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Abstract— We present some new results concerning
the stability of positive switched linear systems. In
particular, we present a necessary and suf£cient con-
dition for the existence of copositive linear Lyapunov
functions for switched systems with two constituent
linear time-invariant (LTI) systems. We also extend
some recent results on quadratic stability for positive
switched linear systems.

I. INTRODUCTION

Understanding the stability properties of dynamic

systems whose states are con£ned to the positive

orthant is of importance for numerous practical ap-

plications. Systems of this type are generally referred

to as positive systems and arise frequently in areas

such as Biology, Communications, Probability and

Economics. In particular, many applications in Com-

munication networks involve algorithms that lead

to extremely complex positive systems, typically

involving signi£cant nonlinearity, abrupt parameter

switching, and state resets. These applications, which

include networks employing TCP and other conges-

tion control applications [16], synchronisation prob-

lems [6], wireless power control applications [11],

and applications of learning automata to distributed

coloring problems [7], typically require advanced

analysis tools to prove their stability and convergence

properties. Notwithstanding the widespread applica-

tions of positive systems, the stability of switched

and nonlinear positive system has only attracted

major interest from the systems theory community

in the relatively recent past [4]. In this paper, we

continue this line of work, focussing on questions

in the stability of positive switched linear systems.

Speci£cally, we consider the existence of copositive

linear Lyapunov functions, de£ned below, and sum-

marise the work recently reported in [9], providing

an elegant necessary and suf£cient condition for

determining when such a function exists for a class

of positive switched systems. For full proofs of

these results, the reader should consult [9]. We shall

also consider the existence of common quadratic

Lyapunov functions (CQLFs) for positive switched

systems and extend some recent results on quadratic

stability for this class of systems. At the end of

the paper, we highlight some possible directions for

future work in this area.

II. NOTATION AND MATHEMATICAL

BACKGROUND

Throughout, R denotes the £eld of real numbers, R
n

stands for the vector space of all n-tuples of real

numbers and R
m×n is the space of m × n matrices

with real entries. For x in R
n, xi denotes the ith

component of x, and the notation x ≻ 0 (x º 0)

means that xi > 0 (xi ≥ 0) for 1 ≤ i ≤ n. The

notations x ≺ 0 and x ¹ 0 are de£ned in the

obvious manner. R
n
+ denotes the positive orthant of

R
n, R

n
+ = {x ∈ R

n : x ≻ 0}. Similarly, for a

matrix A in R
n×n, aij denotes the element in the

(i, j) position of A, and A ≻ 0 (A º 0) means that

aij > 0(aij ≥ 0) for 1 ≤ i, j ≤ n.

We write AT for the transpose of A and we shall

slightly abuse notation by writing A−T for the in-

verse of AT . For P in R
n×n the notation P > 0

means that the matrix P is positive de£nite. A matrix

A ∈ R
n×n is said to be Hurwitz if all of the

eigenvalues of A lie in the open left half of the

complex plane.

For a real number x we de£ne the function sign(x)
by

sign(x) =











1 if x > 0

0 if x = 0

−1 if x < 0.

Note that if a matrix A ∈ R
n×n is Hurwitz, then

sign(det(A)) = (−1)n.

Throughout this paper, we shall be concerned with

the uniform asymptotic stability, under arbitrary

switching, of switched positive linear systems ẋ =
A(t)x, A(t) ∈ {A1, . . . , Am} where each con-

stituent LTI system, ΣAi
: ẋ = Aix is a positive

system [2]. Whenever we speak of the asymptotic

stability of a switched linear system, uniform asymp-

totic stability under arbitrary switching is to be

understood. Before proceeding, we shall now recall

some basic facts about positive LTI systems and their

stability.

Positive LTI Systems and Metzler Matrices

The LTI system

ΣA : ẋ(t) = Ax(t), x(0) = x0
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is said to be positive if x0 º 0 implies that x(t) º 0
for all t ≥ 0. Basically, if the system starts in the

non-negative orthant of R
n, it remains there for all

time. See [2] for a description of the basic theory

and several applications of positive linear systems.

It is well-known [2] that the system ΣA is positive

if and only if the off-diagonal entries of the matrix

A are non-negative. Matrices of this form are known

as Metzler matrices, and can be written A = N −αI

for N º 0 and α ≥ 0.

