
Using estimated entropy in a queueing system with dynamic

routing

K. Duffy(1), E.A. Pechersky(2) , Y.M Suhov(2,3) and N.D. Vvedenskaya(2)

November 2005

(1) Hamilton Institute, National University of Ireland, Maynooth, Ireland

(2) Institute for Information Transmission Problems, RAS, Moscow, Russia

(3) Statistical Labarotary, DPMMS, Cambridge University, Cambridge, UK

Abstract

In this article we consider a discrete time two server queueing system with dynamic routing.

We prove logarithmic asymptotics for the liklihood that a message from a source that divides its

messages between the two servers in a way that minimizes the message’s waiting time experiences

a large waiting time. We demonstrate the merit of this asymptotic by comparing its predictions

with experimental data. We illustrate how estimated entropies of the traffic streams can be used

to predict the likelihood of long waiting times and demonstrate the method’s accuracy through

comparison with simulations.

1 Introduction

Throughout this article we refer to queueing systems in which messages are constrained to arrive at
integer times as discrete time systems. The term continous time systems is used for queueing systems
that have no such constraint.

Consider a discrete time single server queue with infinite buffer fed by a stationary source of traffic
serving at rate s. For each n ∈ Z, let a(n) denote volume of work required to process message n,
which arrives at time n. The amount of time, w(n), that the nth message must wait before service is
initiated on it evolves according to Lindley’s recursion:

w(n + 1) = [w(n) + a(n) − s]+, (1)

where x+ = max{0, x}. By a theorem of Loynes [17], if the sequence {a(n)} is stationary, then there
exists a stationary sequence of random variables that satisfies the recursion defined by (1). Letting
W denote an element of the stationary solution, and defining S(0) = 0, S(n) = a(1) + · · · + a(n), W
has the same distribution as supn≥0(S(n) − sn).

It is known (for example, see [14, 13, 6]) that if the process {S(n)/n} satisfies the large deviation
principle with rate function I (so that, roughly speaking, P[S(n) ≈ nx] � exp(−nI(x))), then the
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distribution of W has exponential tails:

lim
w→∞

1

w
logP(W ≥ w) = − inf

x>0
xI(1/x + s) = − sup{θ ≥ 0 : λ(θ) ≤ sθ} = −δ, (2)

where λ is the scaled Cumulant Generating Function (sCGF) of the input traffic

λ(θ) = lim
n→∞

1

n
logE[exp(θS(n))], (3)

which is the Legendre-Fenchel transform of the rate function I .

One approach to using equation (2) when the statistics of the process {a(n)} are unknown was sug-
gested and developed by John T. Lewis and co-workers. They knew that the rate function I plays
an analogous to rôle to thermodynamic entropy; a macroscopic function determined from microscopic
behavior that succinctly records bulk properties of the system. Taking inspiration from chemical
engineers who estimate entropy directly they proposed estimating the Legendre Fenchel transform of
the rate function I , the sCGF λ in equation (3), directly. The estimation scheme they settled on is
described by Duffield et al. [5]: select a block length B sufficiently large that you believe the blocked
sequence {Y (n)}, where Y (n) = a((n−1)B+1)+ · · ·+a(nB), can be treated as i.i.d.; if {Y (n)} is i.i.d.
then λ(θ) = B−1 logE[exp(θY (1))] and thus it is natural to suggest using the maximum likelihood
estimator:

λn(θ) =
1

B
log

1

bn/Bc

bn/Bc
∑

i=1

exp(θY (i)) (4)

to estimate λ in equation (3) when n samples have been observed. They referred to this as estimating
a traffic source’s entropy; a terminology we adopt.

As an example of this estimator’s use, note that δ in equation (2) can be estimated by δn = sup{θ :
λn(θ) ≤ sθ}. In [5] a central limit theorem is proved for {δn} and, for bounded sequences {a(n)}, a
large deviation principle in [8] from which a weak law of large numbers is deduced. For an indication
of the success in applying this approach see, for example, Crosby et al. [1] and Lewis et al. [16].

We remark that in general in queueing systems there is a second quantity of interest, one which we
will not consider here: the number of customers awaiting service - the queue length. For a general
continuous time single server queue, an asymptotic related to (2) holds for the distribution of the
number of messages awaiting service after the system has been run for a long time (see [14, 10]).

In this article we consider a discrete time system with two infinite-buffer first-come first-served (FCFS)
servers, serving at speed one. There are three arrivals processes, one dedicated to each server and
a third that divides each message between the servers in a way which minimizes the time until the
message’s processing is complete. We assume large deviation assumptions that include processes for
which each source’s message sizes can be correlated to each other, and correlated in time. We prove a
large deviation result for the likelihood that a message from the third, discretionary flow experiences
a large waiting time. Clearly allowing a source to dynamically route its messages to the two servers
provides it with an advantage. However, we shall see that when long delays occur for a collection
of source statistics the routing offers no advantage over a combined FCFS system with no routing.
We investigate through simulation the merit of limiting logarithmic asymptotics in the non limiting
regime, showing surprisingly good predictions even for correlated sources. We demonstrate the use of
estimated entropies in this system and illustrate the value of this methodology’s predictions through
comparison with simulations.
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2 A queueing system with dynamic routing

In the continuous time setting, various problems of long waiting times and large queue lengths in
systems with dynamic routing have been investigated by many authors. In particular systems where
a subset of the input flows can dynamically choose to join, from a subset of queues, the queue with
the least amount of work left to process. The technicalities that are particular to problems of this
sort are usually due to interaction between the servers caused by routed flows; in particular in the
presence of non-routed flows. This makes these systems difficult to study, even when flows consist of
i.i.d. message sizes and inter-arrival times. For examples of work of this sort, see [26, 25, 28, 20, 11]
and references therein.

