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Quantum many-body scarring is believed to be the mechanism behind long-lived coherent oscillations in
interacting Rydberg atom chains. These persistent oscillations are due to the large overlap of the many-body
scars with certain initial states. We show that the “effective dimension” is a useful measure for identifying
nonthermalizing initial states in many-body scarred systems. By minimising the effective dimension we find
physically reasonable initial states of the Rydberg chain that lead to more pronounced and longer-lived oscilla-
tions, accentuating the effect of the many-body scars on the dynamics.
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I. INTRODUCTION

Due to advances in experimental techniques with ultra-
cold atoms [1,2], trapped ions [3], nitrogen-vacany centers,
and other platforms, it is now possible to probe the quan-
tum coherent dynamics of interacting many-body systems.
This opens the door to the exploration of new frontiers in
condensed-matter physics [4] but may also have a technolog-
ical impact since it can help us to understand equilibration
and thermalization in quantum systems, which, in turn, may
help us to develop strategies to protect quantum coherence in
many-body systems.

Quantum equilibration and thermalization are often studied
by means of a quantum quench, whereby a closed sys-
tem is initially prepared in the ground-state |ψ (0)〉 of some
prequench Hamiltonian Ĥpre ≡ Ĥ(t < 0). After a sudden
change in the Hamiltonian parameters at t = 0, dynamics
is then generated by the postquench Hamiltonian Ĥpost ≡
Ĥ(t > 0). The system equilibrates if all few-body observ-
ables settle to their equilibrium values and stay close to
these values for most times t > 0. The system is said to
have thermalized if all of these observable equilibrium values
are approximately equal to their expectation values in the
Gibbs state [5].

Of course, it is possible to slow down or avoid equilibration
by starting from a nonequilibrium initial-state |ψ (0)〉 that is a
superposition of some subset of the postquench Hamiltonian
eigenstates with approximately resonant energy gaps. How-
ever, such an initial state is typically difficult or impossible
to create experimentally for a many-body system, particularly
for a nonintegrable Ĥpost as the corresponding prequench
Hamiltonian may require highly nonlocal terms or fine-tuning
of a large number of Hamiltonian parameters [6].

Despite this, a recent experiment on a chain of cold Ryd-
berg atoms found unexpected long-lived coherent oscillations
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for a certain initial state [2]. The failure to equilibrate over
experimentally long timescales for this initial state was argued
to be due to its large overlap with a band of special eigenstates
of the postquench Hamiltonian [7,8]. These special states
violate the eigenstate thermalization hypothesis (ETH) [9],
and were dubbed quantum many-body scars due to similarities
with quantum scars in single-particle billiard systems [10]. A
large amount of recent work has uncovered various properties
of scars in the Rydberg chain [11–15] and in other models
[16–23].

In this paper, we investigate whether the failure to equi-
librate can be made more extreme with initial states |ψ (0)〉
that are a superposition of a smaller number of scar states of
Ĥpost. We find that minimization of the effective dimension is a
useful way of targeting such states. For the Rydberg chain and
a prequench Hamiltonian with next-nearest-neighbor terms,
we find that the number of participating scar states can be sig-
nificantly decreased. The resulting dynamics are qualitatively
different depending on whether L/2 is odd or even, where L is
the length of the chain. However, in either case the Loschmidt
echoes are enhanced, and longer lived than for the initial states
considered in Refs. [2,7].

The layout of our paper is as follows. In Sec. II we briefly
review the phenomenon of quantum many-body scarring in
the Rydberg atom chain and introduce our figure of merit,
the effective dimension. In Sec. III we introduce our pre-
quench Hamiltonian, which involves next-nearest-neighbor
interaction between Rydberg atoms, and we discuss some of
its ground-state properties. Our main results are presented in
Sec. IV where we show that this modification can lead to a
significantly reduced effective dimension and a slowdown in
equilibration.

