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Abstract—In this paper we present an initial experimental
evaluation of the recently proposed Cubic-TCP algorithm. Fe-
sults are presented using a suite of benchmark tests that hav
been recently proposed in the literature [12], and a number b
issues are of practical concern highlighted.

I. INTRODUCTION

In this paper we present the results of experimental tests
the recently proposed high-speed TCP variant, Cubic-TOP[1
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Fig. 1. Experimental set-up.
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Consideration of the Cubic algorithm is particularly tadin | [ Description |
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1. Networks in which Cubic TCP is deployed suffer from Kernel Linux 2.6.18 with Cubic bug fix[9]
slow convergence. The dependence of the cubic increase mﬁ%s:cek'ﬁ% %ggg
functlon_ on fI.ow cwnd means that flow_s W.Ith. higher NIC Intel Pro 1000PT PCle x4
congestion windows are more aggressive initially than NIC Driver €1000 5.2.52-k4
flows with lower congestion windows. The resulting slow | TX & RX Descriptors 4096

convergence behaviour yields poor network responsive- TABLE |

ness and prolonged unfairness between flows.

HARDWARE AND SOFTWARE CONFIGURATION.

2. In common with other high-speed protocols, Cubic TCP
uses an aggressive additive increase action to maintain
short congestion epochs on high bandwidth-delay product

paths. We find that in unsynchronised environments, tl}\?though all are not shown in Figure 1, a total of 14 end

associated cost of "missing a drop” (whereby flows thﬂOsts are available for traffic generation. All sender and

are nqt m_fo_rmed of conges.tlon rapidly increase theHaceiver machines used in the tests have identical harcamale
cwnd) is similar for both Cubic TCP and HTCP.

bandwidth-del q b b K software configurations as shown in Table | and are connected
- At bandwidth-delay products above about 5000 pac €5 the switches at 1Gb/sec. The router, running the FreeBSD

Cubic TCP reverts to a linear increase function. Th'&ummynet software, can be configured with various bottlenec

|mpl|e_s thatin high-speed networks the_ congestion epOﬁ'ﬁeue-sizes, capacities and round trip propagation detays
duration eventually scales linearly with BDP (and sQ . iate a wide range network conditions

similarly to standard TCP).

; . 0
4. At higher speeds, for buffer sizes below 30% BDgersion of the Linux 2.6.18 kernel. We note that the imple-

the link utilisation achieved by Cubic TCP collapse

o ; . ST
to around 50% of link capacity and is Slgnlflc‘ijt%listribution and earlier is known [9] to be incorrect (thiash

. . . o . . subsequently been corrected). In our tests we use a calrecte
Although it requires further investigation, this behaviou g y )

appears to be associated with the generation of large

lower than the link utilisation achieved by standard TC

packet bursts by the Cubic TCP algorithm.

5. For flows with different RTTs, Cubic exhibits unfairness

that is strongly dependent on the start time of the flows.

Apart from the router, all machines run an instrumented

mentation of Cubic-TCP included in the Linux 2.6.18 kernel

implementation. To provide consistency, and control agfain
e influence of differences in implementation as opposed to
differences in the congestion control algorithm itself, use

g, common kernel for all tests. It is known that the at high
bandwidth-delay products SACK processing etc in the Linux

is unclear at present why this non-convergence behaviour,

occurs — it may be due to a fundamental stability iss
or perhaps associated with implementation issues.

Il. EXPERIMENTAL SETUP
A. Hardware and Software

All tests were conducted on an experimental testbed. Co
modity high-end PCs were connected to gigabit switches
form the branches of a dumbbell topology, see Figure

network stack can impose a sufficiently high burden on end
fosts that it leads to a significant performance degradation
[1], [12]. We performed tests to confirm, on our hardware,
appropriate network stack operation over the range of nitwo
conditions tested.

