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ABSTRACT Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for
the next-generation wireless communication networks. Their mobility and their ability to establish line of
sight (LOS) links with the users made them key solutions for many potential applications. In the same
vein, artificial intelligence (AI) is growing rapidly nowadays and has been very successful, particularly
due to the massive amount of the available data. As a result, a significant part of the research community
has started to integrate intelligence at the core of UAVs networks by applying AI algorithms in solving
several problems in relation to drones. In this article, we provide a comprehensive overview of some
potential applications of AI in UAV-based networks. We also highlight the limits of the existing works
and outline some potential future applications of AI for UAVs networks.

INDEX TERMS Artificial intelligence, deep learning, federated learning, machine learning, reinforcement
learning, UAVs.

I. INTRODUCTION

UNMANNED aerial vehicles, known as UAVs, attracted
a lot of research interest in the last decades due to many

inherent attributes such as their mobility, their easy deploy-
ment, and their ability to establish line of sight (LOS) links
with the users [1]–[4]. In general, UAVs can be classified into
two main types, namely fixed-wing and rotary-wing UAVs.
Each type of UAV is adapted to a specific type of application.
For example, fixed-wing UAVs are more appropriate for the
type of missions where stationarity is not required, e.g., mil-
itary applications such as attack and surveillance. However,
rotary-wing UAVs have more complex aerodynamics. They
also have the ability to remain stationary at a given location,
but they cannot carry out long-range missions. For exam-
ple, rotary-wing UAVs are better suited to provide temporary
wireless coverage to ground users.
The involvement of many industries in the manufacture of

UAVs has helped to reduce their cost on the markets, making
the use of a UAV network no longer a dream or a futur-
istic idea. In fact, they have been used in many scenarios
such as providing wireless connectivity, weather forecasting,

disaster management, farming, delivery, surveillance, and
traffic control [5]–[12].
Several limitations related to the use of UAVs can be

raised, such as their vulnerability to severe weather condi-
tions and the need for visual LOS with the controller to avoid
a risky loss of control. Most importantly, the constrained
battery and low computational capabilities of drones are
considered as their main limitations [13]–[18]. In fact, most
commercially available UAVs struggle to hover for more than
two hours and must always return to base to recharge their
batteries. In addition, complex algorithms requiring high
CPU and GPU capacities cannot be run onboard because of
the limited computing capacity at the UAV level. Therefore,
from a practical point of view, no solution is necessarily ade-
quate for a given UAV-based problem, as complexity may
affect its feasibility.
In another context, machine learning (ML) has emerged

in the last years as a sub-field of AI. Moreover, its use has
become prevalent in scientific research offering a new style
usually referred to as the black-box technique where you
only care about inputs and outputs. Furthermore, the huge
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amount of data available nowadays and the existence of the
high performance computing (HPC) and good GPU’s helped
ML to see the light. As a result, ML is being actively used
today in many fields, perhaps more than one would expect.
We can also notice the emergence of several sub-fields

from AI such as deep learning (DL), reinforcement learning
(RL), and federated learning (FL), each for a specific type of
problem. For example, DL is a branch of AI that uses layers
of artificial perceptrons to imitate the human mind’s thinking.
It is massively used in speech recognition, computer vision,
and natural language processing. RL is another branch of AI
that appeared around 1979 [19] wherein an agent learns the
way of making good actions in order to achieve maximum
rewards. The learning process is achieved by exploitation and
exploration of the different available states. RL is an active
field of ML that evolved and matured very quickly. Unlike
DL, RL is massively used in robotics for path planning and
learning the way to do complex tasks. This does not mean
that it is limited only to robotics, it is also used in many
other decision-making problems that consider a goal-oriented
agent that is interacting with a specific environment.
Another new field of ML is FL, which was proposed by

Google in 2016 and designed to support network systems
with decentralized data. FL is considered as an ML setting
with the objective of training a highly centralized model
on devices sharing decentralized data without the need for
sending the data to a local shared unit. In other words,
it is used to run ML algorithms with decentralized data
architecture. This task is performed in a secure manner and
when it comes to UAV-based networks, the use of FL is
indeed a hot topic.
In short, AI is one of the trending areas that brings intel-

ligence to machines and makes them able to perform tasks
even better than a human can do. It is believed that combin-
ing the advantages of using AI within UAV networks is a
challenging and interesting idea at the same time. Although
conventional methods showed a big success in solving many
problems in this area, it is still interesting to investigate
whether ML and RL could provide more powerful and accu-
rate solutions. While moving from classical approaches to
intelligent methods requires sacrificing interpretability and
tractability in some scenarios, it is worth opting for AI-
assisted solutions given the unprecedented success realized
by ML and RL especially in decision-making problems.
That being said, we believe that intelligent solutions are not
always guaranteed to outperform classical solutions, instead,
classical approaches might provide simple and powerful solu-
tions in some scenarios. Undoubtedly, this duality is one of
the reasons that motivate investigating the use of AI for
the set of special problems related to UAV networks. UAVs
were designed originally to be controlled fully manually by
humans, however, with the recent emergence of AI, it became
a trend to provide smart UAVs in the markets. In this context,
AI can use the information gathered by drone sensors to per-
form several tasks. AI can play an important role in resource
management for UAVs to maximize energy efficiency. The

design of UAVs’ trajectory and deployment are also subject
to AI improvement by equipping the UAV with the ability
to avoid obstacles and design its trajectory automatically.
For instance, in recent days, “Follow me” drones have been
a tremendous success in the markets. This type of drone
providing great video footage by following and filming its
owner is equipped with powerful and intelligent obstacle
avoidance and target tracking algorithms. Moreover, a wide
range of applications can be improved in this context such as
surveillance, traffic management, and landing site detection.
Imaging also can be improved for UAVs by applying the
existing state of the art related to computer vision for UAVs
imaging.
To conclude, UAV-based network performance can be

highly improved with the integration of AI algorithms to
automate complex tasks and enhance the overall system level
of intelligence.

A. PREVIOUS SURVEYS AND TUTORIAL WORKS
With the vast amount of published work linking AI to
UAV wireless networks, several tutorials and surveys have
attempted to summarize the existing literature. The authors
in [4] provided a tutorial for UAV-based wireless communi-
cation systems by covering potential applications, challenges
and describing the open problems in the field. However, the
aforementioned work does not focus on the ML aspect for
UAVs. Many other surveys and tutorials do not focus on AI
techniques, for instance, a motion planning for UAVs guide
is presented in [20] and a survey for UAV traffic monitoring
is provided in [21].
In addition to the work mentioned above, there exist other

tutorials and surveys that are oriented towards the applica-
tion of ML tools in wireless communication networks. For
example, a tutorial on artificial neural networks (ANNs) for
wireless networks is proposed in [20]. In the same context,
a review for RL and DL techniques for UAVs summarized
some of the works done in this area [22], [23]. However, all
the works mentioned above do not consider AI techniques
specifically for UAV applications.
Nevertheless, one work can be considered as close to

this work, namely the ML study for UAV communication
presented in [24]. However, there are still major differences
between the two works. First of all, the structure of this sur-
vey is different from that of [24] since we review each AI
subfield separately and delve into the different UAV-based
applications of each AI area, whereas in [24], the survey is
based on the application type. We believe that this structure
not only allows us to explore each area of AI in-depth, but
also to provide a comprehensive overview of each AI area
by presenting the most commonly used algorithms in UAV-
related problems. Therefore, this survey is aimed at all kinds
of readers, including those who have no knowledge of AI and
also for researchers who have started to take an interest in
AI from a wireless communication perspective. In addition,
the work in [24] did not cover FL, which, in our opinion,
is a key technique for bringing intelligence to the edge of
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FIGURE 1. Survey organization.

UAV networks in a decentralized and secure way. Given the
significant importance of FL, particularly for 6G networks,
we covered this area in depth by reviewing the recently
published work. We also maintained a unique approach in
each AI domain and focused on the most recent publica-
tions. For example, one of the most prominent applications
covered in this survey are the fusion of RL with the use of
intelligent reflective surface (IRS)-equipped UAVs to sup-
port millimeter-wave (mmWave) bands, the use of drones to
enable virtual reality(VR), and anomaly detection for drones,
which are not covered in [24].

B. CONTRIBUTIONS
In this article, we provide a holistic overview of the state of
the art research in the area of AI-enabled UAV networks. We
also discuss some limitations of the existing research works
and outline some potential ideas that could be addressed in
the near future. We also study the implementation of intelli-
gence at the edge of UAV networks by reporting some of the
works done in FL for UAV-based networks. Furthermore, we
provide a comprehensive introduction to each AI area stud-
ied in this work so that readers with different backgrounds
have the ability to understand this article.
This survey is organized as follows:
• In Section II, we start by reporting the supervised
and unsupervised ML works designed for UAV-based
networks. A brief overview will cover these two dif-
ferent areas of ML and some typical algorithms and
neural network (NN) architectures are provided for the
reader’s convenience.

• In Section III, we go over the works relating RL with
UAV-related problems. We start with a quick overview
of RL basics and present a classic example for RL path

planning in order to understand the basic concepts of
this area.

• In Section IV, after introducing FL, we outline the key
research directions that enable installing intelligence at
the edge of a UAV network by reporting some of the
works relating FL to UAV-related problems.

All the above-mentioned sections are concluded with a
discussion presenting the limitations of the current research
work and highlighting some possible future works that could
be established.

II. SUPERVISED AND UNSUPERVISED MACHINE
LEARNING FOR UAVS
ML is a recent buzzword related to AI. In short, it is the
subset of AI that enables a computer to execute tasks accu-
rately based on the experience gained by learning from some
previous examples. In fact, ML has been very successful over
the last decade because of the large available amount of data
and today’s powerful computers. This is why research is now
oriented towards applying ML in UAV-based problems.
The areas of ML can be divided into different categories

of problems, for instance, it might be divided as shown in
Fig. 2 to supervised learning problems, unsupervised learn-
ing problems, and RL-based problems. In what follows, we”
distinguish between the supervised and the unsupervised
learning areas to avoid confusion later.

