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Abstract: 

 

Isolation Forests is an unsupervised machine learning technique for detecting outliers 

in continuous datasets that does not require an underlying equivariant or Gaussian distribution 

and is suitable for use on small datasets. While this procedure is widely used across quantitative 

fields, to our knowledge, this is the first attempt to solely assess its use for microbiome datasets. 

Here we present uniForest, an interactive Python notebook (which can be run from any desktop 

computer using the Google Colaboratory web service) for the processing of microbiome 

outliers. We used uniForest to apply Isolation Forests to the Healthy Human Microbiome 

project dataset and imputed outliers with the mean of the remaining inliers to maintain sample 

size and assessed its prowess in variance reduction in both community structure and derived 

ecological statistics (-diversity). We also assessed its functionality in anatomical site 
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differentiation (pre- and postprocessing) using principal component analysis, dissimilarity 

matrices, and ANOSIM. We observed a minimum variance reduction of 81.17% across the 

entire dataset and in alpha diversity at the Phylum level. Application of Isolation Forests also 

separated the dataset to an extremely high specificity, reducing variance within taxa samples 

by a minimum of 81.33%. 

It is evident that Isolation Forests are a potent tool in restricting the effect of variance 

in microbiome analysis and has potential for broad application in studies where high levels of 

microbiome variance is expected. This software allows for clean analyses of otherwise noisy 

datasets.  

 

Introduction: 

 

Due to their sensitivity to environmental conditions, microbiomes are often highly 

variable between studies, between samples of the same study, and within individuals at 

different timepoints (eg. Falony et al., 2016). Statistical and bioinformatic tests to detect 

suitable differentiable markers are continuously innovated, however microbiome studies are 

still impacted by the presence of highly variant outliers (Hahn and Zemanick, 2019). While 

considerable effort has been invested in outlier processing in human samples (Montassier et 

al., 2018), to our knowledge, a robust, phylogeny independent outlier detection and processing 

method has not been developed that can be universally applied to microbiome data. 

Microbiome phylogenetic metrics such as UniFrac (Lozupone et al., 2006) can be immensely 

informative, however due to the difficulties in accurately resolving phylogenies, the ever-

changing reclassification of microbial taxonomy, and the difficulty in classifying unknown 

taxa observed in samples, researchers may be reticent to use these metrics (Rappé and 

Giovannoni, 2003; Liao et al., 2020). Outlier removal is a controversial topic in data science, 
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and it is often common practice not to remove outliers post detection, however, as extreme 

variance in an observed microbiome is likely to indicate dysbiosis or due to the influence of an 

environmental factor that was not intended to be assessed (Falony et al., 2016), their removal, 

if desired, is legitimate. To overcome the hurdle of outliers, we assessed the proficiency of 

Isolation Forests (Liu et al., 2008) to reduce the impact of outliers. This article also assesses 

the effect of different simple imputation methods on datasets post outlier removal. The Python 

script used to generate this data uses the Scikit-Learn library (Pedregosa et al., 2011) and shall 

be provided as an iPython notebook so any user can utilise this tool with Google Colaboratory 

(https://colab.research.google.com/) regardless of their coding experience.  

A detailed manual describing each module and how to run the software is available at 

the code repository (https://github.com/RobLeighBioinformatics/MicrobiomeOutliers). 

 

Methods: 

 

Assumptions 

 

This procedure is an unsupervised machine learning method and so is suitable for 

detecting outliers from similar samples (eg. from the same timepoint at the same location) so 

that extreme outliers between data are not dominant. 

 

Data scaling (normalisation) 

 

Sequence data often displays disparate sequencing depths between samples. As such, 

data scaling (normalisation) is employed to remove such disparity and allow for more 

representative data comparison. The goal of this procedure is to ensure that the sum of all taxa 
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in each sample sum to the same value. Each taxon in microbiome samples in a given study can 

easily be normalised using their 16S counts (or other taxonomic identifiers) using the formulae: 

 

Ntaxon(i) = (
ntaxon(i)

SNC
) ; SNC = (

Σ(nsample(i))

max (Σ(nsample(a)), Σ(nsample(b)), …,  Σ(nsample(x)))
) 

 

  Where: 

   Ntaxon(i): Normalised reads for taxon i 

   ntaxon(i):  Observed reads for taxon i 

   Σ(nsample(i)): Sum of all observed reads in sample i  

   SNC:  Sample normalisation constant 

 

This normalisation procedure serves to reduce the potential variance and standard error 

between datasets to yield a more representative sample for comparison.   

