 (m, 2H), 3.97 (t, J = 

6.1 Hz, 8H), 3.86 (dd, J = 9.8, 3.3 Hz, 10H), 3.75 (d, J = 6.0 Hz, 21H), 3.67 – 3.48 (m, 

53H), 2.96 (t, J = 7.6 Hz, 2H), 2.25 (s, 3H), 2.09 – 1.47 (m, 29H), 1.43 – 1.11 (m, 15H).  

HRMS (ESI+): m/z calculated for C207H297N71O78 + 4H+ [M+4H]4+: 1256.28586, found 

1256.28652. 

 

4.50

 
 2.4 

4.49

 
 2.4 

4.51

 
 2.4 



Chapter 7 

246 
 

Alkynated Tetravalent RAFT Glycocluster (4.52) 

 

Compound 4.51 (15.8 mg, 0.00315 mmol) and N-succinimidyl pentynoate (0.9 mg, 

0.0046 mmol) were dissolved in dry DMF (1 mL). Diisopropylethylamine (2 μL x3, 

mmol) were added until the solution was at pH 9. The mixture was stirred at room 

temperature for 1 hour after which UPLC analysis showed complete conversion. H2O 

(3 mL) was added to the mixture, which was then purified by semipreparative RP-

HPLC (5-40 % CH3CN in 15 mins) to afford the desired compound 4.52 as a white fluffy 

solid after lyophilization (15.5 mg, 97 %).   

Hexadecavalent RAFT Glycodendrimer (4.53) 
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A solution of CuSO4.5H2O (0.08 mg, 0.00032 mmol), THPTA (0.27 mg, 0.00062 mmol), 

and sodium ascorbate (0.37 mg, 0.0019 mmol) in PBS buffer (400 μL, pH 7.5) was 

added to a solution of the 4.50 (0.7 mg, 0.00062 mmol) and 4.52 (14 mg, 0.00274 

mmol) in 500 μL of DMF. The mixture was degassed under argon and stirred at room 

temperature for 1 hour. UPLC analysis showed complete coupling. Chelex resin was 

added to the reaction mixture, which was stirred for an additional 30 min and 

purified by semipreparative RP-HPLC (5-40 % CH3CN in 15 mins) to afford the desired 

compound 4.53 as a white fluffy solid after lyophilization (12 mg, 89 %).1H NMR (500 

MHz, DMSO) δ = 10.81 (s, 31H), 9.11 (s, 42H), 8.43 (s, 36H), 8.22 (s, 39H), 8.08 (m, 

84H), 7.82 (m, 32H), 7.39 (s, 40H), 6.86 (s, 12H), 6.66 (m, 12H), 5.46 (d, J=9.1, 32H, H-

1), 5.36 (s, 34H), 5.23 (s, 34H), 5.02 (s, 36H), 4.67 (m, 70H), 4.53 (m, 123H), 4.27 (s, 

64H), 4.11 (s, 27H), 4.00 (d, J = 4.2, 40H), 3.75 (s, 42H), 3.69 (t, J = 5.9, 40H), 3.52 (m, 

266H), 3.00 (s, 29H), 2.80 (s, 24H), 2.64 (s, 17H), 2.40 (m, 31H), 2.07 (m, 66H), 1.73 

(m, 125H), 1.50 (m, 40H), 1.23 (m, 156H), 0.86 (m, 17H).  MALDI-TOF-MS [M+H]+: m/z 

calculated for C895H1263N307O326 + H+: 21539.474, found 21539.616. 

Hexavalent RAFT glycocluster (4.55) 

 

 

A solution of CuSO4.5H2O (0.6 mg, 0.0024 mmol), THPTA (2.1 mg, 0.0048 mmol), and 

sodium ascorbate (2.9 mg, 0.0288 mmol) in PBS buffer (400 μL, pH 7.5) was added to 

a solution of the 4.54 (4 mg, 0.0024 mmol) and 4.49 (21 mg, 0.0216 mmol) in 500 μL 

of DMF. The mixture was degassed under argon and stirred at room temperature for 

1 hour. UPLC analysis showed complete coupling. Chelex resin was added to the 
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reaction mixture, which was stirred for an additional 30 min and purified by 

semipreparative RP-HPLC (5-40 % CH3CN in 15 mins) to afford the desired compound 

4.55 as a white fluffy solid after lyophilization (6.2 mg, 34 %). 1H NMR (500 MHz, 

DMSO) δ = 10.71 (s, 9H), 9.02 (m, 14H), 8.31-8.11 (m, 17H), 8.01 (m, 17H), 7.95-7.65 

(m, 26H), 5.37 (d, J=9.2, 12H, H-1), 5.26 (d, J=8.1, 14H), 5.13 (d, J=5.8, 16H), 4.94 (m, 

20H), 4.60 (t, J=5.6, 13H), 4.55 (d, J=5.5, 9H), 4.45 (dd, J=12.0, 7.6, 29H), 4.16 (bs, 

26H), 3.91 (dd, J=15.1, 9.2, 18H), 3.65 (m, 11H), 3.60 (m, 12H), 3.41 (m, 55H), 2.97 

(bs, 20H), 2.58-2.53 (m, 7H), 2.37-2.25 (m, 6H), 2.1-1.5 (m, 54H), 1.5-1.0 (m, 65H), 

0.81-0.73 (m, 9H). MALDI-TOF-MS [M+H]+: m/z calculated for C314H442N110O122 + H+: 

7706.184, found 7706.360. 

