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The concept of geometrical frustration has led to rich insights into condensed matter physics, especially as
a mechanism to produce exotic low-energy states of matter. Here we show that frustration provides a natural
vehicle to generate models exhibiting anomalous thermalization of various types within high-energy states. We
consider three classes of nonintegrable frustrated spin models: (I) systems with local conserved quantities where
the number of symmetry sectors grows exponentially with the system size but more slowly than the Hilbert
space dimension, (II) systems with exact eigenstates that are singlet coverings, and (III) flatband systems hosting
magnon crystals. We argue that several one- and two-dimensional models from class I exhibit disorder-free
localization in high-energy states so that information propagation is dynamically inhibited on length scales
greater than a few lattice spacings. We further show that models of classes II and III exhibit quantum many-body
scars: eigenstates of nonintegrable Hamiltonians with finite-energy density and anomalously low-entanglement
entropy. Our results demonstrate that magnetic frustration supplies a means to systematically construct classes
of nonintegrable models exhibiting anomalous thermalization in mid-spectrum states.

DOI: 10.1103/PhysRevB.102.224303

I. INTRODUCTION

There is strong evidence that most eigenstates of noninte-
grable many-body Hamiltonians, if sufficiently far from the
spectral edges, are “thermal” in the sense that expectation
values of local observables on such eigenstates match well
the predictions of statistical mechanics [1]. This observation is
formalized in the eigenstate thermalization hypothesis (ETH)
[1–6] and is tied to the success of random-matrix theory in
describing some properties of the many-body spectrum such
as level repulsion. The complete breakdown of thermalization
occurs only in extreme instances. One widely known example
of anomalous thermalization is in integrable quantum systems
where there is no level repulsion between eigenvalues and the
long-time averages of local observables approach a distribu-
tion that is tethered to the presence of an extensive number of
conserved quantities [7]. Another well-known example is the
many-body localized (MBL) phase in interacting disordered
systems in which high-energy states have area law entangle-
ment and in which an extensive number of local integrals
of the motion are emergent [8]. In both the MBL phase and
integrable systems, the majority of eigenstates depart very
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much from random states compared to those of generic non-
integrable models.

In this paper we discuss two other types of anoma-
lous thermalization: disorder-free localization and many-body
quantum scars. Exploiting insights from the field of frustrated
quantum magnetism, we show how to design classes of many-
body systems that display the physics of one of these types.

Disorder-free localization is a variant of many-body lo-
calization in translationally invariant systems [9–20,20–25].
In this phenomenon, information propagation is inhibited by
the emergence of a localization length. In some cases the
localization originates from the single-particle eigenstates be-
ing localized, e.g., due to a Stark field [23,24] or due to a
flatband [20,25]. More intricate mechanisms have also been
uncovered; for example, Ref. [9] introduces a spin chain
coupled to complex fermions with an extensive number of
conserved quantities that maps to free fermions in a disor-
der potential generated by the different configurations of the
symmetry sectors so that each sector is Anderson localized.
(In discussing disorder-free localization, we are interested in
situations where typical initial states show signatures of local-
ization, in contrast to the freezing of particular initial states
such as single-domain-wall states [26–28], which can result
from spectral degeneracies.)

In the case of many-body quantum scars, an otherwise
apparently unexceptional spectrum of eigenstates is peppered
with highly athermal states. Such states were found to occur
in the PXP chain, a kinetically constrained model of spins 1/2
[29–32]. The PXP model is well realized experimentally with
Rydberg atoms [33]. These athermal eigenstates are called
many-body quantum scars after their nonergodic counterparts
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in single-particle semiclassical chaos that trace out periodic
trajectories in phase space but are perturbatively connected
to chaotic states [34]. Many-body quantum scars are charac-
terized by their anomalously low entanglement and through
local observables that strongly depart from random-matrix
predictions. The dynamics of states prepared with significant
overlap with scar eigenstates is also anomalous, involving
large-amplitude oscillations in the entanglement entropy and
in local correlation functions [29,30,35]. The reason for this
nonthermalizing dynamics is that, for such initial states, the
evolution can be thought of as taking place predominantly
within the subspace spanned by the scar states. In addition
to the PXP chain [29,30,35–45], a number of other systems
have been found to exhibit quantum many-body scar states,
including the Affleck-Kennedy-Lieb-Tasaki chain [40,46–49],
the one-dimensional transverse field Ising model with lon-
gitudinal field [50,51], quantum Hall systems in the thin
torus limit [41,52], the fermionic Hubbard model [53–56],
the spin-1 XY model [48,57,58], periodically driven mat-
ter [59–64], topologically ordered systems including fracton
models [40,61,65,66], and two-dimensional (2D) Rydberg lat-
tices [67,68], among other examples [16,49,57,69–77].

Geometrical frustration is well known to lead to many in-
teresting and exotic phenomena, including flatbands, quantum
and classical spin liquids, and fractionalization [78–81]. In
this paper we describe how geometrical frustration supplies
a mechanism to construct models with anomalous thermaliza-
tion including both disorder-free localization and many-body
scar states. These spin models, as explained in Sec. II, have an-
tiferromagnetic couplings on lattices of triangular units, which
serve as the basic units underlying frustrated magnetism. We
introduce three classes of models: (I) nonintegrable models
with local conservation laws, (II) models with protected sin-
glet coverings that can be tuned through the spectrum, and
(III) flatband models hosting localized magnon states and
magnon crystals.

Models from class I are intermediate between noninte-
grable models that typically have O(1) conservation laws
and integrable models in which the number of conserved
quantities equals the number of local degrees of freedom so
that all states are specified by a quantum number associated
with the conserved quantities. Class II contains, among other
examples, the Shastry-Sutherland model [82–87], which is a
foundational model of frustrated magnetism and is realized
to a good approximation in SrCu2(BO3)2. Some other models
discussed in this paper are also realized in magnetic materials.

In Sec. III we discuss the thermalization properties of
typical eigenstates in models from class I and demonstrate
disorder-free localization emerging in one of these models.
Then, in Sec. IV, we give various examples of models in
one and two dimensions exhibiting many-body scar states
from class II and in Sec. V an example of a model from
class III. The mechanism that gives low-entanglement scar
states for class II also gives the exact ground state of the
Shastry-Sutherland model for a range of parameter values.
The scars presented for these models can be tuned paramet-
rically relative to the many-body spectrum. All the quantum
scars we present are “true” scars in the sense that they are
not distinguished by symmetry compared to the surround-
ing eigenstates, i.e., they are not the extreme eigenvalues

(or isolated eigenvalues) in separate symmetry sectors [88].
Section VI provides a summary and some context.