A. SUPERVISED LEARNING OVERVIEW
In supervised learning, the data provided is labeled, in other
words, we provide for each data entry the ground-truth value
so that the algorithm uses these values to learn how to make a
decision for a new unlabeled entry. For example, predicting a
UAV price from its characteristics. In this example, you need
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FIGURE 2. Machine learning overview.

to provide the algorithm with a set of training data that con-
tains each UAV characteristics and its associated label (the
price). The dataset is usually divided into a training set and
a test set. The training set is used to learn the relationship
between the input and the output and the test set is used to
validate the model by measuring its accuracy. The supervised
problems are often divided into either regression problems or
classification problems. Regression problems provide con-
tinuous output values (e.g., predicting a price). However,
classification problems provide discrete values indicating to
which class the input belongs (e.g., classify benign or malig-
nant cancer disease). In what follows, we present the most
well-known ML algorithms for supervised and unsupervised
learning. We also focus on the algorithms that are used to
solve the UAV-related problems reported in this survey.
Some Supervised Algorithms and NN Architectures:

1) Combined Classification and Regression Algorithms:
There are several supervised algorithms that can
be used either for classification or regression. For
instance, Support Vector Machine (SVM) can do both
the tasks, decision trees also can be formulated to solve
regression or classification depending on the use case.

2) Regression Algorithms: There exist algorithms that per-
form pure regression tasks by predicting continuous
value output. For instance, we can mention two classi-
cal algorithms in ML which are linear regression and
logistic regression.

3) Classification Algorithms: It makes sense to talk about
pure classifiers in ML. Although it is mentioned in
some references that Naive Bayes classifier with “some
modification” can be used for regression, we present
it as a pure classifier example since it was derived
initially for classification based on the probabilistic
Bayes theorem.

4) Multi Layer Perceptron (MLP): To imitate the biologi-
cal human neural networks, ANNs are mathematically
formulated for ML. ANNs are built with several

partially-connected nodes denoted by perceptrons and
grouped into different layers. Each perceptron is
responsible for processing information from its input
and delivering an output. As shown in Fig. 3, MLP is
the simplest form of an ANN that consists of one input
layer, one or more hidden layers, and an output layer
where a classification or regression task is performed.

5) Convolutional Neural Networks (CNNs): CNN is
another type of ANN designed initially for com-
puter vision tasks. A CNN usually takes an image
as an input, assigns learnable weights and biases that
are updated according to a specific algorithm. The
CNN architecture is characterized by the convolu-
tional layers which extract high-level features from the
image that will be used later. Technical details such
as activation functions, pooling layers, and padding
operation are beyond the scope of this survey. Fig. 1
shows a typical CNN architecture where feature extrac-
tion is performed in the first convolutional layers
and classification is performed via a fully connected
layer.

6) Recurrent Neural Networks (RNNs): When the data is
sequential in nature, RNNs take place to solve the
problem. For the sake of example, we can mention a
text speech, a video, or a sound recording. RNNs are
widely used in natural language processing (NLP), in
speech recognition, and for generating image descrip-
tion automatically. The RNN architecture is similar to
a regular neural network, only it contains a loop that
allows the model to carry forward results from previous
neurons. RNN in its simplest form is composed of an
output containing the prediction and which is denoted
by h in Fig. 1 and a hidden state that represents the
short-term memory of the system.

B. UNSUPERVISED LEARNING OVERVIEW
Unlike supervised learning, the unsupervised learning does
not use labeled data, instead, it looks for some underlying
structure or hidden pattern in the data and reveals it. For
instance, clustering the data, reducing data dimensionality,
and data generation are considered typical tasks for unsuper-
vised learning. In what follows, we present some classical
unsupervised algorithms.
Unsupervised Algorithms and NN Architectures:
1) Clustering Algorithms: There exists several popu-

lar clustering algorithm in ML. We only men-
tion, K-means, Gaussian Mixture Modeling (GMM),
DBSCAN, and agglomerative Clustering [25]. Some of
them are density-based algorithms such as DBSCAN,
others implement hard association such as K-means.
Note that, on the other side, GMM is a probabilistic
model that uses soft association rule.

2) Dimensionality Reduction Algorithms: Dimensionality
reduction is a typical technique in ML consisting
of transforming data from a high-dimensional space
representation to a lower-dimensional space. In this
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FIGURE 3. Neural network architectures.

context, we mention some spectral-based techniques
such as autoencoders (AEs) which are a type of neu-
ral networks used to learn a representation of the
data and encode it. Surprisingly, the architecture of
an AE is extremely simple as the Fig. 1 shows. We
also mention another spectral-based algorithm which
is principal component analysis (PCA) as a popular
dimensionality reduction technique [26].

3) Generative Adversarial Networks (GANs): GANs are
algorithmic architectures that use two neural networks
in order to generate new, synthetic instances of data
that can pass for real data. They are used widely
in image generation, video generation, and voice
generation.

C. SUPERVISED AND UNSUPERVISED SOLUTIONS FOR
UAVS-BASED PROBLEMS
1) THE POSITIONING AND DEPLOYMENT OF UAVS

Authors in [12] investigate the optimal deployment of aerial
base stations to offload terrestrial base stations by minimiz-
ing the power consumption of the drones. The provided
solution is considered ML-assisted due to the fact that
UAVs are not required to continuously change their posi-
tions, instead, they are placed temporarily by predicting
the congestion in the wireless network. The wireless traf-
fic is predicted based on the GMM which is a probabilistic
model that belongs to the set of unsupervised ML defined
previously. It assumes that the data distribution can be
modeled by the Gaussian distribution. First, a K-means algo-
rithm divides the users into K clusters and then a weighted
expectation maximization algorithm is performed on the K
clusters in order to find the optimal parameters for the GMM

model. The next step is to deduce the optimal deployment
by formulating a power minimization problem for UAVs.
The numerical results show that the ML-assisted approach
outperforms the classical solution by reducing the mobil-
ity and the power needed for downlink purposes. Although
the work done is of great importance by combining ML
with optimization techniques, using a K-means algorithm to
classify the users brings the question of how to choose man-
ually the value of the number of clusters K and also how to
initialize the cluster center positions.
In the same context, the authors in [27] investigate an

optimal placement of UAVs acting as aerial base stations by
building a structured radio map. Due to the nature of the
complex terrain and the difficulty of exploiting such radio
map, the authors propose a joint clustering and regressing
problem using a maximum likelihood approach that is for-
mulated based on the K-segment ray-tracing model. ML is
also used in predicting the channel in order to reconstruct
the radio map.
The optimal deployment of aerial base stations using

UAVs is also studied in [28]. ML techniques are used
to predict download traffic using weighted expectation
maximization. This ML technique has been compared in
terms of performance to a baseline expectation maximization
algorithm and the K-means algorithm. In addition, contract
theory is used to ensure that the downlink demand is satisfied
by selecting the appropriate UAV for each hotspot.
In [29] the authors investigate generating waypoints for

the UAV flight path based on previous flight records. The
problem is that any error committed by pilots in the past will
influence the future waypoints of the UAV. To this end, the
authors employed an unsupervised learning technique based
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on AE to remove pilot errors and reconstruct the image
generated from the flight record. The proposed method is
compared to generating the waypoints throughout the K-
means algorithm and has proven its efficiency.
In [30] the communication efficiency between a UAV and

a base station is improved by predicting the location of
the UAV given its past locations. In fact, while offloading
a terrestrial base station, a UAV can be subject to wind
perturbation which will result in a certain degree of offset
and hence a loss in capacity. To solve this issue, the authors
propose a RNN-assisted framework where the next elevation
and horizontal angles of the UAV with reference to the base
station are predicted using the past angles. This method leads
to predicting the specific location for a high-speed movement
UAV. The authors keep tuning the RNN parameters such
as the number of hidden nodes and the number of hidden
layers and then study their impact on the prediction accuracy.
Numerical results have shown that a high accuracy could be
achieved for a 4 layer RNN with 16 hidden nodes.
Further alternatives for UAV path planning have been

proposed in the open literature. In [31] an unsupervised
solution has been proposed to enable motion prediction
for a group of heterogeneous flying UAVs. In addition to
predicting the future locations of the UAVs, the algorithm
is designed to classify the network nodes based on their
motion properties. In addition, the authors in [32] use ANN
to predict the optimal location of UAVs that are used as
relays in a Flying Ad Hoc Network (FANET) setup.

2) CHANNEL ESTIMATION

One could think about how ML can improve the well-
established empirical models used to estimate and model
the complex UAV-to-UAV and ground-to-UAV channels. In
this context, the work in [33] investigates the prediction of
the UAV-to-UAV path loss. The predictions generated by
the K Nearest Neighbors (KNN) and the Random Forest
algorithms are compared to empirical results. The path loss
is predicted starting from several parameters such as the
propagation distance, transmitter altitude, receiver altitude,
and elevation angle. The comparison of the results with the
data generated by the ray-tracing software shows that ML
performs well in these prediction tasks.
As mmWave bands are being exploited for next-generation

cellular systems to improve the communication capacity, the
authors in [34] use a generative neural network to predict the
channel state between a UAV and two types of terrestrial base
stations: (i) terrestrial street-level base stations and (ii) aerial
roof-mounted base stations. A first neural network classifies
the link type (LOS/NLOS/outage) and feeds this information
to a second neural network to generate the different channel
parameters. The authors in [35] use GAN to estimate the
air-to-ground channel characteristics for mmWave commu-
nication within a UAV wireless network. A distributed GAN
architecture is proposed to enable distributed learning for the
UAV network. The learning process is based on distributed
datasets from channel measurement.