Tetravalent Polylysine-Centred Glycocluster (4.57) 

 

A solution of CuSO4.5H2O (0.79 mg, 0.0032 mmol), THPTA (2.8 mg, 0.0064 mmol), 

and sodium ascorbate (3.8 mg, 0.0192 mmol) in PBS buffer (400 μL, pH 7.5) was 

added to a solution of the 4.56 (7 mg, 0.0068 mmol) and 4.49 (3.9 mL of 10 mg/mL 

solution in PBS, 0.0407 mmol) in 500 μL of DMF. The mixture was degassed under 

argon and stirred at room temperature for 1 hour. UPLC analysis showed complete 

coupling. Chelex resin was added to the reaction mixture, which was stirred for an 

additional 30 min and purified by semipreparative RP-HPLC (5-40 % CH3CN in 15 

mins) to afford the desired compound 4.57 as a white fluffy solid after lyophilization 

(25 mg, 78 %). 1H NMR (500 MHz, D2O) δ 8.47 (s, 1H), 8.21 (s, 8H), 8.05 (d, J = 2.4 Hz, 

4H), 7.97-7.88 (m, 10H), 7.85 – 7.78 (m, 6H), 5.65 (d, J = 9.1 Hz, 8H), 5.38 (s, 8H), 5.22 

(d, J = 8.2 Hz, 4H), 4.68 – 4.55 (m, 24H), 4.52 (d, J = 5.2 Hz, 9H), 4.30-4.14 (m, 17H), 
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4.08 (d, J = 3.3 Hz, 8H), 3.97 (t, J = 6.1 Hz, 8H), 3.86 (dd, J = 9.8, 3.3 Hz, 9H), 3.75 (d, J 

= 6.0 Hz, 17H), 3.67 – 3.47 (m, 51H), 3.00 (s, 2H), 2.94 (t, J = 7.6 Hz, 2H), 1.88 – 1.52 

(m, 15H), 1.48 – 1.06 (m, 14H). HRMS (ESI+): m/z calculated for C191H274N68O75 + 4H+ 

[M+4H]4+: 1179.99237, found 1179.99202. 

Alkynated Tetravalent Polylysine-Centred Glycocluster (4.58) 

 

Compound 4.57 (23.6 mg, 0.0050 mmol) and N-succinimidyl pentynoate (1.46 mg, 

0.0075 mmol) were dissolved in dry DMF (1 mL). Diisopropylethylamine (2 μL x3, 

mmol) were added until the solution was pH 9. The mixture was stirred at room 

temperature for 1 hour after which UPLC analysis showed complete conversion. H2O 

(3 mL) was added to the mixture, which was then purified by semipreparative RP-

HPLC (5-40 % CH3CN in 15 mins) to afford the desired compound as a white fluffy 

solid after lyophilization (19.7 mg, 82 %).   

Hexadecavalent Polylysine-Centred Glycodendrimer (4.59)

 

4.57

 
 2.4 

4.58

 
 2.4 

4.58

 
 2.4 4.59

 
 2.4 

4.56

 
 2.4 



Chapter 7 

250 
 

 

A solution of CuSO4.5H2O (0.1 mg, 0.00046 mmol), THPTA (0.41 mg, 0.00093 mmol), 

and sodium ascorbate (0.56 mg, 0.00279 mmol) in PBS buffer (400 μL, pH 7.5) was 

added to a solution of the 4.56 (0.76 mg, 0.00093 mmol) and 4.58 (19.7 mg, 0.00411 

mmol) in 500 μL of DMF. The mixture was degassed under argon and stirred at room 

temperature for 1 hour. UPLC analysis showed complete coupling. Chelex resin was 

added to the reaction mixture, which was stirred for an additional 30 min and 

purified by semipreparative RP-HPLC (5-40 % CH3CN in 15 mins) to afford the desired 

compound 4.59 as a white fluffy solid after lyophilization (16.2 mg, 87 %). 1H NMR 

(500 MHz, DMSO) δ = 10.86 (s, 24H), 9.17 (s, 32H), 8.59 (m, 26H), 8.28 (s, 34H), 8.13 

(m, 80H), 7.87 (m, 28H), 7.34 (s, 10H), 7.07 (s, 10H), 5.52 (d, J=9.1, 32H, H-1), 5.42 (s, 

32H), 5.29 (s, 30H), 5.20 (s, 22H), 5.07 (s, 30H), 4.73 (m, 60H), 4.57 (m, 110H), 4.25 

(m, 96H), 3.80 (s, 32H), 3.75 (t, J=5.9, 30H), 3.57 (m, 260H), 3.23 (s, 16H), 3.06 (s, 

24H), 2.92 (m, 18H), 2.71 (m, 15H), 2.43 (m, 18H), 1.79 (m, 80H), 1.30 (m, 82H), 0.91 

(m, 6H). MALDI-TOF-MS [M+H]+: m/z calculated for C815H1151N292O311 + H+: 

20015.637, found 20015.456. 

7.2.4 Experimental for Chapter 5 

N, N’-Di-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-

ylmethylamide)-N’’-(1-oxo-2-propen-1-yl)-5-aminobenzene-1,3-dicarboxamide 

(5.13) 

 

2.113 (371 mg, 0.369 mmol) was dissolved in anhydrous DCM (20 mL) under N2 and 

cooled on ice. DIPEA (0.13 mL, 0.739 mmol) and acryloyl chloride (0.036 mL, 0.443 

mmol) were added to the solution. The reaction was allowed to stir for 3 h, washed 

with water (20 mL x 2), dried over MgSO4 and concentrated in vacuo to give the crude 

product, which was purified by silica gel column chromatography (DCM:MeOH 98:2-

93:5) to give the pure product 5.13 as a sticky, yellow solid (224 mg, 57 %). Rf = 0.43 

(DCM:MeOH 9:1). [α]D
22

 -6.4 (c 1.4, DCM). 1H NMR (500 MHz, CDCl3) δ 9.27 (s, 1H, 
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NHCOCH=CH2), 8.08 (bs, 4H, Ar-H and NHCH2-triaz), 7.98 (s, 2H, triaz-H), 7.74 (s, 1H, 

Ar-H), 6.34 – 6.21 (m, 2H, HC=CHCO and HC=CHCO), 5.93 (d, J = 9.2 Hz, 2H, H-1), 5.66-

5.56 (m, 3H, H-2 and HC=CHCO), 5.51 (d, J = 3.3 Hz, 2H, H-4), 5.28 (dd, J = 10.3, 3.3 

Hz, 2H, H-3), 4.62 (dd, J = 47.1, 10.3 Hz, 4H, CH2CCH), 4.31 (t, J = 6.5 Hz, 2H, H-5), 

4.20-4.09 (m, 4H, H-6 and H-6’), 2.16 (s, 6H, OAc), 1.96 (s, 6H, OAc), 1.95 (s, 6H, OAc), 