 

Outlier processing 

 

There are several procedures to detect and process outliers, for example One Class 

Support Vector Machines (Dumais et al., 1998), Elliptic Envelope (Rousseeuw and Van 

Driessen, 1999), Local Outlier Factor (Breunig et al., 2000), and Isolation Forest (Liu et al., 

2008). For the purposes of this manuscript, we are focussing on Isolation Forest as it is 

relatively fast, does not require data to follow a Gaussian distribution, and handles small 

datasets highly effectively. The strengths of Isolation Forest resound in its efficiency in global 

outlier detection (outliers from the entire group; Figure 1). Comparatively, Isolation Forest 

does not effectively distinguish local outliers (outliers within subgroups in a given group). This 
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distinction should not have a negative impact on microbiome studies as this process is intended 

to be applied to similar samples (groups) only prior to post hoc comparisons.  

 

Isolation Forest 

 

 Unlike many other (supervised) outlier removal strategies which operate by 

constructing a profile of “normal data”, Isolation Forest does not rely on training data (instead 

working with only input samples). As this procedure avoids computationally expensive 

training steps with potentially biased data, Isolation Forest provides an accurate, rapid, 

computationally non-expensive strategy for outlier processing.  

 

Application to Healthy Human Microbiomes 

 

Dataset construction 

 

 The 16S V3-V5 region dataset of Healthy Human Microbiome project (Huttenhower et 

al., 2012) was downloaded from MicrobiomeDB (Oliveira et al., 2018). All non-bacterial reads 

were removed and m  n matrix was constricted by imputing all missing data with 0 and 

aggregating all reads within each respective Phylum. Each sample was annotated with its 

sampling site (as a header row) obtained from the original publication: 'Colon', 'External_ear', 

'External_naris', 'Gingiva', 'Hard_palate', 'Median_vaginal_canal', 'Mouth_mucosa', 

'Oral_opening', 'Palatine_tonsil', 'Posterior_fornix_of_vagina', 'Skin_of_elbow', , 'Throat', 

'Tongue', 'Vagina_orifice’ or ‘Calcareous_tooth’. The ‘Calcareous_tooth’ category was further 

annotated as 'Subgingival_dental_plaque' or 'Supragingival_dental_plaque' yielding 16 total 
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groups. This procedure was conducted at the Phylum level so as to provide the most stringent 

example as it was expected that groups would be most similar at higher levels.  

 

Parameter testing 

 

 The dataset was processed using uniForest to test the performance of each impution 

parameter (arithmetic mean, geometric mean, harmonic mean, and median) with iForest 

bootstrapping and data scaling (ntests = 16). Data impution is used to replace outliers with a 

representative value so as to keep sample sizes constant pre- and postprocessing.  

The performance of a given impution metric was assessed using one of two processes. The first 

process focusses on reducing “contamination” by increasing distance (dissimilarity) between 

groups.A Bray-Curtis dissimilarity matrix (Bray and Curtis, 1957) was constructed between 

each pair of groups (ngroups = 16) yielding 120 dissimilarity matrices (nCr = 16C2 = 120). Each 

matrix was transformed to a dissimilarity score (D) using ANOSIM (Clarke, 1993), where 

scores approaching -1 indicated greater group similarity and scores approaching 1 indicated 

greater group dissimilarity. Normalised differences (D’) between the raw data and processed 

dissimilarity scores (Draw vs. Dprocessed) using the formula: 

 

D' = 
(Dprocessed -  Draw) + 2

4
 

 

 As ANOSIM scores fall between {-1, 1}, differences can also only fall between {-2, 

2}, by adding maximum possible score (2) to the difference and dividing by the range (4), D’ 

falls between {0, 1} where a D’ < 0.5 indicates a decrease in performance, a D’ = 0.5 indicates 

no change in performance, and a D’ > 0.5 indicates an increase in performance (Figure 2). This 

score accounts for all possible scenarios and thus may appear to be quite punitive. For example, 
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a D’ = 1 is only achievable in a scenario where a Draw = -1 (all samples within a group are 

completely eclipsed by samples within another group) and a Dprocessed = 1 (no sample overlap 

between groups) are initially observed (Figure 2). To quantify the magnitude of this score a 

Kruskal-Wallis H test (Kruskal and Wallis, 1952) is performed between both groups 

(H0:η(a)=η(b):HA:η(a)≠η(b)). A Bonferroni-Dunn correction was applied (n = 16), and a PBD ≤ 

0.005 was considered statistically significant. The Kruskal-Wallis H test was chosen over other 

statistical comparisons as it does not require data to follow a Gaussian distribution or 

equivariance between groups and is powerful even when using small sample sizes (n ≥ 5) thus 

allowing for more reliable comparability between groups (Table 1).  

