476 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 6, DECEMBER 2021

Neuroevolution in Deep Neural Networks:
Current Trends and Future Challenges

Edgar Galvan

Abstract—A variety of methods have been applied to the archi-
tectural configuration and learning or training of artificial deep
neural networks (DNN). These methods play a crucial role in the
success or failure of the DNN for most problems and applications.
Evolutionary algorithms (EAs) are gaining momentum as a com-
putationally feasible method for the automated optimization of
DNNs. Neuroevolution is a term, which describes these processes of
automated configuration and training of DNNs using EAs. While
many works exist in the literature, no comprehensive surveys cur-
rently exist focusing exclusively on the strengths and limitations
of using neuroevolution approaches in DNNs. Absence of such
surveys can lead to a disjointed and fragmented field preventing
DNNs researchers potentially adopting neuroevolutionary methods
in their own research, resulting in lost opportunities for wider
application within real-world deep learning problems. This article
presents a comprehensive survey, discussion, and evaluation of the
state-of-the-art in using EAs for architectural configuration and
training of DNNGs. This article highlights the most pertinent current
issues and challenges in neuroevolution and identifies multiple
promising future research directions.

Impact Statement—The concept of deep learning originated from
the study of artificial neural networks (ANNs). ANNs have achieved
extraordinary results in a variety of diverse application areas.
Numerous methods have been applied to the architectural configu-
ration and learning or training of artificial DNN and these methods
play a crucial role in the success or failure of the DNN for most prob-
lems and applications. Recently, EAs have been gaining momentum
as a computationally feasible method (called neuroevolution) for
the automated configuration and learning or training of DNNs.
This article reviews over 170 recent scientific papers describing
how major EAs paradigms are being applied by researchers to the
configuration and optimization of multiple DNNs. By articulating a
clear understanding of the context, state-of-the-art, and feasibility
of Neuroevolution, researchers in Al, EAs, and DNN will benefit
from this article. The impact of this article comes from contribut-
ing toward enhancing research capacity, knowledge, and skills
for researchers currently working in neuroevolution and actively
engaging those considering becoming involved in this area.

Index Terms—Deep learning (DL), deep neural networks
(DNNs), evolutionary algorithms (EAs), machine learning,
neuroevolution.

Manuscript received July 20, 2020; revised December 9, 2020 and January
30, 2021; accepted March 16, 2021. Date of publication March 22, 2021; date of
current version December 13, 2021. This work was supported by the Department
of Computer Science at MU. This article was recommended for publication by
Associate Editor Sanaz Mostaghim upon evaluation of the reviewers’ comments.
(Corresponding author: Edgar Galvdn.)

The authors are with Naturally Inspired Computation Research Group, De-
partment of Computer Science, Maynooth University, W23 F2H6 Maynooth,
Ireland (e-mail: edgar.galvan@mu.ie; Peter.mooney @mu.ie).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TAL.2021.3067574.

Digital Object Identifier 10.1109/TAIL.2021.3067574

and Peter Mooney

I. INTRODUCTION

EEP learning (DL) algorithms [57], [65], [94], a subset
D of machine learning algorithms, are inspired by deep hi-
erarchical structures of human perception as well as production
systems. These algorithms have achieved extraordinary results
in diverse areas including computer vision [159], speech recog-
nition [58], [115], board games [145], and video games [114],
to mention a few. The design of deep neural networks (DNN5s)
architectures (along with the optimization of their hyperparam-
eters) and their training plays a crucial part in their success or
failure [105]. Architecture search is an area of growing interest as
demonstrated by the large number of scientific works published
in recent years. These works can be classified into one of the fol-
lowing two broad categories: evolution-based methods [6], [34],
sometimes referred as neuroevolution [42], [170], and reinforce-
ment learning (RL) methods [158]. Methods falling outside these
two categories have also been proposed in the specialized liter-
ature including Monte Carlo based simulations [119], random
search [11] and random search with weight prediction [14], hill-
climbing [37], grid search [174], Bayesian optimization [12],
[76], gradient-based [103], [168], and mutual information [161],
[162], [173]. RL architecture-search methods started gaining
momentum thanks to their impressive results [7], [16], [101],
[179], [181], [182], and more recently, EA architecture-search
methods began yielding impressive results in the automatic con-
figuration of DNNSs architectures [39], [102], [150]. It has been
reported that neuroevolution requires less computational time
compared to RL methods [114], [130], [150], [155]. Basically,
a DNN is a feedforward artificial neural network (ANN) with
many hidden layers with each layer constituting a nonlinear
information processing unit. Usually having two or more hidden
layers in an ANN signifies a DNN. By adding more layers and
more units within a layer a DNN can represent functions of
increasing complexity [57].