There are a number of equivalent conditions for a

Metzler matrix to be Hurwitz [5], [1]. The following

result records two of these conditions which are

relevant for the work of this paper.

Theorem 2.1: Let A ∈ R
n×n be Metzler. Then the

following are equivalent:

(i) A is Hurwitz;

(ii) There is some vector v ≻ 0 in R
n with Av ≺ 0;

(iii) A−1 ¹ 0.

Convex Cones and Separation Theorems

Much of the work presented later in the paper

is concerned with determining conditions for the

intersection of two convex cones in R
n. Recall that

a set Ω in R
n is a convex cone if for all x, y ∈ Ω,

and all λ ≥ 0, µ ≥ 0 in R, λx + µy is in Ω. The

convex cone Ω is said to be open (closed) if it is open

(closed) with respect to the usual Euclidean topology

on R
n. For an open convex cone Ω, we denote the

closure of Ω by Ω.

Given a set of points, {x1, . . . , xm} in R
n, we shall

use the notation CO(x1, . . . , xm) to denote the con-

vex hull of x1, . . . , xm. Formally CO(x1, . . . , xm)
is the set:

{

m
∑

i=1

αixi : αi ≥ 0, 1 ≤ i ≤ m, and

m
∑

i=1

αi = 1}.

The theory of £nite-dimensional convex sets is a

well established branch of mathematical analysis

[12]. In the next section, we shall make use of the

following special case of more general results [12] on

the existence of separating hyperplanes for disjoint

convex cones.

Theorem 2.2: Let Ω1, Ω2 be open convex cones in

R
n. Suppose that Ω1∩Ω2 = {0}. Then there is some

vector v ∈ R
n such that

vT x < 0 for all x ∈ Ω1

and

vT x > 0 for all x ∈ Ω2.

III. COMMON LINEAR COPOSITIVE LYAPUNOV

FUNCTIONS

In this section, we describe a necessary and suf£cient

condition for a pair of asymptotically stable positive

LTI systems to have a common linear copositive

Lyapunov function, and discuss a number of impli-

cations of this result. First of all, we present some

preliminary de£nitions and results concerning linear

copositive Lyapunov functions.

Preliminaries on Linear Copositive Lyapunov Func-

tions

The linear function V (x) = vT x de£nes a linear

copositive Lyapunov function for the positive LTI

system ΣA if and only if the vector v ∈ R
n satis£es:

(i) v ≻ 0;

(ii) AT v ≺ 0.

It follows from Theorem 2.1 that a positive LTI

system is asymptotically stable if and only if it has

a linear copositive Lyapunov function. The primary

contribution of this paper is to derive a simple

algebraic necessary and suf£cient condition for a pair

of asymptotically stable positive LTI systems, ΣA1
,

ΣA2
to have a common linear copositive Lyapunov

function V (x) = vT x, where v ≻ 0 and AT
i v ≺ 0

for i = 1, 2. This condition is given in Theorem

3.2 below and our derivation will be based on the

following preliminary result, whose proof can be

found in [9].

Theorem 3.1: Let A1, A2 ∈ R
n×n be Metzler, Hur-

witz matrices such that there exists no non-zero

vector v º 0 with AT
i v ¹ 0 for i = 1, 2. Then

there exist w1 ≻ 0, w2 ≻ 0 in R
n such that

A1w1 + A2w2 = 0.

Common Linear Copositive Lyapunov Functions

Before stating the main result of this section, we

need to introduce some notation. Given A ∈ R
n×n

and an integer i with 1 ≤ i ≤ n, A(i) denotes the

ith column of A. Thus, A(i) denotes the vector in

R
n whose jth entry is aji for 1 ≤ j ≤ n.

For a positive integer n, we denote the set of all

mappings σ : {1, . . . , n} → {1, 2} by Cn,2. Now,

given two matrices A1, A2 in R
n×n and a mapping

σ ∈ Cn,2, Aσ(A1, A2) denotes the matrix

(A
(1)
σ(1)A

(2)
σ(2) . . . A

(n)
σ(n)). (1)

Thus, Aσ(A1, A2), is the matrix in R
n×n whose ith

column is the ith column of Aσ(i) for 1 ≤ i ≤ n.