 The second performance process focusses on the reduction of distance between samples 

in the same group and the reduction of variance in distances between samples. Separate 

principal component analyses (PCA) were performed for each group on the raw and processed 

datasets. The three most prominent components were taken as x, y, and z Cartesian coordinates 

for each sample and weighted by multiplying each coordinate by its explained ratio. Distances 

(d) between each weighted sample were computed using the formula: 

 

 d = √((x, y, z)a - (x , y, z)b)2 

 

Distance reductions were assessed by comparing the distribution of distances between 

the raw dataset and processed dataset using a Kruskal-Wallis H-test (Table). A Bonferroni-

Dunn correction was applied (n = 16), and a PBD ≤ 0.005 was considered statistically 

significant. It has been previously recommended that α ≤ 0.005 is preferable to α ≤ 0.05 to 

ensure greater statistical power and accuracy (Benjamin et al., 2018). 

Treatment effect (comparison of variation) was assessed between both datasets (pre-

processed vs post-processed) using Levene’s test (Levene, 1960) where variance distributions 
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were centred at their respective medians (H0:σ(a)
2=σ(b)

2;HA:σ(a)
2≠σ(b)

2). A Bonferroni-Dunn 

correction was applied (n = 16), and a PBD ≤ 0.005 was considered statistically significant 

(Table 2). Levene’s test was chosen over more commonplace variance tests (such as an F-test) 

to account for potential deviations from a Gaussian distribution.  

The each individual PBD set (those derived from the Levene’s test and those derived 

from the Kruskal-Wallis test, respectively) were combined (PF) using the Fisher's method 

(Fisher, 1938). As PF was derived from PBD, a Bonferroni-Dunn correction was not applied in 

this instance and a PF was considered statistically significant (Table 2). This process should be 

considered less important than the “contamination” reduction process.  

 

 Chosen metric 

 

 The median imputed dataset displayed the best performance for this analysis (Tables 1-

2; Figures 3-4) and data derived from this impution metric were used for all subsequent 

analyses. Principal component analyses using raw data and processed data are presented for 

illustrative purposes (Figures 5-6). 

 

Statistical analysis 

 

Descriptive statistics (mean, standard deviation, harmonic mean, geometric mean, 

median, variance, and standard error) were calculated for unprocessed and processed data 

(Table 3). For brevity, Phyla in a given group with a mean of 0 post-processing were removed 

from both groups (both pre- and post-processing). Treatment effect (comparison of variation) 

was assessed for each Phylum between both datasets (pre-processed vs post-processed) using 

Levene’s test where variance distributions were centred at their respective medians. A 
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Bonferroni-Dunn correction was applied (n = 115) and a PBD ≤ 0.005 was considered 

statistically significant (Table 3).  

 

Reporting of changes made to the processed dataset 

 

Following good practice, uniForest reports the descriptive statistics for the raw and 

processed datasets for each taxon in each group in addition to the proportion of imputed outliers 

(Table 3). For illustrative purposes microbiome data at Phylum level for the “Colon” group, 

one group from the skin (“Exterior nares”), one group from the mouth (“Palatine tonsil”) and 

one group from the vagina (“Median vaginal canal”) were randomly selected and their relative 

abundances (of both the pre- and postprocessed datasets) were displayed as an example (Figure 

7). Relative abundances were made for any group where the proportion of outliers exceeded 

0.7 (70%) to confirm the presence of multiple distinct subgroups within a given group (Figure 

8). 

 

Assessment of effect on α-diversity variation 

 

A cohort of 4 α-diversity metrics (specifically Simpson’s D, Simpson’s E, Chao1, and 

Shannon’s H (Shannon, 1948; Simpson, 1949; Rényi, 1961; Chao, 1984)), were calculated for 

each sample in each group using the “math.diversity.alpha” function in the skbio Python library 

v.0.1.3 (http://scikit-bio.org/). Descriptive statistics (mean, standard deviation, median, 

variance, harmonic mean, geometric mean, and coefficient-of-variation) were calculated for 

both raw and processed datasets (Table 4; Figure 9). The difference (∆) in coefficients-of-

variation (CoV) were calculated using the formula: 
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∆ = 100- ((
CoVraw

CoVprocessed

) ×100) 

 

 Statistical differences were determined using  Levene’s test where variance 

distributions were centred at their respective medians. A Bonferroni-Dunn correction was 

applied (n = 64) and a P ≤ 0.005 was considered statistically significant (Table 4).  