1.76 (s, 6H, OAc). 13C NMR (125 MHz, CDCl3) δ 169.4 (CO of OAc), 169.2 (CO of OAc), 

168.9 (CO of OAc), 168.2 (CO of OAc), 165.8 (CONHCH2-triaz), 163.2 (COCH=CH2), 

144.5 (C-triaz), 138.1 (Ar-C), 133.8 (Ar-C), 130.0 (H2C=CHCO), 127.1 (H2C=CHCO), 

120.7 (CH-triaz), 120.4 (Ar-CH), 119.9 (Ar-CH), 85.0 (C-1), 72.9 (C-5), 69.8 (C-3), 67.0 

(C-2), 65.9 (C-4), 60.2 (C-6), 34.5 (CH2-triaz), 19.7 (CH3 of OAc), 19.6 (CH3 of OAc), 19.5 

(CH3 of OAc), 19.2 (CH3 of OAc). IR (film on NaCl) = 3351, 3099, 2967, 1754, 1658, 

1599, 1536, 1445, 1371, 1224, 1092, 1063, 924 cm-1. HRMS (ESI+): m/z calcd for 

C45H53N9O21 +Na+ [M+Na]+ 1078.3254, found 1078.3253. 

N,N’-Di-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-

ylmethylamide)-N’’-(3-(prop-2-yn-1-ylamino)propanamido)-5-aminobenzene-1,3-

dicarboxamide (5.15) 

 

5.13 (82 mg, 0.078 mmol) was dissolved in a mixture of tert-butanol and DCM (5:1, 5 

mL). Phenol (22 mg, 0.233 mmol) and propargylamine (10 μL, 0.156 mmol) were 

added and the reaction mixture was allowed to stir in the MW at 100 ⁰C for 1 h. A 

further amount of propargylamine (10 μL, 0.156 mmol) was added. The reaction 

mixture was allowed to stir in the MW at 100 °C for 1 h. This was repeated again, 

where propargylamine (10 μL, 0.156 mmol) was added and the reaction mixture was 

allowed to stir in the MW at 100 ⁰C for 1 h. The sequential addition of propargylamine 

was required for completion of reaction. The solvent was removed in vacuo and 

resulting residue was redissolved in DCM (20 mL), which was washed with water (20 

mL x 2), dried over MgSO4 and concentrated in vacuo to give the crude product, 

which was purified by silica gel column chromatography (DCM:MeOH 98:2-93:7) to 
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give the pure product 5.15 as a sticky, yellow solid (60 mg, 69 %). Rf = 0.39 

(DCM:MeOH 9:1). [α]D
25

 +13 (c 1, DCM). 1H NMR (500 MHz, CDCl3) δ 10.07 (s, 1H, 

NHCOC2H4), 7.99 (s, 2H, triaz-H), 7.94 – 7.85 (m, 2H, Ar-H and NHCH2-triaz), 7.78 (s, 

1H, Ar-H), 5.91 (d, J = 9.3 Hz, 2H, H-1), 5.62 – 5.57 (m, 2H, H-2), 5.53 (dd, J = 3.3, 0.8 

Hz, 2H, H-4), 5.27 (dd, J = 10.3, 3.4 Hz, 2H, H-3), 4.78-4.57 (m, 4H, CH2-triaz), 4.28 (t, 

J = 6.5 Hz, 2H, H-5), 4.21-4.09 (m, 4H, H-6 and H-6’), 3.53 (d, J = 1.8 Hz, 2H, CH2CCH), 

3.11 – 3.05 (m, 2H, CH2, COCH2CH2NH), 2.57 – 2.51 (m, 2H, CH2, COCH2CH2NH), 2.30 

(t, J = 2.3 Hz, 1H, CH2CCH), 2.20 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.99 (s, 3H, OAc), 1.81 

(s, 3H, OAc), 1.29 – 1.21 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 171.4 (COCH2CH2NH), 

170.5 (CO of OAc), 170.3 (CO of OAc), 170.0 (CO of OAc), 169.4 (CO of OAc), 166.8 

(CONHCH2-triaz), 145.7 (C-triaz), 139.3 (Ar-C), 135.0 (Ar-C), 121.7 (CH-triaz), 121.2 

(Ar-CH), 120.8 (Ar-CH), 86.4 (C-1), 74.2 (C-5), 72.8 (CH2CCH), 71.1 (C-3), 68.2 (C-2), 

67.1 (C-4), 61.4 (C-6), 44.2 (COCH2CH2NH), 37.8 (CH2CCH), 36.2 (COCH2CH2NH), 35.6 

(CH2-triaz), 20.9 (CH3 of OAc), 20.8 (CH3 of OAc), 20.7 (CH3 of OAc), 20.4 (CH3 of OAc). 

IR (film on NaCl): 3287, 2923, 1744, 1651, 1598, 1540, 1447, 1368, 1214, 1046, 921 

cm-1. HRMS (ESI+): m/z calcd for C48H58N10O21 +H+ [M+H]+ 1111.3856, found 

1111.3813. 

Tert-butyl 3-(3-benzoyl-N-(prop-2-yn-1-yl)benzamido)propanoate (5.17) 

 

 

4-benzoylbenzoic acid 5.16 (151 mg, 0.669 mmol) and TBTU (258 mg, 0.802 mmol) 

were dissolved in anhydrous DMF (10 mL) under N2. NEt3 (0.112 mL, 0.802 mmol) 

was added followed by compound 4.32 (147 mg, 0.802 mmol). The reaction mixture 

was allowed to stir overnight at rt. The solvent was removed in vacuo and resulting 

residue was re-dissolved in DCM (20 mL), which was washed with water (20 mL x 3), 

dried (MgSO4) and concentrated in vacuo to give the crude product, which was 

purified by silica gel column chromatography (EtOAc:Pet Ether 1:2) to give the pure 

product 5.17 as a yellow solid (125 mg, 48 %). Rf = 0.78 (EtOAc:Pet Ether 1:1). 1H NMR 

(500 MHz, CDCl3) δ 7.85 – 7.81 (m, 2H, Ar-H x 2), 7.79 (ddd, J = 9.1, 5.0, 3.1 Hz, 2H, 
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Ar-H x 2), 7.66 – 7.51 (m, 3H, Ar-H x 3), 7.50 – 7.45 (m, 2H, Ar-H x 2), 4.49 – 3.97 (m, 