Evolutionary algorithms (EAs) [6], [34], also known as evo-
Iutionary computation systems, are nature-inspired stochastic
techniques that mimic basic principles of life. These automatic
algorithms are very popular and have proven competitive in
the face of challenging problems’ features such as discontinu-
ities, multiple local optima, and nonlinear interactions between
variables [33]. EAs have also proven to yield competitive re-
sults in many real-world problems against other Al approaches
even comparing well against results achieved by human ex-
perts [86], [88]. Finding a well-performing architecture is often
a very tedious and error-prone process. Indeed, Lindauer and

2691-4581 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8474-5234
https://orcid.org/0000-0002-2389-3783
mailto:edgar.galvan@mu.ie
mailto:Peter.mooney@mu.ie
https://doi.org/10.1109/TAI.2021.3067574

GALVAN AND MOONEY: NEUROEVOLUTION IN DEEP NEURAL NETWORKS: CURRENT TRENDS AND FUTURE CHALLENGES 477

Hutter [100] remark that there are over 300 works published in
the area of neural architecture search (NAS) with almost a third
of these studies corresponding to neuroevolution in DNNs. We
have witnessed an increased number of publications from 2017
up to the date of writing when considered over a period from
20009 to present (see Fig. 1 in the Supplementary Material along
with details of the systematic literature search).

We focus exclusively on architecture EAs-based search meth-
odsin DNNs as well as EAs-based approaches in training DNNs.
Particularly, this work considers both landmark EAs, such as
genetic algorithms (GAs) [66], evolution strategies (ESs) [13],
[132], and genetic programming (GP) [87] as well as more
recent EA variants, such as differential evolution (DE) [127],
neuroevolution of augmenting topologies (NEAT) [149], and
grammatical evolution (GE) [135]. Furthermore, we consider
the main DL architectures, as classified by Liu ef al. [105]
that have been used in neuroevolution, including autoencoders
(AEs) [24], convolutional neural networks (CNNs) [90], deep
belief networks (DBNs) [176], [177], and restricted Boltzmann
machines (RBMs) [105], [118]. Other DL architectures consid-
ered in this study include recurrent neural networks (RNNs) [75]
and long short-term memory (LSTM) [52]. The previous liter-
ature reviews in the area include those conducted by Floreano
et al. [42] and Yao [170] with more recent reviews provided
by Stanley et al. [148], Darwish et al. [23], and Baldominos
et al. [9]. The former work explains the influence of modern
computational power at scale in allowing the grand ambitions
of neuroevolution and DL from many years ago to be achieved
and fulfilled. Darwish et al. [23] deliver a broader and high-level
introduction and overview of swarm intelligence and EAs in
the optimization of the hyperparameters and architecture for
neural networks in data analytics. Baldominos et al. [9] work
discusses a few EAs methods employed in DNNs, with particular
emphasis on CNNs. In contrast to these works, this article
provides a new contribution by concentrating on configuration
and design of neuroevolution approaches in DL. We consider
how EAs approaches are applied in DL and in particular their
specific configuration for this purpose. This article delivers our
estimation of the state-of-the-art works in neuroevolution in
DNNGs.

The rest of this article is organized as follows. Section II
provides some background to DL and EAs. Section III discusses
how architectures of DNNs can be evolved efficiently using EAs.
Section IV discusses training of DNNs with EAs while Section V
sets out major challenges and fertile avenues for future work.
Finally, Section VI concludes this article.