Supervised ML is used in other research works to predict
channel quality between a UAV and ground nodes. For
instance, ANNs are used to predict the path loss in [36]–[39].
The authors in [36] use ANNs to predict the signal strength
of the UAV and estimate the channel propagation. A shal-
low ANN is proposed to analyze the effect of several natural
phenomena on the signal such as: diffraction, reflection, and
scattering. The input layer is composed of parameters like
the distance to the UAV, altitude, frequency, and path loss.
This exciting work may be impeded by the large process-
ing time of the data by the ANN which raises the question
of whether this solution is adequate for real-time applica-
tions or not. In the same context, in [39] the signal strength
between the UAV and ground nodes is estimated using ANN.
The authors consider an urban environment where the sig-
nal strength data is used as an input to feed an ANN. Using
this data, the channel parameters are estimated accurately. In
addition to ANN, other supervised ML algorithms are used
in [40] to predict the received signal strength received at a
flying unit from a cellular base station.
In contrast, in [41] unsupervised learning is used for a 3D

channel modeling between UAVs and ground mobile users.
The popular K-means algorithm is used in this work to clas-
sify the links into LOS and NLOS. Aside from ANN, the
SVM algorithm can be used for regression in addition to clas-
sification. The work in [42] proposes a method for path loss
prediction in urban outdoor environment using support vec-
tor regression (SVR) algorithm and compares the obtained
results with the empirical ones.
In short, we have reviewed several ML techniques used

for the same purpose, which is predicting path loss for
UAVs. Among these techniques, we mention the use of
KNN, Random forest, ANN, and SVR. Many similarities
and differences exist between these different algorithms as
they can all be considered as non-linear classifiers in some
scenarios. On the one hand, KNN is known as a simple non-
linear ML classifier, but it could do robust prediction tasks,
it is shown to have 4.56 dB mean error in [33]. On the other
hand, Random Forest, which is an ensemble learning method
that uses multiple learners to make predictions, is shown to
be more effective in predicting path loss. Random Forest
is shown to have 2.26 dB mean error in [33]. Moreover,
ANN is a more complex algorithm since the model includes
many parameters, layers, activation functions, optimizer, and
data. ANNs are also less tractable and less expensive in
terms of computation depending on the size of the network.
However, for path loss prediction, they have shown relative
success since they have reached 2.72 dB in terms of mean
average error [38]. The SVR algorithm on the other side is
also tested for the path loss prediction problem and differ-
ent kernels have been used, such as Gaussian, polynomial
and Laplacian kernels. It has been shown in [42] that the
performance of ANN is comparable to that of the SVR with
the Laplacian kernel, however, it is believed that the SVR is
not only faster than ANN but also simpler since initializa-
tion problems could be avoided. To conclude, we think that
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KNN performs poorly on path loss prediction and that the
SVR-Laplacian and ANN seem to have better performances.
That being said, the choice between SVR and ANN creates
a compromise between accuracy and complexity that should
be taken into account.

3) UAVS FOR VIRTUAL REALITY (VR)

Virtual Reality (VR) refers to the creation of a virtual
environment for multiple purposes, such as education or
entertainment. This technology has begun to gain signifi-
cant interest in the last few years and we have recently seen
the emergence of an exciting research direction linking the
use of VR technology to UAV networks. In this context, AI
is used to overcome the various VR application challenges
since such technology requires high transmission standards,
for instance, low latency and high data rate. In [43], VR
networks are studied by optimizing transmission and con-
tent caching. In the proposed framework, UAVs are used
to collect VR data from the users and transmit it to small
base stations serving the users. Therefore, an optimization
problem for joint transmission and content caching is for-
mulated and solved via the use of deep learning techniques
combining liquid state machine spiking neural networks and
echo state networks. In another context, authors in [44]
provide a UAV VR simulation platform used to assess the
performance of several DL-based solutions for UAVs such
as autonomous path planning and obstacle avoidance. The
constructed VR platform can generate images and data for
UAV navigation that could be used in the training phase. The
authors in [45] investigates the use of UAV-IoT network to
enable a remote VR immersion experience. UAVs are posi-
tioned at a given scene of interest, capture different points
of view and transmit them to a dedicated aggregation point.
The aggregation is then performed to enable the VR ses-
sion at the user’s location. The objective is to maximize the
fidelity of the user’s immersion under certain constraints.
RL techniques have been used in this work to derive the
optimal UAV placement so that immersion fidelity is max-
imized. In [43], mentioned earlier, where the transmission
and caching of content is optimized by DL techniques, RL is
compared to the proposed DL-based algorithm. However, the
numerical results show that DL outperformed the Q-learning
algorithm.

4) ANOMALY DETECTION FOR UAVS

UAV networks are extremely sensitive to any malfunctioning
or anomalies that might occur during the drones’ operations.
To avoid such scenarios, it is rational to use the data provided
by the drone sensors to keep track of the flight safety level.
In this context, anomaly detection is considered a typical task
that consists of detecting data samples that do not adhere to
the normal functioning of the system. In [46], the authors
propose an unsupervised algorithm to detect unusual events
happening in the drone field of view. The proposed DL
architecture is trained on bird-view images and GPS data
to perform this task. Authors in [47] propose an anomaly

detection algorithm to identify and isolate malfunctioning
UAVs. To this end, Kullback-Leibler Divergence is used to
detect any problem based on the external sensors such as
the humidity rate and wind speed. On the other side, an
ANN is used to classify the internal sensor data. Numerical
results show an acceptable accuracy for the proposed data.
Furthermore, kernel PCA (KPCA) is used in [48] to perform
anomaly detection based on the drone sensors’ data. KCPA is
used to reduce the dimension of the data taking into account
the non-linear relationships between the samples. We kindly
refer interested readers to [49] covering the literature and the
current trends related to unsupervised anomaly detection for
UAVs. In another context, authors in [50] investigate learning
the law of the rotor flow field of a UAV. This complex
task is achieved through the use of GAN where the flow
field features are learned by the proposed model. Numerical
results show that the proposed method outperformed the
computational fluid dynamics model.

5) UAV DETECTION

Since UAVs are used extensively not only by the military but
also by civilians, several applications need to be supervised
by the authorities because UAVs could be used for espionage
or even as a lethal weapon. Therefore, the detection and
tracking of UAVs is very important to limit these dangers. In
this field, numerous research projects have proposed different
solutions, which we divide into image-based solutions and
sound-based solutions.
Starting with sound-based detection problems, the authors

in [51] present a real-time UAV detection system based on
analyzing the sound data coming from the drone. For this
purpose, two ML methods have been applied and compared
in terms of accuracy. The first step consists of detecting
potential existing UAV by analyzing the frequency and then
check whether the sound exceeds a predefined threshold for
drones. The first ML method used is Plotted Image Machine
Learning (PIL). This method uses the visualized Fast Fourier
Transform (FFT) graph generated from the data sound to
compare average image similarity with a reference FFT tar-
get. The second method is based on the KNN algorithm
applied to the FFT and measures the average distance with
the target. The simulation results show that the PIL method
outperforms the KNN methods and succeeded to provide
good results. At this level, we point out that even if the
visual drone detection can be limited by the quality and the
resolution of the input image, sound data also can be highly
affected by ambient noise in real applications. It also is not
obvious if all the UAVs will have the same FFT profile used
as a predefined target in the problem. Moreover, KNN algo-
rithm is a simple and straightforward algorithm in ML, and
hence trying more sophisticated algorithms will be benefi-
cial for the problem. In another line of research, the authors
in [52] use a spiral microphone array to detect and track the
position of a flying UAV. Several spectrograms and filters
are applied to the input sound to perform feature detection
before feeding the concurrent neural networks architecture
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TABLE 1. Imaging for UAVs.

to perform the task. The scientific literature is still rich
with regard to the recognition of the acoustic signature of
UAVs [53]–[55]. Other research works use different features
to detect the UAV presence such as the WiFi traffic [56] or
the UAV radio frequency signal [57]–[60].
Another approach to address UAV detection problem is

through images instead of sound. In this context, different
deep ML architectures are compared at the visual UAV detec-
tion task using a Pan-Tilt-Zoom camera in [61]. Moreover,
a recent work in [62] reviewed some of the computer vision
techniques used in UAV detection problems.
Finally, we highlight the fact that making a hybrid system

that uses image, sound, and radio UAV transmission signals
at the same time will be a very interesting futuristic idea. In
this context, we refer interested readers to the recent work
in [51].

6) IMAGING FOR UAVS

Although computer vision is beyond the scope of this survey,
several research works relating imaging to UAVs exist in
the literature, for example, authors in [77] investigate the
detection of a forced (emergency) safe landing site. The
detection is converted into a classification problem where
two known classifiers (GMM and SVM) are tested. The
classifier converts the real map into a safe or unsafe grid
map. A filter is applied later to remove unsafe spots and
keep the potential landing sites. The main reason why these
types of problems are not considered in this study is that
they can be treated as pure computer vision problems, and
the application to UAVs does not change the nature of the
task, except that the images are taken from a given altitude.
In other words, the same techniques are applied to UAVs
imaging, such as CNN, feature extractors, and edge detectors.
For the reader convenience, we summarize a number of the
recent works in Table 1. We also refer the readers interested
in more UAV imaging problems to [22, Table 1].

D. DISCUSSIONS AND FUTURE WORKS
1) PRACTICAL ISSUES OF ML IMPLEMENTATION

The application of ML techniques in UAV-based networks
can be hampered by the limited computing capacity onboard.

FIGURE 4. Reinforcement learning elements.

In fact, most commercially available UAVs are not equipped
with the sophisticated processors needed to execute heavy
ML algorithms. Even if you intend to equip a drone with
a powerful CPU and GPU, you must first take into account
its weight and power consumption. As a result, the same
problem will persist due to the power constraints of UAVs.
One solution to this problem is to use the cloud to train
models and make inferences at the UAV level. However,
this solution will increase the communication costs, which
in turn will bring us back to the energy constraint problem,
because the UAV will have to communicate back and forth
with the cloud. Therefore, another interesting solution to the
problem is to run the ML onboard, but this time adjusting
the ML algorithms to the UAVś limited capacity. This tech-
nique leads us to a new field usually referred to as on-device
learning dedicated to constrained devices. A recently pub-
lished study [78] has examined device learning by addressing
lightweight ML algorithms and discussing the different ML
and DL algorithms in terms of complexity and resource
consumption. We propose a final solution to address the exe-
cution of ML onboard, namely FL. It consists of executing
ML in a decentralized way by sending model updates over
networks instead of sharing raw data. We intend to cover
and discuss this technique at Section IV of this survey.
In addition to the hardware and software limitations of

UAVs mentioned above, the practical use of ML in UAV
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networks still faces other significant hurdles related to exist-
ing rules and regulations. Although research is aimed at
partially or even fully autonomous UAV applications, most
existing regulations do not allow such operations in real
life. For example, the U.S. Federal Aviation Administration
(FAA), in its latest regulation published in December 2020,
did not specify a single point concerning autonomous UAVs.
Instead, it focuses on regulations dedicated to the human
operators who control a drone. That being said, it is impor-
tant to mention that there is still hope for autonomous
UAVs to see the light of day. In fact, unlike the FAA, the
European Aviation Safety Agency (EASA), in its latest reg-
ulation published in December 2020, admits the existence of
autonomous UAV operations by including them and classi-
fying them in different classes according to the risk level of
the application. This will certainly offer new opportunities
for innovative UAV solutions based on ML and AI in gen-
eral. In conclusion, it is important to harmonize and unify
the UAV regulations around the world, as this will motivate
future research in this area.