Here we consider a discrete time two FCFS server queueing system with dynamic routing, where
messages arrive at integer times. Each server serves at rate 1, has an infinite buffer and a dedicated
stream of customers. In addition there is a third set of discretionary customers that divide their
messages between the two servers in a way that minimizes each message’s processing latency. The
flows are assumed to posses joint sample-path large deviation properties, which includes sources whose
message size processes are not constructed from i.i.d. random variables and are not independent of
each other.

Explicitly, for i ∈ {1, 2} let wi(n) denote the waiting time experienced by a virtual message (a message
of length zero) that arrives at time n to queue i and is processed before the other messages that arrive
at time n. Let ai(n) denote the amount of time required to process message n from source i ∈ {0, 1, 2},
where source 0 is discretionary, source 1 is dedicated to server 1 and source 2 dedicated to server 2.
The virtual waiting times evolve according to:

w1(n + 1) = [w1(n) + a1(n) − 1 + χ(n)a0(n)]+, (5)

w2(n + 1) = [w2(n) + a2(n) − 1 + (1 − χ(n))a0(n)]+, (6)

where for a0(n) > 0

χ(n) = max

{

min

{

w2(n − 1) − w1(n − 1) + a2(n) − a1(n) + a0(n)

2a0(n)
, 1

}

, 0

}

,

and χ(n) is arbitrary if a0(n) = 0. The value of χ(n) determines the division of the message a0(n) to
the two servers, ensuring that the message gets processed as quickly as possible. The possible division
of routed messages between the two servers leads to a monotonicity in the waiting times as a function
of messages sizes. Our proof relies on this feature, which is not necessarily present if routed messages
cannot be divided between servers and join the shortest queue routing is used, but we conjecture the
same results holds in that setting.

The object that interests us are logarithmic asymptotics of the form in equation (2), but for the
discretionary source of messages. That is, we wish to analyse the likelihood that a virtual discretionary
message experiences a long waiting time. In the continuous time case where the three input flows are
Poisson, each with a general distribution of service times, a result of this sort has been announced by
Pechersky, Suhov and Vvedenskaya [22, 21]. It’s predictions are compared with experimental data in
[7].

Assuming the process {a0(n), a1(n), a2(n)} of message sizes is stationary, the event that interests us
is when both servers have a lot of work to process. In this situation a message from the discretionary
source must wait a long time before service is initiated on it. In particular set yi(0) = 0 and define
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for n ≥ 0

y1(n + 1) =
n
∑

j=1

(a1(j) + α(j)a0(j) − 1) and y2(n + 1) =
n
∑

j=1

(a2(j) + (1 − α(j))a0(j) − 1),

where for a0(n) > 0

α(n) = max

{

min

{

y2(n − 1) − y1(n − 1) + a2(n) − a1(n) + a0(n)

2a0(n)
, 1

}

, 0

}

,

and α(n) is arbitrary if a0(n) = 0. Defining

W0 = sup
n≥0

min {y1(n), y2(n)} , (7)

we are interested in the probability of the event {W0 ≥ w} when w is large. We identify conditions
under which we prove logarithmic asymptotics for the probability of this event:

lim
w→∞

w−1 logP(W0 ≥ w) = −δ0, (8)

where we relate δ0 to assumed large deviation behavior of the input flows. We use sample-path
techniques together with the following monotonicity lemma to deduce the main result.

Lemma 1. The value of W0 is monotonic in its inputs. That is, if a′
i(n) ≥ ai(n) for all i and n, then

W0 ≤ W ′
0, where W ′

0 as in equation (7), but with a′
i(n).

Proof. Assume that for all n ≤ N

y1(n) ≤
n−1
∑

j=1

(a′
1(j) + α′(j)a′

0(j) − 1) = y′
1(n)

and

y2(n) ≤

n−1
∑

j=1

(a′
2(j) + (1 − α′(j))a′

0(j) − 1) = y′
2(n),

where α′(n) is defined analogously to α(n). Monotonicity is clear if a′
0(N + 1) = 0, so assume

a′
0(N + 1) > 0. Then with a′

i(N + 1) = ai(N + 1) + εi and y′
i(N) = yi(N) + γi, where εi, γi ≥ 0,

y′
1(N + 1) = y1(N) + γ1 + a1(N) + ε1 − 1

+ max
{

min
{

y2(N−1)+γ2−y1(N−1)−γ1+a2(N)+ε2−a1(N)−ε1+a0(N)+ε0
2 , a0(N) + ε0

}

, 0
}

≥ y1(N) + γ1 + a1(N) + ε1 − 1

+ max
{

min
{

y2(N−1)−y1(N−1)+a2(N)−a1(N)+a0(N)
2 , a0(N), 0

}}

− γ1+ε1
2

= y1(N + 1) + γ1+ε1
2 .

Similar arguments apply to y2(N + 1).
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3 Large deviation and functional setup

For convenience we first recall the basic facts of the Large Deviation Principle (LDP). More details
can be found in one of they standard texts, such as [3]. Let (Ω,F ,P) be a probability triple and X be
a Hausdorff space with Borel σ-algebra B. Let {Xn} be a sequence of random elements taking values
in X . We say that {Xn, n ∈ N} satisfies the Large Deviation Principle (LDP) with rate function
I : X → [0, +∞] if I is lower semi-continuous, and

− inf
x∈G

I(x) ≤ lim inf
n→∞

1

n
logP(Xn ∈ G) and lim sup

n→∞

1

n
logP(Xn ∈ F ) ≤ − inf

x∈F
I(x) (9)

for all open G and all closed F . A rate function is good if its level sets {x : I(x) ≤ α} are compact for
all α ≥ 0. The contraction principle states that if {Xn, n ∈ N} satisfies the LDP in X with good rate
function I and f : X → Y is continuous, where X and Y are Hausdorff, then {f(Xn), n ∈ N} satisfies
the LDP in Y with good rate function given by J(y) = inf{I(x) : f(x) = y}. A proof can be found in
Dembo and Zeitouni [3] Theorem 4.2.1. If X is a metric space with distance d, two processes {Xn}
and {Yn} are said to be exponentially equivalent if for all ε > 0

lim
n→∞

1

n
logP(d(Xn, Yn) > ε) = −∞.