II. MODELS AND MECHANISM

We now introduce the mechanism that we exploit to write
down models exhibiting anomalous mid-spectrum states. This
mechanism is based on the simplest frustrated unit: three spins
coupled by antiferromagnetic Heisenberg exchange. We will
then discuss separately three separate classes of magnetic
systems combining such frustrated units.

Consider the Heisenberg model with antiferromagnetic
couplings on a triangle of spins 1/2 with one distinguished
bond. The Hamiltonian is

H� = JS1 · S2 + J ′S1 · S3 + J ′S2 · S3, (2.1)

with J, J ′ > 0. We refer to the (S1, S2) bond as the distin-
guished bond, the J bond, or the dimer. For this geometrically
frustrated triangular unit, the total spin (S1 + S2)2 is a con-
served quantity. It follows that the singlet state on the
distinguished bond |0〉 ≡ 1√

2
(|↑ ↓〉 − |↓ ↑〉) is protected:

Eigenstates will have well-defined total spin on the distin-
guished bond. In a loose sense, this feature arises from
destructive interference on the two identical J ′ bonds and so it
is destroyed if those bonds are made inequivalent.

To analyze further the spectrum of the triangular plaque-
tte, we introduce projectors PS=0(Si, S j ) and PS=1(Si, S j ), the
total-spin-0 and −1 projectors for pairs of spins (i and j). We
also introduce

PS=3/2(Si, S j, Sk ) ≡ 1
3 (Si + S j + Sk )2 − 1

4 ,

the projector onto the total-spin-3/2 sector of three spins.
Then the Hamiltonian can be rewritten as

H� = 3

2
J ′PS=3/2(S1, S2, S3) − 3J ′

4

+ (J − J ′)
(

−3

4
PS=0(S1, S2) + 1

4
PS=1(S1, S2)

)
.

(2.2)

The projectors mutually commute. So, for typical couplings,
the spectrum splits up into total-spin-3/2 and −1/2 sectors,
as well as singlet and triplet sectors on the distinguished (J)
bond. This means that there is a fourfold-degenerate spin-3/2
level. Each of these four states has a triplet on the J bond.
There are also two doublets corresponding to total spin 1/2.
The J bond is a singlet in one of these degenerate pairs and is
a triplet in the other pair. At the fully frustrated point J = J ′,
the last term in Eq. (2.2) vanishes, so the two doublets merge:
There is a level crossing at J ′/J = 1. The singlet is the ground
state for J ′/J < 1.

While we focus in this work on spin-1/2 systems, the
existence of a conserved total spin on the distinguished bond
generalizes to any spin S: The singlet state of two spins S on
the J bond is an exact eigenstate with energy −JS(S + 1).
Diagonalization of the spin S Hamiltonian reveals that new
protected states (with J ′-independent energy) can arise for
S � 3/2.

The triangular plaquette with Heisenberg exchange and
one distinguished J bond provides the basic unit to create
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FIG. 1. Collection of lattices exhibiting athermal states in short-range interacting Heisenberg models with J couplings marked in thick
blue and J ′ on the remaining bonds. From class I, models on lattices (a)–(e) have an extensive number of local integrals of the motion: (a) fully
frustrated ladder, (b) diamond chain, (c) pyrochlore chain, (d) orthogonal dimer chain, and (e) fully frustrated bilayer. Class II includes
protected singlet states: (f) Shastry-Sutherland lattice and (g) sawtooth chain with J bond on teeth. Class III includes localized magnon states:
(h) square kagome lattice, (i) sawtooth chain with J ′ bonds on the spine (dotted), J bonds on every second valley which support the localized
magnons (thick blue line) and J ′′ = 2J ′ on odd valleys (black solid line), and (j) bow tie chain.

lattice models with disorder-free localization and many-body
scars. We distinguish three different cases.

Class I. In general, PS=3/2 operators on adjacent triangular
units do not commute with one another. However, there are
various ways to combine the triangles such that the total-spin
conservation on J bonds is preserved. For example, this is
achieved by connecting triangular units back to back and then
connecting these four-spin structures via the dangling spins.
Examples include the diamond chain in Fig. 1(b) and the
orthogonal dimer chain in Fig. 1(d) [89–91]. These models
have spin conservation on the vertical bonds. So does the fully
frustrated ladder in Figs. 1(a) and the bilayer in Fig. 1(e). Ref-
erence [92] argues that the latter model with XXZ couplings
is realized in a particular material to a good approximation.
In this class of lattices, the frustration mechanism is respon-
sible for an extensive number of conservation laws that is
however smaller than the number of degrees of freedom. For
example, in the orthogonal dimer chain there is one conserved
quantity per unit cell of four spins. Such models are inter-
mediate between integrable models, in which the number of
local conserved quantities equals the number of degrees of
freedom, and generic nonintegrable systems, which have O(1)
conserved quantities. We will address the question of whether
typical states in class I models thermalize.

It is also possible to generalize the frustration mechanism
that generates local conservation laws (class I) from dimers
to trimers, quadrumers, and so on. For example, a Heisenberg
coupled triangle with all exchange couplings equal to J has a
singlet eigenstate when each spin is an integer. If we couple

this triangle to one other spin through J ′ exchange, the singlet
remains an exact eigenstate and one can build chains of such
units such as the pyrochlore chain [Fig. 1(c)], which belongs
to class I. To generalize this to more spatially extended sin-
glets [93], we simply require that the polygonal unit admits
a singlet state. Thus, if the polygon has an odd number of
vertices the individual spins have to be integer valued; there is
no such constraint for even numbers of vertices.

Class II. If we relax the constraint that the total spin on each
J bond be conserved, we can nevertheless devise lattices that
retain the J bond singlet covering as an exact eigenstate. To
see how this can be done we take the example of the sawtooth
chain [94,95], shown in Fig. 1(g), with the Hamiltonian

HST =
∑

i

(JSi,1 · Si,2 + J ′Si,1 · Si+1,1 + J ′Si,2 · Si+1,1).