2) LITERATURE DISCUSSIONS

Although we have tried to criticize objectively some of
the work we have covered previously, in this section we
intend to present our thoughts on the use of ML in wireless
communication problems.
Firstly, it can be noted that, in the literature, ML tools

are often used to solve problems that could be solved in a
simpler and more deterministic way, giving the impression
that the need to use ML is not well justified, which could
lead in many cases to an ML misapplication.
Moreover, we remarked that in all works that we have

covered so far, ML results always appear better than empir-
ical results in the numerical simulation. This fact raises the
question of whether is it true that ML tools are always out-
performing the classical methods or not. At this point, we
should mention that we are neither doubting the major suc-
cess of ML nor questioning its efficiency in solving many
problems, instead, we are highlighting the fact that in some
cases, choosing the data plays an important role in assessing
the accuracy of an ML model. To clarify the idea, let’s put in
place a concrete example. Imagine that you are working on
a computer vision object detection problem and the goal is
to detect a UAV in the images. Then, if you do not provide
a good quantity of non-UAV images to the model, you will
find out that the CNN is providing good accuracy on UAV
images and fail in non-UAV images. Moreover, if the test
set for example is biased and has some similarity with the
training set, you will end up with a good accuracy, but in
reality, the model will fail to predict new unseen examples.
Hence, the quality and the quantity of the data plays a big
role in assessing the accuracy of the model, and neglecting
this point will lead to a fake ML accuracy.
In the same context, we know that data plays an indis-

pensable role as the learning algorithm is used to discover
and learn knowledge or properties from the data. That is

why we strongly believe that the wireless communication
community should accredit more importance to providing
open-source high-quality data as we remarked that there is
not a sufficient quantity of data online dedicated for wire-
less purposes compared to the amount of data available for
computer vision tasks. In this regard, we mention some tech-
niques that might help in overcoming this problem such as
data augmentation if the problem is related to the size of the
dataset and transfer learning in the case where data is inex-
istent. The latter technique consists of using a pre-trained
model on another dataset of the same problem type.
Another ML drawback is remarkable in some works where

methods are compared in terms of performance. For instance
for CNN architecture comparison, you may notice that when
comparing two ML models, there is no mathematical expla-
nation as to why such model is better than the other one
or why such a NN architecture outperforms another NN
architecture. This point illustrates the “black box“ aspect of
ML, in other words, it is a matter of tuning parameters and
evaluating the result and no further explanation could be
provided. Consequently, for a given problem we sometimes
cannot predict which model will perform well and which
model is not promising.
However, ML remains an interesting alternative and

a promising tool for UAV-related problems in particular.
Therefore, we believe that several ideas can be addressed
in the future. In fact, more complex ML models can be
tested on some UAV-related problems, for example, in path
loss prediction more regression tools can be tested on this
problem. Also for UAV detection problems, we noticed that
it is solved either via sound detection or via image detection
by converting it into a computer vision problem. Instead,
we think that a complex hybrid system that uses different
types of inputs (e.g., sound FFT, image, radio transmission.)
is feasible by ML, where an adequate NN (e.g., a type of
CNN for images and a given type of RNN for sound and
radio) will provide a score for each type of input and then a
final NN is used to classify the output. Moreover, we noticed
that there is a tendency to use supervised learning algorithms
in solving UAV-based problems. For this reason, we believe
that unsupervised learning techniques, such as clustering and
dimensionality reduction, could be further explored in the
future for drone-related problems.
To conclude, ML supervised and unsupervised frameworks

have often successfully overcome many challenges by pro-
viding intelligent solutions for various problems involving
UAVs.

III. REINFORCEMENT LEARNING SOLUTIONS FOR UAVS
A. RL OVERVIEW
Like the supervised and unsupervised learning areas of ML,
RL is another area of ML dedicated to making decisions
in a well-defined environment. Formally, a reinforcement
problem always has 5 main elements as shown in the Fig. 4:
1) The Agent: An entity that can take an action denoted

by At and receives a reward Rt accordingly.
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2) The Environment: A representation of the real-world
in which the agent operates.

3) The Policy: It is the mapping of each state St to an
action At. We usually denote a policy by π .

4) The Reward Signal: The feedback that the agent
receives after performing an action. It is denoted on
the Fig. 4 by Rt.

5) The Value Function: It represents how good a state
is, hence it is the total expected future rewards start-
ing from a given state. A value function is usually
denoted by V(s) where s is the state that we are
interested in. Mathematically, it is formulated as fol-
lows: V(s) = E(Gt), where Gt is the discounted sum
of future rewards: Gt = ∑

t γ
t−1Rt, γ ∈ [0, 1].

The goal is to decide correct actions (or policy) in a way
that maximizes a predefined reward function, which should
be adapted to the type of problem. In addition to the 5
elements of RL mentioned above, another element can be
considered in some cases, which is the model. Depending
on its presence or not, RL problems can be divided into
two main categories which are the model-based RL and the
model-free RL. In what follows, we differentiate between
these two areas.

1) MODEL-BASED RL

As its name indicates, the model-based RL problem uses
a model as a sixth element to mimic the behavior of the
environment to the agent. Consequently, the agent becomes
able to predict the state and the action for time T+1 given
the state and the action at time T. At this level, supervised
learning could be a powerful tool to do the prediction work.
Thus, unlike the model-free RL, in model-based RL, the
update of the value function is based on the model and not
on any experience.

2) MODEL-FREE RL

In model-free RL problems, the agent cannot predict the
future and this is the main difference with the model-based
RL framework explained previously. Instead, the actions are
based on the so-called ”trials and errors” method where the
agent, for instance, can search over the policy space, evalu-
ate the different rewards, and pick finally an optimal reward.
A well-known classic example for model-free RL is the Q-
learning method where it estimates the optimal Q-values of
each action and reward and chooses the action having the
highest Q-value for the current state. To summarize, differ-
entiating between model-based and model-free RL problems
is an easy task. Just ask yourself the following question: Is
the agent able to predict the next state and action If the
answer is yes then you are dealing with a model-based RL,
otherwise, it is more likely a model-free RL problem.

3) DEEP REINFORCEMENT LEARNING (DRL) OVERVIEW

Although RL had great success in solving a variety of
decision-making problems, it showed a limited performance
in solving complex problems, especially when using large

action and state space. Thus, DRL started to gain a big
momentum in solving complex problems, especially after
beating humans in many complex games, for instance, chess
and Go. The idea that lies behind the success of DRL
consist of approximating the states by the use of neu-
ral networks. This is what also makes the agent able to
deal efficiently even with unseen situations, contrary to
the classical RL approach. Among the many algorithms
proposed in the literature, in the following section, we
go over the most used ones. For the reader convenience,
the two algorithms, Deep Q Network (DQN) and Deep
Deterministic Policy Gradient (DDPG), are going to be cov-
ered briefly. Thus, we kindly refer readers interested in
their deep technical details to [79] for DQN and to [80]
for DDPG.
Deep Q Network (DQN): DQN is the first algorithm

proposed in the context of DRL by Mnih et al. in [79].
To understand the key concepts of DQN, a basic knowledge
of Q-learning algorithm is recommended, hence we refer
interested readers to Section III-B1. It is worth to men-
tion that DQN is proposed as an improvement to Q-learning
which uses a discrete state and action space in order to
build the Q-table. In contrast, the Q-values of the DQN are
approximated using ANN by stocking all the previous agent
experience in a dataset and then feeding it to the ANN
to generate the actions based on minimizing a predefined
loss function derived from the Bellman equation. We should
also mention the fact that the idea of DQN is inspired by
Neural Fitted Q-learning (NFQ) proposed in 2005 [81] that
was suffering from overestimation problems and instabili-
ties in the convergence. There exist many other improved
variations of DQN such as double DQN, dueling DQN, and
distributional DQN. Despite the remarkable success of DQN,
especially when it was historically tested on ATTARI games,
it has its own limitations such as the fact that it cannot
deal with continuous space action and cannot use stochastic
policies.
Deep Deterministic Policy Gradient (DDPG): To over-

come the restriction of discrete actions, Deterministic Policy
Gradient (DPG) algorithm was first proposed in Deepmind’s
publication in 2014 [80] based on an Actor-Critic off pol-
icy approach. We refer readers that are not familiar with
Actor-Critic RL methods to [19, Chapter 13]. For the sake
of simplicity, let’s keep in mind that Actor-Critic methods
are generally composed mainly of two parts: a Critic that
estimates either the action-value or the state-value and an
Actor that updates the policy in the direction proposed by the
Critic. Later on, in 2015, and based on the DPG algorithm,
Deepmind proposed a new DRL algorithm called the Deep
Deterministic Policy Gradient (DDPG) algorithm. DDPG is
a model-free, off-policy method that is based on Actor-Critic
algorithm. In short, DDPG is a DRL algorithm that helps the
agent to find an optimal strategy by maximizing the reward
return signal. The main advantage of such deep algorithm is
that it performs well on high-dimensional/infinite continuous
action space.
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FIGURE 5. Grid map.

B. CASE STUDY
Motivated by its popularity among RL algorithms, we
introduce Q-learning which is a classical free-model RL
algorithm. We intend to provide a comprehensive and prac-
tical explanation to the reader on how RL could be used in
UAV path planning problem. Readers with a basic knowl-
edge of RL could skip this section. We stick to a basic
example where a UAV flying at a fixed altitude learn how
to reach a given target while avoiding obstacles in the map
shown in Fig. 5.

1) Q-LEARNING OVERVIEW

Q-learning algorithm is based on the Q-table used to select
actions for the agent at each step. The table is composed
of the combination of every state with every possible action
and hence its dimension is |States| × |Actions|. The Q-table
is used to store and update the maximum future reward
referred to by Q(statei, actionj) which is the (ith, jth) entry
of the Q-table. This Q-table is of great importance to the
Q-learning algorithm simply because it is used to determine
which action should the agent take such that the expected
future reward is maximized.

2) UPDATE RULE

The update of the Q-table is done using a fundamental
equation in RL which is the Bellman equation:

Qnew(st, at) = (1 − α)Qold(st, at)

+ α(Rt+1 + γmaxa(Q(st+1, a)) , (1)

where st, at are respectively the state and the action taken at
time t, α is the learning rate, which allows the old value of
the Q-table to influence current updates, γ is the discount
factor, which is a measure of how future rewards will affect

FIGURE 6. Exploration/Exploitation dilemma.

the system. After every taken action, the agent updates its
Q-table values using (1), then, at a given state, it selects the
action having the highest Q-value.