If two processes are exponentially equivalent they satisfy the same LDP (Theorem 4.2.13 of [3]).

For each source i ∈ {0, 1, 2}, we define the sample-paths of the message size process {ai(n)} by

S(i)
n (t) =

1

n

[nt]
∑

j=1

ai(j), t ∈ [0,∞), n ≥ 1, (10)

where the empty sum is defined to be zero. For each n, S
(i)
n is a CADLAG (right continuous having

left hand limits) function. We also define their piecewise linear approximations, which are continuous
functions

Ŝ(i)
n (t) =

1

n

[nt]
∑

j=1

ai(j) +

(

t −
[nt]

n

)

ai([nt] + 1), t ∈ [0,∞), n ≥ 1. (11)

In order to prove the existence of the limit in equation (8) and identify δ0 we assume the LDP holds
for the process defined by the paths defined in equation (10). We shall also assume that the paths

(S
(0)
n , S

(1)
n , S

(2)
n ) and (Ŝ

(0)
n , Ŝ

(1)
n , Ŝ

(2)
n ) are exponentially equivalent, though we do this for convenience

and the result can be pushed through without this assumption.

For ν ∈ R, let Xν denote the set of CADLAG functions φ on [0,∞) such that limt→∞(1+t)−1φ(t) = ν.
Let Aν ⊂ Xν denote the subset of absolutely continuous functions on [0,∞) with φ(0) = 0. In
particular, the elements of Aν are exactly the integrals of functions that are elements of L1[0, x) for
all x > 0 (for example, see Riesz and Sz.-Nagy [23]). Equip Xν with the topology induced by the
norm ||φ|| = supt≥0 |(1 + t)−1φ(t)|. We equip products of Xν spaces with the product topology.

Assumption 1. The process {S
(0)
n , S

(1)
n , S

(2)
n } satisfies the large deviation principle in Xm0

×Xm1
×

Xm2
with rate function

I(φ0, φ1, φ2) =

{
∫∞

0
Ilocal(φ̇0(s), φ̇1(s), φ̇2(s))ds; if φi ∈ Ami

∀i ∈ {0, 1, 2},
+∞ otherwise.
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where Ilocal : R → [0,∞] is a convex, lower semi-continuous function with compact level sets satisfying
Ilocal(m0, m1, m2) = 0 and Ilocal(x0, x1, x2) > 0 for all (x0, x1, x2) 6= (m0, m1, m2). Moreover, we as-

sume that the sample paths (S
(0)
n , S

(1)
n , S

(2)
n ) and their piecewise linear approximations (Ŝ

(0)
n , Ŝ

(1)
n , Ŝ

(2)
n )

are exponentially equivalent.

Note that using the contraction principle and Jensen’s inequality, a consequence of this assumption is
that the process defined by

(S(0)
n (1), S(1)

n (1), S(2)
n (1)) = (Ŝ(0)

n (1), Ŝ(1)
n (1), Ŝ(2)

n (1)) =

(

1

n

n
∑

i=1

a0(i),
1

n

n
∑

i=1

a1(i),
1

n

n
∑

i=1

a2(i)

)

satisfies the LDP in R3 with rate function Ilocal, hence the subscript “local”. As Ilocal is convex, the
Legendre Fenchel transform of Ilocal is the scaled cumulant generating function:

λlocal(θ0, θ1, θ2) = lim
n→∞

1

n
log E[exp(n(θ0S

(0)
n (1) + θ1S

(1)
n (1) + θ2S

(2)
n (1))].

We note that it is known that a large class of processes satisfy Assumption 1. Restricting to [0, 1],
Dembo and Zajic [2] provide general conditions under which the piecewise linear sample paths satisfy
the functional LDP with a good rate function in the space of continuous functions on [0, 1] equipped
with the sup norm. Theorem 1 of [13] establishes that if these conditions are met and λlocal is
differentiable at the origin, then the LDP for the piecewise linear paths is also satisfied in the subset
of continuous functions of Xmi

. Sufficient conditions for exponential equivalence of the CADLAG and
piecewise linear sample-paths can be found [2], which essentially require that the tail of the message
size distributions decay faster than exponentially. For a range of other applications of this LDP see,
for example, [4, 27, 15, 18, 19, 9].

As well as the large deviations Assumption 1, we make the following stability assumption.

Assumption 2. We have m1 < 1, m2 < 1 and m0 + m1 + m2 < 2.

Assuming mi < 1 ensures that on the large deviations scale processing dedicated messages alone, each
of the two servers is stable. This is not necessary to ensure the routed messages experience a stable
system, only m0 + m1 + m2 < 2 is. However, if either of the two queues is unstable, that queue
can be ignored and the system effectively reduces to a single server queue, making considerations
uninteresting.

4 Logarithmic asymptotics

Our main result, which follows from Lemmas 3 and 4 below, is:

Proposition 1. Under Assumptions 1 and 2

lim
w→∞

1

w
logP(W0 ≥ w) = −δ0, (12)

where

δ0 = inf
β∈[0,1]

inf
t>0

inf
z∈R

tIlocal

(

z

t
,
1 − βz

t
+ 1,

1 − (1 − β)z

t
+ 1

)

. (13)
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One method of proof would be to attempt an explicit construction of W0 as a function of the sample-
paths defined in equation (10), then prove this construction is continuous in its inputs and use the
contraction principle or one of its extensions. The representations of such a construction, thought
clearly algorithmically expressible, do not lend themselves to manipulation.