(2.3)
We write this in terms of projectors as indicated in Eq. (2.2)
and note that a state that satisfies PS=3/2(Si,1, Si,2, Si+1,1) = 0
and PS=1(Si,1, Si,2) = 0 is an exact eigenstate with energy
−3J ′N�/4, where N� is the number of triangles. These con-
ditions constrain each triangle to have total spin S = 1/2,
while the J bonds have S = 0. The product state with singlets
on the J bonds has these properties and is the unique state
that does. These are many-body quantum scars because dimer
coverings are highly atypical states (often with area law entan-
glement entropy) that can be embedded within the many-body
spectrum of a translationally invariant model with no local
conservation laws.
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This reasoning is reminiscent of the embedding argument
of Shiraishi and Mori [72] that gives a systematic way to place
athermal states into the spectrum of a many-body Hamilto-
nian. We briefly review this result. We introduce a set of local
projection operators Pα that need not commute. The scar states
are those that are annihilated by all the projectors Pα|�〉 = 0.
There is a class of Hamiltonians with such states as eigenstates

H =
∑

α

Pα ĥαPα + H ′, (2.4)

where [H ′, Pα] = 0 and hα is an arbitrary local operator. There
are many-body scars in the concrete sense described above
because

PαH |�〉 = PαH ′|�〉 = H ′Pα|�〉 = 0.

The example of the sawtooth chain [Fig. 1(g)] is a special
case of this kind of mechanism where the Hamiltonian is
merely a sum of projectors with the remarkable feature that
the conditions Pα|�〉 = 0 are solved by a dimer covering.

It is evident from the foregoing that the dimer covering
eigenstate appears in certain lattices composed of triangular
units. There is a large class of such lattices. Apart from the
sawtooth lattice, we show that the Shastry-Sutherland lattice
[Fig. 1(f)] and the maple leaf lattice (Fig. 7, left column)
exhibit similar physics.

In addition to J-J ′ Heisenberg models we consider the
counterpart XXZ models by including the perturbation

H ′
λ = λ

∑
i

(
JSz

i,1Sz
i,2 + J ′Sz

i,1Sz
i+1,1 + J ′Sz

i,2Sz
i+1,1

)
. (2.5)

This perturbation commutes with the projection operators and
is therefore equivalent to switching on H ′ in Eq. (2.4). The
physics we have presented above is thus preserved. When
using an XXZ anisotropy, the total spin is no longer a con-
served quantum number. Hence, for nonzero λ, the spectrum
is not separated into sectors corresponding to different values
of the total spin. This is convenient, e.g., when calculating
level statistics.

Class III. A third class of interesting frustrated mod-
els deriving from the H� model on a triangular pla-
quette is the famous class of models with a flatband
of one-magnon states leading to localized multimagnon
states. (For a recent review see Ref. [81].) An example
with localized magnons is the Heisenberg J-J ′-J ′′ model
on a sawtooth chain [Fig. 1(i)] that differs from the
case discussed above with J bonds on the left or right
jagged edges of the chain [96,97]. Suppose J = J ′′ = 2
and J ′ = 1 starting from the product state |↑ · · · ↑〉. Now ap-
ply operator �−

i ≡ (S−
i−1 − 2S−

i + S−
i+1) to state |↑i−1↑i↑i+1〉,

where i is a site at the base of one of the valleys on the saw-
tooth chain. This is a single localized magnon state. It turns
out that this model has a pair of exact many-body eigenstates
formed by applying �−

i to every even, or odd, valley along the
chain. These states live in the sector with half of the saturation
magnetization. This model has the undesirable feature that
the exact localized magnon state is highly fine-tuned: A small
change of the J ′/J coupling destroys the magnon localization,
whereas in classes I and II the protected states are robust to
changes in the ratio J ′/J . Moreover, the localized magnon
states exist in the ground state of a given symmetry sector.

However, there are models where the magnon crystal states
are robust to changes in the couplings with three examples
given in Fig. 1: the square kagome lattice, a variant of the
sawtooth model just described, and the bow tie chain. Later
in this paper (Sec. V) we study the square kagome example
in some detail, showing that multiple scar states arise in this
model that can be tuned through the spectrum and separated
in energy.

III. THERMALIZATION DYNAMICS IN FRUSTRATED
MODELS WITH LOCAL CONSERVATION LAWS

In this section we consider models from class I focusing
on two examples: the orthogonal dimer chain [Fig. 1(d)] and
the fully frustrated ladder [Fig. 1(a)]. We show that the distri-
bution of the entanglement of mid-spectrum eigenstates has
a large variance in contrast to usual nonintegrable models.
Also, both models violate the usual ETH scaling of eigenstate
matrix element distributions. These results show that mid-
spectrum states of the models are highly unusual, although
both are nonintegrable. We go further and argue that, in fact,
these models exhibit a variant of many-body localization,
albeit in the absence of quenched disorder. We explain that
the local conserved quantities fragment the eigenstates in real
space, leading to a localization length of the order of a few lat-
tice spacings, and demonstrate that the dynamics of the fully
frustrated ladder is consistent with the picture of disorder-free
localization. At the end of the section we provide concrete
examples of two-dimensional translationally invariant spin
models that, through a mapping to a percolation picture, can
be argued to exhibit similar phenomena.

As a concrete example of a model from class I, we con-
sider the orthogonal dimer chain [89–91] shown in Fig. 1(d).
In common with other models in this class, this model has
total spin conserved on each bond with J exchange. The
chain has four sites per unit cell and hence, for spin 1/2,
24C = 16C states, where C is the number of unit cells. The
number of symmetry sectors also grows exponentially in the
system size but with a smaller exponent: as 2C . This model
is distinct from integrable models in which the number of
symmetry sectors equals the number of states. For exam-
ple, in free-fermion models each state belongs to a unique
quasiparticle number sector, while for the Heisenberg chain
each state has a unique set of Bethe quantum numbers. The
orthogonal dimer chain model is also distinct from typical
nonintegrable models in which the number of conservation
laws is constant and of order one. A second example of this
type of model is the fully frustrated ladder [Fig. 1(a)] [98–100]
which has two sublattices per unit cell and hence 4C states
and 2C symmetry sectors. In all such examples, the size of
the subspace within a typical sector grows exponentially with
the system size. An obvious question is the extent to which
the thermalization properties of this class of models emulates
that of well-known integrable and nonintegrable models. To
start addressing this question, we consider the entanglement
of the eigenstates, measured using the von Neumann entropy
SvN = −Tr ρA ln ρA, where ρA is the reduced density matrix
for subsystem A. The entanglement entropy for a cut through
J ′ bonds on a 16-site fully frustrated ladder with blocks of
eight spins on each subsystem is shown in Fig. 2(a). Of
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(a)

(c) (d)

(b)