We shall denote the set of all matrices that can be

formed in this way by S(A1, A2).

S(A1, A2) = {Aσ(A1, A2) : σ ∈ Cn,2}. (2)
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Theorem 3.2: Let A1, A2 be Metzler, Hurwitz ma-

trices in R
n×n. Then the following statements are

equivalent:

(i) The positive LTI systems ΣA1
, ΣA2

have a

common linear copositive Lyapunov function;

(ii) The £nite set S(A1, A2) consists entirely of

Hurwitz matrices.

Proof:

(i) ⇒ (ii): As ΣA1
, ΣA2

have a common linear

copositive Lyapunov function, there is some vector

v ≻ 0 in R
n with vT Ai ≺ 0 for i = 1, 2. This

immediately implies that vT A
(j)
i < 0 for i = 1, 2,

1 ≤ j ≤ n and hence we have that

vT A ≺ 0 for all A ∈ S(A1, A2). (3)

Now note that as A1, A2 are Metzler, all matrices

belonging to the set S(A1, A2) are also Metzler.

It follows immediately from (3) and the standard

properties of Metzler matrices that each matrix in

S(A1, A2) must be Hurwitz.

(ii) ⇒ (i): We shall show that if ΣA1
, ΣA2

do not

have a common linear copositive Lyapunov func-

tion, then at least one matrix belonging to the set

S(A1, A2) must be non-Hurwitz.

First of all, suppose that there is no non-zero vector

v º 0 with vT Ai ¹ 0 for i = 1, 2. It follows from

Theorem 3.1 that there are vectors w1, w2 such that

w1 ≻ 0, w2 ≻ 0 and

A1w1 + A2w2 = 0. (4)

As w1 ≻ 0, w2 ≻ 0, there is some positive de£nite

diagonal matrix D = diag(d1, d2, . . . , dn) in R
n×n

with w2 = Dw1. It follows from (4) that, for this D,

det(A1 + A2D) = 0. (5)

Now, for an n-tuple, (d1, . . . , dn)T ∈ R
n and a

mapping σ ∈ Cn,2, we shall use (d1, . . . , dn)σ−1 to

denote the product of d1, . . . , dn given by

(d1, . . . , dn)σ−1 =
n

∏

i=1

d
σ(i)−1
i . (6)

In terms of this notation, the polynomial det(A1 +
A2D) in the variables d1, . . . , dn is given by

∑

σ∈Cn,2

det(Aσ(A1, A2))(d1, . . . , dn)σ−1. (7)

Now if all matrices in the set S(A1, A2) were Hur-

witz, then det(Aσ(A1, A2)) > 0 for all σ ∈ Cn,2 if

n is even and det(Aσ(A1, A2)) < 0 for all σ ∈ Cn,2

if n is odd. In either case, this would contradict (5)

which implies that there are positive real numbers

d1, . . . , dn for which
∑

σ∈Cn,2

det(Aσ(A1, A2))(d1, . . . , dn)σ−1 = 0. (8)

Hence, there must exist at least one σ ∈ Cn,2 for

which Aσ(A1, A2) is non-Hurwitz.

For the remainder of the proof, we shall assume that

the dimension n is even. In this case, for a Hurwitz

A ∈ R
n×n, det(A) > 0. The case of odd n follows

in an identical manner.

We have shown that if VA1
∩VA2

= {0}, then at least

one matrix belonging to S(A1, A2) must be non-

Hurwitz. In fact, we have shown that det(A) < 0 for

at least one A belonging to S(A1, A2). Next suppose

that there is some non-zero v º 0 in VA1
∩ VA2

but

that the intersection of the open cones

VA1
∩ VA2

(9)

is empty.

Now, denote by 1n the matrix in R
n×n consisting

entirely of ones (1n(i, j) = 1 for 1 ≤ i, j ≤ n) and

for all ǫ > 0, write Ai(ǫ) = Ai + ǫ1n for i = 1, 2.

Then it is straightforward to see that

VA1(ǫ) ∩ VA2(ǫ) = {0}

for all ǫ > 0. Thus, if we choose any ǫ > 0
suf£ciently small to ensure that A1(ǫ) and A2(ǫ)
are Hurwitz and Metzler, it follows from the above

argument that there must be at least one non-Hurwitz

matrix in the set S(A1(ǫ), A2(ǫ)). A limiting argu-

ment now shows that at least one matrix in the set

S(A1, A2) is non-Hurwitz. This completes the proof

of the theorem.