Instead we identify sets G open in Xm0
×Xm1

×Xm2
and F closed in Xm0

×Xm1
×Xm2

such that if

(Ŝ
(0)
n , Ŝ

(1)
n , Ŝ

(2)
n ) ∈ G then W0 ≥ n and {(S

(0)
n , S

(1)
n , S

(2)
n ) : W0 ≥ n} ⊂ F . Moreover, applying the LDP

bounds (9) to G and F gives an arbitrarily small difference. In Assumption 1 we assume exponential
equivalence of the sample paths and their linear approximations, as it is convenient to consider the
lower bound with the linear approximation. At the cost of slightly more involved arguments, this
assumption can be removed.

We first prove the upper bound, then lower. The set F defined in the next lemma will be used in the
proof of the upper bound. We first prove it’s closed.

Lemma 2. Under Assumption 2 the set

F = {(φ0, φ1, φ2) : φ1(t) + βφ0(t)− t ≥ 1, φ2(t) + (1− β)φ0(t)− t ≥ 1 some (t, β) ∈ R+ × [0, 1]} (14)

is closed.

Proof. Let (φ0,n, φ1,n, φ2,n) ∈ F for all n and (φ0,n, φ1,n, φ2,n) → (φ0, φ1, φ2). We wish to prove
(φ0, φ1, φ2) ∈ F . We restrict our attention to a compact t range by the following argument. Choosing
0 < ε < 2 − m0 − m1 − m2, there exists Nε such that for all t ∈ [0,∞) and all n > Nε

2
∑

i=0

φi,n(t) <
2
∑

i=0

φi(t) +
ε

2
(1 + t). (15)

Moreover, there exists Tε < ∞ such that for all t > Tε

2
∑

i=0

φi(t) <

2
∑

i=0

(

mi +
ε

6

)

(1 + t). (16)

From equations (15) and (16), we deduce that for all n > Nε and t > Tε

2
∑

i=0

φi,n(t) <

(

2
∑

i=0

mi + ε

)

(1 + t) < 2t + 2. (17)

Note that φ1(t)+βφ0(t)−t ≥ 1 and φ2(t)+(1−β)φ0(t)−t ≥ 1 imply φ0(t)+φ1(t)+φ2(t)−2t−2 ≥ 0.
Therefore equation (17) implies that for all n > Nε, t > Tε and all β ∈ [0, 1]

φ1,n(t) + βφ0,n(t) − t < 1 and φ2,n(t) + (1 − β)φ0,n(t) − t < 1.

Thus for all n > Nε the t that satisfies the condition in the set F of equation (14) for (φ0,n, φ1,n, φ2,n)
must be in [0, Tε].

Assume that (φ0, φ1, φ2) /∈ F so that there does not exist t ∈ [0, Tε] and β ∈ [0, 1] such that φ1(t) +
βφ0(t) − t ≥ 1 and φ2(t) + (1 − β)φ0(t) − t ≥ 1. Then there exists δ > 0 such that

sup
t∈[0,Tε]

sup
β∈[0,1]

min{φ1(t) + βφ0(t) − t, φ2(t) + (1 − β)φ0(t) − t} < 1 − δ.

7



On the compact interval [0, Tε], (φ0,n, φ1,n, φ2,n) converges in the sup norm to (φ0, φ1, φ2), so that
there exists Nδ so that for all n > max(Nδ, Nε)

sup
t∈[0,Tε]

sup
β∈[0,1]

min{φ1,n(t) + βφ0,n(t) − t, φ2,n(t) + (1 − β)φ0,n(t) − t} < 1,

contradicting the assumption that (φ0,n, φ1,n, φ2,n) ∈ F and thus F is closed.

Having shown F is closed, we deduce the upper bound.

Lemma 3. Under Assumptions 1 and 2

lim sup
n→∞

1

n
logP[W0 ≥ n] ≤ −δ0. (18)

Proof. Consider a point ω ∈ Ω contained in the event {W0 ≥ n}. Then for the corresponding sample-

paths (S
(0)
n , S

(1)
n , S

(2)
n ) there exists t and β ∈ [0, 1] such that

S(1)
n (t) + βS(0)

n (t) − t ≥ 1 and S(2)
n (t) + (1 − β)S(0)

n (t) − t ≥ 1. (19)

However, the existence of t and β such that the inequalities (19) are satisfied do not imply {W0 ≥ n}
occurred. For example, if

S(0)
n (t) =

{

0 if t ∈ [0, 1)
1.5 if t ≥ 1

; S(1)
n (t) =







0 if t ∈ [0, 1)
0.5 if t ∈ [1, 2)
2.5 if t ≥ 2

; S(2)
n (t) =







0 if t ∈ [0, 1)
1 if t ∈ [1, 2)
2 if t ≥ 2

;

then y1(0) = y2(0) = 0, y1(n) = y2(n) = 0.5n, y1(2n) = 1.5n, y2(2n) = 0.5n, but with β = 1/3,

S
(1)
n (2) + βS

(0)
n (2) − 2 = 1 = S

(1)
n (2) + (1 − β)S

(0)
n (2) − 2. Thus

{(S(0)
n , S(1)

n , S(2)
n ) : W0 ≥ n} ⊂ F,

where F is defined in equation (14). Therefore

P(W0 ≥ n) ≤ P((S(1)
n , S(2)

n , S(0)
n ) ∈ F ).