II. BACKGROUND
A. Deep Neural Networks

Deep learning (DL) emerged from works, such as Hinton
et al. [65], studying ANNs to become a very active research
area [105]. An ANN consists of multiple, simple, connected
units (neurons), each producing a sequence of real-valued acti-
vations where the process of training an ANN may require “long
casual chains of computational stages” [138]. A DL algorithm
is a class of machine learning algorithm using multiple layers to

progressively extract higher level features from the raw data
input where “deep” refers to the number of transformation
layers for raw data. In DL, each subsequent level attempts to
learn in order to transform input data into a progressively more
abstract and composite representation. In the following section,
we summarise where neuroevolution in DNNSs has been applied
to the development of a wide range of ANNSs including, but
not limited to, convolutional neural networks, autoencoders,
deep belief networks and recurrent neural networks. Taxonomies
for such architectures can be found in [80] (CNNs) and [108]
(memory networks).

1) Deep Learning Architecture: Convolutional Neural Net-
works (CNNs): CNNs have shown impressive performance in
processing data with a grid-like topology. The deep network con-
sists of a set of layers each containing one or more planes. Each
unit in a plane receives input from a neighborhood in the planes
of the previous layer. This idea of connecting units to receptive
fields dates back to the 1960s with the perceptron and the animal
visual cortex organization discovered by Hubel and Wiesel [70].
The input, such as an image, is convolved with trainable kernels
or filters at all offsets to produce feature maps. These filters
include a layer of connection weights. Usually, four pixels in a
feature map form a group and this is passed through a function,
such as sigmoid function or hyperbolic tangent function. These
pixels produce additional feature maps in a layer. n planes are
normally used in each layer so that n features can be detected.
These layers are called convolutional layers. Once a feature is
detected, its exact location is less important and convolutional
layers are followed by another layer in charge of performing
local averaging and subsampling operation. Due to the high
dimensionality of the NNs’ inputs’ weights, a CNN classifier
may cause overfitting. This problem is addressed by using a
pooling process, also called subsampling or down-sampling,
reducing the overall size of the signal. Normally, the CNN is
trained with the usual backpropagation gradient-descent pro-
cedure proposed by Lecun et al. [95]. The learning process
of a CNN is determined by the following three key elements:
1) sparse interaction that reduces the computational processing
with kernels that are smaller than the inputs; 2) parameter sharing
refers to learning one set of parameters instead of learning one set
at each location, and finally; 3) equivariance representation that
means that whenever the input changes, the output changes in the
same manner [57]. CNNs were the first successful DL architec-
tures applied to face detection, handwriting recognition, image
classification, speech recognition, natural language processing,
and recommender systems [31], [90], [172].

Early evolution of CNN architectures has been slow but
remarkable. LeNet [95] proposed in the late 1990s and
AlexNet [90], proposed a decade later, are very similar with two
and five convolutional layers, respectively. Moreover, they also
used kernels with large receptive fields in the layer close to the
input and smaller filters closer to the output. A major difference
is that the latter used rectified linear units as an activation
function, which became a standard in designing CNNs. Since
AlexNet, the use of novel and deeper models took off. Simonyan
and Zisserman [146] won the ImageNet challenge with their
proposed 19-layer model known as VGG19. Other networks

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

478 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 6, DECEMBER 2021

have been proposed that are not only deeper but use more com-
plex building blocks. Szegedy et al. [159] proposed GoogLeNet,
also known as Inception, which is a 22-layer network that used
inception blocks. Also in 2015, the residual network (ResNet)
architecture, consisting of the so-called ResNet blocks, proposed
by He er al. [64] won the ImageNet challenge. Moreover,
multiple CNNs variants have been proposed such as combining
convolutions with an AE [72], RBMs [29]. A description of the
variants of this network can be found in [105].