The kernel is instrumented using custom RelayFS monitor-
ing to allow measurement of TCP variables.
toln order to minimise the effects of local hosts queues and
flow interactions, unless otherwise stated we only ran one



long-lived flow per PC with flows injected into the testbeeMlgorithm 1 : Pseudo code of main functionality in Linux
usingi per f . Web traffic sessions are generated by dedicatéef-18 Cubic algorithm

client and server PCs, with exponentially distributed rivegs

between requests and Pareto distributed page sizes. This§i§Sb

implemented using a client side script and custom CGI scrip#:

1: Initialise:
last_max = 0;loss_cwnd = 0; epoch_start = 0; ssthresh = 100
=2.5c=04

running on an Apache server. Following [10], unless othsewi 5: On each ACK:

stated, we used a mean time between requests of 1 second a?ncﬂ

a Pareto shape parameter of 1.2 and mean 6.0. Each individugal
test was run at least ten minutes each. Tests collectingtatat -
on unsynchronised operation were run for at least one houri%
order to ensure reliable statistics. In the case of testshimg ~ 12:
Standard TCP, we ran individual tests for up to an hour &s:
the congestion epoch duration becomes very long on Iaréé:

bandwidth-delay products paths. 16:
17:
18:
B. Comparative Testing 19:

Our test setup corresponds to that in [12] and hence té%
Cubic TCP measurements reported here can be directly coma-
pared with previous measurements reported for Standard T B
High-Speed TCP, Scalable TCP, BIC-TCP, FAST-TCP and Hs.

elay_min = min(RTT, delay_-min)
cwnd < ssthresh then

cwnd++ //slow start

9: else

if epoch_start = 0 then
epoch_start = current time
K = max(0, {/(b * (last-maz — cwnd)))
origin_point = max(cwnd, last-max)
end if
t =current time+delay-min — epoch_start
target = origin_point + c x (t — K)3
if target > cwnd then
ent = cwnd/(target — cwnd)
else
cent = 100 * cwnd
end if
if delay-min > 0 then
ent = max(cnt, 8 * cwnd/(20 * delay-min)) //max Al rate
end if
if loss_cwnd == 0 then

TCP. 26: cnt=50 // continue exponential increase before firskbfic
27: end if
28: if cwnd_cnt > cnt then

C. Range of Network Conditions 29: cwnd++

L . . . ~ 30 cwnd_cnt =0
Similarly to [12], in this paper we consider round-trip31: else
propagation delays in the range 16ms-200ms and bandwidgrgjs engﬁ”d—cnt”
ranging from 1Mb/s-500Mb/s. We do not consider these valugg: onq it

to be definitive — the upper value of bandwidth considered cass:
in particular, be expected to be subject to upwards pressugé:
We do, however, argue that these values are sufficient ig
capture an interesting range of network conditions thatatya 39:
terises current communication networks, and the behavu'buriof
protocols across this range. In all of our tests we considiryd 45

On packet loss:
epoch_start =0
if cwnd < last-max then

last_max = 0.9 * cwnd

else

last-max = cwnd

end if

values of 16ms, 40ms, 80ms, 160ms, 200ms and bandwid#3s loss_cwnd = cwnd
of 1Mb/s, 10Mb/s, 250Mb/s and 500Mb/s. In addition, wet4: cwnd = 0.8 * cwnd // backoff cwnd by 0.8

perform each test with various levels of competing bidirec-
tional web sessions. This defines a three-dimensional drid o
measurement points where, for each value of delay and level
of web traffic, performance is measured for each of the values
of bandwidth. Owing to space restrictions, we cannot inelud
the results of all our tests here. We therefore presentteesul
for a subset of network conditions that are representative o
the full test results obtained. A more complete collectidn o
test results will be posted on the Hamilton Institute websit

IIl. CuBiCc TCP ALGORITHM IN LINUX

Before proceeding, we briefly describe the Cubic TCP 3)
algorithm used in Linux. Cubic-TCP combines the basic ideas
first proposed in High-Speed TCP, and H-TCP. Namely, the
cwnd additive increase rate is a function of time since the
last notification of congestion (as in H-TCP), and of the
window size at the last notification of congestion (simyarl
to HS-TCP). Pseudo code for the main functionality of the
Cubic algorithm is shown in Algorithm 1. The features of this
algorithm can be summarised as follows,

1) Modified slow start A modified slow start behaviour is
employed at startup. Oncewnd rises above ssthresh

4)

(which is initalised to a value of 100 packets in Cubic),
Cubic exits normal slow start and changes to use a less
aggressive exponential increase wheared is increased

by one packet for every 50 acks received or, equivalently,
cwnd doubles approximately every 35 round-trip times.
See lines 25-26 in Algorithm 1.