3) THE EXPLORATION/EXPLOITATION DILEMMA

One fundamental concept for RL, which is visible also in Q-
learning, is the exploration/exploitation dilemma. To explain
this duality, let’s discover how the agent will succeed in
reaching its goal. First, the agent makes a random step in the
environment, then it starts updating the Q table (initialized
with zeros for example) according to (1). However, if the
agent only uses the Bellman equation, it is possible that it is
stuck in a good state forever, while better states exist on the
map. It is similar to a case of an optimization process that is
stuck in a local minimum or maximum while better solutions
still exist by exploring the environment. To solve the last
problem, the exploitation/exploration dilemma is proposed.
This duality introduces randomness into the system so that
the agent at each step could either exploit the environment by
selecting actions that maximize the Q-values of the Q-table,
or explore the system by selecting some random actions.
The parameter that usually refers to the probability threshold
for exploration is denoted by ε. In our implementation, we
used a decay technique that decreases the value for epsilon
at each episode so that we encourage exploration at the
beginning of the process, usually known as early exploration,
and then prioritize exploitation so that the agent can use the
learned paths. Fig. 6 shows the effect of the initial value of
ε, denoted by ε0, on the convergence of the system. The red
line, corresponding to a low ε value, converges more rapidly
since the exploration probability is low and hence the system
will rapidly use the optimal values from the Q-table to take
actions. However, it is clear that for the blue line using
early exploration, additional randomness is introduced at the
beginning of the process due to the high starting value of ε.
We also remark that the number of steps is decreasing due
to the fact that the UAV has already found its optimal path,
shown by a solid black line in Fig. 5, starting from episode
20 approximately.
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RL is considered a promising framework for the UAV
network in many scenarios. In what follows, we cover part
of its applications based on the existing literature

C. RL SOLUTIONS FOR UAV-BASED PROBLEMS
1) RL FOR AUTONOMOUS NAVIGATION

A network of UAVs can no longer be controlled in a clas-
sical way by manually controlling the navigation of each
UAV from the network separately. It is highly recommended
nowadays to equip UAVs with the ability to make intelligent
decisions by implementing a high level of control. Achieving
such a high autonomy for UAVs is a challenging task due to
the continuous changes in the UAVs environment and to the
different constraints related to UAV navigation (e.g., battery,
UAV dynamics).
In [82] a high-level control method of UAVs is imple-

mented for uncertain or unknown environments. Although
model-based algorithms are generally not suitable for real-
time applications due to the expensive computation needed
for learning the model and deciding actions to take, the paper
uses a modified model-based RL by implementing Texplore
algorithm to perform path planning task for a UAV. The
advantage of Texplore is that it separates the action selection,
model learning, and planning by performing them in a paral-
lel manner. Simulation results show that Texplore algorithm
outperforms the classical Q-learning method by avoiding
exhaustive exploration of the environment. The work done
so far is interesting but still limited to a 2D problem with
a simplified map and hence could be extended in the future
to a more complex and challenging 3D environment where
the UAV can adjust its height in order to avoid potential
obstacles.
Beyond pure path planning, the work in [83] investigates

providing coverage for ground users by studying the deploy-
ment and the trajectory design of a network of UAVs in order
to meet several performance metrics such as; coverage, min-
imum interference, and best quality of experience (QoE).
The proposed model-free RL-assisted framework enables
dynamic tracking of users’ movement by adjusting the UAV’s
location accordingly. The idea starts by clustering the users
using a classical GAK-means algorithm (which is a modi-
fied version of the K-means algorithm explained briefly in
Section II). It is worth mentioning that deploying the UAV at
the cluster center does not meet optimality simply because
the performance metrics adopted in the problem are not only
related to the euclidean distance to users, instead, they are
related to other parameters such as the altitude of the UAV
and the LOS presence. Consequently, a Q-learning algo-
rithm is proposed to firstly deploy UAVs in a sub-optimal
way and decide their trajectory later. The work done so far
is of great importance, however, some assumptions made
may be far from reality, such as the fact that users, when
moving around, are not supposed to mix with other clusters.
Moreover, positioning the UAVs initially using the K-means
results might be better than selecting a random location in
terms of fast convergence to the sub-optimal positions.

More other works in the literature have focused on
providing coverage for ground users. Since the problem
setup is composed of several UAVs, some of these works
investigated using multi-agent RL techniques. For instance,
in [84] optimal coverage is studied through a distributed RL
algorithm based on Multi Agent Reinforcement Learning
(MARL) which consists of applying RL techniques for the
type of problems where multiple agents are operating in
the same environment. Each agent has the objective of
maximizing its own future rewards by interacting with the
environment. Moreover, authors in [85] investigate using
multi-agent Q-learning to design a trajectory for a network
of UAVs. The objective is to maximize the information rate
while minimizing the power consumption. In addition to the
multi-agent Q-learning algorithm that is used to determine
the optimal positions for UAVs, an echo state network is
used to predict the users’ movement. In [86], the authors
prove that double Q-learning could be an improvement for
the classical Q-learning for problems related to wireless cov-
erage. A new framework for trajectory design is proposed
to maximize the number of users having a good QoE.
So far, we covered classical RL solutions for UAVs path

planning problems, however, a more complex autonomous
navigation solutions could be provided via DRL. In what
follows, we go over the most relevant works coupling DRL
with autonomous navigation for UAVs.
In the context of providing coverage for ground users,

DRL can play an important role in building efficient solu-
tions. In such a setup, the UAVs are usually deployed as
flying base stations or relays. For instance, the authors in [87]
investigated applying DRL to a multiple input multiple
output (MIMO)-based UAV network where each UAV is
equipped with a single antenna. The proposed DRL solution
is based on DQN where the Signal-to-Interference-Plus-
Noise Ratio (SINR) was used as a metric for the quality of
the channel and based on which the reward signal is defined.
The UAV maximizes the expected reward calculated based
on the received signal strength. Consequently, the UAV maxi-
mizes its coverage efficiency measured based on a predefined
coverage score. The proposed solution was finally compared
with other DRL methods and proved its superiority in some
setups. However, we think that comparing it to a different
type of DRL algorithms such as DRL-based energy efficient
control for coverage and connectivity (DRL-EC3) proposed
in [88] is not a fair comparison since the latter solution is
based on DDPG where the action space and the state space
are continuous. In addition, the state space considered in
the solution provided in [87] is limited to 3 possible cases
related to the received signal strength.
In addition to providing ground wireless connectivity,

there exist a plethora of areas where UAVs could be used
efficiently, such as drone delivery. In this frame, achieving
drone delivery tasks through DRL was investigated in [89].
The authors used double DQN to propose a path planning
algorithm for UAVs having an objective to reach a desti-
nation in an obstacle-impaired environment. The proposed
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solution is an improvement to the authors’ previous work
in [90], where three DRL algorithms were tested which are
the DQN, double DQN, and duel DQN. As double DQN
gave the best results, in [89] the same algorithm was used
and the depth information deduced from the image of the
UAV stereo-vision front camera was used as an input. More
futuristic ideas are discussed in the literature, such as using
drones to serve food and drinks in restaurants [91].
To this point, we have mainly focused on research works

that are based on Q-learning methods, either using a clas-
sical RL or DQN. However, policy gradient methods could
be applied to a wider range of RL problems. For instance,
DDPG algorithm, which belongs to the set of policy gradient
methods, is more suitable for complex problems, especially
when dealing with continuous action space. To make it sim-
pler, let’s consider a UAV path planning problem. To apply
DQN you need to discretize the action space and accord-
ingly, the UAV will have a well-defined set of movement
directions that it can perform. As a solution, policy gradient
methods could be easily implemented to perform continuous
action. For instance, in the context of UAV motions, actions
could be related to the speed values and direction angles. In
what follows, we are going to cover some of the relevant
works that apply this type of methods to solve path planning
tasks for UAVs.
Back to providing wireless connectivity for ground users,

the authors in [88] used an Actor-Critic based method to
solve a multi-objective control problem where the UAVs
tend to minimize their energy consumption and maximize
their coverage range. Unlike the previously discussed DQN-
based solutions, this work is based on continuous action
space formed by the UAV direction and the flying distance
for each UAV. Moreover, the authors take into consideration
coverage fairness which is an important indicator since max-
imizing coverage could fall into covering a small subset of
ground users. As a solution for the defined multi-objective
problem, the authors adjusted the DDPG algorithm accord-
ingly and called it DRL-EC3. The new algorithm is compared
to two baseline methods and proved its superiority in terms
of coverage score and energy consumption.
In [92] the environment considered is a complex large-

scale three-dimensional map. In other words, the map is
crowded with obstacles, where all directions are possible for
the UAV, and it is also dynamic. Those types of maps are
quite challenging for RL path planning due to the fact that it
is very difficult to rely on methods that use maps to represent
the environment for the agent. The solution proposed is based
on modeling the navigation problem using partially observ-
able Markov decision process (POMDP) and then solving it
by applying a DRL-based algorithm called Fast-RDPG. It is
worth mentioning that 1) POMDP is an extension of Markov
decision process (MDP) and that 2) recurrent deterministic
policy gradient algorithm (RDPG) belongs to another set of
DRL algorithms that are based on DPG.
In [93], DDPG algorithm, briefly introduced in Section III-

A3, is used to train the UAV to navigate in a 3D environment

while avoiding obstacles. The proposed solution considers a
continuous action space which explains the use of a DDPG-
based approach. The authors us transfer learning to accelerate
the learning by using the weights learned by the UAV after
being trained in a free space environment. An urban environ-
ment is simulated by adding obstacles in specific locations
and penalizing the UAV for any crash that occurred while
reaching its target location. Numerical results show that the
UAV succeeded in reaching its target while avoiding all
obstacles in the way. However, the success rate of the UAV
decreases with the complexity of the environment by adding
more obstacles. The lacking of precision is explained by the
fact that using infinite continuous action space makes it hard
to reach full accuracy.
DDPG is also used differently in [94] to jointly design a

path for a network of UAVs in order to maximize its through-
put. The proposed idea consists of formulating the problem
as an MDP where the reward is related to the throughput
and the constraints are related to total transmission power
and channel availability. The actions taken by the UAV are
related to adjusting both the 3D location and the transmis-
sion control. Due to the fact that the actions and the states
are continuous, DDPG framework is used in 3 three differ-
ent setups. For each setup, the reward function is changed
to achieve a given control objective.
Several other works existing in the literature are quite

interesting. For instance, environment exploration and obsta-
cle avoidance problems for UAVs are solved via different
RL methods with both continuous and discrete space action
in [95]–[106]. In [107] the optimal deployment of UAVs that
minimizes several parameters such as transmission power,
caching, and the number of UAVs, is achieved through RL.
Other works tested RL for assisting a UAV in a landing
operation [108]–[111]. In [112] an anomaly detection is
performed via RL in order to detect abnormality in the
functioning of the motor and launch the landing procedure
immediately.
All the previously discussed works only focus on a spe-

cific type of RL application which is path planning. The
Table 2 summarizes all works in the literature up to the date
of writing this survey. The cited works are oriented towards
trajectory planning solutions for UAV-based networks. Most
of the cited works are recent and are classified according to
the application’s main objective and to the different param-
eters used. We insist on the fact that the classification of
dimensionality in 3D and 2D works is made on the basis
of the movement of the UAV and not on the nature of
the environment, in other words, a work where a 3D envi-
ronment is considered and where the UAV flies at a fixed
altitude is classified as a 2D work. In addition, the classi-
fication according to battery level parameters is marked if
the UAV’s limited energy is considered as a constraint to
the problem, so any work where the UAV’s energy con-
sumption is minimized without imposing a limit on the
battery level will not be marked. To summarize, we have
so far covered several research works for path planning
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TABLE 2. Reinforcement learning solutions for path planning UAV-based problems.