FIG. 2. Entanglement of eigenstates within the total Sz = 0 sec-
tor, for two members of class I. (a) Fully frustrated ladder, with
J = 1, J ′ = 2, λ = 0.5, and N = 16, an 8,8 site bipartition. (b) Or-
thogonal dimer chain, with J = J ′ = 1 and N = 16, a 9,7 bipartition.
The average entanglement of a random state with the same Hilbert
space size and same bipartition is shown in each case as a horizontal
line. Both plots show an anomalously broad distribution due to a
large number of a conserved quantities. (c) and (d) are for the fully
frustrated ladder. (c) Ratio of the average entanglement in the middle
of the spectrum to the maximal entanglement as a function of the
subsystem size NA. Blue lines show the envelope of maximal entan-
glement. (d) Scaling of the width σ of the distribution of off-diagonal
matrix elements of a local operator, consistent with a power law
σ ∼ N−α with α ≈ 3.7.

the 12 870 states, there is a single one with zero entangle-
ment on this cut. However, the more striking observation is
that there is a very large number of low-entanglement states
similar to analogous results for integrable models [101–104]
and the entanglement generally falls significantly below that
expected for completely random states [Fig. 2(c)]. The entan-
glement for the orthogonal dimer chain is similar and shown
in Fig. 2(b).

We now investigate whether the eigenstate thermalization
hypothesis is obeyed by the eigenstates of models within class
I. A natural expectation would be that thermalization takes
place as for nonintegrable models within each exponentially
large symmetry sector. To add weight to this hypothesis,
let us consider the fully frustrated ladder within the sector
with all dimer bonds in the total S = 1 sector. In this sector,
the dimer bonds maps to composite spins 1 and the cou-
pling between them is simply a Heisenberg coupling because
(Si,1 + Si,2) · (Si+1,1 + Si+1,2) is just the set of J ′ couplings
between rungs of the fully frustrated ladder. Thus, the all-
triplet sector is effectively a Heisenberg-coupled spin-1 chain
(spin-1 Haldane chain), which is not integrable and hence
is expected to obey ETH. Thus we have one example of an

exponentially large sector that obeys the ETH, in a model with
an exponentially large number of symmetry sectors. We can
imagine preparing a state in a random state within the sector
with all rungs having S = 1 and with some energy density; we
should find that observables at long times can be described
by a statistical ensemble average of eigenstates within this
sector at some fixed temperature set by the initial energy
density.

The sector with S = 1 on all rungs has exponentially small
weight in the whole Hilbert space. We must consider all
other sectors if we are to understand the gross thermalization
properties of the model. The composite spin picture described
above sheds light on all the remaining sectors. Each sector has
well-defined S = 0 or S = 1 on each rung of the ladder. We
know that consecutive S = 1 rungs map to Haldane chains.
The presence of S = 0 rungs has the effect of completely
decoupling neighboring Haldane chain fragments. It follows
that a state prepared in a given sector cannot completely
thermalize because entanglement cannot spread beyond S = 0
rungs. In other words, there is dynamical localization in each
sector.

Since we are interested in the thermalization of typical
states it is necessary to address how the amplitude in such
a state is distributed among the configurations with differ-
ent chain lengths. The distribution of chain lengths must be
calculated by weighting the configurations by the dimension
of their Hilbert space. This distribution P(	) is equivalent to
that of the distribution of success run lengths 	 in Bernoulli
trials with a weighted coin producing heads with probability
p = 3/4 and tails with probability q = 1/4. The distribution
of l consecutive S = 1 rungs is evidently p	 = exp(−a	), with
a ≈ 0.28, so short fragments are overwhelmingly important
within the set of all symmetry sectors. Indeed, the mean
S = 1 chain length is about 4. We conclude that typical states,
those that can be decomposed into a linear combination of
symmetry sectors of roughly equal weight, must be local-
ized apart from the exponentially small tail that exists in the
sector with all rungs S = 1. This is an example of so-called
disorder-free localization as the model is translationally in-
variant. Similarly to the case of the MBL phase, high-energy
states in the spectrum are dynamically localized. However,
unlike the MBL phase, the fully frustrated ladder is fine-
tuned and the anomalous thermalization properties we have
described cannot survive sufficiently large generic perturba-
tions. This localization mechanism bears some resemblance
to the Hilbert space fragmentation picture of several recent
works [16–18], albeit in a rather different setting.

We now turn to the question of whether signs of this
physics can be observed numerically. We focus now on the
fully frustrated ladder, because it has only two sites per unit
cell and so we are able to study a wider range of system sizes
than in the other models described above. We first address
whether eigenstates of the model obey the ETH, meaning that
we consider some local operator Ô and compute its eigenstate
matrix elements. If the ETH is satisfied, as is generally the
case in nonintegrable models, then [105,106]

〈EA|Ô|EB〉 = δAB f (1)
O (Ē ) + e−S(Ē )/2 f (2)

O (Ē , ω)RAB, (3.1)
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FIG. 3. Time evolution of the fully frustrated ladder with ten rungs (N = 20, J = 1, and J ′ = 1.1) for four different initial states. Each
column corresponds to a different initial state, as indicated. The top row shows the fidelity |〈ψ (0)|ψ (t )〉|2 and the bottom row the space-time
density plots of the absolute value of the connected correlation function 〈Sz

1(t )Sz
1+k (t )〉c between a spin on rung 1 and a spin on rung 1 + k. Rung

1 is connected to rungs 2 and 10, corresponding to k = 1 and 9, the leftmost and rightmost sites appearing in the density plots, respectively.

where S ∼ lnD is the entropy, with D the Hilbert space
dimension, |EA〉 is an energy eigenstate with eigenenergy EA,
Ē = (EA + EB)/2, and ω = EB − EA. The f (1/2)

O are smooth
functions and RAB is a (pseudo)random variable with zero
mean and unit variance. A crucial aspect of the ETH is the
scaling of the width of the distribution of either diagonal or
off-diagonal matrix elements: The width falls off as e−S(Ē)/2 ∼
D−1/2, i.e., exponentially with system size. This scaling is
based on the similarity between typical many-body eigen-
states and random states [107–109]. This behavior contrasts
sharply with integrable systems, which do not obey ETH
scaling: The width of diagonal matrix element distributions
generally has power-law decay with system size [108,110–
113] and the off-diagonal matrix element generally has a non-
Gaussian distribution [104,109,113]. In the latter studies, one
follows the spirit of corresponding investigations of noninte-
grable models by splitting the spectrum into global symmetry
sectors instead of the local sectors characteristic of integrable
systems. In this way, one finds large qualitative departures
from standard ETH scaling. The question we address here
is whether the same is true also for an instance of a class I
model.