2) Deep Learning Architecture: Autoencoders (AEs): AEs
are simple learning circuits designed to transform inputs into
outputs with the minimum amount of distortion. An AE consists
of a combination of an encoder and a decoder function. The
encoder function converts the input data into a different represen-
tation and then the decoder function converts the new represen-
tation back to the original form. AEs attempt to preserve infor-
mation and provide range-bounded outputs, which make them
suitable for data preprocessing and iterative architectures such
as DNNs [91]. Despite this work appearing in 2020, the authors
suggest that there is “still relatively little work exploring the ap-
plication (of EAs to neural architecture search) to autoencoders.”
Baldi [8] argued that while AEs “had taken center stage in the
deep architecture approach” there was still very little theoretical
understanding of AEs with deep architectures to date. Interesting
theoretical works have started filling this important gap by
studying and using mutual information [161], [173]. Choosing
an appropriate AE architecture in order to process a specific
dataset will mean that the AE is capable of learning the optimal
representation of the data [17]. Encoding AEs within a chromo-
some representation means that such an approach could be broad
enough to consider most AE variations [17]. As an unsupervised
feature learning approach, AEs attempt to learn a compact rep-
resentation of the input data whilst retaining the most important
information of the representation. This representation is ex-
pected to completely reconstruct the original input. This makes
initialization of the AE critical [67]. Whilst AEs can induce very
helpful and useful representations of the input data they are only
capable of handling a single sample and are not capable of mod-
eling the relationship between pairs of samples in the input data.

3) Deep Learning Architecture: Deep Belief Networks
(DBNs): DBNs are generative models that can be implemented
in a number of ways including RBMs (see Section II-A4) and
AEs (see Section II-A2). DBNs are suited to the problem of
feature extraction and have drawn “tremendous attention re-
cently” [177]. DBNs, such as other traditional classifiers, have
a very large number of parameters and require a great deal of
training time [18]. When RBMs are stacked together they are
considered to be a DBN. The fundamental building blocks of a
DBN are RBMs consisting of one visible layer and one hidden
layer. When DBNSs are applied to classification problems the
feature vectors from data samples are used to set the values of
the states of the visible variables of the lower layer of the DBN.
Then, the DBN is trained to generate a probability distribution
over all possible labels of the input data. They offer a good
solution to learn hierarchical feature representations from data.

4) DL Architecture: Other Network Types: We introduce
other well-studied network architectures namely: recurrent neu-
ral networks (RNNs), restricted boltzmann machines (RBMs),
and long short term memory (LSTM). RNNs: In CNNs, inputis a
fixed-length vector eventually producing a fixed-length vector as
output. The number of layers in the CNN determine the amount
of computational steps required. RNNs are more flexible and
allow operation across a sequence of vectors. The connections
between the units in the network form a directed cycle and this
creates an internal state of the network allowing us to exhibit
dynamic temporal behavior. This internal hidden state allows
the RNN to store information about the past efficiently. RNNs
are well suited to sequential data prediction and this has seen
them being applied to areas such as statistical language modeling
and time-series prediction. However, the computational power
of RNNs make them very difficult to train. The main reasons for
this difficulty are due to the exploding and the vanishing gradient
problems [75], although vanishing gradient has been addressed
with LSTM and Gated RNNs. In theory, RNNs can make use of
information in arbitrarily long sequences, but realistically they
are limited to considering look-back at only a few steps.

RBMs: A Restricted Boltzmann Machine (RBM) is a net-
work of symmetrically connected neuron-like units, which are
designed to make stochastic decisions about whether to be ON
or OFF. They are an energy-based neural network. In an RBM,
there are no connections between the hidden units and multi-
ple hidden layers. Learning occurs by considering the hidden
activities of a single RBM as the data for training a higher
level RBM [136]. There is no communication or connection
between layers and this is where the restriction is introduced to a
Boltzmann machine. The RBMs are probabilistic models using a
layer of hidden binary variables or units to model the distribution
of a visible layer of variables. RBMs have been successfully
applied to problems involving high dimensional data such as
images and text [93]. As outlined by Fischer and Igel [41], RBMs
have been the subject of recent research after being proposed as
building blocks of multilayer learning architectures or DBNS.
The concept is that hidden neurons extract relevant features from
the data observations. These features can then serve as input to
another RBM. This stacking of RBMs allows a network to learn
features from features with the goal of arriving at a high-level
representation [115].