As Lemma 2 proves that F is closed, the large deviation bounds from equation (9) provides an upper

bound on lim sup n−1 logP((S
(1)
n , S

(2)
n , S

(0)
n ) ∈ F ):

≤ − inf
β

inf
t>0

{I(φ0, φ1, φ2) : φ1(t) + βφ0(t) − t ≥ 1, φ2(t) + (1 − β)φ0(t) − t ≥ 1}

= − inf
β

inf
t>0

{
∫ ∞

0

Ilocal(φ̇0(s), φ̇1(s), φ̇2(s))ds : φ1(t) + βφ0(t) − t ≥ 1, φ2(t) + (1 − β)φ0(t) − t ≥ 1

}

≤ − inf
β

inf
t>0

{
∫ t

0

Ilocal(φ̇0(s), φ̇1(s), φ̇2(s))ds : φ1(t) + βφ0(t) − t ≥ 1, φ2(t) + (1 − β)φ0(t) − t ≥ 1

}

≤ − inf
β

inf
t>0

{tIlocal(φ0(t)/t, φ1(t)/t, φ2(t)/t) : φ1(t) + βφ0(t) ≥ 1 + t, φ2(t) + (1 − β)φ0(t) ≥ 1 + t}

≤ − inf
β∈[0,1]

inf
t>0

inf
z∈R

tIlocal

(

z

t
,
1 − βz

t
+ 1,

1 − (1 − β)z

t
+ 1

)

= −δ0,

where we have used Jensen’s inequality and the convexity of Ilocal in the transition from the third to
second last inequalities. Thus the upper bound is obtained.
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To establish the corresponding lower bound, we identify a set G such that (S
(0)
n , S

(1)
n , S

(2)
n ) ∈ G implies

W0 ≥ n and the logarithmic rate of P((S
(0)
n , S

(1)
n , S

(2)
n ) ∈ G) is arbitrarily close to −δ0. It is in this

lemma that we make use of the monotonicity demonstrated in Lemma 1.

Lemma 4. Under Assumption 1

lim inf
n→∞

1

n
logP(Wn ≥ n) ≥ −δ0. (20)

Proof. Let (t∗, β∗, z∗) be the optimal arguments from equation (13). Define the following absolutely
continuous functions which are our candidate paths that give rise to this optimal value

φ̂0(s) =

{

(z∗s)/t∗ if s ≤ t∗,
(z∗) + (s − t∗)m0 if s ≥ t∗,

φ̂1(s) =

{

(1 − β∗z∗)s/t∗ + s if s ≤ t∗,
(1 − β∗z∗ + t∗) + (s − t∗)m1 if s ≥ t∗,

and

φ̂2(s) =

{

(1 − (1 − β∗)z∗)s/t∗ + s if s ≤ t∗,
(1 − (1 − β∗z∗) + t∗) + (s − t∗)m2 if s ≥ t∗.

Consider an open ball G of radius ε > 0 around the functions (φ̂0(t) + η(t), φ̂1(t) + η(t), φ̂2(t) + η(t)),
where

η(s) =

{

ε(1 + t∗)(t∗)−1s if s ≤ t∗,
ε(1 + t∗) otherwise.

We wish to show that if (Ŝ
(0)
n , Ŝ

(1)
n , Ŝ

(2)
n ) ∈ G then W0 ≥ n. Now for any n let (Ŝ

(0)
n , Ŝ

(1)
n , Ŝ

(2)
n ) be

the smallest triple of functions greater than (φ̂0, φ̂1, φ̂2) that are piecewise linear on intervals of length

1/n. Effectively, (Ŝ
(0)
n , Ŝ

(1)
n , Ŝ

(2)
n ) equals (φ̂0, φ̂1, φ̂2), but with the possibility of being larger on the

interval (t∗, [t∗n+1]/n]. For n sufficiently large (Ŝ
(0)
n , Ŝ

(1)
n , Ŝ

(2)
n ) ∈ G. Using the monotonicity Lemma

1 it suffices to prove that for this path (Ŝ
(0)
n , Ŝ

(1)
n , Ŝ

(2)
n ) it is the case that W0 ≥ n. Note that

φ̂1(t
∗) + β∗φ̂0(t

∗) − t∗ = φ̂2(t
∗) + (1 − β∗)φ̂0(t

∗) − t∗ = 1.

As (Ŝ
(0)
n , Ŝ

(1)
n , Ŝ

(2)
n ) ≥ (φ̂0, φ̂1, φ̂2), min(y1([t

∗n + 1]), y2([t
∗ + 1])) ≥ n and thus W0 ≥ n.

As G is an open ball, the large deviation lower bound (9) implies the following lower bound on

lim inf n−1 logP((S
(0)
n , S

(1)
n , S

(2)
n ) ∈ G):

≥ − inf{I(φ0, φ1, φ2) : (φ0, φ1, φ2) ∈ G}

≥ −

∫ ∞

0

Ilocal

(

d

ds
(φ̂0(s) + η(s)),

d

ds
(φ̂1(s) + η(s)),

d

ds
(φ̂2(s) + η(s))

)

ds

= −t∗Ilocal

(

z∗

t∗
+

ε(1 + t∗)

t∗
,
(1 − β∗z∗)

t∗
+ 1 +

ε(1 + t∗)

t∗
,
(1 − (1 − β∗)z∗)

t∗
+ 1 +

ε(1 + t∗)

t∗

)

.

On taking limits as ε → 0, this coincides with δ0 in equation (13).

5 Comparison with the single server queue

Proposition 1 proves that

lim
w→∞

1

w
logP(W0 > w) = −δ0,

9



where

δ0 = inf
β∈[0,1]

inf
t>0

inf
z∈R

tIlocal

(

z

t
,
1 − βz

t
+ 1,

1 − (1 − β)z

t
+ 1

)

.

The value of δ0 corresponds to the waiting times at both servers being large simultaneously and should
therefore be compared with 2δ from equation (2) for a single server queue fed by all three input flows
that serves at rate 2. This can be written as:

2δ = inf
t>0

inf
y∈R

inf
z∈R

tIlocal

(

y

t
,
z

t
,
2 − y − z

t
+ 2

)

. (21)

For comparison, equation (13) can be re-written as

δ0 = inf
t>0

inf
y∈R

inf
z∈[1+(1−y)t,1+t]

tIlocal

(

y

t
,
z

t
,
2 − y − z

t
+ 2

)

. (22)

With a larger range over which to select z in equation (21), clearly 2δ ≤ δ0. Thus sending all messages
to a combined server can only make it more likely that a virtual flow 0 message (which in the routed
system would be discretionary) experiences a large waiting time. We have the following convexity
property for the function over which the infimums are taken.