2) Backoff factor 0.80n packet loss¢wnd is decreased

by a factor of 0.8 (compared with a factor of 0.5 in the
standard TCP algorithm). See line 44 in Algorithm 1.
Clamp on maximum increase rafEhe additive increase
rate during AIMD operation is limited to be at most
20xdelay-min packets per RTT, whetéelay_-min is an
estimate of the round-trip propagation delay of the flow.
See line 23 in Algorithm 1. Converting from packets
per RTT to packets per second, this clamp is roughly
equivalent to a cap on the increase rate of 20 packets/s
independent of RTT.

Cubic increase functianSubject to this clamp, the
additive increase rate usedtisrget — cwnd packets per
RTT. Note that the effect of this increase is to adjust



cwnd to be equal tatarget over the course of a single flows do asymptotically converge to an approximately fair
RTT. The value oftarget is calculated (see line 16 in share of the bottleneck bandwith. See also Figure 3.
algorithm) from: « Linear increase at high BDPd:or cwnd's above about
5000 packets it can be seen that the cubic increase
function becomes replaced by a simple linear AIMD

wheret is the elapsed time since last backoff (approxi- ~ nCréase. This is particularly evident for flow 1 in the
mately — the value oflelay_min is added to this value, lower plot in Figure 2. This implies that in high-speed
see line 15) andV,,., is related to the cwnd at last networks the congestion epoch duration eventually scales
backoff and is derzyz)atmedrigm_pomt in the code IV linearly with BDP. This is similar to standard TCP.

is the cwnd value immediately before the last backoff, e note that although in the examples shown in Figure 2

so that0.81W is the cwnd value just after backoff has the flows are nearly synchronised (i.e. both flows experience
occurred. drops at most congestion events), we find that the slow con-

5) Adaptation of cubic functianThe value ofW,,.,, is Vergence behaviour isot confined to such situations and that

adjusted depending on whether the last backoff occurrthe same qualitative behaviour is evident in unsynchrahise
before or aftercwnd reached the previous/,,., value. €nvironments. _

Let W denote thewnd value immediately before back- FOr €xample, Figure 4 shows the corresponding results when
off. Then, Wi, is set equal to th&)” when W is larger tests are carnepl out.W|th 200 bi-directional web ﬂows ?t@n
than the previous value ;... OtherwiseW,,q, is the bottleneck I|nl_<. Figure 4 plots the throughputumedmnas_ _
set equal td).9W. See lines 38-42 in algorithm. of the two long-lived flows, averaged over 25 runs. This is
an ensemble average i.e. each time point is the average over

The Linux Cubic ?"go”thm alsp includes code Wh'Ch.enZS runs. We observe that while de-synchronisation of drops
sures that the Cubic algorithm is at least as aggressive _as

i . ) . . sometimes speeds up convergence (e.g. when the newldstarte
standard TCP, but this plays little role in our discussiod a P P g (e.9 ys

. . low misses drops), it also sometimes slows convergence
\évst;;;er the interested reader to the Linux code for furth'E‘vrvhen the incumbent slow misses drops) and on balance this

yields similarly slow convergence to synchronised situadi

target = Winae + c(t — f/(b(Wm,u —0.8W))* (1)