The local operator we consider is 1
2 (S+

i S−
j + S−

i S+
j ), where

i and j are taken to be sites on neighboring rungs of the
ladder. The exchange is taken to be J = 1 and J ′ = 2 and
we break translational invariance by setting the exchange on
bonds between two rungs to have J = J ′. We have computed
the distribution of off-diagonal matrix elements for different
system sizes. The distribution is highly peaked at zero with

long tails. The width of the distribution narrows for larger
system sizes consistent with power-law scaling [Fig. 2(d)],
in contrast to the exponential scaling expected for typical
nonintegrable models. The violation of ETH scaling by the
fully frustrated ladder is consistent with the expectation of
localization within mid-spectrum eigenstates.

We now present features of the exact quantum dynamics
for a periodic chain of N = 20, or ten rungs, prepared in
different initial states. The results are shown in Fig. 3. The dif-
ferent columns correspond to different initial states. The four
panels in the top row show the return probability or fidelity
F (t ) ≡ |〈ψ (0)|ψ (t )〉|2, where ψ (t ) is the state of the system
at time t . In order to study the spreading of correlations, we
also present the absolute value of the connected correlation
function 〈Sz

1(t )Sz
1+k (t )〉c ≡ |〈Sz

1(t )Sz
1+k (t )〉 − 〈Sz

1(t )〉〈Sz
1+k (t )〉|

(bottom row). The subscript here is the rung index; this quan-
tity measures correlations between a site of the rung labeled
1 and a site on the rung 1 + k. In each case, the site on the
same leg of the rung is used. We use J = 1 (so that time is
measured in units of J−1) and J ′ = 1.1. For these parameters,
the all-singlet state is not the ground state.

As discussed above, when all the rungs are in the local
S = 1 sector, there is a mapping to the Haldane chain which
is nonintegrable and should behave like a generic random-
matrix model in the middle of the spectrum. Column (a) of
Fig. 3 shows results for the initial state with all rungs in the
total Sz = 0 triplet state |T0〉 = (1/

√
2)(|↑↓〉 + |↓↑〉). In this

case, the fidelity drops rapidly from F (0) = 1 with time on
a timescale set by the exchange and fluctuates close to zero,
as expected for a thermalizing system that should retain little
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memory of its initial state. The correlator in the bottom row
shows rapid spreading of correlations on a well-defined light
cone centered on site 1 and emanating in both directions on
the periodic chain so that both paths of the light cone meet at
site k = 5 on a timescale of the order of the exchange. Some
oscillations are visible in the correlation function at later times
which are presumably a finite-size effect. Similar behavior is
observed for a second initial state in the sector with all rungs
having S = 1. In column (b) of Fig. 3 we take the state with
alternating rungs in the Sz = 1 and Sz = −1 states, defined
as |T+〉 = |↑↑〉 and |T−〉 = |↓↓〉. Once again, the fidelity falls
rapidly and correlations spread on a light cone, in this case to a
largely featureless time-independent state at longer times. We
have confirmed that the amplitude of the fidelity fluctuations
decays with increasing system size for cases presented in
columns (a) and (b) [as can also be seen by comparing with
the fidelity in column (c) as explained below].

Column (c) is for the initial state T0T0T0T0ST0T0T0T0S,
where S denotes a rung in the singlet state. According to our
proposed scenario, the presence of the two rungs in singlet
states effectively splits the chain into a pair of fragments, each
composed of four triplet rungs that themselves have nontrivial
dynamics. The blocking of the spread of information by the
singlet rungs is clearly shown in the bottom panel; correlations
with rung 1 are nonvanishing only with rungs at k = 1, 2, and
3. The fidelity drop and large-amplitude fluctuations are as
expected for a chain of an effective length of four rungs.

As a final example, we consider a state that exists in a
linear combination of different singlet and triplet sectors, as
one expects for a generic state. Specifically, we take the ini-
tial state to be a product state, with each rung in the state
|↑↓〉. In other words, the initial state has Sz = 0 on each
rung with equal weight in the singlet and triplet sectors so
that many-body eigenstate has contributions in all possible
singlet and triplet sectors. Our expectation based on the fore-
going is that the small weight in the sector with all rungs
in triplet states will be subject to thermalizing dynamics [as
in the cases in columns (a) and (b)]. The rest of the state
will undergo some degree of dynamical localization because
of the presence of amplitude in mixed triplet-singlet sectors.
The results are shown in column (d). Evidently, the system
does not straightforwardly thermalize. Instead, the fidelity
shows clear periodic recurrences up to about 0.7, suggesting
a lack of complete thermalization. The correlation function
does exhibit a feature similar to the light cone of columns
(a) and (b). However, in this case, the feature is much less
pronounced and the longer-time correlations are much weaker
than in those other cases. The expectation is that generic states
for larger systems will have exponentially small weight in
the all-triplet sector. As this is the only truly thermalizing
part of the wave function, correlations will tend to be trapped
within small regions. The numerical results thus confirm our
proposed picture, up to usual finite-size limitations.

We now address the question of whether there are
two-dimensional analogs of the physics described above.
Figure 1(f) is a two-dimensional lattice that has J ′ bonds with
the connectivity of the fully frustrated ladder. The construc-
tion, exemplified here by the square lattice, can be generalized
to a bilayer of any lattice in two dimensions. In such cases,
there is local total-spin conservation on each J bond connect-

ing the two layers. As we did for the chain, we now consider
the different sectors on each J bond. Within each sector there
is generally a set of conserved singlet and triplet clusters on
the lattice. If we imagine preparing a quantum state within a
given sector, one would find information propagation within
each connected triplet cluster and that further propagation
would be blocked by singlet J bonds at the boundaries of each
cluster. The question of whether dynamical localization takes
place maps to a percolation problem. Taking the whole Hilbert
space of states, the probability that a J bond is occupied by a
triplet is 3/4, while singlet J bonds are effectively absent. If
the site percolation threshold p∗ is less than 3/4, typical clus-
ters percolate and information can propagate to infinity and
the system will thermalize. If instead p∗ > 3/4, dynamically
connected clusters have a characteristic length scale that is an
effective localization length.