Lemma 5. As Ilocal is convex, the function J(y, z, t) = tIlocal

(

yt−1, zt−1, (2 − y − z)t−1 + 2
)

is con-
vex for y, z ∈ R and t > 0.

Proof. For ~a = (a0, a1, a2), ~b = (b0, b1, b2) and α ∈ [0, 1], note that

J(α~a + (1 − α)~b)

= 1
αa2+(1−α)b2

Ilocal

(

η
(

a0

a2

, a1

a2

, 2−a0−a1

a2

− 2
)

+ (1 − η)
(

b0
b2

, b1
b2

, 2−b0−b1
b2

− 2
))

≤ αI
(

a0

a2

, a1

a0

, 2−a0−a1

a2

− 2
)

+ (1 − α)I
(

b0
b2

, b1
b2

, 2−b0−b1
b2

− 2
)

= αJ(~a) + (1 − α)J(~b),

where we have used the convexity of Ilocal and, as a2, b2 > 0,

η =
αa2

αa2 + (1 − α)b2
∈ [0, 1].

Thus the infimum in equation (22) is either 2δ or occurs at one the boundary points of the z constraint.
These boundary points correspond to β in equation (13) being 0 or 1. This effect can be understood
easily. In the system with routing W0 can have a lighter tail than in the combined system; if one server
is prone to being back-logged, discretionary messages join the other server’s queue. This happens when
the infimum over β in equation (13) occurs at β = 0 or 1, indicating all discretionary messages are
routed to one of the two servers.

As we plan to use estimated sCGFs, we would like a dual form for δ0 given in equation (13). We
present one below to show that such a representation exits, but it is not that practically useful as it
cannot be explicitly represented in terms of the sCGF of Ilocal.

10



Theorem 6. We have the identity

δ0 = inf
β∈[0,1]

sup{θ ≥ 0 : λ(β)(θ) ≤ 0}, (23)

where λ(β)(·) is the Legendre-Fenchel transform of the convex function

I(β)(t) = inf
y≥0

Ilocal (y, t − βy + 1, t − (1 − β)y + 1) , t > 0. (24)

Proof. Consider equation (13) and note it can be written as

δ0 = inf
β∈[0,1]

inf
t>0

tI(β)

(

1

t

)

.

Observe that for θ ≥ 0

θ ≤ inf
t>0

tI(β)

(

1

t

)

⇐⇒
θ

t
≤ I(β)

(

1

t

)

∀ t > 0

⇐⇒ sup
t>0

{

θt − I(β)(t)
}

≤ 0.

Thus 0 ≤ θ ≤ inft>0 tI(β)
(

t−1
)

if and only if it’s Legendre-Fenchel transform λ(β)(θ) ≤ 0 and therefore

sup{θ : λ(β)(θ) ≤ 0} = inf
t>0

tI(β)

(

1

t

)

and δ0 = inf
β∈[0,1]

sup{θ : λ(β)(θ) ≤ 0}.

All that remains to be shown is that I (β) is convex. We proceed by proving that the function

Lβ(x, y) = Ilocal (y, x − βy + 1, x − (1 − β)y + 1) .

is convex. Let η ∈ [0, 1] and ~a = (a1, a2),~b = (b1, b2), then

Lβ(η~a + (1 − η)~b) = Ilocal(ηa1 + (1 − η)b2,
η(a1 − βa2 + 1) + (1 − η)(b1 − βb2 + 1),
η(a1 − (1 − β)a2 + 1) + (1 − η)(b1 − (1 − β)b2 + 1))

≤ ηLβ(~a) + (1 − η)Lβ(~b).

That I(β)(x) = infy Lβ(x, y) is convex follows from Theorem 5.3 of [24].

Although the previous representation is not particularly helpful unless we estimate λ(β) directly, we
can limit δ0 to one of three values that are readily calculated from the entropies of the input flows
when they are independent of each other. That is, each individual source may have dependencies in
time, but flows are not correlated to each other.

Theorem 7. Assume the three arrival flows are independent of each other (though possibly dependent
in time), so that Ilocal(x, y, z) = K0(x)+K1(y)+K2(z), where Ki is the local rate function for source
i. Let λi denote the Legendre-Fenchel transform of Ki. Define

δ(1) = sup{θ : inf
ϑ

[λ0(ϑ) + λ1(ϑ) + λ2(θ − ϑ)] − θ ≤ 0},

11



which is the exponent in the tail probability that the waiting times at both servers are long simultane-
ously when the first server is fed by sources 0 and 1 and the second by source 2, and

δ(0) = sup{θ : inf
ϑ

[λ0(ϑ) + λ2(ϑ) + λ1(θ − ϑ)] − θ ≤ 0},

which is the exponent in the tail probability that the waiting times at both servers are long simultane-
ously when the first server is fed by source 1 and the second by sources 0 and 2. When a single server
queue, serving at rate 2, is fed with three independent sources equation (2) gives

δ = sup{θ : λ0(θ) + λ1(θ) + λ2(θ) − 2θ ≤ 0}.

Then δ0 is either min(δ(0), δ(1)) or 2δ, and 2δ ≤ δ0 ≤ min(δ(0), δ(1)).

Proof. Noting that the Legendre Fenchel transform of an inf convolution is the sum of the Legendre
Fenchel transforms and vice versa (Theorem 16.4 of Rockafellar [24]), the value of δ is just the standard
formula (equation (2)) for the single server queue fed by three independent sources served at rate 2.