 

 

Results 

 

Isolation Forests significantly reduces variance in reads across the dataset 

 

 Isolation Forest proved to be a powerful tool for reducing variance in microbiome 

datasets, achieving a statistically significant decrease (PBD ≤ 0.005) in 87 of 115 (75.62%) 

comparisons (Table 3). A minimum reduction in variance of 81.16% was achieved. Examples 

of variance reduction are presented in Figure 6. 

 

Isolation Forests resolve groups with surprising accuracy 

 

 Datasets without outlier processing were highly overlapped irrespective of whether 

phyla were removed to match phyla removed by outlier processing (Figure 4). Following 

outlier removal, nodes within groups were tightly clustered together yet divergent from other 

groups. Data sampled from the vagina (“Median vaginal canal”, “Posterior fornix of vagina”, 

and “Vaginal orifice”) were highly overlapping, as were some samples from the buccal cavity 

(specifically the “Throat” and “Mucus membrane”). Relatively little overlap was observed 
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beyond these though. When the distances between samples in a given group were compared, 

significant variation reduction (PBD ≤ 3.46e-82) was observed in every comparison. This 

difference is not surprising when the data presented in Figures 4 and 5 are visually compared.  

 

Isolation Forests significantly reduces variance in α-diversity calculations 

 

 Isolation Forest significantly reduced (PBD ≤ 0.005) variance in α-diversity in 55 of 64 

(85.94%) of comparisons (Table 4), where Chao1 accounted for 4 of the 9 samples that were 

not statistically significant, Simpson’s E accounted for 4, and Simpson’s D accounted for 1). 

Simpson’s E was observed to be co-insignificant with Chao1 in 3 of 4 instances, and the 

instance where Simpson’s D was observed to be insignificant (‘Posterior fornix of vagina’) 

was also co-insignificant with Simpson’s E. Instances reported to have a significant reduction 

had lost between 17.68-85.69% in variance (Figure 6). 

 

Discussion 

 

 Isolation Forest has demonstrated considerable prowess in outlier processing across a 

multitude of fields (eg. Alonso-Sarria et al., 2019; de Santis & Costa, 2020; Elnour et al., 

2020). To our knowledge, this is the first demonstration of its capabilities on microbiome 

datasets. In our opinion, Isolation Forests surpassed all expectations by significantly reducing 

variance across all Phyla in almost all instances (Table 2) and in reducing distance variation 

between samples in a given group (Table 3). While the variance reduction is most useful and 

may uncover otherwise overlooked trends, we were particularly surprised by its capacity to 

distinguish anatomical sites from others at the Phylum level. Interestingly, even as sites are 

grouped (eg. the external ear, external naris, and elbow are grouped as “sebum” by the original 
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publication), excellent separation was achieved via PCA (Figure 2). Most interestingly, was 

the distinct separation of subgingival plaque and supragingival plaque as their geographical 

locations are mere millimetres apart. Both plaque groups displayed higher levels of variance 

(comparative to other groups) post-processing. This variance could be due to a myriad of 

overlapping reasons prior to sampling, such as how much time has passed since the subject last 

consumed food or liquid, the regular diet of the subject, how much time passed since the patient 

engaged in a dental hygiene activity, whether the subject used a biocidal mouthwash (e.g. zinc 

acetate), and the underlying dental anatomy of each subject, and the hygiene habits of each 

subject (Chen and Jiang, 2014; Suzuki et al., 2018; Burcham et al., 2020). As plaque is a 

biofilm produced by a cohort of bacterial communities, their underlying composition is likely 

more recalcitrant than other regions of the oral cavity so would be harder to control for 

experimental bias (Adler et al., 2013; Buckley et al., 2014; Velsko et al., 2019). Despite these 

variances however, Isolation Forest separated these sites with no overlap at the Phylum level. 

Using Isolation Forests for oral microbiome studies may aid in aetiological diagnostics in oral 

disease, especially for non-culturable organisms such as those in the Candiatus Patescibacteria 

Phylum.  