II. QUANTUM MANY-BODY SCARS IN
THE RYDBERG ATOM CHAIN

An effective model for a chain of L cold Rydberg atoms in
the regime of nearest-neigbor Rydberg blockade is given by
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FIG. 1. We compare evolution by the postquench Hamiltonian Ĥpost
0 for different initial states, specified by the prequench Hamiltonian

parameters (gx
2, gy

2, �) [see Eqs. (4), (7), and (8)]. (a) and (b) The initial state that minimizes Deff (red lines) gives enhanced, broadened, and
longer-lived Loschmidt echoes with qualitatively different dynamics if L/2 is even (a) or odd (b). (c) and (d) The optimal initial state gives an
enhanced overlap with scar states in the middle of the spectrum as well as a narrower energy distribution. If L/2 is even a single eigenstate
dominates (c), whereas if L/2 is odd there are three eigenstates with significant overlap (d). (e) The optimal initial state gives a significantly
reduced effective dimension Deff and a sublinear increase with system size L. (f) The optimal prequench Hamiltonian parameters vary only
slightly with L.

the postquench Hamiltonian [24],

Ĥpost
0 = P̂ĥpost

0 P̂, ĥpost
0 = h̄�

2

L∑
j=1

σ̂ x
j , (1)

where σ̂ x
j = |↑ j〉〈↓ j | + |↓ j〉〈↑ j | acts on the two-level atom at

site j of the chain. The projector,

P̂ =
L∏

i=1

(Î − |↑i↑i+1〉〈↑i↑i+1|) (2)

implements the blockade by excluding states |· · · ↑↑ · · ·〉
with two consecutive ↑ states. Such states are annihilated
by P̂ and are, therefore, trivial zero-energy eigenstates of
the Hamiltonian Ĥpost

0 and may be neglected [25]. We note
that a lowercase letter is used to distinguish the projected
Hamiltonian Ĥpost

0 from the Hamiltonian ĥpost
0 without a

nearest-neighbor blockade.
Assuming periodic boundary conditions, the Hamiltonian

Ĥpost
0 is invariant under the translation of site index j → j +

1, implying that the momentum k = 2πn/L, n ∈ {−L/2 +
1,−L/2 + 2, . . . , L/2} is a conserved quantum number. Re-
flection around the midpoint of the chain j → L − j + 1 is
also a symmetry of the Hamiltonian, implying the conser-
vation of spatial parity p = ±1. Moreover, the postquench
Hamiltonian obeys a particle-hole symmetry {Ĥpost

0 , �̂} = 0,
where �̂ ≡ ⊗L

j=1 σ̂ z
j is the excitation number parity operator.

This implies that for any eigenstate |E〉 of Ĥpost
0 with eigen-

value E there is also an eigenstate �̂|E〉 with the eigenvalue
−E .

It was observed in Ref. [2] that for the initial state
|ψ (0)〉 = |↓↓↓ · · ·〉 the system rapidly thermalizes. However,
for the initial Néel state |ψ (0)〉 = |Z2〉 ≡ |↑↓↑↓ · · ·〉 (or,

alternatively, for |ψ (0)〉 = |Z′
2〉 ≡ |↓↑↓↑ · · ·〉) the dynamics

show persistant oscillations of local observables. The blue
lines in Figs. 1(a) and 1(b) show the revivals of the Loschmidt
probability L(t ) ≡ |〈ψ (0)| exp(−itĤpost

0 /h̄)|ψ (0)〉|2, calcu-
lated numerically for chain lengths L ∈ {28, 30} and for
|ψ (0)〉 = |Z2〉. By comparison, for |ψ (0)〉 = |↓↓↓ · · ·〉 the
Loschmidt probability decays rapidly and does not revive
within the time of our numerical calculation (the black lines).
[The red lines in Figs. 1(a) and 1(b) show the enhanced
Loschmidt echoes for a modified initial state, which will be
described in more detail in the following sections.]

Within a momentum/parity symmetry sector, the eigen-
value level statistics of Ĥpost

0 exhibit level repulsion, indicating
that the model is nonintegrable [7]. Moreover, both initial
states have the property that their energy expectation values
are 〈ψ (0)|Ĥpost

0 |ψ (0)〉 = 0, exactly in the middle of the spec-
trum. Observables, if they thermalize, would, therefore, be
expected to thermalize to their infinite-temperature values in
this case. The failure to rapidly thermalize for |ψ (0)〉 = |Z2〉
was shown to be due to quantum many-body scars, a band
of special ETH-violating eigenstates of Ĥpost

0 that have a
large overlap with |Z2〉 [see Figs. 1(c) and 1(d), blue circles]
[7,8,12].