The values of δ(1), δ(0) correspond to the system where β is 1 and 0. As the logic is similar for
both cases, we consider only δ(1). Let � denote the infimal convolution operator, so that f�g(t) =
infy(f(y) + g(t − y)). Assume that the infimum over β is attained when β = 1, then equation (13)
gives

δ(1) = inf
t>0

t
(

K0�K1(t
−1 + 1) + K2(t

−1 + 1)
)

.

As in Theorem 6, this implies

δ(1) = sup

{

θ ≥ 0 : sup
x

[θx − (K0�K1(x) + K2(x))] − θ ≤ 0.

}

Note that the interior of this equation is the Legendre-Fenchel transform of a sum of K2 and the
inf-convolution of K0 and K1. Thus the form for δ(1) in the statement of this theorem follows.

The relationships between δ0, δ, δ(1) and δ(2) then follow from the comments after Lemma 5.

6 Theory compared with simulation

Our interests in this section are twofold:

• To demonstrate the differences between the likelihood of a long waiting time in the single server
queueing system fed by all three sources and the queueing system with routing.

• To understand the merit of approximating P(W0 ≥ w) by exp(−wδ0).

Simulations of both the queueing system with routing (equations (5) and (6)) and the combined single
server queueing system (equation (2)), served at rate 2, were constructed. When results regarding
both are reported on the same graph, the systems were run with identical input flow traces. As we
are interested in the logarithmic asymptotics of equation (12), the data recorded from simulations
are “watermark” plots: the logarithm of the empirical frequency with which W0 ≥ w versus w. All
simulations in this section were run starting with empty queues for n = 2, 000, 000 time steps.

12
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Figure 1: Exponential inputs. Simulated queues, with and without routing, and 2δ and δ(1) from
Theorem 7.

According to the logarithmic asymptotic in equation (12) logP(W0 ≥ w) = −wδ0 +o
(

w
)

, as w → ∞.

Even having precise knowledge of δ0, fundamental to determining the relevance of approximating

P(W0 ≥ w) by exp(−wδ0) is understanding the character of the error o
(

w
)

. In this section first we

report on the predictions of Theorem 7 in comparison with results of simulation for i.i.d. exponentially
distributed sources and then for Markovian sources.

Assume that each of the three sources offers i.i.d. exponentially distributed message sizes. Source
i ∈ {0, 1, 2} messages sizes are distributed with rate νi, so that P[ai(n) ≥ x] = exp(−νix) for all n.
Then the sCGF for source i is λi(θ) = log(νi(νi − θ)−1) if θ < νi and +∞ if θ ≥ νi. The stability
condition is ν1, ν2 > 1, ν−1

0 + ν−1
1 + ν−1

2 < 2. Figure 1 shows two representative plots of theory and
simulation. In the first plot setting ν0 = 1.5, ν1 = ν2 = 2 results in the theory predicting δ0 = 2δ. That
is, the tail of the waiting time distribution experienced by the discretionary source in the system with
routing is the same as the tail of the overall waiting time distribution in the single server queue, so that
routing offers no advantage in avoiding long waiting times. Although both simulated queues have been
fed with the same source traces, because of their different disciplines the waiting times experienced by
source 0 messages in each system are not the same. However the tails of their empirical waiting time
distribution is seen to have near identical form. Also plotted is −2wδ and −wδ(1). Clearly the former
makes an accurate prediction, with the later being incorrect. In the second plot of figure 1, where
ν1 = 1.6, ν1 = 100 and ν2 = 1.01, the first queue has few dedicated arrivals and the second queue
is nearly saturated with its dedicated arrivals. Consequently, during a busy period, in the system
with routing, discretionary messages are most likely to be routed to the first server, so that routing
offers an advantage. The value 2δ accurately predicts the tail of the single server queue fed by all
three sources, whereas δ(1) predicts the lighter tail seen by discretionary messages in the system with
routing.

In the results reported so far each input’s message sizes are i.i.d. exponential. Next we report on
flows that are independent of each other, but whose messages size processes are not i.i.d.; a setting
which is not typically considered in the literature on queues with routing, but is of practical interest
as real queueing systems are likely to be fed by sources that have correlations in time. If the message
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Figure 2: Markovian inputs. Simulated queues, with and without routing, and 2δ and δ(1) from
Theorem 7.

sizes from sources i are 2-state Markovian taking the values {0, 2} with transition matrix

π =

(

1 − bi bi

di 1 − di

)

, where bi, di ∈ (0, 1),

then its sCGF λi can be calculated using techniques described in Section 3.1 of [3]:

λi(θ) = log

(

(1 − bi) + (1 − di)e
2θ +

√

(1 − bi + (1 − di)e2θ)2 − 4(1− bi − di)e2θ)

2

)

.

If bi + di < 1 the chain is positively correlated. If bi + di > 1 the chain is negatively correlated.
If bi + di = 1, the chain is Bernoulli. In the two graphs of figure 2 all inputs are 2-state Markov.
In the first graph, b0 = 0.1 and d0 = 0.2, giving a mean message size for the discretionary flow of
2b0/(b0 + d0) = 2/3. Dedicated sources have b1 = b2 = 0.1 and d1 = d2 = 0.4, giving a mean message
size of 0.4. The tails of both the routed waiting time distribution and combined single server queue
are similar. In the second graph of figure 2, b0 = 0.1, d0 = 0.4 giving a mean message size of 0.4,
but b1 = 0.01, d1 = 0.91 giving a mean message size of approximately 0.022 and b2 = 0.1, d2 = 0.11
giving a mean message size of approximately 0.953. Here the second queue is heavily loaded by its
dedicated arrivals and the single server queue has differing asymptotics from the system with routing.
The single server queue is predicted to match 2δ whereas the routed system to match δ(1).