2H, CH2CCH), 3.97 – 3.59 (m, 2H, CH2CH2), 2.80 – 2.41 (m, 2H, CH2CH2), 2.34 (s, 1H, 

CH2CCH), 1.44 (s, 9H, C(CH3)3). 13C NMR (125 MHz, CDCl3) δ 195.9 (Ar-CO-Ar), 171.0 

(COC(CH3)3), 170.4 (Ar-CO-N), 139.2 (Ar-C), 138.8 (Ar-C), 137.1 (Ar-C), 132.8 (Ar-CH), 

130.2 (Ar-CH), 130.1 (Ar-CH), 128.4 (Ar-CH), 126.8 (Ar-CH), 81.0 (C(CH3)3), 78.5 

(CH2CCH), 73.5 (CH2CCH rotamer 1), 72.7 (CH2CCH rotamer 2), 44.4 (CH2 rotamer 2), 

41.9 (CH2 rotamer 1), 40.1 (CH2CCH rotamer 1), 34.4 (CH2 rotamer 2), 34.1 (CH2CCH 

rotamer 2), 33.7 (CH2 rotamer 1), 28.1 (C(CH3)3). IR (film on NaCl): 3262, 2978, 2119, 

1725, 1646, 1504, 1447, 1419, 1368, 1276, 1153, 1044, 939, 926, 846, 702 cm-1. 

HRMS (ESI+): m/z calcd for C24H25NO4 +Na+ [M+Na]+ 414.1681, found 414.1674. 

3-(3-Benzoyl-N-(prop-2-yn-1-yl)benzamido)propanoic acid (5.18) 

 

 

5.17 (50 mg, 0.128 mmol) was placed into an oven-dried round-bottom flask and was 

flushed with N2. Anhydrous DCM (4 mL) and pre-dried TFA over anhydrous Na2SO4 (2 

mL) was added to the flask on ice. Reaction was allowed to stir for 3 h, until TLC 

showed full conversion to the product. Reaction mixture was washed with brine (20 

mL x 2) to give the pure product 5.18 as an off-white solid (43 mg, 100 %). Rf = 0 

(EtOAc:Pet Ether 1:1). 1H NMR (500 MHz, CDCl3) δ 10.01 (s, 1H, COOH), 7.75 (d, J = 

8.3 Hz, 2H, Ar-H x 2), 7.73 – 7.68 (m, 2H, Ar-H x 2), 7.58 – 7.47 (m, 3H, Ar-H x 3), 7.47 

– 7.35 (m, 2H, Ar-H x 2), 4.42 – 3.91 (m, 2H, CH2CCH), 3.90 – 3.55 (m, 2H, CH2CH2), 

2.89 – 2.48 (m, 2H, CH2CH2), 2.33 – 2.18 (m, 1H, CH2CCH). 13C NMR (125 MHz, CDCl3) 

δ 195.7 (Ar-CO-Ar), 177.1 (COOH), 171.2 (Ar-CO-N), 138.9 (Ar-C), 138.7 (Ar-C), 136.9 

(Ar-C), 132.8 (Ar-CH), 130.3 (Ar-CH), 130.0 (Ar-CH), 128.4 (Ar-CH), 126.9 (Ar-CH), 78.9 

(CH2CCH), 73.8 (CH2CCH), 60.4, 50.8, 42.8 (CH2CH2) 39.4 (CH2CCH), 35.2 (CH2CH2). IR 

(Film  on NaCl): 3262, 3060, 2919, 2849, 2121, 1731, 1657, 1598, 1506, 1447, 1277, 

1179, 1044, 940, 926, 859, 800, 702 cm-1
. HRMS (ESI+): m/z calcd for C20H17NO4 +Na+ 

[M+Na]+ 358.1055, found 358.1055. 
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N,N’-Di-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-

ylmethylamide)-N’’-(3-(3-benzoyl-N-(prop-2-yn-1-yl)benzamido)propanamido)-5-

aminobenzene-1,3-dicarboxamide (5.20) 

 

 

5.18 (44 mg, 0.131 mmol) and TBTU (51 mg, 0.157 mmol) were dissolved in 

anhydrous DMF (2 mL) in a round bottom flask covered in tinfoil. 2.113 (158 mg, 

0.157 mmol) was also dissolved in anhydrous DMF (2 mL) in a separate round-bottom 

flask, which was added to the previous mixture via cannula. This reaction mixture 

was allowed to stir for 16 h at rt. The solvent was removed in vacuo and resulting 

residue was re-dissolved in DCM (20 mL), which was washed with brine (20 mL x 3), 

dried (MgSO4) and concentrated in vacuo to give the crude product, which was 

purified by silica gel column chromatography (DCM:MeOH 95:5) to give the pure 

product 5.20 as a sticky, yellow solid (85 mg, 49 %). Rf = 0.64 (DCM:MeOH 9:1). [α]D
22

 

-8 (c 1, DCM). 1H NMR (500 MHz, CDCl3) δ 9.19 (s, 1H, NHCOC2H4), 8.05 – 7.70 (m, 5H, 

triaz-H x 2, Ar-H x 2, Ar-H, NHCH2-triaz x 2, Ar-H of benzophenone x 2), 7.66 – 7.56 

(m, 1H, Ar-H of benzophenone x 3), 7.49 (t, J = 7.6 Hz, 1H, Ar-H of benzophenone x 

2), 5.93 (d, J = 9.3 Hz, 2H, H-1), 5.62 (t, J = 9.7 Hz, 2H, H-2), 5.54 (dd, J = 3.4, 1.1 Hz, 

2H, H-4), 5.29 (dd, J = 10.3, 3.4 Hz, 2H, H-3), 4.78 – 4.57 (m, 4H, CH2-triaz), 4.34 – 4.23 

(m, 2H, H-5), 4.20 – 4.09 (m, 6H, H-6 and H-6’ and CH2CCH), 4.02 – 3.77 (m, 2H, 

CH2CH2), 2.96 – 2.68 (m, 1H, CH2CH2), 2.41 (s, 1H, CH2CCH), 2.19 (s, 6H, OAc), 2.00 

(appd, J = 1.5 Hz, 12H, OAc x 2), 1.80 (s, 6H, OAc). 13C NMR (125 MHz, CDCl3) δ 171.0 