A. Other Cubic Variants A. Source of slow convergence.

We can gain some insight into the slow convergence exhib-
ed by Cubic TCP by noting that the cubic increase function
epends on the flomwnd at the last congestion event.
(&enerally, flows with largeewnd’s are more aggressive than

lows with smallercwnd’s, and are consequently more able

the original Cubic paper [11], and from algorithms used ant‘cjI acquirea_bagdwidth as itdbecomesdavaifla_ble. New flows ar\(/ev
documented in recent tests. Amongst other things, themﬂrligit us at a r'fa vantgllgefan suitame un allrnebss C?P (t)fl:]r'
cubic algorithm proposed in [11] lacks the clamp on increagé)mmem_t ata similar feature as previously been hig .@ .
rate and the mode switch based on the paramiéter,, in in other high-speed protocols, which are also known to akhib
Algorithm 1. The experimental results reported by the Cubﬁ!ow convergence [S], [4], [6], [7].

authors[3] make use of a custom patch to the Linux 2.6.13The key here is that the convergence behaviour is deter-
kernel which differs from Algorithm 1 mined byinteractionsbetween competing flows. Hence, “bath

of noise” type mean-field analysis such as that used in the
popular Padhye fluid model provides little insight. Roughly
IV. FAIRNESS WITH SAMERTT speaking, the convergence rate of the network depends on
We begin by Considering the Simp|est case of flows Shariﬁgo factors: (a) the rate at which individual flows release
a single bottleneck and with the same round-trip time. Adadpandwidth when informed of congestion; and (b) the rate
requirement is for flows to be allocated bandwidth in a fagt Which individual flows acquire available bandwidth. The
manner in this situation. Figure 2 shows typical measuraé ti first depends on the backoff factors employed in the network,
histories with Cubic TCP following startup of a second flowthe second on the additive increase strategy employed by the
A number of features are immediately evident. individual sources. Together they determine the net rate at
; which bandwidth can be distributed in the network.
« Slow convergence, prolonged unfairndsgsan seen from In standard TCP flows with the same RTT probe for

Figure 2 that theewnds converge very slowly. The rate . . _
of convergence decreases as the bandwidth-delay proo%\@"able bandwidth at the same rate. Strategies such &Sm-T

(BDP) is increased, with convergence times in excess ﬁek to mimic this behaviour by making all sources probe in
' the same manner (at least in the synchronised case). Other

300s commonly observed in our tests. . . .
« Long-term fairnessProvided tests are run for a suffi-Srategies, such as High-Speed TCP, BIC-TCP and Cubic-

ciently long period, our measurements indicate that thTeCP’ re_sult in flows with Iar_ger window SIZEs probm_g more
aggressively than those with smaller windows. This basic

lSee  http://wwy csc.ncsu. edu/ facul ty/rhee/ export/ aSymmetry between flows increase rates has the effect of
bitcp/tinyrel ease/installbic2. 6.13. htm slowing convergence.

It is important to note that a number of variants of the
Cubic TCP algorithm exist. In this paper we focus on th
algorithm contained in the standard Linux distribution lais t
is both the most recent variant and the variant in producti
use. This Linux Cubic algorithm differs from that described



Convergence 10Mbit/sec Bottleneck 1 /y\2

)
350 : : : v p— m<7é> S~ D
Flow 2 - -/ ?\E .

0.6

200 r| 1

Faimess Ratio

150

cwnd (packets)

0.4

0.2

Standard TCP —4—
Cubici 10Mb/s —H—
Cubic 250Mb/s ——

0 0 1(‘)0 2‘00 3‘00 4‘00 5‘00 600 D10 100
time (s) RTT (ms)

4000 Comeraence Z50MBHsee Botieneck ‘ Fig. 3. Ratio of throughputs of two Cubic TCP flows with the saRITT
(also sharing same bottleneck link and operating same estingecontrol

algorithm) as path propagation delay is varied. Flow thhpugs are averaged

over the last 200s of each test run and so approximate asgipahaviour,

neglecting initial transients. Results are shown for 1aidbt and 250Mbit/sec

bottleneck bandwidths. The bottleneck queue size is 10099, Bid web

traffic.