Having argued that the problem of frustration-induced lo-
calization in two dimensions is reduced to a search for lattices
with p∗ > 3/4, we first note that this condition is not satisfied
by most lattices. For example, the square lattice bilayer of
Fig. 1(f) has p∗ = 0.5927 [114]. However, there are lattices
with low connectivity and large loops that do satisfy the con-
dition. Examples include the so-called star lattice [115,116]
with p∗ = 0.807 904 [94] [Fig. 4(a)] and the martini lattice
[117] with p∗ = 0.764 826 [118] [Fig. 4(b)]. The dynamics
of typical states on such lattices is strictly speaking athermal,
though the associated length scale may be large and for prac-
tical purposes local observables may be close to their thermal
values. The unit cell of the fully frustrated bilayer martini
lattice has 8 sites, while the fully frustrated bilayer star lattice
unit cell has 24. So it would be challenging to numerically
access the physics we have argued to exist in these models.

IV. EXAMPLES OF MANY-BODY QUANTUM SCARS:
CLASS II

A. Sawtooth chain

Our first example of a model with a many-body scar is the
sawtooth chain [94,95], which we have introduced in detail
in Sec. II. We demonstrated that the singlet dimer covering
on the J bonds is an exact eigenstate of fixed energy that
can be tuned so that it is arbitrarily located in the spectrum
relative to the ground state, e.g., its neighboring states can be
made to have high effective temperature. Figure 5(a) shows
the distribution of consecutive level spacings normalized to
the mean of the distribution P(s). The approximate prediction
for this quantity for random matrices of the Gaussian orthog-
onal ensemble (GOE) is

P(s) = π

2
s exp

(
−π

4
s2

)
.

The figure shows that this prediction is compatible with the
N = 16 total Sz = 0 sector for the XXZ model with J = 3,
J ′ = 1, and λ = −0.5. The spectra were computed using peri-
odic boundary conditions and were separated into momentum
sectors. Using XXZ couplings (λ �= 0) ensures that the total
spin is not a good quantum number, so there are no total-
spin symmetry sectors needing to be separated. The result
of Fig. 5(a) is expected in this model, which has no local
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(a)

(b)

FIG. 4. View in projection of lattices argued to belong to a class
of Heisenberg models with disorder-free localization: (a) star lattice
and (b) martini lattice. The full model is a bilayer of each of the
above lattices with fully frustrated couplings between the two layers
meaning that J couples the layers site for site and J ′ couples nearest
neighbors within each layer and between layers. The fully frustrated
square lattice bilayer is shown in Fig. 1 for reference.

conserved quantities, in contrast to integrable models, which
show Poissonian level spacing statistics.

The entanglement entropy between two half systems (eight
connected sites each) for the XXZ model as a function of
energy is shown in Fig. 5(b). The couplings used are such that
the eigenstate with singlet coverings lies in the middle of the
spectrum. We have highlighted this scar state in the figure by
circling the data point. The scar state has zero entanglement
because the entanglement partitioning border cuts through J ′
bonds. Other than the single scar state, the entanglement is
typical of nonintegrable systems with no conserved quantities:
The points form an arch with the entanglements in the middle
of the spectrum being close to that of a random state of the
same size and with low (area law) entanglement at the spectral
edges.

We have examined the effect of perturbations away from
the sawtooth XXZ model on a periodic N = 16 chain. Fig-
ure 5(c) shows the scar entanglement for two types of
perturbation: one where the two J ′ bonds become J ′ + η and
J ′ − η and the other where a new Heisenberg exchange with
coupling Jp is included between corner vertices on neighbor-
ing triangles. The effect of the latter type of coupling is more
dramatic with the entanglement rising to about 40% of the
random-state value for Jp/J = 0.07.

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Aspects of the sawtooth chain. (a) Level spacing statistics
for N = 20, J = 3, J ′ = 1, and λ = −0.5, compared with the GOE
(red) and Poissonian (green) predictions. (b) Entanglement entropies
in all eigenstates for J = 1, J ′ = 1.5, λ = 0.5, and N = 16. The scar
state is highlighted with a circle. The horizontal line at 4.949 is
the random state entanglement for the (8,8) bipartition. (c) Effect
of perturbations on the entanglement of the scar state, with J = 1.5,
J ′ = 1.0, λ = 0.5, and Jp (squares) and η (triangles). (d)–(f) Dynam-
ical signatures of scar states for an N = 12 chain with J ′/J = 0.05
(blue), J ′/J = 0.5 (black), J ′/J = 1.5 (red), and J ′/J = 4.5 (green).
(d) Square of overlaps between the initial state (state A) and different
eigenstates, plotted against eigenenergies. (e) Fidelity and (f) block
entanglement as functions of time.

The PXP model has several scar states [29] and it is possi-
ble to observe their presence through dynamical observables
by preparing an initial state with significant overlap with the
scar states. One finds that the dynamics exhibits Rabi oscil-
lations reflecting unitary evolution within the scar subspace
even though this subspace is distributed in energy across the
many-body spectrum. In contrast, the sawtooth chain with
periodic boundary conditions has a single scar state. Even so,
we ask whether this state might have observable dynamical
features. To this end, we prepare a state |�0〉 in the dimer
state except for a single bond that is excited into a product
state |01〉 with weight in the singlet and triplet sectors. This is
referred to as state A in Fig. 5. The overlap of this state with
all eigenstates is shown in Fig. 5(d) for different couplings
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J ′/J (in the Heisenberg model λ = 0). For small coupling
J ′/J = 0.05, close to the decoupled dimer limit, the overlap is
concentrated in the dimer state and its low-lying excited states.
As the coupling increases, the overlap distribution broadens
across the whole spectrum with the most dramatic broadening
taking place at the threshold (J ′/J )c ≈ 0.5, where the exact
singlet covering ceases to be the ground state. Turning now to
the dynamics, we find that the fidelity |〈�0|�(t )〉|2 exhibits
strong oscillations for J ′/J = 0.05, close to the decoupled
dimer limit [Fig. 5(e)], that persist out to times at least of
order 1000 times the period of oscillation. This degree of
coherence is to be expected as the initial state is predomi-
nantly a mixture of the ground state and low-lying excited
states. As the coupling increases beyond the critical coupling
(J ′/J )c the oscillations are progressively damped, reaching a
plateau in times of order 1 when J ′/J � 1. The fidelity in the
plateau is the (nonvanishing) weight of the scar state admixed
into the initial state. This result is therefore the analog of the
coherent oscillations seen in the PXP model but in the limit
where the number of scar states goes to one. These results
are mirrored by the time dependence of the entanglement
which remains small for long times for J ′/J = 0.05 and 0.5
because the dimer covering has low energies and the overlap
distribution is narrow in energy [Fig. 5(f)]. For larger cou-
plings, the entanglement quickly reaches a plateau close to the
random-state value as most of the weight of the initial state
approaches a random state. In summary, we have selected a
simple and natural initial state |�(0)〉 = α|S〉 + · · · (where S
denotes singlet covering) that has significant weight |α|2 with
the scar state. The dynamics of this state is consistent with the
thermalization of the state apart from the residual part coming
from the scar |S〉.