The large overlap with the special states is reflected in the
effective dimension,

Deff ≡
(∑

n

|〈En|ψ (0)〉|4
)−1

, (3)

where |En〉’s are the eigenstates of the postquench Hamilto-
nian. Roughly speaking, the effective dimension is the number
of distinct states through which the system evolves in the
course of its dynamics [26]. We note that this quantity has
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been used to derive bounds on the fluctuations of observables
around their equilibrium values, assuming that the postquench
Hamiltonian has no resonant energy gaps [6,27]. We also
note that the effective dimension is closely related to the
inverse participation ratio (IPR), although the IPR is usually
used in the context of localization of quantum states [28–30].
In Fig. 1(e) we see that Deff is much lower for |ψ (0)〉 =
|Z2〉 than for |ψ (0)〉 = |↓↓↓ · · ·〉 as a result of the large
overlap with the quantum many-body scars. Moreover, for
|ψ (0)〉 = |↓↓↓ · · ·〉 the effective dimension increases much
more quickly with L than for |ψ (0)〉 = |Z2〉 (black line vs
blue line). Our goal in this paper is to find physically reason-
able initial states that further reduce the effective dimension.

III. MODIFYING THE PREQUENCH HAMILTONIAN

Initial-states |ψ (0)〉 = |Z2〉 and |ψ (0)〉 = |↓↓ · · ·〉 consid-
ered in the previous section can be represented as ground
states of the prequench Hamiltonian,

Ĥpre
0 = P̂ĥpre

0 P̂, ĥpre
0 = h̄�

2

L∑
j=1

σ̂ z
j . (4)

Choosing � > 0 gives ground-state |↓↓↓ · · ·〉. Without the
projector P̂ implementing the Rydberg blockade the ground
state for � < 0 would be |↑↑↑ · · ·〉. However, with the block-
ade, consecutive ↑ states are forbidden, and choosing � < 0
gives the degenerate ground-states (|Z2〉 ± |Z′

2〉)/
√

2 with the
“+” state (|Z2〉 + |Z′

2〉)/
√

2 in the (k, p) = (0, 1) symmetry
sector and the “−” state (|Z2〉 − |Z′

2〉)/
√

2 in the (k, p) =
(π,−1) symmetry sector. In any experiment we expect to
see spontaneous breaking of the translation and reflection
symmetries, giving one of the two Néel states |Z2〉 or |Z′

2〉
as the ground state. This is discussed in more detail in
Appendix A.

It is natural to ask if one can further reduce the effec-
tive dimension Deff with a physically plausible deformation
Ĥpre

0 → Ĥpre of the prequench Hamiltonian. To ensure the
the prequench Hamiltonian Ĥpre is physically reasonable we
restrict to local deformations of Ĥpre

0 . We also assume that
the new prequench Hamiltonian preserves both the translation
invariance and reflection invariance of the original prequench
Hamiltonian. We note that if ground-state |ψ (0)〉 is an eigen-
state of the excitation number parity operator �̂ ≡ ⊗L

j=1 σ̂ z
j ,

and if the postquench Hamiltonian that has particle-hole sym-
metry {Ĥpost, �̂} = 0, then we have

〈ψ (0)|Ĥpost|ψ (0)〉 = 〈ψ (0)|�̂Ĥpost�̂|ψ (0)〉 (5)

= −〈ψ (0)|Ĥpost|ψ (0)〉, (6)

and so 〈ψ (0)|Ĥpost|ψ (0)〉 = 0. Thus, it is convenient to re-
quire the prequench Hamiltonian to also have parity symmetry
[Ĥpre, �̂] = 0 since this pins the energy expectation value of
the initial state to the middle of the spectrum of Ĥpost. We
search for local deformations Ĥpre

0 → Ĥpre that satisfy our
criteria above, and that have the effect of reducing Deff .