(COC2H4N) 170.3 (CO of OAc), 170.1 (CO of OAc), 169.8 (CO of OAc), 169.2 (CO of 

OAc), 166.6 (CONHCH2-triaz), 145.5 (C-triaz), 139.2 (Ar-C) 138.7 (Ar-C of 

benzophenone), 136.9 (Ar-C of benzophenone), 134.9 (Ar-C), 132.9 (Ar-CH of 

benzophenone), 130.2 (Ar-CH of benzophenone), 130.1 (Ar-CH of benzophenone), 

128.5 (Ar-CH of benzophenone), 126.9 (Ar-CH of benzophenone), 121.6 (CH-triaz), 

121.2 (Ar-CH), 120.7 (Ar-CH) 86.1 (C-1), 78.1 (CH2CCH) 74.1 (CH2CCH) 73.9 (C-5), 70.9 
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(C-3), 68.0 (C-2), 66.9 (C-4), 61.1 (C-6), 42.4 (CH2CH2) 40.4 (CH2CCH) 35.5 (CH2-triaz 

and CH2CH2), 20.6 (CH3 of OAc), 20.6 (CH3 of OAc), 20.5 (CH3 of OAc), 20.3 (CH3 of 

OAc). IR (film on NaCl): 3287, 2967, 1753, 1656, 1536, 1446, 1370, 1224, 1092, 1052, 

925 cm-1. HRMS (ESI+): m/z calcd for C62H66N10O23 +Na+ [M+Na]+ 1341.4200, found 

1341.4185. 

N, N’-Di-(β-D-galactopyranosyl-1,2,3-triazol-4-ylmethylamide)-N’’-(3-(3-benzoyl-N-

(prop-2-yn-1-yl)benzamido)propanamido)-5-aminobenzene-1,3-dicarboxamide 

(5.21) 

 

 

5.20 (80 mg) was dissolved in methanol/H2O (4 mL, 2 mL) in a round bottom flask 

covered in tinfoil. NEt3 (0.1 mL) was added, and the reaction mixture was allowed to 

stir for 45 °C for 6 h. The solution was cooled, Amberlite H+ was added and the 

mixture was allowed to stir for 30 mins. The solution was filtered, and the solvent 

was removed in vacuo. The residue was dried under high vacuum and lyophilized to 

give the pure product 5.21 as an off-white solid (55 mg, 92 %). [α]D
24

 +6 (c 0.5, 

MeOH:H2O 1:1). 1H NMR (500 MHz, D2O) δ 8.22 (s, 2H, triaz-H), 8.13 – 7.98 (m, 2H, 

Ar-H), 7.91 (s, 1H, Ar-H), 7.83 – 7.66 (m, 4H, Ar-Hs of benzophenone), 7.63 – 7.41 (m, 

6H, Ar-Hs of benzophenone), 5.52 (d, J = 9.1 Hz, 2H, H-1), 4.61 (s, 4H, CH2-triaz), 4.39 

(s, 1H, CHCCH), 4.15 – 4.01 (m, 3H, H-2 and CHCCH), 3.99 – 3.87 (m, 4H, H-4 and 

CH2CH2), 3.77 (t, J = 5.9 Hz, 2H, H-5), 3.70 – 3.59 (m, 6H, H-3, H-6 and H-6’), 2.88 – 

2.65 (m, 2H, CH2CH2 and CH2CCH). 13C NMR (125 MHz, DMSO) δ 195.7 (CO), 170.0 

(CO), 166.3 (CONHCH2-triaz), 145.3 (C-triaz), 137.1 (Ar-C of benzophenone), 135.5 

(Ar-C), 133.4 (Ar-CH of benzophenone), 130.3 (Ar-CH of benzophenone), 130.2 (Ar-

CH of benzophenone), 129.1 (Ar-CH of benzophenone), 127.2 (Ar-CH of 

benzophenone), 122.2 (CH-triaz), 121.6 (Ar-CH), 121.1 (Ar-CH), 88.5 (C-1), 79.9 

(CH2CCH), 78.9 (C-5), 74.2 (C-3), 72.9 (CH2CCH), 69.8 (C-2), 68.9 (C-4), 60.9 (C-6), 55.4, 
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49.1, 45.0 (CH2), 42.3 (CH2), 40.1 (CH2), 35.4 (CH2-triaz), 35.3 (CH2), 34.1 (CH2). IR 

(ATR): 3283, 3221, 2851, 1642, 1696, 1542, 1446, 1276, 1257, 1090, 1051, 890 cm-1. 

HRMS (ESI+): m/z calcd for C46H50N10O15 + Na+ [M+ Na]+ 1005.3355, found 1341.4185. 

3-(3-Methyl-3H-diazirin-3-yl)propanoic acid (5.24) 

 

 

Liquid levulinic acid 5.22 (0.88 mL, 8.59 mmol) was placed in round-bottom flask and 

was cooled on ice. 7N ammonia in methanol (9 mL) was added. A rubber septum and 

an empty balloon on a needle was placed on the flask. The reaction mixture was 

allowed to stir for 3 h. Hydroxylamine-O-sulfonic acid (1.459 g, 12.89 mmol) was 

dissolved in MeOH (10 mL) and using a dropping funnel was added to the reaction 

mixture dropwise (rate of 1 per sec). The reaction mixture was allowed to stir 

overnight at rt. Ammonia was removed by gently blowing air into the suspension 

using a glass pipette for 1 h. The white precipitate was removed by filtration, and the 

filtrate was concentrated in vacuo leaving a yellow residue 5.23. The flask was 

covered in tinfoil and MeOH (8 mL) was added. The mixture was allowed to stir on 

an ice-bath for 5 mins. NEt3 (1.8 mL, 12.89 mmol) was added and the reaction was 

allowed to stir for a further 5 mins. I2 beads (1.278 g, 5.035 mmol) (calculated based 

on yield of diaziridine) were slowly added until the solution remained persistently 

red-brown. EtOAc (8 mL) was added and organic layer was washed with HCl (1 M, 20 

mL), Na2S2O (10 %, 20 mL) and brine (20 mL), dried (NaSO4), filtered and concentrated 

in vacuo to give the diazirine product 5.24 as a yellow/orange liquid (1.100 g, 42 %). 