LSTM: Long-short-term memory (LSTM) networks are a spe-
cial type of RNNs capable of learning long-term dependencies.
They work incredibly well on a large variety of problems and are
currently widely used. The basic unit within the hidden layer of
an LSTM network is called a memory block containing one
or more memory cells and a pair of adaptive, multiplicative
gating units, which gate input and output to all cells in the
block [52]. In LSTM networks, it is possible to circumvent the
problem of the vanishing error gradients in the network training
process by the method of error back propagation. An LSTM
network is usually controlled by recurrent gates. Errors are
propagated back in time through a potentially unlimited number
of virtual layers. In this way, learning takes place in LSTM,
while preserving the memory of thousands and even millions of

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

GALVAN AND MOONEY: NEUROEVOLUTION IN DEEP NEURAL NETWORKS: CURRENT TRENDS AND FUTURE CHALLENGES 479

time intervals in the past. Network topologies such as LSTM can
be developed in accordance with the specifics of the problem.
Recurrent neural networks (RNNs) with long short-term mem-
ory (LSTM) have emerged as an effective and scalable model
for several learning problems related to sequential data [59].
Gers and Schmidhuber [53] showed that standard RNNss fail to
learn in the presence of time lags exceeding as few as five to
ten discrete-time steps between relevant input events and target
signals. LSTM is not affected by this problem and are capable of
dealing with minimal time lags in excess of 1000 discrete-time
steps. LSTM clearly outperforms previous RNNs not only on
regular language benchmarks (according to previous research)
but also on context-free languages benchmarks [53].

B. Evolutionary Algorithms

Evolutionary algorithms (EAs) [6], [34], also known as evo-
lutionary computation systems, refer to a set of stochastic opti-
mization bioinspired algorithms that use evolutionary principles
to build robust adaptive systems. The field has its origins in four
landmark evolutionary methods: genetic algorithms [66], [55],
evolution strategies [133], [139], evolutionary programming
[43], and genetic programming [87]. The key element to these
algorithms is undoubtedly flexibility in allowing the practitioner
to use elements from two or more different EAs techniques.
Consequently, the boundaries between these approaches are
no longer distinct allowing a more holistic EA framework to
emerge. EAs work with a population of p-encoded (represen-
tation of the) potential solutions to a particular problem. Each
potential solution, commonly known as an individual, represents
a point in the search space, where the optimal solution lies.
The population is evolved by means of genetic operators, over a
number of generations, to produce better results to the problem.
Each individual is evaluated using a fitness function to determine
how good or bad the individual is for the problem at hand.
The fitness value assigned to each individual in the population
probabilistically determines how successful the individual will
be at propagating (part of) its code to future generations.

The evolutionary process is carried out by using genetic op-
erators. Selection, crossover, and mutation are the key operators
used in most EAs. The selection operator is in charge of choosing
one or more individuals from the population based on their
fitness values. Multiple selection operators have been proposed.
One of the most popular selection operators is tournament
selection where the best individual is selected from a pool,
normally of size = [2-7], from the population. The stochastic
crossover, also known as recombination, operator exchanges
material normally from two selected individuals. This operator is
in charge of exploiting the search space. The stochastic mutation
operator makes random changes to the genes of the individual
and is in charge of exploring the search space. The mutation
operator is important to guarantee diversity in the population
as well as recovering genetic material lost during evolution.
This evolutionary process is repeated until a stopping condition
is reached such as until a maximum number of generations
has been executed. The population, at this stage, contains the
best evolved potential solutions to the problem and may also

hidden state set

hidden state set

Hidden State
Mutation

av max | | O avg
3x 33 |1 33
’
.