After numerically testing various nearest-neighbor and
next-nearest-neighbor terms, we find that the deformation of
the form Ĥpre

0 → Ĥpre = P̂ĥpreP̂, where

ĥpre = ĥpre
0 + δĥpre

2 , (7)

δĥpre
2 = h̄

L∑
j=1

(
gx

2σ̂
x
j σ̂

x
j+2 + gy

2σ̂
y
j σ̂

y
j+2

)
(8)

has the most significant effect in decreasing the effective di-
mension Deff . Before showing this, we briefly discuss some
of the ground-state properties of Ĥpre after including the
next-nearest-neighbor terms since this ground state will be the
initial state for the subsequent dynamics.

A vanishing energy gap δ = 0 between the two lowest
eigenstates of Ĥpre implies an ambiguity about which su-
perposition of the degenerate states represents the physical
ground state. As mentioned previously, this situation already
arises for the unperturbed prequench Hamiltonian Ĥpre

0 . How-
ever, the ambiguity is resolved by spontaneous symmetry
breaking, which leads to one of the Néel states. In Fig. 2 (left
column) we plot the energy gap δ between the two lowest
eigenstates of Ĥpre for the parameters (gx

2, gy
2,� = −1) and

for system sizes L ∈ {18, 20, 22, 24}. We see that, particularly
for L/2 odd, there are large regions of parameters that (up
to numerical precision) result in a ground-state degeneracy
δ = 0. In Appendix A we outline our procedure, based on
spontaneous symmetry breaking, for choosing the ground
state in our numerical calculations when δ = 0.

IV. DECREASED Deff AND ENHANCED REVIVALS VIA
MODIFIED INITIAL STATES

We now show numerically that the modification of the
pre-quench Hamiltonian by the next-nearest neighbor defor-
mation Eq. (8) can lead to a reduced effective dimension
for the dynamics. In Fig. 2 (right column) we plot the
effective dimension for initial states corresponding to the
prequench Hamiltonian parameters (gx

2, gy
2,� = −1) for L ∈

{18, 20, 22, 24}. We see that there is a broad region of parame-
ters that result in a decreased Deff compared to the unmodified
prequench Hamiltonian parameters (gx

2, gy
2,�) = (0, 0,−1).

The optimal parameters (gx,opt
2 , gy,opt

2 ,� = −1) that minim-
imize the effective dimension are marked with a cross. By
referring to the left column of Fig. 2, we see that if L/2 is odd,
the optimal parameters (gx,opt

2 , gy,opt
2 ,� = −1) fall within the

region of ground-state degeneracy, but that if L/2 is even the
optimal ground state is in a nondegenerate phase.

Not only is Deff at its minimum value for (gx,opt
2 , gy,opt

2 ,� =
−1), but Figs. 1(a) and 1(b) show that it also leads to a signif-
icant enhancement of the Loschmidt revivals and a slowdown
in their decay (red lines vs blue lines). There is a qualitative
difference in the dynamics depending on whether L/2 is odd
or even [Fig. 1(a) vs Fig. 1(b)] due to the initial state belonging
to different ground-state phases of Ĥpre in either case. If L/2
is odd [Fig. 1(b)], the Loschmidt probability decays to zero,
but revives periodically. On the other hand, if L/2 is even, the
Loschmidt probability fails to decay completely to zero and
has a revival frequency that is double that of L/2 odd.
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FIG. 2. Left column: the energy gap δ between the two
lowest-energy eigenstates of Ĥpre for the Hamiltonian parameters
(gx

2, gy
2,� = −1) [see Eqs. (7) and (8)]. Right column: the effective

dimension Deff for the initial state corresponding to (gx
2, gy

2, � = −1)
and for the postquench Hamiltonian Ĥpost

0 . The minimum value of
Deff is marked with a cross. We note for L ∈ {18, 22}, discontinuities
in Deff in the gapless regions are associated with quantum phase
transitions of Ĥpre. However, a further discussion of the quantum
phase transition is beyond the scope of this paper.