We now present a simple example to illustrate the

use of the above theorem.

Example 3.1: Consider the Metzler, Hurwitz matri-

ces in R
2×2 given by

A1 =

(

−0.7125 0.7764
0.5113 −0.9397

)

,

A2 =

(

−1.3768 0.8066
0.9827 −1.3738

)

.

Then it is easy to see that S(A1, A2) consists entirely

of Hurwitz matrices. It follows from Theorem 3.2

that the systems ΣA1
, ΣA2

have a common linear

copositive Lyapunov function. In fact, for v =
(1.1499, 1.1636)T , it can be checked that AT

i v ≺ 0
for i = 1, 2.

Remarks:

(i) Note that the result of Theorem 3.2 relates the

existence of a common Lyapunov function for

a pair of positive LTI systems, and the uniform

asymptotic stability of the associated switched

linear system, to the stability of a £nite set of

positive LTI systems. Formally, the existence of

a common linear copositive Lyapunov function

WeA20.1

659

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on December 2, 2009 at 06:41 from IEEE Xplore.  Restrictions apply. 



for ΣA1
, ΣA2

is equivalent to the stability of

each of the 2n positive LTI systems, ΣA for

A ∈ S(A1, A2). Of course, it follows that

the asymptotic stability of this £nite family of

systems is suf£cient for the uniform asymptotic

stability of the switched system ẋ = A(t)x,

A(t) ∈ {A1, A2}.

(ii) A common linear copositive Lyapunov function

for ΣA1
, ΣA2

will also de£ne a linear copositive

Lyapunov function for each of the systems ΣA

with A ∈ S(A1, A2).
(iii) In the proof of Theorem 3.2, the non-existence

of a common linear copositive Lyapunov func-

tion is related to the existence of a diagonal ma-

trix D > 0 such that A1 +A2D is singular. It is

interesting to compare this with the recent result

in [10], which established that the non-existence

of a common diagonal Lyapunov function for

a pair of positive LTI systems implied the

existence of a diagonal D > 0 such that

A1+DA2D is singular. The precise relationship

between copositive Lyapunov functions, diago-

nal Lyapunov functions and quadratic Laypunov

functions for general switched positive linear

systems is in itself an interesting question, and

the above result may prove useful in clarifying

this relationship.

Using the above remarks and Theorem 3.2, we can

derive the following result.

Corollary 3.1: Let A1, A2 be Metzler, Hurwitz ma-

trices in R
n×n. Then the following statements are

equivalent:

(i) There exists a common linear copositive Lya-

punov function for the systems ΣA1
, ΣA2

;

(ii) There is a common linear copositive Lyapunov

function for the set of systems

{ΣA : A ∈ CO(S(A1, A2))};

(iii) All matrices in the convex hull CO(S(A1, A2))
are Hurwitz;

(iv) All matrices in S(A1, A2) are Hurwitz.

Proof: (i) ⇒ (ii): Suppose that V (x) = vT x is

a common linear copositive Lyapunov function for

ΣA1
, ΣA2

. Then it follows that vT Ai ≺ 0 for

i = 1, 2 and hence that vT A
(j)
i < 0 for i = 1, . . . , n,

j = 1, . . . , n. Thus, vT A ≺ 0 for all A ∈ S(A1, A2).
It follows immediately that V (x) = vT x will de£ne

a linear copositive Lyapunov function for ΣA for all

A ∈ CO(S(A1, A2)).

(ii) ⇒ (iii): By assumption, there exists a vector v ≻
0 in R

n with vT A ≺ 0 for all A ∈ CO(S(A1, A2)).
But every matrix in CO(S(A1, A2)) is Metzler. It

follows immediately that each A ∈ CO(S(A1, A2))
is Hurwitz.

(iii) ⇒ (iv): This is trivial as S(A1, A2) ⊂
CO(S(A1, A2)).

(iv) ⇒ (i): This follows from Theorem 3.2.

The previous corollary shows that the Hurwitz-

stability of the £nite collection of matrices

S(A1, A2) is suf£cient to ensure the asymptotic

stability under arbitrary switching of the system

ẋ = A(t)x A(t) ∈ CO(S(A1, A2)).