1H NMR (500 MHz, CDCl3) δ 11.13 (s, 1H, OH), 2.21 (t, J =7.7 Hz, 2H, CH2), 1.70 (t, J 

=7.7 Hz, 2H, CH2), 1.02 (s, 3H, CH3).  

The NMR data is in agreement with the data reported in the literature.273 
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Tert-butyl 3-(3-(3-methyl-3H-diazirin-3-yl)-N-(prop-2-yn-1-yl)propanamido) 

propanoate (5.25) 

 

 

5.24 (108 mg, 0.843 mmol) and TBTU (325 mg, 1.011 mmol) were dissolved in 

anhydrous DMF (10 mL) under N2 in a round bottom flask covered in tinfoil. NEt3 (0.14 

mL, 1.011 mmol) was added followed by 4.32 (185 mg, 1.011 mmol). The reaction 

mixture was allowed to stir overnight at rt. The solvent was removed in vacuo and 

resulting residue was re-dissolved in DCM (20 mL), which was washed with water (20 

mL x 3), dried (MgSO4) and concentrated under reduced pressure to give the crude 

product, which was purified by silica gel column chromatography (EtOAc:Pet Ether 

1:2) to give the pure product 5.25 as a yellow sticky solid (114 mg, 46 %). Rf = 0.81 

(EtOAc:Pet Ether 1:1). 1H NMR (500 MHz, CDCl3) δ 4.16 (d, J = 2.6 Hz, 2H, CH2CCH 

rotamer 1), 4.04 (d, J = 2.5 Hz, 2H, CH2CCH rotamer 2), 3.66-3.56 (m, 4H, NCH2CH2CO 

rotamer 1 & 2), 2.50 (td, J = 7.0, 3.4 Hz, 4H, NCH2CH2CO rotamer 1 & 2), 2.27 (t, J = 

2.5 Hz, 1H, CH2CCH rotamer 2), 2.20 – 2.14 (m, 5H, CH2CCH rotamer 2 and 

CH3C(N=N)CH2CH2CO rotamer 1 & 2), 1.75 – 1.67 (m, 4H, CH3C(N=N)CH2CH2CO 

rotamer 1 & 2), 1.40 and 1.38 (s x 2, C(CH3)3 of rotamer 1 & 2), 0.99 (s, 3H, CH3). 13C 

NMR (126 MHz, CDCl3) δ 171.2 (COOC(CH3)3 rotamer 1), 171.2 (CH3C(N=N)CH2CH2CO 

rotamer 1), 170.9 (CH3C(N=N)CH2CH2CO rotamer 2), 170.1 (COOC(CH3)3 rotamer 2), 

124.7, 120.4, 81.4 (C(CH3)3 rotamer 1), 80.7 (C(CH3)3 rotamer 2), 78.9 (CH2CCH 

rotamer 1), 78.6 (CH2CCH rotamer 2), 72.8 (CH2CCH rotamer 1), 71.9 (CH2CCH 

rotamer 2), 43.2 (NCH2CH2CO rotamer 1), 42.7 (NCH2CH2CO rotamer 2), 38.4 (CH2CCH 

rotamer 2), 34.5 (NCH2CH2CO rotamer 2), 34.2 (CH2CCH rotamer 1), 34.0 (NCH2CH2CO 

rotamer 2), 29.6 (CH3C(N=N)CH2CH2CO rotamer 1), 29.5 (CH3C(N=N)CH2CH2CO 

rotamer 2), 28.0 (C(CH3)3 rotamer 1 & 2), 27.4 (CH3C(N=N)CH2CH2CO rotamer 1), 27.1 

(CH3C(N=N)CH2CH2CO rotamer 2), 25.4, 20.0 (CH3 rotamer 1), 19.9 (CH3 rotamer 1). 

IR (film on NaCl): 3294, 2979, 2931, 2115, 1726, 1655, 1446, 1368, 1252, 1218, 1154, 
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846 cm-1. HRMS (ESI+): m/z calcd for C15H23N3O3 +H+ [M+H]+ 294.1818, found 

295.1825.  

3-(3-(3-Methyl-3H-diazirin-3-yl)-N-(prop-2-yn-1-yl)propanamido)propanoate 

(5.26) 

  

 

5.25 (50 mg, 0.170 mmol) was placed into an oven-dried round-bottom flask covered 

in tinfoil and was flushed with N2. Anhydrous DCM (4 mL) and pre-dried TFA over 

anhydrous Na2SO4 (2 mL) was added to the flask on ice. The reaction was allowed to 

stir for 3 h, until TLC showed full conversion to the product. Reaction mixture was 

washed with brine (20 mL x 2) to give the pure product 5.26 as a sticky solid (40 mg, 

100 %). Rf = 0 (EtOAc:Pet Ether 1:1). 1H NMR (500 MHz, CDCl3) δ 9.42 (s, 1H, OH), 4.22 

(d, J = 2.6 Hz, 2H, CH2CCH rotamer 1), 4.09 (d, J = 2.5 Hz, 2H, CH2CCH rotamer 2), 3.74 

(t, J = 7.1 Hz, 2H, NCH2CH2CO rotamer 1), 3.67 (t, J = 6.7 Hz, 2H, NCH2CH2CO rotamer 

2), 2.71 (td, J = 6.9, 4.3 Hz, 4H, NCH2CH2CO rotamer 1 & 2), 2.33 (t, J = 2.4 Hz, 1H, 

CH2CCH rotamer 2), 2.25-2.19 (m, CH2CCH rotamer 2 and CH3C(N=N)CH2CH2CO 

rotamer 1 & 2), 1.80 – 1.72 (m, 4H, CH3C(N=N)CH2CH2CO rotamer 1 & 2), 1.04 (s, 6H, 

CH3 of rotamer 1 & 2).    