To understand these features of the dynamics we plot the
overlaps of the initial state at the optimal point with the eigen-
states of the postquench Hamiltonian Ĥpost

0 . Figures 1(c) and
1(d) show that our modification of the prequench Hamiltonian
has the effect of increasing the overlap of the initial state with
the scar states nearest to the middle of the spectrum, whereas
decreasing the overlap with the scar states further from the
middle of the spectrum [red triangles vs blue circles]. For L/2
even, the overlap is dominated by a single scar state at zero
energy with all other overlaps, at least, an order of magnitude
smaller [Fig. 1(c)]. The dynamics is, therefore, partly “stuck”
in this eigenstate and cannot completely evolve to an orthog-
onal state so that L(t ) cannot decay completely. If L/2 is odd

there are three scar states in the middle of the spectrum that
have significant overlap with the initial state [Fig. 1(d)]. This
is sufficient for the initial state to evolve to an approximately
orthogonal state, leading to a full decay of L(t ) between its
revivals.

We note that, although our minimization of the effective
dimension leads to significantly enhanced Loschmidt revivals,
this does not imply that the revivals are maximized by our
perturbation of the initial state. Rather, minimization of the
effective dimension and the maximization of revivals are two
different ways of targeting nonequilibrating initial states. For
example, in Fig. 1(a) the failure of the Loschmidt echo to
decay to zero is a feature that emerges directly from the min-
imization of the effective dimension and would not have been
observed if the focus was solely on maximizing the revivals.

We also note that the Loschmidt echo is not likely to be
easy to measure experimentally. However, in Appendix B we
show that our perturbation of the initial state also leads to
longer-lived oscillations in local observables.

The growth of the effective dimension with the system
size L is shown in Fig. 1(e). For the thermalizing initial
state |ψ (0)〉 = |↓↓↓ · · ·〉 [(gx

2, gy
2,�) = (0, 0,+1)], we see

that the effective dimension increases exponentially with L.
For the nonthermalizing Néel state [(gx

2, gy
2,�) = (0, 0,−1)]

the rate of increase is much slower, although it appears to
be slightly faster than linear in L, since the plot of Deff/L
is slightly increasing in L. For the optimal initial state
[(gx,opt

2 , gy,opt
2 ,� = −1)], the increase in the effective dimen-

sion is slower still and appears to be sublinear in L for the
system sizes accessible with our numerics. Despite being a
quantum chaotic system, the effective dimension is just Deff ≈
2.3 for the optimal initial state at L = 28. For comparison, the
(k, p) = (0, 1) symmetry sector in which the dynamics takes
place has a much larger dimension D = 13, 201 [excluding
the trivial zero-energy eigenstates P̂|E〉 = 0], showing that the
dynamics takes place in a very small fraction of the accessible
Hilbert space.

V. CONCLUSION

In this paper we have shown that the slowdown of equi-
libration due to quantum many-body scars can be enhanced
by local deformations of the prequench Hamiltonian (i.e., the
initial state). This complements recent results by Choi et al.
which have shown that (for the initial Néel state) revivals can
also be enhanced by local deformations of the postquench
Hamiltonian [13]. Our approach to identifying slowly equi-
librating initial states is to minimize the effective dimension
Deff . We note that a different approach, based on a time-
dependent variational principle, was also recently developed
in Ref. [31].

We have found that the most significant decrease in Deff

is achieved by adding next-nearest-neigbor interactions to
the prequench Hamiltonian. The absence of nearest-neighbor
terms here is unusual from the point of view of experimental
implementation since interaction strength usually does not
increase with increasing distance. However, our prequench
Hamiltonian with next-nearest-neighbor interactions on the
spin-1/2 chain can be mapped exactly onto a spin-1 chain with
nearest-neighbor interactions by blocking neighboring pairs
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of spin-1/2 particles together as a single spin-1 (the |↑↑〉 basis
state is excluded by the Rydberg blockade) [14]. The spin-
1 model may, therefore, be more relevent for experimental
implementation of the prequench Hamiltonian.