Open boundary

A look at the chain with open boundary conditions is il-
luminating. As before, we consider a sawtooth chain with N
sites with entanglement computed on a bipartition that cuts J ′
bonds, but now the chain has open boundaries and the bipar-
tition divides the chain into two equal (identical) blocks. We
know that one dimerized state exists in the spectrum of the pe-
riodic chain with zero entanglement on cuts through J ′ bonds.
On the open chain, many zero-entanglement states are present
in the spectrum, their number depending on the location of
the cut along the chain. These states can be rationalized as fol-
lows. In order for the state to have zero entanglement, the state
must be separable at the location of the single cut on the open
chain, say, dividing the chain into n sites on the left and N − n
on the right. Closer investigation reveals that the right-hand
side of the chain in these states has a simple dimer covering
imposed by the dangling J bond at the right-hand edge. The
left-hand side is in an eigenstate of the n-site open chain. It
follows that (i) the number of zero-entanglement states on the
open chain equals the total number of states on the open n
site chain and (ii) the energy of each zero-entanglement states
on the open chain is E scar

n|N−n = EOBC
n + Edimer

N−n where E scar
n|N−n is

the energy of the zero entanglement state on the (n, N − n)
bipartition, EOBC

n is the energy of an eigenstate on the n site
open chain, and Edimer

N−n is the energy of the singlet covering
on the N − n open chain, which is a constant. This point
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FIG. 6. Entanglement of the N = 12 sawtooth chain with open
boundary conditions and entanglement cut in the middle of the chain
(black points). The couplings are J = 1.0 and J ′ = 1.2. The zero-
entanglement states for this cut have energies equal to those of the
full spectrum on a chain of length N = 6 (red circles) up to a constant
shift.

is illustrated in Fig. 6, which shows the entanglement on a
subsystem of six sites from an open chain of length N = 12.
The energies of the zero-entanglement states on this cut are
in one-to-one correspondence with the full spectrum on the
N = 6 open chain (also shown).

B. Maple leaf lattice

The maple leaf lattice is a five-coordinated two-
dimensional edge-shared triangular lattice obtained by pe-
riodically depleting 1/7 of the sites from the regular
triangular lattice [Fig. 7(a), left] [119–121]. The lattice has
six sublattices and three symmetry-distinct nearest-neighbor
Heisenberg couplings. For our purposes, we set two of these
couplings to be equal. Thus we have a J-J ′ Heisenberg model
[Fig. 7(a), left]. This model is known to have the singlet
covering on the J bonds as an exact eigenstate, which is the
ground state for J ′/J � 0.69 [122].

The level spacing statistics computed from the eigenen-
ergies in the middle of the spectrum for an 18-site lattice
are compatible with random-matrix predictions and the non-
integrability of the model [Fig. 7(b), left]. For the level
spacing results, we have broken SU(2) symmetry by using an
anisotropic coupling, i.e., using the XXZ model, in order to
avoid having multiple sectors corresponding to different total
spin values.

In Fig. 7(c), left, we present the entanglement for the
Heisenberg model (λ = 0) in the total Sz = 0 sector. For the
Heisenberg model, the total spin is a good quantum number.
This results in separate arches corresponding to different total
spin sectors. Figure 7(c), left, features the protected singlet
state at intermediate energies in the spectrum. This scar state
is highlighted in the figure. The partition (separating the two
blocks between which the entanglement is calculated) cuts
one singlet bond, so the scar state entanglement is log 2. This
is well below the random-matrix value, which is close to 5.
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(a)

(c)

(b)

FIG. 7. The left column shows the maple leaf lattice with 18
sites. The right column shows the Shastry-Sutherland lattice with
either (b) 20 sites or (a) and (c) 16 sites. (a) J (J ′) bonds are
denoted by dashed (solid) lines. One of the entanglement bipartitions
is distinguished by blue shaded sites. The trapezoids demarcate the
finite-size systems used for numerical diagonalization, with periodic
boundary conditions. (b) Level spacing distributions, compared with
Poissonian (green) and GOE (red) predictions. Shown on the left
is the maple leaf XXZ lattice, with J = 3, J ′ = 1, and λ = −0.5.
Statistics are from the middle 1/6 of the spectrum in the total Sz = 0
sector. Shown on the right is the Shastry-Sutherland lattice, with
N = 20, J = 3, J ′ = 1, and λ = 0. The right inset shows the distri-
bution of ratios of level spacings. (c) Entanglement entropy of each
eigenstate plotted against eigenenergies. Scar states are highlighted.
The random state entanglement is indicated as a horizontal line in
both panels. On the left is the maple leaf lattice, with J = 0.2, J ′ = 1,
and λ = 0, and on the right is the Shastry-Sutherland lattice, with
N = 16, J = 1, J ′ = 1.25, and λ = 0.

C. Shastry-Sutherland model

The Shastry-Sutherland model [82–87] is a J-J ′ model de-
fined on the four-sublattice 2D lattice shown in Fig. 1(f). This
model is realized to a good approximation in SrCu2(BO3)2

with J ′/J ∼ 0.6 [83–85,87], and its ground state and
thermodynamic properties have been of intense interest in the
field of frustrated magnetism.

When J ′ = 0, the lattice decouples into isolated pairs of
J-coupled spins, and the ground state has singlets on each J
bond. The argument outlined in Sec. II tells us that the singlet
covering remains an exact eigenstate for any value of J ′ and
extensive numerical studies have shown that this state is the
ground state for J ′/J � 0.7 [123]. For larger values of J ′/J ,
this eigenstate is no longer the ground state and is instead a
scar state.

The level spacing distribution for a 20-site lattice is shown
in Fig. 7(b), right. The spectrum has been split into symmetry
sectors and the level spacing computed for each separately
for the middle 1/6 of the spectrum and then combined into
the full distribution. The distribution is well described by that
of the GOE result, consistent with the fact that the model is
nonintegrable. The inset in Fig. 7(b) shows the distribution of
r values defined by [124,125]

rn ≡ min(sn, sn+1)

max(sn, sn+1)
,

where sn = En+1 − En and the eigenvalues En are ordered.
Again the distribution is compatible with the GOE result with
mean 〈r〉 = 0.537.