N,N’-Di-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl-1,2,3-triazol-4-ylmethyl 

amide)-N’’-(3-(3-(3-(3-methyl-3H-diazirin-3-yl)-N-(prop-2-yn-1-yl)propanamido) 

propanamido)-5-aminobenzene-1,3-dicarboxamide (5.27) 

 

 

5.26 (20 mg, 0.085 mmol) and TBTU (33 mg, 0.102 mmol) were dissolved in 

anhydrous DMF (2 mL). 2.113 (102 mg, 0.102 mmol) was also dissolved in anhydrous 

5.25 5.26 

5.27 

2.113 
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DMF (2 mL) in a separate round-bottom flask, which was added to the previous 

mixture via cannula. This reaction mixture was allowed to stir for 16 h at rt. The 

solvent was removed in vacuo and resulting residue was redissolved in DCM (20 mL), 

which was washed with brine (20 mL x 3), dried over MgSO4 and concentrated under 

reduced pressure to give the crude product, which was purified by silica gel column 

chromatography (DCM:MeOH 95:5) to give the pure product 5.27 as a pale yellow 

syrup. (49 mg, 47 %). Rf = 0.59 (DCM:MeOH 9:1). [α]D
26

 -4 (c 0.5, DCM). 1H NMR (500 

MHz, CDCl3) δ 9.01 (bs, 1H, NHCOC2H4), 7.99 (s, 2H, triaz-H), 7.96-7.88 (m, 2H, Ar-H), 

7.84-7.73 (m, 3H, NHCH2-triaz and Ar-H), 5.91 (d, J = 9.0 Hz, 2H, H-1), 5.60 (td, J = 9.7, 

5.2 Hz, 2H, H-2), 5.54 (d, J = 3.4 Hz, 2H, H-4), 5.31 – 5.25 (m, 2H, H-3), 4.76 – 4.59 (m, 

4H, CH2-triaz), 4.33-4.22 (m, 3H, H-5 and CH2CCH rotamer 1), 4.21 – 4.10 (m, 5H, H-

6, H-6’ and CH2CCH rotamer 2), 3.88 – 3.74 (m, 2H, NCH2CH2CO), 2.84 (dt, J = 5.0, 0.8 

Hz, 1H), 2.81-2.71 (m, 2H, NCH2CH2CO), 2.34 (dt, J = 2.7, 1.2 Hz, 1H, CH2CCH), 2.32 – 

2.21 (m, 2H, CH3C(N=N)CH2CH2CO), 2.20 (s, 6H, OAc), 2.01 (s, 6H, OAc), 2.00 (s, 6H, 

OAc), 1.82 (s, 6H, OAc), 1.75 (t, J = 7.5 Hz, 2H, CH3C(N=N)CH2CH2CO), 1.00 (s, 3H, CH3). 

13C NMR (126 MHz, CDCl3) δ 172.3 (CH3C(N=N)CH2CH2CO), 170.3 (CO of OAc), 170.1 

(CO of OAc), 169.9 (NCH2CH2CO), 169.8 (CO of OAc), 169.2 (CO of OAc), 166.5 

(CONHCH2-triaz), 145.5 (C-triaz), 138.9 (Ar-C), 134.9 (Ar-C), 121.5 (triaz-CH), 121.2 

(Ar-CH), 120.9 (Ar-CH), 86.2 (C-1), 78.4 (CH2CCH), 74.0 (C-5), 73.4 (CH2CCH), 70.8 (C-

3), 68.0 (C-2), 66.8 (C-4), 61.2 (C-6), 53.8, 53.2, 43.6 (NCH2CH2CO), 38.6 (CH2CCH 

rotamer 1), 36.0 (NCH2CH2CO), 35.4 (CH2-triaz), 34.8 (CH2CCH rotamer 2), 30.9, 29.4 

(CH3C(N=N)CH2CH2CO), 27.5 (CH3C(N=N)CH2CH2CO), 25.4 (CH3C(N=N)), 20.7 (CH3 of 

OAc), 20.6 (CH3 of OAc), 20.5 (CH3 of OAc), 20.3 (CH3 of OAc), 19.9 (CH3). IR (film on 

NaCl): 3286, 3149, 2918, 2849, 2118, 1753, 1649, 1536, 1445, 1370, 1222, 1092, 

1053, 924 cm-1. HRMS (ESI+): m/z calcd for C53H64N12O22 +H+ [M+H]+ 1221.4336, found 

1221.4298.  

 

 

 



Chapter 7 

260 
 

N,N’-Di-(β-D-galactopyranosyl-1,2,3-triazol-4-ylmethylamide)-N’’-(3-(3-(3-(3-

methyl-3H-diazirin-3-yl)-N-(prop-2-yn-1-yl)propanamido)propanamido)-5-

aminobenzene-1,3-dicarboxamide (5.28) 

 

5.27 (45 mg) was dissolved in methanol/H2O (4 mL, 2 mL). NEt3 (0.1 mL) was added, 

and the reaction mixture was allowed to stir for 45 °C for 6 h. The solution was cooled, 

Amberlite H+ was added and the mixture was allowed to stir for 30 mins. The solution 

was filtered, and the solvent was removed in vacuo. The residue was dried under 

high vacuum and lyophilized to give the pure product 5.28 as an off-white solid (30 

mg, 93 %). [α]D
23

 +16 (c 0.5, MeOH:H2O 1:1). 1H NMR (500 MHz, D2O) δ 8.25 (s, 2H, 

triaz-H), 8.09 – 7.97 (m, 2H, Ar-H), 7.97 – 7.83 (m, 1H, Ar-H), 5.69 (d, J = 9.3 Hz, 2H, 

H-1), 4.70 (s, 4H, CH2-triaz), 4.27 – 4.19 (m, 3H, H-2 and CHCCH), 4.15 (s, 1H, CHCCH), 

4.09 (d, J = 2.5 Hz, 2H, H-4), 4.04 – 3.97 (m, 2H, H-5), 3.93 – 3.83 (m, 3H, H-3 and 

NCHCH2CO), 3.84-3.75 (m, 5H, H-6 and H-6’ and NCHCH2CO), 2.80 (s, 1H, NCH2CHCO), 

2.77 – 2.69 (m, 1H, NCH2CHCO), 2.61 (d, J = 2.4 Hz, 1H, CH2CCH), 2.35 (dt, J = 15.0, 