(b) (© (d)

2]
® \
9
3
o]

Fig. 1. (a) NASNet Search Space [182]. (b) Scalable architecture for image
classification consisting of two repeated motifs termed normal cell and reduction
cell. Left: The full outer structure (omitting skip inputs for clarity) and Right:
Detailed view with the skip inputs. (c¢) Example of a cell: dotted red circle

7
©

CNN Architecture

|
6 @Summalion

2nd input node number
1stinput node number
Function ID

A

7 | Max
2 Pooling

I not expressed in the phenotype !

3 A7 cow
1 3 5 u (64.,5)

conv conv pool A

0 (32,3) (64, 5) (max) 7 4 ?

input m A"A conv
2 4 6 ((32,3)
pool conv —
(max) [(64,3) [7] U™

Fig. 2. (a) Genetic representation of a CGP individual encoding a CNN
architecture. (b) Phenotypic representation. (¢) CNN architecture defined by
(a). Gene No. 5, coloured with a black background in the genotype (a) is not
expressed in the phenotype. The summation node in (c), with light yellow
background, performs max pooling to the LHS of the input (Node no. 3) to
get the same input tensor sizes. Redrawn from Suganuma et al. [153].

(b) Phenotype

« T com
‘[| (64.3)
< 1V

represent the global optimal solution. Algorithm 1 shows the
typical steps considered in EAs. The main EAs employed in
DNNSs are genetic algorithms, genetic programming, evolution
strategies. Others are differential evolution, grammatical evo-
lution and neuroevolution of augmenting topologies. Fig. 2, in
the supplementary material, shows how GAs is the only EA
method used for the training of DNNs and the rest of these for
the configuration of DNNs. Taxonomies of these algorithms can
be found in [44] and [160].

1) Evolutionary Algorithms: Genetic Algorithms (GAs):
This EA was introduced by Holland [66] in the 1970s and highly

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

480 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 6, DECEMBER 2021

Algorithm 1: A Common EA Process for Network Design.
Adapted From [167].

1: Input: the reference dataset D, the number of
generations 7°, the number of individuals in each
generation IV, the mutation and crossover probabilities
P,, and P_;

2: Initialisation: generating a set of randomised
individuals {M, n} fy:l, and computing their
recognition accuracies;

3: fort=1,2,...,Tdo

4: Selection: producing a new generation {M[} , }7"_,

with a Russian roulette process on {M; 1, }N_;
[N /12]
n= B

5: Crossover: for each pair ({M; 2,1, M 2,,) }
performing crossover with probability P,;

6: Mutation: for each non-crossover individual
{M ,, }2_,, performing mutation with probability
P

7: Fitness evaluation: computing the fitness (e.g.,
recognition accuracy) for each new individual
{Myn }r]y: 15

8: end for

9: Output: a set of individuals in the final generation

{Mr,n}N_, with their fitness values.

popularised by Goldberg [55] subsequently achieving extraordi-
nary results as well as reaching multiple research communities,
including machine learning and neural networks. GAs were fre-
quently described as function optimizers, but now the tendency is
to consider GAs as search algorithms able to find near-optimal
solutions. Multiple forms of GAs have been proposed in the
specialized literature. The bitstring fixed-length representation
is one of the most predominant encodings (representation) used
in GAs. Crossover, as the main genetic operator, and mutation
as the secondary operator, reproduce offspring over evolutionary
search.

2) Evolutionary Algorithm: Genetic Programming (GP):
This EA is a subclass of GAs popularised by Koza [87]. GP
is a form of automated programming where individuals are ran-
domly created by using functional and terminal sets required to
solve a given problem. Multiple types of GP have been proposed
in the literature with the typical tree-like structure being the
predominant form of GP in EAs. Cartesian GP (CGP) [113]
is another form of GP and has been used in neuroevolution in
DNNGs [152], [153].