Figure 7(c), right, shows the entanglement computed for
the 16-spin lattice shown in Fig. 7(a), right, on a connected
partition encompassing eight spins and in the total Sz = 0
sector. The entanglement in each eigenstate is plotted against
the eigenenergies. Other than a single scar state, the entan-
glements are arranged in several arches, corresponding to
different sectors of total spin, as in the maple leaf case. The
boundary between partitions is such that it avoids cutting
singlet bonds so that the entanglement of the scar state is
zero. For an arbitrary cut, the entanglement of the scar state
would scale as the area of the boundary, in contrast to volume
law for neighboring states in the middle of the spectrum. The
isolated zero-entanglement state has fixed (J ′-independent)
energy and its location relative to the middle of the spectrum
can be tuned so that it lies among the mid-spectrum states in
the lower (upper) half of the spectrum for antiferromagnetic
(ferromagnetic) couplings.

V. MANY-BODY QUANTUM SCARS FROM THE SQUARE
KAGOME: CLASS III

In Sec. II we listed three example of models from class
III. In one dimension we mentioned the sawtooth chain, with
distinguished bonds on alternate valleys, and the bow tie
chain. We now discuss an example of a class III model in two
dimensions.

The square kagome lattice [126–130] is a two-dimensional
lattice of corner-sharing triangles with a six-site primitive
cell. Like the kagome lattice, it has coordination number 4
but, whereas the kagome lattice has an underlying triangular
Bravais lattice and triangular and hexagonal polygonal units,
the square kagome has a square Bravais cell and triangular
and square units. The latter are crucial to the existence of scar
states in the J-J ′ XXZ model on this lattice, where J is on the
square edges and J ′ on all other bonds [126,131]. Evidently
this has the same kind of frustrated triangular unit that we
have seen throughout this paper.
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(a) (b)

FIG. 8. (a) Finite square kagome lattice of 30 sites used for the
exact diagonalization study. The entanglement bipartition is indi-
cated by the shading of the lattice sites. The exchange coupling Jn

on the square plaquettes is shown for each square, while J ′ = 1.8
and λ = 0.5 throughout. (b) Entanglement entropy within the total
Sz = 22s sector on the 30-site system showing three scar states with
zero-entanglement entropy.

It is known that this model has a 2/3 magnetization plateau
that can be reached from the fully polarized high-field limit
through the condensation of a flatband of magnons. These lo-
calized magnon states exist on the square plaquettes and exact
eigenstates for such states starting from the fully magnetized
state |11 . . . 1〉 are obtained as

∑
m(−)mS−

m |11 . . . 1〉, where
m is taken counterclockwise around a square plaquette. The
ground state in the 2/3 magnetization sector is obtained by
tiling every square plaquette with such localized magnons.

In order to construct quantum many-body scar states we
may simply place localized magnons on a subset of the square
plaquettes. For example, if we tile all but one of the pla-
quettes with localized magnons we will have a many-body
scar state with degeneracy equal to the number of unit cells.
In order to obtain multiple scar states as in the PXP model
we may enlarge the unit cell by taking the J exchange to
be different on different square plaquettes. As a concrete
example, we consider the 30-site system shown in Fig. 8
with the crystallographic unit cell enlarged by choosing the
exchange on square plaquettes to be J1 = J5 = 1.0, J2 = 1.1,
J3 = 1.2, and J4 = 1.3 as shown. For this system size the
saturation magnetization is Sz = 30s, with s = 1/2. We carry
out diagonalization in the sector with all but one of the square
plaquettes in a localized magnon state, the Sz = 22s sector.
If the Jn were equal there would be a fivefold degeneracy of
the localized magnon states corresponding to the five ways
of choosing the position of the fully polarized plaquette. By
enlarging the unit cell in the way indicated this degeneracy
is broken down to 1 + 1 + 1 + 2 and the twofold-degenerate
states can mix, leading to a finite entanglement. The remaining
three states are manifestly scar states appearing at distinct
energies with zero entanglement. For our choice of J ′ = 1.8,
these appear roughly in the middle of the spectrum [Fig. 8(b)],
thus forming scars.

VI. SUMMARY AND CONCLUSIONS

Geometrical frustration has long been one of the central
ideas in condensed matter physics with important connections

to various low-energy exotic classical and quantum states
of matter. Here we have described how geometrical frustra-
tion can also lead to unusual high-energy states. We have
divided the presentation into three classes of phenomena,
each giving a large class of models exhibiting anomalous
thermalization in at least some mid-spectrum states. In the
first class, geometrical frustration leads to an extensive num-
ber of local conservation laws that is however smaller than
the number of degrees of freedom. This class therefore con-
sists of nonintegrable models with highly structured Hilbert
spaces. We have shown that standard ETH scaling is violated
for one example from this class, the fully frustrated ladder,
which instead most closely resembles the behavior seen in
integrable models. A more detailed examination of the fully
frustrated ladder reveals that it is an example of disorder-free
localization, in which correlations and entanglement spread-
ing are dynamically inhibited on the scale of a few lattice
spacings. This example generalizes straightforwardly to any
one-dimensional model with frustrated units, carrying locally
conserved spin protecting localized singlets, separated from
one another by any set of arbitrarily coupled spins. We have
also argued that aspects of this physics carry over to certain 2D
models, including the fully frustrated bilayer models on star
and martini lattices. We leave a detailed numerical analysis
of these 2D models as a problem for the future. The second
class of models we have considered has many-body quantum
scar states that are product states of singlets and examples
include the sawtooth chain, the famous Shastry-Sutherland
model, and the maple leaf lattice. Each of these examples has
a single many-body scar state and we have studied the dynam-
ical signatures of such states. We have shown through several
examples that this physics is insensitive to the choice of J ′/J
and the anisotropic coupling. We have also shown that such
models naturally fall within the framework of Shiraishi and
Mori that uses local projectors to construct Hamiltonians with
scar states. The final class is composed of flatband models ex-
hibiting localized magnon states. As for classes I and II, there
are many such models and all rely on magnetic frustration as
the mechanism for the existence of athermal states. We gave
three examples of such models and investigated one of these
in detail, showing that it can be engineering so that arbitrarily
many scar states with distinct energies appear in the middle of
the spectrum. One interesting open question regarding class
III models is whether there is a framework analogous to that
of Shiraishi and Mori that can generalize the physics to other
models.
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