applications. Obviously, the different approaches used in
this regard could be classified into discrete and continuous
methods. Q-learning-based solutions use a computationally
expensive process called discretization, as the action space

and the state space are finite. This is why policy gradi-
ent methods seem more realistic since the action and state
space are continuous, which leads to a wider range of pos-
sible actions. It is important to point out that policy gradient
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FIGURE 7. UAV-IR use case scenarios.

methods do not always perform better than Q-learning-based
methods, instead, they have their drawbacks such as low con-
vergence and the high variance problem in estimating the
reward expectation. For instance, the work [113] investigates
some failure problems with DDPG in deterministic environ-
ments with sparse reward. In the coming section, we will
cover more interesting potential applications of RL such as
event scheduling and resource allocation.

2) RL FOR IRS-ENABLED UAV NETWORKS

In this section, we cover a promising technology for 6G
networks through the use of intelligent reflective surfaces
(IRS). This next-generation technology consists of using a
set of passive reflective elements to control the wireless prop-
agation and direct the signal to a target direction. In recent
literature, some works have considered equipping UAVs
with IRSs to increase spectrum efficiency. Other works have
investigated the use of the IRS to reflect the signal towards
UAVs that are acting as flying base stations. In Fig. 7, we
visualize these two different scenarios where the IRSs are
coupled with UAVs: (i) UAVs for IRSs, where the UAVs
carrying the reflective surfaces can act as a passive relay in
both uplink and downlink communications between terres-
trial BSs and ground users and (ii) IRSs for UAVs, where the
IRS-equipped buildings assist the UAV’s communication. In
what follows, we review the work done for these different
scenarios, including support for mmWave communications.
In the context of supporting mmWave technology, the

authors in [147] propose an efficient deployment for the
IRS-equipped UAV to serve a moving ground user that does
not have a LOS with the terrestrial base station. In addition
to reflecting the mmWave signals, IRS is also used to harvest
energy at the UAV and Deep Q network is used to set the
UAV location and the reflecting parameters of the IRS so
that the downlink capacity is maximized. The same authors
in [148] consider overcoming the blockage induced by the
buildings through IRS-equipped UAV but for multiple users.

To this end, distributional RL is used to optimize the UAV’s
location, the precoding matrix at the base station, and the
reflection coefficients.
Unlike [147], the work in [132] does not take into account

energy harvesting, but rather focuses on minimizing the UAV
energy consumption. The authors study the improvement of
the quality of service of a UAV-carried intelligent reflector
(UAV-IR) by optimizing its location, the phase shift of the
IRS and, its power allocation to mobile users on the ground.
To further improve the efficiency of downlink communica-
tions, a non-orthogonal multiple access technique is used.
Decaying DQN is used to dynamically adjust the position
of the UAV and the algorithm is found to converge and
avoid oscillations compared to the classical Q-learning algo-
rithm. Although D-DQN has proven its efficiency compared
to the classical Q-learning, it still interesting to see some
comparison with other DQN-based algorithms.
From an uplink perspective, the authors of [149] study the

use of the UAV-IR as a passive relay for the transmission
of IoT devices to a terrestrial base station. DRL is used
to optimize the UAV location, the IRS phase shift, and the
transmission scheduling in order to minimize the average
age of the information.
Unlike the above works, where IRS-equipped UAVs are

studied, in [150], improving the channel condition between
a UAV and a set of ground users is considered by assist-
ing the UAV with IRSs that are mounted on top of the
surrounding buildings. In this configuration, several parame-
ters are optimized, such as data throughput, UAV trajectory,
and IRS phase shifts. In terms of the RL algorithm used,
the authors adopt two different types of solutions, a discrete
action space solution based on DQN and a continuous action
space solution using the DDPG algorithm.

3) RL FOR SCHEDULING AND RESOURCE
MANAGEMENT

Beyond path planning for smart UAVs, one can think about
smart event scheduling for a drone network. In this context,
the authors in [151] propose a spatio-temporal scheduling
framework for autonomous UAVs. The proposed RL solu-
tion is model-free based and uses the popular Q-learning
algorithm. The algorithm is handling the unexpected events
iteratively by checking at every time slot their existence and
updating the UAVs schedule accordingly. After that, the tra-
jectory of the UAV is updated according to the Q-learning
strategy. There are multiple parameters taken into account
for every event (e.g., starting time, processing time, location,
priority). The considered work is interesting for many rea-
sons; it takes into account multiple factors such as dealing
with unexpected events efficiently, it also considers the bat-
tery level, and works within a cooperative UAV environment.
However, it is still not clear how to select some parameters
optimally. For instance, the time discretization parameter
enables a trade-off between complexity and time efficiency.
In other words, deciding in an optimal way the next event
will inevitably result in an increased time processing. This
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will certainly affect the coverage rate of the UAV badly.
Moreover, the author could have considered a more realistic
case where multiple docking stations are available instead
of considering only one station for the whole network, and
therefore the UAV should always consider moving to the
nearest station if needed.
In [152] a UAV network is managed by ensuring the

UAV connectivity given the available bandwidth and energy.
The set of drones are charged by a wind-powered station
that enables a green wireless power transfer. The number of
UAVs authorized to take off is managed through classical
RL by solving a system of Bellman optimality equations in
order to extract the optimal policy. The authors focused on
the physical implementation of the charging station and the
drone receiving pads by going through the different tech-
nical details of the wireless power transfer system. Among
the assumptions made throughout the work is the fact that
the charging time is constant, which could be hampered
by several factors. First of all, while establishing wireless
power transfer, the UAV could face several problems such
as losing LOS connection with the station or some misalign-
ment issues. Secondly, the fact that the charging station uses
wind power makes it subject to variability in the harvested
power. To solve the latter problem, the authors propose using
adaptive current control.
The authors in [153] investigate the dynamic management

of information exchange in a UAV network by studying two
different information sharing schemes: the dynamic channel
model and the dynamic time slot model. In the first scheme,
the channel is shared for the exchange of information in the
same time slot, while in the second model, time slots are
shared according to the priority level. To solve the problem
of dynamic management in the two proposed schemes, the
authors used a DQN network coupled with a Long Short
Term Memory network (LSTM). The purpose of using the
LSTM network is to speed up the convergence of the DQN
model since this network helps to predict future states of
the environment.
In [154], UAVs are considered as remote edge computing

systems that could offload ground users when they are exces-
sively overwhelmed with computation. Hence, the authors
studied the best way to assign a UAV to execute a given
task in order to minimize the overall mission time. They
formulated this resource allocation problem as a Markov
decision process and proposed an Actor-Critic based RL
technique (A2C) as a solution. In addition to offloading ter-
restrial users through UAVs, it is possible to perform the
inverse and thus offloading the UAVs through Mobile Edge
Computing(MEC) server. In this context, the work in [155]
investigates offloading the UAV network via MEC servers to
minimize the processing time of the drones and save their
energy. The complex task of associating each UAV with
its corresponding task based on its available energy, and of
choosing the optimal MEC server to offload, is carried out
on the basis of two Q-learning models. In the same direction,
authors in [156] investigate offloading a network of UAVs

via MEC where a central control system has the ability to
turn the UAV computing units on and off and to decide
whether a given task should be performed by another UAV.
This management problem is solved through RL techniques.
Resource allocation is another potential problem that can

be solved with RL. The work in [157] is among the few
works that go beyond UAV deployment or trajectory design,
instead, it focuses on resource allocation for a network of
multiple UAVs that communicates with ground users. The
solution provided is based on Multi Agent Reinforcement
Learning (MARL) and the problem formulation is based on
stochastic game theory. The authors investigate sub-channel
selection, user selection, and also power allocation for each
user. Several parameters are taken into account such as the
SINR, LOS and NLOS conditions with the users. The work
described is of great importance, especially when consider-
ing the scarcity of publications in this particular application.
Some other works investigated resource management for
UAVs such as in [158] where the number of handoffs that
occur when a ground user does not receive its minimal
signal from its serving UAV is minimized. The solution
used is based on RL. More specifically, it uses the Upper
Confidence Bound (UCB) algorithm. In [159] UAV cluster
task scheduling problem is addressed by solving the chan-
nel allocation problem using DRL. Moreover, the authors in
paper [160] propose a comparison between Swarm intelli-
gence and the Q-learning algorithm of RL. The objective is
to enable autonomous swarm coordination for a network of
high-altitude platform stations.

D. DISCUSSIONS AND FUTURE WORKS
1) RL LIMITATIONS

Unlike supervised learning, RL is the area of ML that does
not use the power of data to learn a task. Instead, RL uses
the so-called “trial and error” methodology based on an
agent’s past experiences. Surprisingly, this fact makes RL
an extremely potent tool, especially for UAV-based problems
such as path planning, resource management, and schedul-
ing, where data is sometimes elusive. On the other hand,
RL might resemble supervised learning in one single point
which is the goal of achieving full autonomy within a UAV
network by equipping UAVs with the ability to autonomously
make decisions in a real-time situation. Generally speak-
ing, RL has proven its efficiency by excelling in many
tasks and games, such as beating the world’s top chess
grandmasters. However, many still doubt the applicability
of RL in real-world problems, especially for autonomous
flying or autonomous driving tasks. Not only is it difficult
to have a perfect perception of the environment from the
agent’s perspective, but it is also extremely difficult to per-
form the exploration/exploitation dilemma explained earlier
in Section III-B. To be more specific, let’s take the example
of planning a path for a UAV to reach a target in a fully
autonomous control mode. Then, in order to apply RL, the
UAV, which is the agent technically speaking, needs to per-
form exploration to discover its surroundings and learn how
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FIGURE 8. RL taxonomy.

to react. But this is almost impossible, especially for a high-
varying environment. In other words, the exploration task
is somehow impeded by the complexity of the environment
and the cost of a UAV crash.
In terms of regulations, and as mentioned in Section II,

many countries do not allow the use of autonomous UAVs.
For example, the use of UAVs for delivery has been com-
pletely excluded in the latest FAA regulations, as the new
rules require that the UAV must always be in the operator’s
field of sight, which is by definition in contradiction with
UAV delivery applications. Hence, such rules can impede the
progress done so far in RL for different UAV applications.
Interested readers are referred to [161] for more

information on practical challenges that may arise in the
real-world application of the RL, such as system delays,
cases with limited samples, and more. On the bright side,
several large companies and research labs have been working
on producing alternatives to RL such as Evolution Strategies
(ES) proposed by OpenAI [162]. To sum up, even if RL is not
the ultimate solution for all UAV-based problems, it should
be for some of them, which is confirmed by the numerical
results of many papers covered so far in this survey. In what
follows, we present our observations and criticisms of the
current state of the art.