In 33 of the 193 (33.85%) sample groups, more than 50% of the group dataset for a 

given taxon was detected as contamination, determined to be an outlier, and imputed (Table 

3). Of the top 8 most imputed Phyla per group, 7 were sampled from the oral cavity. One 

particular Phylum (Fusobacteria) was subjected to impution over 70% of the time in 4 body 

sites, the ‘Tongue’, the ‘Oral opening’, the ‘Subgingival dental plaque’ and the ‘Supragingival 

dental plaque’. Proteobacteria were imputed over 80% of the time on the ‘Gingiva’, and 

‘Tongue’. Bacteroidota was imputed over 70% of the time on the ‘Hard palate’. Finally, 

Actinobacteria were imputed over 80% of the time on the ‘Skin of elbow’. When the relative 

abundances of a given Phylum-of-interest was computed and arranged from smallest-to-largest 
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(compared to all other Phyla in the group), a distinct pattern was observed: the data rose steadily 

with rare (if any) large spikes (Figure 5). This suggests that subgroups exist within the given 

groups, especially in parts of the oral cavity. Due to the sensitivity of iForests using the ‘auto’ 

contamination score, these inclines would have made the creation of a ‘normal space’ difficult. 

 As 7 of the 8 most imputed samples arose in the mouth, with 3 groups (sites) recorded, 

multiple oral subgroups were suspected. Dysbiosis in oral Fusobacteriota, Bacteriota, and 

Proteobacteria are commonly associated with periodontitis, gingivitis, and periodontitis, and 

in the development of dental caries (Kapatral et al., 2002; Tanaka et al., 2008; Chen et al., 

2017; Jiang et al., 2019). As these oral conditions vary in severity, underlying microbial 

dysbiotic variability can reasonably be expected. It is hypothesised that a cohort of subgroups 

exist within the oral population used in this study and preliminary separation of oral groups 

into subgroups prior to outlier processing is expected to reduce the rate of impution. 

 The rampant variance observed in the Actinobacteria relative abundances in the ‘Skin 

of elbow’ group could be due to a variety of factors such as hydration and sebum levels 

(Mukherjee et al., 2016; Lee et al., 2018) which could be easily augmented by factors such as 

clothing, weather, underlying condition, or age.  

 

Conclusion 

 

 Isolation Forests and simple impution of the mean have illustrated their potential 

prowess in microbiome studies. This procedure has proven useful in a human dataset and is 

expected to be useful for any studies where high levels of microbiome community variance is 

expected. It would be interesting to observe how this procedure affects ecological samples, 

such as for ecological validation.  
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Code availability 

 

The software and dataset used for this publication are fully available at 

https://github.com/RobLeighBioinformatics/MicrobiomeOutliers 
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Figure 1: Difference between group outliers and local outliers 

 

The upper portion of the graph illustrates how a group (pale green) can be locally 

subcategorised into local subgroups (pale orange and pale purple). The dark green sample 

represents a member of the group that could not be sub categorised further rendering it a group 

inlier but local outlier. Red samples are group outliers. The lower portion of the graph 

represents the upper portion in linear format.  
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Figure 2. Impution metric performance scores 

 

 

The horizontal dashed line illustrates the point at which an improvement between Draw and 

Dprocessed is achieved. The vertical line illustrates where at 50% separation between groups in 

the processed dataset is achieved.  
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Figure 3:  A comparison of distances 

 

A comparison of distances between group pairs in the raw dataset (Draw) and processed dataset 

(Dprocessed) with their associated performance scores (D’). The horizontal dashed line indicates 

the point at which an improvement between Draw and Dprocessed is achieved. Long  (full) 

horizontal lines behind each cluster indicate the mean and shorter lines indicate the standard 

deviation.
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Figure 4: Paired comparison of distances between the raw and processed datasets.  

 

The effect of outlier processed is demonstrated with the line linking Draw and Dprocessed for a 

given group pair. In every instance, Dprocessed is higher than its associated Draw indicating greater 

separation. 
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Figure 5:Principal component analysis of the raw (unprocessed) data.  

 

Sites are highly overlapping with considerable variance across the dataset and especially in the 

sebum category. 
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Figure 6: Principal component analysis of the processed data.  

 

Sites are much less overlapping with extensive overlap not occurring between many sites. 

There is still some variance across the data but is much less pronounced (as evidenced by the 

PC boundaries). 
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Figure 7: Effect of outlier impution on four anatomical groups 

 

Samples (not numbered) are displayed along the x-axis and their relative abundances on the y-

axis 
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Figure 8: Distribution of Phyla in samples where impution exceeded 0.75 (75%).  

 

Samples (not numbered) are displayed along the x-axis and their relative abundances on the y-

axis. Data is ordered from smallest to largest along the x-axis 
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Figure 9: Comparison of α-diversity metrics  
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