8000

7000

6000

5000

4000

cwnd (packets)

3000

2000

1000

0 I 1 1 1 1
0 100 200 300 400 500 600

time (s)
18000 . . .

(Mbps)

16000

14000 |- ;
50 4

12000

10000

24‘3; 2‘50 32)0 3‘50 41)0 4‘50 5‘00 5‘50 600
time (s)

Fig. 4. Impact of web traffic on convergence. Evolution of meéandwidth,

averaged over 20 test runs, following startup of a second 6@ background

web flows (100 in each direction). Link bandwidth is 250 Mg, RTT is

200ms, queue size 100% BDP.

8000

cwnd (packets)

6000

4000

2000

0 0 1‘00 2:}0 3!‘30 4‘00 5‘00 660 7‘00 800 ) . ) ) ) .
time (9 portant practical implications. For example, two idenitifiie
][Tig- 2. dc%bfi]C‘TCg B\(Vn/d (tim<§ gisgofiesuf°||0\'(ViUgdff;ﬂ1£;800f g_ftllﬁﬂd transfers may have very different completion times depspdi
ow. Bandwidth is 10Mbits/s (top), 250 Mbit/sec (middle Mbit/sec . . .
(bottom). RTT is 200ms, queue size 100% BDP, no web traffic. on the .order in wh|gh they are started. Also, long-lived flows
can gain a substantial throughput advantage at the expénse o

shorter-lived flows. The latter seems particularly protdém

This effect is reinforced by changes to the AIMD backof@s the majority of TCP flows are short to medium sized and
factor. In standard TCP flows backaffond by 0.5 on detect- SO @ single long-lived flow may potentially penalize a large
ing packet loss. Strategies such as BIC-TCP and Cubic-T@pmber of users (akin to a form of denial of service).
instead use a backoff factor of 0.8. As a result, flows releaseWith regard to the last point, the impact of a long-lived flow
bandwidth more slowly when informed of congestion, agai®n a short-lived flow is illustrated, for example, in Figure 5
having the effect of slowing convergence. Here, we measure the completion time for a download versus
the size of the download. Measurements are shown (i) for the
baseline case where no other flow shares the bottleneck link
and (ii) for the case where a single long-lived flow shares

One consequence of slow convergence is that periodstié link and competes for bandwidth. It can be seen that in
extreme unfairness between flows may persist for long psyiothe baseline situation, Cubic-TCP, standard TCP and H-TCP
even in situations where flows do eventually converge &l exhibit similar completion times. It is perhaps initial
fairness. Such situations are masked when fairness reseltssurprising that standard TCP performs so well in this test,
presented purely in terms of long-term averages. Howevisr, tin view of concerns about performance in high-speed paths.
behaviour is immediately evident, for example, in the timelowever, we note that the link in this example is provisioned
histories shown in Figure 2 and it seems clear that it has imith a BDP of buffering. A standard TCP flow slow-starts to

B. Slow convergence implies prolonged unfairness.
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fill the pipe and when it then backs offvnd the buffer just
empties and the link remains fully utilised, hence achigvin
low completion times. More interesting is the performance
when a long-lived flow is present. It can be seen that the
completion time of the short-lived flow approximately doesol
with H-TCP, as might be expected with two flows now sharing

cwnd (packets)

the link. In contrast, the completion time for the shoreliv 20 w0 200 200 2100 om0 2900

time (s)

flow increases by more than a factor of four. This arises 6 T les of Cubic TGP ewnd fime histories. Thaiived
: : H _Ii Ig. ©. WO examples O upic cwnd tume nistories. a@ggtive

because of the _SlqulShneSS Wlth which the Iong lived ﬂogggws sharing a bottleneck link with 25 on-off sessions (méare between

releases bandwidth to the short-lived flow, so that the shomquests of 10 seconds, connection sizes are Pareto listtitwith shape

lived flow is starved of bandwidth for a prolonged periodsit iparameter of 1.2 and mean 600 packets). Bandwidth is 250/3@bjtRTT is