Also, the equivalence of points (iii) and (iv) above

means that the Hurwitz-stability of the set S(A1, A2)
is necessary and suf£cient for the Hurwitz-stability

of its convex hull.

A close examination of the proof of Theorem 3.2

shows that the following characterisation of linear

copositive Lyapunov function existence also holds.

Corollary 3.2: Let A1, A2 ∈ R
n×n be Metzler,

Hurwitz matrices. Then the systems ΣA1
, ΣA2

have

a common linear copositive Lyapunov function if and

only if

sign(det(A)) = (−1)n

for all A ∈ S(A1, A2).

IV. QUADRATIC STABILITY FOR POSITIVE

SYSTEMS DIFFERING BY RANK ONE

A popular approach to establishing the asymptotic

stability of a switched linear system under arbi-

trary switching regimes is to search for a common

quadratic Lyapunov function (CQLF) for its con-

stituent systems [8], [15]. To date, a number of

elegant analytic conditions for CQLF existence for

classes of switched systems have appeared in the

literature. In particular, for a system ẋ = A(t)x,

A(t) ∈ {A1, A2} with rank(A2 − A1) = 1, it has

been established that CQLF existence is equivalent

to the matrix product A1A2 having no negative real

eigenvalues. Formally:

Theorem 4.1: [13], [14] Let A1, A2 be two Hurwitz

matrices in R
n×n with rank(A2 − A1) = 1. A

necessary and suf£cient condition for the existence

of a CQLF for the LTI systems ΣA1
, ΣA2

is that the

matrix product A1A2 does not have any negative real

eigenvalues.

In this section, we shall show that this result has in-

teresting consequences when applied to the particular

case of positive switched linear systems.

Second Order Systems

First, we recall two results on 2×2 matrices, recently

published in [3] that are of relevance in the current

context.
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Lemma 4.1: [3] Let A1, A2 ∈ R
2×2 be Hurwitz and

Metzler. Then the product A1A2 has no negative real

eigenvalue.

Theorem 4.2: [3] Let A1, . . . , Am be Hurwitz, Met-

zler matrices in R
2×2. Then the positive switched

linear system,

ẋ = A(t)x A(t) ∈ {A1, . . . , Am}, (10)

is uniformly asymptotically stable for arbitrary

switching if and only if each of the switched linear

systems,

ẋ = A(t)x A(t) ∈ {Ai, Aj}, (11)

for 1 ≤ i < j ≤ m is uniformly asymptotically

stable under arbitrary switching.

The next result is an immediate consequence of

Theorem 4.1 and Lemma 4.1

Theorem 4.3: Let A1, A2 be Hurwitz, Metzler ma-

trices in R
2×2 such that rank(A2 − A1) = 1. Then

the LTI systems ΣA1
, ΣA2

have a CQLF, and the

switched system ẋ = A(t)x, A(t) ∈ {A1, A2}
is uniformly asymptotically stable under arbitrary

switching.

Theorem 4.3 shows that a positive switched lin-

ear system, ẋ = A(t)x, A(t) ∈ {A1, A2}, with

A1, A2 ∈ R
2×2 Hurwitz and rank(A2 − A1) =

1, is always asymptotically stable under arbitrary

switching. We shall next use Theorem 4.2 to extend

this result to the case of a switched positive linear

system with an arbitrary £nite number of constituent

systems.

Theorem 4.4: Let A1, . . . , Am be Hurwitz, Metzler

matrices in R
2×2, such that rank(Ai − Aj) = 1 for

1 ≤ i < j ≤ m. Then the positive switched linear

system

ẋ = A(t)x A(t) ∈ {A1, . . . , Am}, (12)

is asymptotically stable under arbitrary switching.

Proof: From Theorem 4.2, the system (12) is asymp-

totically stable under arbitrary switching, if and only

if each of the associated systems ẋ = A(t)x, A(t) ∈
{Ai, Aj}, 1 ≤ i < j ≤ m is asymptotically stable

under arbitrary switching. But it follows immediately

from Theorem 4.3 that each of these systems has

a CQLF and hence is asymptotically stable under

arbitrary switching. This completes the proof.