Note that all the experimental results in this paper so far show similar behavior: a non-zero intercept;
initial curvature; a straight line; and then noise. The noise is caused due to scarcity of data. If the
experiments are run for longer, the place at which the noise occurs moves further to the right. The non-
zero intercept and initial curvature are due to the details of the process (for example, the probability
that the waiting time is zero moves the intercept). Logarithmic frequencies should, in theory, match
the slope of the straight line −wδ0. Good agreement of slope is seen in figures 1 and 2, demonstrating
the accuracy and relevance of the asymptotic from Theorem 7. Indeed, the approximation works well
for not only large values of w, but also quite small values. That the difference between prediction and
the log-linear approximation is almost constant suggests P(W0 > w) ≈ exp(µ − wδ0). That is the
error in using the logarithmic asymptotic approximation, o

(

w
)

, appears to be constant.
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Figure 3: Exponential inputs: estimates vs. real values of δ and δ(1) from Theorem 7.

7 Estimated entropy, Theorem 7 and simulation

Having demonstrated in the previous section the significance of logarithmic, large deviation style,
asymptotics for the two server queueing system with routing, here we illustrate the utility of its use
with estimated entropy. Using the estimator described in equation (4) for the entropies of each of
three independent sources, we can use the result in Theorem 7 to estimate δ and δ(1) for each of the
four experiments described in Section 6. In these settings, as we have explicit formula for the sCGFs,
we determine their real values (numerically), which we compare the estimated values to. We then
illustrate the method’s accuracy for recorded traffic traces for which no stochastic description of the
source can be given, by comparing estimated and simulated behavior.

For each source i ∈ {0, 1, 2}, let Bi be a block length and define the blocked data Y (i)(n) = ai((n −
1)Bi + 1) + · · · + ai(nBi). As in equation (4) having seen n samples of data we define the entropy
estimator for each of the sources i ∈ {0, 1, 2} by

λ(i)
n (θ) =

1

Bi
log

1

bn/Bic

bn/Bic
∑

j=1

exp(θY (i)(j)).

We then define the estimators of δ and δ(1) from Theorem 7 by

δn = sup{θ : λ(0)
n (θ) + λ(1)

n (θ) + λ(2)
n (θ) ≤ 2θ}

and

δ(1)
n = sup{θ : inf

ϑ
[λ(0)

n (ϑ) + λ(1)
n (ϑ) + λ(2)

n (θ − ϑ)] ≤ θ}.

The graphs of figure 3 correspond to the setting with i.i.d. exponential sources in the previous section.
As we know the sources are i.i.d, for each i ∈ {0, 1, 2} the block length Bi is set to 1. As well as the

real values of δ and δ(1) which are determined numerically, δn and δ
(1)
n are plotted for n between 1

and 1000. The convergence of the estimates to close to the true values is clear in both plots, even
with only a small number of observed message sizes. The δn estimates appear to converge faster than
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Figure 4: Markov inputs: estimates vs. real values of δ and δ(1) from Theorem 7.
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Figure 5: Discretionary source of data and δ vs. block length.

the δ
(1)
n , a property we have observed for many other setups not reported on here, suggesting δ(1) is

more sensitive to the accuracy of the estimated entropies.

The graphs of figure 4 correspond to the Markovian system from Section 6. Here the question of
choice of block length B is more tricky. It is known [5, 12] that there is a trade off in choosing B.
Select it too small, and the estimator is biased, treating the source as independent over time-scales
where it is not. Select it too large and the blocks are too homogeneous, requiring significantly more
data before estimation becomes accurate. Here we select B = 20 for all estimators, as it appears
neither too large nor too small for a Markov chain whose correlation at distance n is (1 − bi − di)

n.
For correlated sources, the quantity of data required to make accurate predictions of entropy is larger
than in the independent case, partially because of the blocking of data. This is reflected in the larger
n range of the plots. Note that the δ estimates are particularly good, converging quickly. The δ(1)

estimates require more data, but are still convincing.

Finally, as J. T. Lewis felt that applied probability should have more than the potential to be applied,
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it should be applied, here we report on two exploratory experiments. Our stochastic source is the
famous Bellcore Starwars trace; a trace of the activity of an MPEG encoded version of the film
Starwars - the volume of data required to encode each frame of the film. We first aggregated the
frames into messages that contain the volume of data per 10th of a second and then cut the trace
into three non-overlapping contiguous pieces. Each of the three distinct pieces is used as the source
of traffic for a flow. In the first experiment, we rescaled each piece individually so that each server’s
service rate, 1, was halfway between the mean and peak value of the trace. This process ensures the
correlation structure of the original trace is retained, the queueing system is stable, but waiting times
due to queueing are possible.

For example, the first graph in figure 5 shows the activity of our discretionary source versus time. As
we have no stochastic description of the source of data, a definitive value of δ0 is not possible. We
can, however, queue the data and estimate δ0. Here the block length is a real issue, as without further
tests we have no feel for the correlation structure in the data. The second graph in figure 5 shows the
estimate of δ for a range of block lengths, where the estimates were are based on the entire data set.
We selected the value for B = 1000 which was then used in the watermark figure 6, where both the
system with routing and the single server queue clearly have the same waiting time distribution tail,
which is well predicted by the estimates.

In the second experiment, the discretionary flow was rescaled so that its mean is 0.4. The directed
flows were rescaled to have means 0.5 and 0.95 respectively. Again the graphs of figure 7 demonstrates
the issue of selecting an appropriate block length. For δ we choose a block length of B = 1000 for
all three λ estimators, but for δ(1) we choose B = 200. In this system, the discretionary messages
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in the system with routing experience are less likely to experience a long waiting time than in the
single server queue. This can be seen in figure 8 where our estimates of δ and δ(1) are shown. It is
interesting to note that this suggests the selection of B is dependent on the queueing system, not just
the source. We cannot propose an explanation for this phenomenon.

Figures 6 and 7 show the accuracy of the estimates and suggests there is value in this approach even
for real world data where mathematical assumptions cannot be checked.
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