2) LITERATURE DISCUSSIONS

Based on the recent literature related to RL for UAV- related
problems, we would like to offer the following observations.
One can easily notice that the big majority of the published
works are focusing on path planning applications for UAVs.
More specifically, we remarked that the majority of papers
tend to use a Q-learning approach to propose autonomous

path planning for the UAVs. Although Q-learning is a clas-
sical algorithm and an interesting way to start solving such
problems, it is somewhat impeded by the need for full knowl-
edge of the map which is not trivial in reality, especially
when considering a high movement speed of UAVs. Added
to that the fact that Q-learning might be slow if optimality is
needed. Consequently, a trade-off between both complexity
and optimality must be carefully studied. To sum up, DRL
techniques such as Q-learning neural networks and DDPG,
are more promising in terms of path planning and should
gain more interest in the future.
In addition, we also noted that most research contributions

use a discrete approach for path planning problems. While
solutions with a discrete set of actions and states is a classic
approach to address RL problems, they do not reflect a real
situation where actions could be infinite as in real-world
trajectory planning. Although solutions with a continuous
state/action space are more difficult, solving them can only
bring significant benefits to the area.
Furthermore, we noticed that most of the existing works

are focusing on traditional centralized approaches for RL
solutions which raises several challenges related to com-
plexity and time management. That is why we strongly
believe that distributed RL is an interesting technique to
solve UAVs’ real-time applications such as the distributed
Q-learning algorithm. This type of RL technique is well
suited for UAV networks where multi agents are subject to
collaborative decisions.
Besides that, other potential applications such as resource

allocation and event scheduling are not well covered by the
literature which has created an unbalanced research content
oriented towards path planning problems. The actual works
looking into these topics are quite a few, and hence future
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FIGURE 9. Federated learning principle.

works can be directed towards applying other RL-based
approaches to solve these problems.

IV. FEDERATED LEARNING FOR UAVS
So far, we have covered a large number of techniques that
could contribute to the development of intelligent UAV
networks, ranging from supervised learning to unsuper-
vised learning to RL. However, some of the algorithms
covered previously do not go hand in hand with some
UAV constraints. Specifically, we highlight the limited
computing capacity on-board. Consequently, we question
the applicability of AI in UAV networks in a practical
situation. In response to this last question, Google has
recently implemented what is called FL, envisioning a
practical way to implement ML algorithms in constrained
networks [163], [164]. FL is based on executing ML algo-
rithms in a decentralized manner without the need to
download the training set to a central node (or server). It
is not specifically designed for a UAV network, but for any
type of network composed of a central server (e.g., a base
station in our configuration) and a number of clients (e.g.,
UAVs, mobile users).

A. FL PRINCIPLE
Without loss of generality, we provide a comprehensive
explanation for FL algorithm for a setup of a network of
UAVs that are served by a terrestrial base station. As a
typical task, we suppose that the UAVs are processing dif-
ferent ground images. We also assume that the optimization
of the loss function is done through a simple stochastic
gradient descent (SGD) algorithm. As illustrated in Fig. 9,
the central server, which is the base station in our case,
shares the current update of the global model, denoted by
wt, with a sub-set of the users. The subset size denoted
by C, is randomly selected by the server. Once the client
UAV receives the current update of the global model, it
uses its local training data to compute a local update of the
global model. We should mention that several parameters are
related to each UAV as indicated in Fig. 9. Those param-
eters are the mini-batch size denoted by B which indicates
the amount of the local data used per each UAV, the index

k of the UAV, and the number of training passes each client
makes over its local dataset on each round, which is denoted
by E. After performing the update, the UAV only commu-
nicates the update, denoted by wkt+1, to the base station.
For an SGD-based optimization, the update is calculated
as follows:

wkt+1 = wt − η∇l(wt,B), (2)

where η is the learning rate and l is the loss function.
For example, the UAV (k = 4) on Fig. 9 performs a full

batch update and hence uses all its local data since B = ∞.
Then it repeats the (2) ten times since E = 10 and delivers
the output wkt+1 to the base station. Once the local update
wkt+1 is received by the base station, it improves the global
model and then removes these updates because they are no
longer needed.

B. FL ADVANTAGES
At the ML discussion section, we have already mentioned
FL as a promising solution for constrained networks where
exhaustive calculation could not be done onboard. It allows
decoupling the model training and the access to the raw
data due to the fact that UAVs are not required to share
any data with the server, instead, they only transmit their
local update as explained previously. First and foremost,
FL reduces privacy and security issues by minimizing data
traffic over the network. As a result, it is considered a key
solution for confidential systems where data does not need
to be shared. We may consider a recommender system as
an example of ML application where it is recommended
that raw data will not be shared between the clients. In
fact, some of the clients do not want others to reveal their
preferences, therefore FL preserves this privacy by keeping
the local data of each user private and sharing model updates
only. Second, FL is suitable for applications where data is
unbalanced. In other words, one client may be outside the
region of interest and therefore have a small amount of
data compared to other clients. Let’s take the example of
detecting a car using a UAV’s camera, so even if one of
the UAVs is misplaced in a given location where cars don’t
often pass by, that UAV will effectively detect a car when
it is in the field of its camera. This is because the other
UAVs communicating with the server have participated in
the training of the misplaced drone. In addition, the learning
process within the FL can be active even if one of the
nodes is in the idle state, i.e., even if one of the UAVs has
to perform charging, an emergency landing or encounters
a connectivity failure, the learning process continues and
the UAV can restore the updates when it reconnects to the
network. Lastly, FL performs well on non-independent and
identically distributed data, for example, the data partition
observed by a single drone cannot be representative of the
overall data of the system simply because the UAV can only
visualize part of a given process.
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C. FL SOLUTIONS FOR UAVS
1) FL FOR RESOURCE ALLOCATION AND SCHEDULING

In [165], an optimization problem is formulated to design
joint power allocation and scheduling for a UAV swarm
network. The considered network is composed of one leader
UAV and a group of following UAVs. Each one of the fol-
lowing UAVs runs a FL algorithm on its local data and
then sends the update to the leader drone. The leader aggre-
gates all the local updates to perform a global update to
the global model. While exchanging the updates between
the UAVs, several natural phenomena will affect the wire-
less transmissions such as fading, wind, transmission delay,
antenna gain and deviation, and interference. In the same
mentioned work, the impact of these wireless transmission
factors on the performance of the FL algorithm is analyzed.
Finally, the effect of multiple wireless parameters on the
convergence of the FL is studied.
Some of the work devoted to vehicle networks can be con-

sidered as a source of inspiration for UAV networks because
there is a remarkable similarity between these two types of
networks. But that’s not all, the results of UAV networks are
more promising because of the higher probability of estab-
lishing LOS links. In this context, the authors in [166], [167]
investigate enabling ultra-reliable low latency communica-
tion for a network of vehicular users. In short, the authors
propose a joint power and resource allocation framework for
ultra-reliable and low-latency network of vehicles based on
FL. Surprisingly, the FL-based method achieves the same
performance with a centralized method but with a signifi-
cant reduction of data transfer that reaches 79%. This fact
shows how FL can enable privacy in the network with the
same performance as classical algorithms.
In the same context, authors in [168] have investigated task

and resource allocation for high-altitude balloon networks.
It is worth mentioning that this type of network has a lot
of similarities with a UAVs network as the HABs are oper-
ating as a wireless base station. The authors formulate an
optimization problem for a mobile edge computing-enabled
balloon network by minimizing energy and time consump-
tion. However, to solve this problem, the user association
with the balloons needs to be specified first. To solve the
latter issue, a distributed SVM-based FL model is proposed
to determine to which HAB every user connects. As usual,
the FL technique will guarantee privacy by minimizing data
sharing across the network.
To improve the efficiency of an Internet of vehicles

network, the authors in [169] suggest the use of UAVs as
relays in order to overcome the problem of communication
failure while executing a FL task. To do so, the authors
propose the formation of a coalition of UAVs in order to
facilitate the training process by improving the communica-
tion efficiency level. Each UAV in a coalition will participate
in the training in a sequential way, in other words, after
completing the maximum number of iterations by the near-
est UAV, the second nearest UAV takes over and continues

training the model and so on until all required iterations are
done. A reward will be received to the UAV depending on
the number of iterations performed. In the same context, an
auction is designed for the UAVs to find the optimal allo-
cation that maximizes the profits of the drones. So far, we
covered the works that use FL to enable resource manage-
ment within a UAV network, in what follows, we go over
FL solutions for autonomous UAV navigation problems.

2) FL FOR UAV PATH CONTROL

The authors in [170] investigate the control of a massive
number of UAVs starting from a source point and aiming
to reach a destination point. The motion of the drones is
perturbed by the wind which is the main source of ran-
domness in the problem. This disturbance can lead to a
fatal collision between the UAVs and, as a solution, trajec-
tory control is proposed to avoid this scenario. The authors
used the mean-field game framework to control the UAV
path. However, within this framework, complex differential
equations must be solved analytically, which is not possible
for real-time applications and, in particular, for constrained
networks. That is why approximated solutions are proposed
based on two ANNs for each one of the two differential
equations. At this level, even approximating the solution via
DL is not enough for the convergence of the mean-field
game framework. Thus, FL is used as a solution to share
model parameters of the two NN between UAVs, and, as a
result, UAVs will be able to take into account the effect of
locally non-observable samples by a UAV for learning.