: - : . . 200ms, queue size 100% BDP.

interesting to also contrast this behaviour with that ohdtad

TCP. It can be seen that the completion time of the short-

lived flow is essentially the same both in the baseline a%(\i

competing long-lived flow cases. Further inspection reve iouslv di db ber of auth >
that the throughput of the long-lived flow is much lower (by %ﬁﬁnrgfr:r\g(;g:gthlesf;ise y @ number of authors, e.g. yee |

E(Elt_(gs)_l?ﬁmrare? W';h tthatdof Bh:_(l;);%-hved IIOW thn l:jS'r_lg We begin here by first noting that under synchronised con-
b-t' ' el On%' ved s atﬂ ar hout f ﬁw re ezlglses Q:eh\i,lw itions, where every flow sees packet loss at every congestio
ut1s very siow fo regain Inroughput foflowing 10Sses ineaic event, the issue of missing a drop does not arise. The irereas

by startup of a short-lived flow. function used by the original Cubic TCP algorithm[11] is

The impact of slow converg_ence_is not confined to situatio Silored to synchronised conditions. Namely, the inflactio
where new flows start up but is of importance more general oint (centre point of the flat section) of the cubic increase

F'gl:jr.?. 6 pIc;]ts examlf l?gmd time h'Stor'iS meaiu\r/t\a/dmlnt urve is placed at thewnd value at which the last backoff
conditions where packet drops are unsynchronised. € Wecurred. Under synchronised conditions this leads toaanc

long-term (measu_re_d over a period of an hour) _throughpus ape. The Cubic TCP algorithm algorithm as implemented
of the flows are similar, it can be seen that sustained perio SLinux is modified to adapt the inflection point based on

. : |
(extending to hundreds of seconds) of unfairness occur.tW ether thecwnd at backoff is increasing or decreasing

is happening here is that when a flow misses a drop, itis a_%gmpared to its value at the last backoff, see lines 38-42 in

to ghrab Ia larger share of E)hi av_allabltfe l:r)]andmdth a_md, ow! gporithm 1. This adaptation improves the convergence rate
tc: t ('eths ovvthconver?t(_ance fe_awour_ N Lle tconges_tli)r;nﬁnt%q Cubic TCP over the original algorithm. Under synchrodise
algorithm, e resulting untairness 1s able 1o persist gl o gitions this adaptive action leads to a period two cycle,
periods. illustrated in Figure 7 and is also evident in many of thexd

o time histories shown elsewhere in the paper. Observe that in
C. Impact of “missing a drop” every second period the cubic increase is aggressivelyimyob

A common feature of loss-based high-speed protocols far bandwidth at the point of backoff.

their aggressive additive increase phase. This is peyfectl Consider now the situation where flows are not synchro-
natural as it is the primary mechanism for ensuring that timsed. When a Cubic TCP flow misses a drop, the cubic
time between congestion events remains small on high BiXerease function continues past the inflection point antes
paths. However, a consequence of this action is that flofes additional bandwidth at a much faster rate than flows
are able to rapidly grab additional bandwidth as a result ofcently experiencing a drop. This probing action is cuhic i

issing a drop at a network congestion event. This issue has
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Fig. 7. Example of Cubic TCRewnd evolution under synchronised Fig. 8. Cubic TCP increase function for the situation whére dwnd at

conditions. last backoff is 10000 packets. The y-axis is normalised s the origin
lies at thecwnd immediately after backoff, the dashed line then marks the
normalisedcwnd at last backoff. It can be seen that the inflection point of

shape i.ecwnd increases as a cubic function. An example df€ CUPIC Wimaz = 0.8W curve is located at this value.
the resulting cubic increase is shown in Figure 8. The curves

markedCubic W, = 0.8W and Cubic W4, = 0.8W in ° " T

Figure 8 correspond, respectively, to the two possibleciase 007 | 1

functions that can occur due to the adaptation of the infiacti el |

point noted previously. Note that due to the period two reatur

of cubic cwnd evolution, missing a drop on the second period 005 ms@n 1

leads immediately to an aggressive cubic increase as the : 0os | o 2 |

inflection point occurs earlier. In both cases the poteritial < ER

large excursions is evident, and is demonstrated expetaifyen T N ]