3) Evolutionary Algorithm: Evolution Strategies (ES):
These EAs were introduced in the 1960s by Rechenberg [133].
ESs are generally applied to real-valued representations of opti-
mization problems. In ES, mutation is the main operator whereas
crossover is the secondary, optional, operator. Historically, there
were two basic forms of ES, known as the (i, A)-ES and the
(i + A)-ES. prefers to the size of the parent population, whereas
A refers to the number of offspring that are produced in the
following generation before selection is applied. In the former
ES, the offspring replace the parents whereas in the latter form of
ES, selection is applied to both offspring and parents to form the

population in the following generation. The covariance matrix
adaptation-ES, proposed by Hansen [61]-[63], is state-of-the-
art and adapts the full covariance matrix of a normal search
distribution.

4) Evolutionary Algorithm: Evolutionary Programming:
These EAs were proposed in the 1960s by Fogel [43] but
there is little difference between ES and EP. The difference
lies in the lack of use of crossover in EP whereas this genetic
operator rarely used in ES. In EP normally M parents produce
M offspring whereas in ES the number of offspring produced
by genetic operators is higher than their parents.

5) EA: Others: Multiple evolutionary-based algorithms have
been used in DNNs, most notably: differential evolution (DE),
grammatical evolution (GE) and neuroevolution of augmenting
topologies (NEAT). DE: differential evolution was proposed by
Price and Storn [127] in the 1990s. DE has proven to be highly
efficient in continuous search spaces and it is often reported to
be more robust as well as achieving a faster convergence speed
compared to other optimization methods [128]. DE-variants
perturb the population members with the scaled differences
of randomly selected and distinct population members. GE:
grammatical evolution is a grammar-based EA proposed by
Ryan et al. [135] in the 1990s. A genotype-phenotype mapping
process is used to generate (genetic) programs by using a binary
string to select production rules in a Backus—Naur form grammar
definition. GE can be seen as a special form of GP, where
one of the main differences is that unlike GP, GE does not
perform the evolutionary process on the programs themselves.
NEAT: neuroevolution of augmenting topologies is a form of
EA proposed by Stanley and Miikkulainen [149]. NEAT is a
technique for evolving neural networks. In the following three
elements are crucial for NEAT to work: (1) historical marking
that allows solutions to be crossed over; (2) speciation that allows
for defining niches; and (3) starting from minimal structure
allowing us to incrementally find better solutions.

III. EVOLVING DNNS ARCHITECTURES WITH EAS
A. Motivation

Recently, EAs have started gaining momentum for designing
DNN:ss architectures [39], [42], [84], [102], [112], [130], [131],
[149], [167]. The popularity of these algorithms is due to the fact
that they are gradient-free, population-based methods offering
a parallelized mechanism to simultaneously explore multiple
areas of the search space while offering a mechanism to escape
from local optima. These algorithms are inherently suited to
parallelization meaning more potential solutions can be simul-
taneously computed within acceptable wall-clock time. Steady
increases in computing power, including graphics processing
units, are contributing to faster computational calculations in
population-based EAs.

B. Critique

Despite the popularity of EAs for designing DNN architec-
tures they have also been criticized for being slow learners as
well as being computationally expensive to evaluate [33]. For

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

GALVAN AND MOONEY: NEUROEVOLUTION IN DEEP NEURAL NETWORKS: CURRENT TRENDS AND FUTURE CHALLENGES 481

example, when using a small population-based EA of 20 individ-
uals (potential solutions) and a training set of 50 000 samples,
one generation alone (of hundreds, thousands, or millions of
generations) will require one million evaluations through the
use of a fitness function.

C. DL Architecture: CNNs

Dufourq and Bassett [32] used a GA to evolve CNN architec-
tures. They used different operations and sizes of filters including
one and two-dimension convolution, one and two-dimension
max pooling, dropout, among others. The authors reported
competitive results compared to state-of-the-art algorithms on
the balanced-based and digit-based EMNIST dataset as well
as in the fashion dataset. Desell [28] proposed an algorithm
based on NEAT [149] to evolve CNN architectures. Desell
carried out some modifications to the NEAT algorithm to evolve
CNN architectures through selection, crossover, and mutation.
Whereas all operators played an important role to produce well-
behaved CNNs, the mutation operator, involving seven types of
operations, seemed to be crucial to the results reported on the
MNIST dataset.