7.2 Hz, 2H, CH3C(N=N)CH2CH2CO), 1.66-1.59 (m, 2H, CH3C(N=N)CH2CH2CO), 0.91 and 

0.89 (s x 2, 3H, CH3), 0.90 (appd, J = 10.7 Hz, 3H, CH3). 13C NMR (126 MHz, D2O) δ 

174.8 (CH3C(N=N)CH2CH2C’O), 174.4 (CH3C(N=N)CH2CH2C’O), 171.9 (NCH2CH2CO), 

168.9 (CONHCH2-triaz), 144.9 (C-triaz), 138.1 (Ar-C), 134.7 (Ar-C), 123.0, 122.8 (CH-

triaz), 122.3 (Ar-CH), 122.2 (Ar-CH), 97.0, 88.1 (C-1), 78.8 (CH2CCH), 78.3 (C-5), 73.9 

(CH2CCH), 72.9 (C-3), 69.8 (C-2), 68.6 (C-4), 60.8 (C-6), 44.7 (NCH2CH2CO), 43.8 

(NC’H2CH2CO), 38.5 (CH2CCH), 35.7 (C’H2CCH), 35.5 (NCH2CH2CO), 35.2 

(NCH2C’H2CO), 35.1 (CH2-triaz), 29.0 (CH3C(N=N)CH2CH2CO), 28.9 

(CH3C(N=N)C’H2CH2CO), 27.3 (CH3C(N=N)CH2CH2CO), 26.9 (CH3C(N=N)CH2C’H2CO), 

26.2 (CH3C(N=N)), 18.8 (CH3), 18.7 (C’H3). IR (ATR): 3280, 2924, 1640, 1546, 1445, 

1421, 1340, 1287, 1092, 1053, 890 cm-1. HRMS (ESI+): m/z calcd for C37H48N12O14 +H+ 

[M+H]+ 885.3491, found 885.3487. 

5.27 5.28 
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7.3 Biological Evaluation  

7.3.1 Sample Preparation 

Compounds were dissolved in distilled water at the required concentration (e.g. 10 

mg/mL) and dilutions from these stock solutions were preformed as appropriate (e.g. 

to 1 or 0.1 mg/mL). Compounds not soluble in water (e.g. monovalent fucoside 2.61) 

were dissolved in the minimum amount of DMSO and diluted with water to the 

required concentration, ensuring that the final DMSO content was below 10 %. 

Dilutions from this stock solution were performed as appropriate. 

7.3.2 Fungal Strains 

C. albicans was maintained on sabouraud dextrose agar (SDA) and cultures were 

grown to the stationary phase (1-2x108/mL) overnight in YEPD broth (1 % w/v yeast 

extract, 2 % w/v bacteriological peptone, 2 % w/v glucose) at 30 ⁰C and 200 rpm. 

Stationary phase yeast cells were harvested, washed with PBS and resuspended at a 

density of 1x108/mL in PBS. 

7.3.3 Buccal Epithelial Cells 

Buccal epithelial cells (BECs) were harvested from healthy volunteers by gently 

scraping the inside of the cheek with a sterile tongue depressor. Cells were washed 

in PBS and resuspended at a density of 5x105/mL. 

7.3.4 Adherence Assays 

Yeast cells were mixed with BECs in a ratioi of 50:1 in a final volumn of 2 mL and 

incubated at 30 ⁰C and 200 rpm for 90 mins. The BEC/yeast cell mixture was 

harvested by passing through a polycarbonate membrane containing 30 μm pores 

which trapped the BECs but allowed unattached yeast cells to pass through. This was 

washed x 2 with 10 mL PBS and cells remaining on the membrane were collected and 

placed on glass slides which were left to air dry overnight. The cells were heat fixed 

and stained using 0.5 % (w/v) crystal violet, rinsed using cold water to remove any 

surplus stain and left to air dry for 30 min. The number of C. albicans cells adhering 

to a sample of 200 BECs per treatment was assessed microscopically. 
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7.3.4.1 Exclusion Assay 

In the exclusion assay, the yeast cells were incubated for 90 mins in the presence of 

each compound. After this time the cells were harvested and washed twice with PBS 

before being resuspended in 1 mL PBS before being mixed with BECs (as described 

above). 

7.3.4.2 Competitive Assay 

In the competitive assay, yeast cells, BECs and compound were co-incubated for 90 

mins prior to harvesting. 

7.3.4.3 Displacement Assay 

In the displacement assay, adherence was allowed to occur by mixing the yeast cells 

and BECs together first. BECs and adherent yeast cells were harvested and re-

incubated with the compound for a further 90 mins after which time the level of 

adherence was measured. 

7.3.4.4 Statistics 

All adherence assays were performed on three indepent occasions. In each assay the 

number of yeast cells adhering to 200 randomly chosen BECs was determined. 

Results are mean ± SEM (standard error of the mean). 
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Graduate Modules 

Chemistry Specific Modules: 

CH801 – Core Skills and Research Techniques in Chemistry 

CH308 – Teaching Skills in Chemistry 

CH806 – Research Training Workshops in Chemistry 

CH808 – Research Supervision Training 

 

Generic/Transferable Modules: 

GST1 – Personal Development and Employability Module 

GST2 – Finding Information for Your Thesis 

GST5 – Creative Thinking and Problem Solving 
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NMR Data: 

HSQC for compound 2.85 (d5-Pyr) 
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1H NMR of Compound 4.53 
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1H NMR of Compound 4.59 

 

 

 



Appendix 

288 
 

Analytical HPLC Traces:  

Compound 2.67 

RP-HPLC (C18, 254 nm, 10 % B in 15 mins) 

 

Compound 4.51  

RP-HPLC (C18, 214 nm, 5-40 % B in 25 mins) 

 

Compound 4.53  

RP-HPLC (C18, 214 nm, 5-40 % B in 25 mins) 
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Compound 4.55 

RP-HPLC (C18, 214 nm, 5-40 % B in 25 mins) 

 

Compound 4.57 

RP-HPLC (C18, 214 nm, 5-40 % B in 25 mins) 

 

Compound 4.59 

RP-HPLC (C18, 214 nm, 5-40 % B in 25 mins) 
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MALDI-TOF MS Spectra 

Compound 4.42 

 

Compound 4.43 

 