in Figure 10. oo 2 % 1
For comparison, also plotted on Figure 8 is thend ol Df“ % |

increase function used by H-TCP. This is also a cubic inereas o M

function, although lacking an inflection point. It can bersee % 1000 2000 3000 4000 5000 5000

cwnd (packets)

that on the right-hand side of the plot, corresponding to the o
behaviour after missing a drop, the H-TCP cubic function S5, Jaei'et derbuten ol Meseuremeris re shoun o bt
similar to that of Cubic TCP in Figure 6 — three Cubic flows and 25 background sessionscv@idth is
To confirm the similar natures of the Cubic-TCP and H-TCP60 Mbit/sec, RTT 200ms, queue size 100% BDP.
increases functions in unsynchronised environments,ré&igu
plots the measuredwnd distributions for both algorithms.
To control for the differences in backoff factor used in Gubiexhibit large variations ircwnd under unsynchronised con-
and the standard H-TCP algorithm, measurements are takifions. Firstly, we note that network paths contain extens
using a backoff factor of 0.8 for H-TCP (but without anybuffering and so variations irwnd need not translate into
other change to the algorithm). It can be seen thatctved variations in throughput. Most applications also use rexei
distributions are extremely similar, as might be expectechf buffers to further smooth out variations in arriving traffic
the foregoing discussion. Note that this is in line with poexs Secondly, TCP is designed for best-effort traffic. Traffiatth
simulation results reported in [2]. It appears that rembrtgequires a nearly constant arrival rate, and which cannet us
differences between the coefficient of variation of thend buffering to ensure this, should probably use a congestion
distributions of Cubic-TCP and H-TCP may therefore beontrol algorithm specifically targetted at this requireme
primarily® attributed to the differences in backoff factors usesuch as TFRC. With this in mind, it seems reasonable to argue
by the algorithms, rather than to the increase functions. that the most important features to consider when designing
On a broader note, a reasonable question, not yet answerely TCP congestion control algorithms are (i) the ability
is whether it in fact matters that high-speed TCP flows mag send packets quickly (short file transfer times), (ii) in a
2The H-TCP cubic function is slightly less aggressive thaat tf Cubic fair manner (avo!dlng prolonged u-nfa!meSS)’ ar-]d (III).hmIlt
TCP. Sincecwnd increases slowly on the flat section in the Cubic TCPCauSIng conge§tlon coIIap;e (maintaining the integrityhef
increase curve, this must be compensated for by a more aggréacrease INt€rnet). In this context, issues such as convergence rate
rate in order to maintain a low congestion epoch duration. fairness, the ability to fill the network pipe quickly, andvho
'3But possibly not solely. For example, different algorithan yield thege properties scale with increasing bandwidth, arelysure
different patterns of packet drops under the same networkditons, and . . , .
thereby affect the degree of synchronisation/unsynchation — this sort of paramount, and fluctuations in flowwond's area are a minor

issue is well known in the context of pacing in standard TCP. secondary issue.



2500 . . . . . . F}w\,l 0 —
Flow 2 —---—
Flow 3 - )?E/f—

H

08 R
L

2000

0.6

T

0.2
Standard TCP ——
i Cubic 10Mb/s —=—

\ \ \ \ \ \ \ ) Cubic 250Mb/s —li—

1600 1650 1700 1750 1800 1850 1900 1950 2000 D0.01 0.1 1
time (s) Queue size (Fraction of BDP)

Fig. 10. Example of Cubic TCP cwnd time histories with threed-lived Fig. 11. Aggregate throughput of two competing Cubic TCP $lamith

flows sharing a bottleneck link with 50 on-off sessions (méare between 10Mbit/sec and 250 Mbit/sec bottleneck bandwidths. Botlvglbave end-to-

requests of 10 seconds, connection sizes are Pareto wlisttivith shape end round-trip propagation delays of 100ms.

parameter of 1.2 and mean 600 packets). Bandwidth is 250/9dbjtRTT is

200ms, queue size 100% BDP.