3) FL FOR FLYING AD-HOC NETWORK (FANET)
SECURITY

FANET is a decentralized communication architecture com-
posed of a group of UAVs where one of them at least is
connected to ground base stations or a satellite. In recent
years, a significant number of research works investigated
the performance and the security level of such a setup.
For instance, in [171], FANET security is studied in depth.
This type of network is vulnerable to jamming attacks dis-
rupting the communication at the receiver. To avoid such
a scenario, the authors propose a FL-assisted solution for
jamming attack detection. Many reasons stand behind select-
ing FL as a potential solution for FANET. First, FANETs
are usually heterogeneous networks in terms of power con-
sumption constraints and communication range. Secondly,
the data available at the different nodes is unbalanced and,
lastly, because the number of interacting nodes is huge. As
we have already mentioned previously, FL performs well on
this type of setup. Moreover, the FL technique is enhanced
by a client selection algorithm based on Dempster-Shafer
algorithm. This technique enables user group prioritization
mechanism allowing selecting better clients for calculating
the global update to the model. The numerical results, based
on two different datasets, show that FL always outperforms
distributed learning in many different setups. Furthermore,
due to the different values of latency and bandwidth available
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at each UAV, the client selection-based FL model outper-
formed the traditional FL algorithm. In another area of
research, the authors of [172] have proposed a defense strat-
egy to deal with jamming attacks on FANETs. The jamming
detection strategy is based on federated RL, more precisely,
on the Q-learning algorithm. In view of the numerical results,
the authors proved that the proposed defense architecture,
which combines RL and FL without a model, outperformed
the distributed approach.

4) FL FOR CONTENT CACHING

To address one of the 5G drawbacks, which is the increased
delay caused by the significant activity and congestion at the
backhaul links, the 6G networks employ content caching at
the small-cell base stations. Those small-cells can be in some
scenarios UAVs acting as base stations. As a result, content
caching is considered a promising alternative regarding the
limited capacity of the UAVs in terms of computing capacity
and memory. In this context, the work in [173] investigates
an intelligent caching technique for a 6G heterogeneous
aerial-terrestrial network composed of heterogeneous base
stations such as UAVs and terrestrial remote radio heads.
The proposed solution is based on FL techniques and hence
users are no longer required to share explicitly their reporting
and content preference. Instead, a heterogeneous computing
platform (HCP), will accurately predict the content cached
to the different base stations depending on mobile users’
preferences. In the above-mentioned setup, the HCP plays
the role of the server and the different nodes of the network
will only share updates to the global model in a secure
manner. A CNN was used so that the HCP learns the most
popular files to cache in the heterogeneous base stations,
and the optimization of the loss function is done via SGD
as described previously in Section IV-A. The HCP-based
FL solution was tested on different data-sets and proved its
efficiency compared to other baseline methods.

5) FL FOR UAV SENSING

Authors in [174] investigate predicting air quality index
throughout combining vision-based and sensor-based air
quality sensing. Within the proposed framework, aerial sens-
ing is performed by a network of UAVs deployed to learn
from haze images, and ground sensing is performed via a
wireless sensor network on the ground. DL models were
used to provide inference from the terrestrial and aerial
networks. The authors propose a visual model based on
Dense-MobileNet CNN and a Spatio-temporal inference
model based on LSTM networks and learning is estab-
lished through the use of FL techniques. The accuracy of
the proposed framework is evaluated on a real data set and
is found to be higher than conventional approaches.

6) CLIENT SELECTION STRATEGIES FOR UAVS

Many published works related to FL are made on an opti-
mistic assumption that all the clients will unconditionally
participate in FL whenever they are called by the server.

However, it is obvious that deciding which nodes (UAVs)
should participate in the learning is a sensitive task for FL
that could influence the overall accuracy. Thus, in this sec-
tion, we will cover some client selection technique and some
participation strategies that could be of great importance
to FL.
Authors in [175] propose a contract-matching solution

based on which the UAV will get a reward according to
its type. The contract proposed by the authors is multi-
dimensional so that it takes into account the different sources
of heterogeneity in the UAV types. After setting the con-
tracts, a matching-based algorithm will assign the optimal
UAVs to each region. The UAV parameters considered while
designing the contracts are the sensing model, computa-
tion model, and transmission model. The proposed method
enabled selecting the UAVs with the lowest costs to the
target sub-region.

D. DISCUSSIONS AND FUTURE WORKS
We would like to emphasize the fact that FL is not necessar-
ily applied only for UAV or mobile user networks, instead,
it is being used successfully in many daily applications. For
example, Google’s Gboard implements the FL to learn a
RNN to predict your next word when you start typing on
the keyboard. However, we would like to point out that it is
not clear how to select certain parameters in the FL algo-
rithm as defined in [163]. For example, the client selection
process has been defined as random, which raises the ques-
tion of whether there is a better way to assign clients in
each round of the FL algorithm. This last issue needs to be
studied in depth for UAV networks where several parame-
ters could affect the client selection process. From a wireless
communication perspective, channel quality, LOS condition,
available data, and battery state are crucial factors that could
significantly affect the client selection process. To be spe-
cific, those parameters could make a subset of users more
suitable to be selected for the FL training.
In addition, and in the meantime, while a large part of

the scientific community asserts that the primary purpose
of FL is data confidentiality, others doubt this assumption
and argue that even sharing only updates over the wireless
network is not safe. Unfortunately, the FL could be subject
to a poisoning attack threatening the integrity of the model.
These types of attacks are known in the ML community by
backdoor attacks and are typically carried out either by a
single node or by a group of nodes injecting poisoned data
into the model to adversely influence it. More importantly,
even FL remains vulnerable to this category of attacks not
by poisoning the data but by poisoning the model itself by
some malicious clients [176], [177]. In the same vein, as
a futuristic solution to the unreliability of FL systems, we
propose to support UAV networks using Blockchain tech-
niques to increase the integrity of local models at each drone.
The fusion of Blockchain and FL is considered a hot topic
and a number of recent works have started to study this
field [178]–[183]. It has been found that, in addition to
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the increased level of stability and integrity, the Blockchain
technique can increase the users motivation to participate in
training by accurately rewarding them for their contribution,
perhaps using cryptographic currency. Even for UAV-based
networks, the research community has recently begun to
apply the concept of a Blockchain coupled to FL to pro-
pose solutions for UAV networks. For example, the authors
in [184] proposed a secure FL framework for a mobile
crowdsensing application assisted by a UAV-network. The
local exchanges of the FL algorithm were secured on the
basis of a Blockchain architecture. In short, we highlight the
potential of combining Blockchain and FL in future work.
In addition to security issues, more attention should be

paid to the convergence of a FL algorithm which is not
always guaranteed. Convergence depends on the specific type
of problem, such as the convexity of the loss function and the
number of updates performed on the model. For example,
if there is a poor selection of clients where the selective
nodes are not available or do not have enough data, the
optimization of the overall model will fail. One can notice
that this issue overlaps with the client selection problem
mentioned previously, however, it is not only related to client
selection but also to the type of the loss function.
As we proposed FL as a solution to running ML on

the edge at the ML discussion section, we should mention
that the massive exchange of updates across the network
will result in huge communication loads in the training
phase, especially for neural networks, which will induce
a scalability problem for FL. Several CNN architectures
require a massive number of parameters to be updated
at each round, for instance, Alexnet contains 61 million
parameters whereas VGG16 involves 138 million trainable
parameters. Added to that the fact that UAV networks are
usually characterized by a limited battery capacity and con-
strained bandwidth, which makes the UAVs unable to support
all these communication loads. To face this issue, many
researchers have been working on alternatives and solutions
that could improve memory consumption and communica-
tion efficiency by proposing compression techniques and
reducing the number of communication rounds [185]–[189].
Another drawback of FL arises when operating in a

heterogeneous UAV network formed by various types of
UAVs, rotary or fixed-wing, with different processing capa-
bilities and different GPUs. These differences mean that
some UAVs will have fast response times while others will
experience severe delays. Therefore, since the FL algorithm
is expected to receive the required model updates at each
communication round, these induced delays will cause a
major problem by considerably slowing down convergence.
In some works, network nodes with large response delays
are called “stragglers”. In [190] a distributed computation
scheme has been proposed to mitigate the impact of slow
nodes on convergence for gradient methods. In addition, the
quality of connectivity can affect the convergence of the
FL algorithm since several network nodes may encounter
an unexpected failure when transmitting their local updates.

These interruptions can also degrade the overall efficiency
of the FL by slowing convergence.
To sum up, even with all the above-mentioned issues

related to FL, it remains a good alternative for UAV-based
networks. However, there are still some open problems that
are worth investigation. For instance, the application of FL
with supervised learning techniques, which were discussed
in Section II-A, is still an open problem.

V. OPEN ISSUES SUMMARY
The use of AI for UAV networks has led to the introduc-
tion of several innovative and smart solutions for a wide
range of problems. In what follows, we briefly summarize
the most important open issues mentioned previously for
UAV-based problems. Firstly, concerning the use of ML,
we proposed (a) addressing lightweight ML algorithms for
on-board running, (b) designing hybrid UAV detection solu-
tions based on different types of data including sound,
image, and radar, (c) working on expanding and unifying
UAV drone regulations worldwide. Secondly, based on the
unbalanced RL research content, we suggested (d) exploring
other types of applications rather than path planning such as
resource management and scheduling, (e) addressing realistic
and complex trajectory planning problems with continuous
action/state spaces, and (f) exploring DRL and distributed
RL solutions for autonomous UAV networks instead of clas-
sical Q-learning-based methods. Lastly, in the FL section,
we mentioned (g) addressing secure FL-based solutions,
(h) incorporating Blockchain techniques with FL to increase
the integrity level of each drone local model, (i) investi-
gating client-selection strategies and convergence issues for
UAV networks, and (j) providing communication-aware FL
solutions taking into account possible congestions that could
occur due to the need for excessive information exchange
within dense UAV networks.

VI. CONCLUSION
Motivated by a wide set of new applications that can benefit
from UAV networks, such as smart cities and aerial BS
deployment, in this paper, we have explored in detail a new
research direction where ML techniques are used to enhance
the performance of UAV networks. We started by providing
an extensive overview of unsupervised and supervised ML
techniques that have been applied in UAV networks. Then,
we briefly introduced the RL technique and discussed a
number of the relevant works that implemented this ML
technique for UAVs. Finally, we discussed a set of research
works where FL techniques are used in the area of UAV
networks. For each of the three considered techniques, we
provided a set of concluding remarks that discuss the current
limitations and challenges as well as a set of interesting open
problems.
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