Third Order Systems

Finally for this section, we shall present an extension

of the result of Lemma 4.1 to third order positive

systems. In the proof of the following theorem, we

use the notation |A| to denote the determinant of the

matrix A.

Theorem 4.5: Let A1, A2 ∈ R
3×3 be Metzler and

Hurwitz, and let γ > 0 be any positive real number.

Then det(A1A2 + γI) > det(A1A2).

Proof: If we write B = A1A2, then the following

facts can be easily veri£ed.

(i) det(B) > 0;

(ii) bii > 0 for 1 ≤ i ≤ 3;

(iii) B−1 = A−1
2 A−1

1 º 0.

From (i) and (iii), it follows that, if we write Bii for

the principal sub-matrix of B obtained by removing

its ith row and column, then det(Bii) ≥ 0 for 1 ≤
i ≤ 3.

Now consider

det(B + γI) =

∣

∣

∣

∣

∣

∣

b11 + γ b12 b13

b21 b22 + γ b23

b31 b32 b33 + γ

∣

∣

∣

∣

∣

∣

. (13)

As the determinant is a multi-linear function of the

columns of a matrix, we can expand (13) using the

£rst column to see that

det(B + γI) =

∣

∣

∣

∣

∣

∣

b11 b12 b13

b21 b22 + γ b23

b31 b32 b33 + γ

∣

∣

∣

∣

∣

∣

+ γ

∣

∣

∣

∣

b22 + γ b23

b32 b33 + γ

∣

∣

∣

∣

. (14)

Now, considering the £rst term on the right hand

side of (14) and repeating the above process using

the second column this time, we £nd that
∣

∣

∣

∣

∣

∣

b11 b12 b13

b21 b22 + γ b23

b31 b32 b33 + γ

∣

∣

∣

∣

∣

∣

is equal to
∣

∣

∣

∣

∣

∣

b11 b12 b13

b21 b22 b23

b31 b32 b33 + γ

∣

∣

∣

∣

∣

∣

+ γ

∣

∣

∣

∣

b11 b13

b31 b33 + γ

∣

∣

∣

∣

. (15)

Finally, if we expand the £rst term on the right hand

side of (15) using its third column we can see that

det(B + γI) = det(B) + γ∆(γ)

where

∆(γ) =

∣

∣

∣

∣

b22 + γ b23

b32 b33 + γ

∣

∣

∣

∣

+

∣

∣

∣

∣

b11 b13

b31 b33 + γ

∣

∣

∣

∣

+

∣

∣

∣

∣

b11 b12

b21 b22

∣

∣

∣

∣

. (16)

Considering the second order determinants in (16) in

turn, it follows from points (i), (ii) and (iii) made at

the beginning of the proof that
∣

∣

∣

∣

b22 + γ b23

b32 b33 + γ

∣

∣

∣

∣

> det(B11) ≥ 0,
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and
∣

∣

∣

∣

b11 b13

b32 b33 + γ

∣

∣

∣

∣

> det(B22) ≥ 0.

It is now immediate from (16) that

det(A1A2 + γI) > det(A1A2)

as claimed.

It follows immediately from Theorem 4.5 that if

A1, A2 ∈ R
3×3 are Metzler and Hurwitz, then A1A2

cannot have any negative real eigenvalues. Hence, we

have the following extension of Theorem 4.3.

Theorem 4.6: Let A1, A2 be Hurwitz Metzler matri-

ces in R
3×3 with rank(A2 −A1) = 1. Then the LTI

systems ΣA1
, ΣA2

have a CQLF, and the associated

positive switched linear system ẋ = A(t)x A(t) ∈
{A1, A2}, is uniformly asymptotically stable under

arbitrary switching.

V. CONCLUSIONS

In this paper we have presented a method for deter-

mining whether or not a given switched positive con-

tinuous time linear system is asymptotically stable.

Our approach is based upon determining veri£able

conditions for the existence of a common copositive

linear Lyapunov function for a pair of positive LTI

systems. Future work will involve extending this

result to arbitrary £nite sets of such LTI systems, and

developing synthesis procedures to exploit our result

for the design of stable switched positive systems.

We have also extended some recent work on the

quadratic stability of positive switched systems. In

this connection, future work will focus on investigat-

ing the possibilities of obtaining analogous results

for higher dimensional systems and for arbitrary

£nite families of LTI systems.
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