1500

cwnd (packets)

1000 [

Total Throughput (Mbit/sec)
[
[

500

1 i

-
—n

L U

F—
./
V. EFFICIENCY

To evaluate the link utilisation of Cubic TCP, we consider "
two flows having the same propagation delay and measure /
average throughput as the buffer provisioning is variednfro
2.5% to 100% of the bandwidth-delay product, see Figure 11.
Results are shown for a 10Mb/s and a 250Mb/s link. As \\/
a reference, also plotted on Figure 11 is the efficiency for
standard TCP. S

In the case of a 10Mb/s link, it can be seen that for b z30nbls @~
buffers sized about 5% BDP Cubic TCP achieves greater link 1 RrT ) 10
utilisation than standard TCP. This is to be expected owimgy 12. Ratio of throughputs of two competing Cubic TCP floas
to the larger AIMD backoff factor of 0.8 used by Cubic aghe propagation delay of the second flow is varied. Resuttssaown for
opposed [0 the backolf factor of 0.5 used by standard TGEIUIES, 46, 2o0nises boencek bariars, Fowst W7 o
(so that Cubic decreasesmnd by less than standard TCP ons 100% BDP, no web traffic.
detecting packet loss). At buffer sizes below 2.5%, the link
utilisation achieved by both standard TCP and Cubic TCP
falls substantially, presumably due to micro-scale pabkests TCP, with the ratio of flow throughputs never falling below
flooding the queue once it reaches such a small size. about 0.25.

Somewhat surprisingly, we observe quite different behavio It is perhaps unexpected, however, that there is in fact any
at 250Mb/s. It can be seen from the lower plot in Figure 1dnfairness at all between Cubic TCP flows as the Cubic TCP
that for buffer sizes below 30% BDP the link utilisationncrease function used does not depend on flow RTT. That is,
achieved by Cubic TCP falls to around 50% of link capacitihe Cubic TCP increase function is defined as a function time
and is significantly lower than the link utilisation achieMey in seconds, in contrast to standard TCP where the increase
standard TCP. Although it requires further investigatitiis is specified per RTT. On closer inspection, we find that the
behaviour appears to be associated with the generationgef ladegree of unfairness in Cubic TCP is strongly dependent on
packet bursts by the Cubic TCP algorithm and might warratite start time of the flows. See for example Figure 13. It is

Faimness Ratio
o
[

a modified implementation to mitigate this effect. unclear at present why this behaviour occurs.
We note that at lowwnd’s Cubic TCP is observed exhibit
VI. FAIRNESS WITH DIFFERENTRTTS gross unfairness. This is illustrated for example in Figide

rpere it can be seen that one flow is essentially starved of
ndwidth. This effect appears to be associated with quanti
&(jltion of the Cubic TCP increase function angdhd backoff.

Figure 12 shows the ratio of measured throughputs wh
the propagation delay of the first flow is held constant
162ms and the propagation delay of the second flow is vari
Results are shown both for a bottleneck link bandwidth of
10 Mb/s and 250Mb/s. Results are shown when the queue is VII. BACKWARD COMPATIBILITY
sized at 100% BDP since, as discussed above, there appear figure 15 plots the ratio of measured throughputs of two
be additional issues when smaller sized queues are employkmvs with the same propagation delay and a shared bottleneck
Also marked on Figure 12, for reference, are the correspandiink. The first flow operates the standard TCP algorithm while
measurements obtained using standard TCP. It can be seenttiesecond flow operates Cubic TCP variant. Results are shown
Cubic TCP is generally significantly more fair than standarabth for bottleneck link bandwidths of 10 Mb/s and 250Mb/s.
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H a feature of Cubic-TCP, and of other algorithms, seems most
a00 1 worrying.
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