Possible avenues of future research include expanding the
range of the interaction in the prequench Hamiltonian and
modifying the postquench Hamiltonian [13] and the pre-
quench Hamiltonian together.
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APPENDIX A: GROUND-STATE PROPERTIES OF
THE PREQUENCH HAMILTONIAN

For a prequench Hamiltonian Ĥpre with vanishing energy
gap δ = 0, there is an ambiguity about which superposition
of the degenerate states represents the true ground state. Our
numerics show that for the Ĥpre specified by Eqs. (7) and
(8) one of the two degenerate ground-states |ψp=1〉 always
belongs to the even-parity (p = 1) symmetry sector, whereas
the other degenerate ground-state |ψp=−1〉 belongs to the
odd-parity (p = −1) symmetry sector. To see the role of spon-
taneous symmetry breaking, we consider the splitting of the
degeneracy by the local perturbation Ĥpre → Ĥpre + εĤpert,
where Ĥpert = h̄

∑L
j=1(−1) j P̂σ̂ z

j P̂ is a “staggered potential,”
alternating in sign with the chain site index, and ε is arbitrarily
small. By degenerate perturbation theory, the first-order per-
turbed eigenstates are found by diagonalizing the staggered
perturbation in the degenerate subspace, i.e., by diagonalizing
the 2 × 2 Hermitian matrix,(

ε〈ψp=1|Ĥpert|ψp=1〉 ε〈ψp=1|Ĥpert|ψp=−1〉
ε〈ψp=−1|Ĥpert|ψp=1〉 ε〈ψp=−1|Ĥpert|ψp=−1〉

)
. (A1)

However, we use the fact that |ψp=±1〉 are eigenstates of the
spatial reflection operator R̂ as well as the identity R̂†ĤpertR̂ =

−(−1)LĤpert to show that the diagonal matrix elements vanish
when L is even,

〈ψp=±1|Ĥpert|ψp=±1〉 = 〈ψp=±1|R̂†ĤpertR̂|ψp=±1〉
= −〈ψp=±1|Ĥpert|ψp=±1〉
= 0.

Since, for the Hamiltonian Ĥpre, the eigenstates |ψp=±1〉 can
always be chosen to be real [32], the off-diagonal elements
of the 2 × 2 matrix are real, and equal to each other x ≡
〈ψp=1|Ĥpert|ψp=−1〉 = 〈ψp=−1|Ĥpert|ψp=1〉. Thus, the matrix
Eq. (A1) is equal to (

0 εx
εx 0

)
, (A2)

and has the energy eigenstates,

|ψ±〉 = 1√
2

(
|ψp=1〉 ± εx

|εx| |ψp=−1〉
)

. (A3)

Which of the two states |ψ±〉 has the lower energy depends
on the sign of εx. In this paper, if there is a ground-state de-
generacy we assume that εx → 0− tends to zero from below,
and that the ground state is |ψ (0)〉 = |ψ+〉. By this procedure
we calculate the appropriate ground-state |ψ (0)〉 to use in the
case of a ground-state degeneracy.

APPENDIX B: OSCILLATIONS OF LOCAL OBSERVABLES

If the ground states of our perturbed prequench Hamilto-
nian are highly entangled states, it is possible that revivals in
the initial state might be difficult to see in local observables.
Then the enhanced revivals in the Loschmidt echo might not
translate into an experimentally observable effect. However,
since Ĥpre is a local gapped one-dimensional Hamiltonian we
know that its ground-state entanglement entropy obeys an area
law [33]. We, thus, expect that entanglement in the ground
state extends across only a few neighboring sites in the chain,
and that there should be local observables that clearly show
the revivals of the initial state.

In Fig. 3 we show the dynamics of the local observables
σ̂

y
1 and σ̂ z

1 . As expected, these observables show long-lived
oscillations due to quantum many-body scars with the lifetime

FIG. 3. The observables 〈σ̂ y
1 〉 and 〈σ̂ z

1 〉 undergo long-lived oscillations due to quantum many-body scars with the lifetime significantly
enhanced by our perturbation to the initial state.
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of the oscillations enhanced by our perturbation of the initial
state. For short times, the amplitude of the oscillations is
reduced compared to the unperturbed initial-state |Z2〉. This

is probably due to entanglement in the perturbed initial state.
However, it may be possible to see larger amplitude oscillation
by extending to two-site or three-site local operators.
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Z. Papić, Weak ergodicity breaking from quantum many-body
scars, Nat. Phys. 14, 745 (2018).

[8] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
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