Zoph et al. [182] proposed NASNet search space defined by
a predetermined outer structure, depicted in Fig. 1, with the ulti-
mate goal of enabling transferability. This structure is inspired by
previous non-NAS work (e.g., ResNet [64] and DenseNet [68]).
This outer structure is composed of convolutional cells, called
normal cells [coloured in pink in Fig. 1(a)] and reduction cells
(coloured in grey), repeated many times. The former type of cells
returns a feature map of the same dimensions whereas the latter
returns a feature map where its height and width is reduced by a
factor of two. All cells of the same type are constrained to have
the same architecture so that architectures of normal cells were
different to the architectures of reduced cells. The goal of their
architecture search process was to discover the architectures of
these two types of cells. An example of this is shown in Fig. 1(b).
Real et al. [130] proposed regularized evolution to evolve an
image classifier achieving superior accuracy over hand-designed
methods for the first time. The authors used a population-based
EA with each fixed length member encoding the architecture
of CNNs. They used the NASNet search space [182]. The goal
was to discover the architectures of the normal cells and the
reductions cells as depicted in Fig. 1(a). Real et al. [130] used a
modified version of tournament selection and two types of mu-
tation to drive evolution. Tournament selection (see Section II)
was modified so that the newest genotypes were chosen over
older genotypes. The mutation operator involved one of two
operations taking place once for each individual: the hidden
state mutation and the op mutation. To execute any of these
types of mutation, first a random cell is chosen, then a pairwise
combination is stochastically selected [see Fig. 1(c)], and finally,
one of these two pairs is selected randomly. This hidden state
is replaced with another hidden state with the constraint that
no loop is formed. The op mutation differs only in modifying
the operation used within the selected hidden state. Fig. 1(d)
shows how these two mutation operations work. The authors
used the CIFAR-10 dataset to test their proposed evolution and

compared it against an RL-based method and random search.
They achieved better accuracy in results and reducing the com-
putational time required by their algorithm compared to the other
two methods. The authors also used the fittest chromosome
found by their algorithm and retrained it using the ImageNet
dataset.

Xie et al. [167] proposed genetic CNN to automatically
learn the structures of CNNs with a limited number of layers
as well as limited sizes and operations of convolutional fil-
ters. Xie et al. [167] adopted a GA with binary fixed-length
representation to represent parts of the evolved network with
each network composed by various stages. Each of these stages
is composed of nodes that represent convolutional operations.
The binary encoding adopted by Xie er al. [167] represents
the connection between a number of ordered nodes and this
representation allowed the use of crossover, along with roulette
selection and mutation. They defined a stage as the minimal unit
to apply crossover and mutation. Even with these restrictions,
the authors achieved competitive accuracy results using the
CIFAR-10 and MNIST datasets while also demonstrating how
their approach can be generalized using the learned architecture
on the ILSVRC2012 large-scale dataset. This was achieved be-
cause their approach was able to produce chain-shaped networks
such as AlexNet [90], VGGNet [146], multiple-path networks
such as GoogLeNet [159] and highway networks such as deep
ResNet [64], which have been reported to be beneficial when
applied to computer vision problems.

Real er al. [131] used an EA to automatically optimize CNN
architectures with individual architectures encoded as graphs
with vertices representing rank-3 tensors (two of these rep-
resent the spatial coordinates of the image and the third is
the number of channels). Activation functions, such as batch-
normalization [71], are applied to the vertices. Eleven types
of mutations involving inserting layers, removing layers, and
modifying layers parameters are used. Real et al. [131] indicated
that crossover did not improve the results yielded by mutation
operators and reported competitive average accuracy results over
five independent runs in the CIFAR-10 and CIFAR-100 datasets
compared to state-of-the-art algorithms including ResNet [64]
and DenseNet [68].

Suganuma et al. [153] used Cartesian GP [113] to automat-
ically design CNN architectures. The genotype encodes infor-
mation on the type and connections of the nodes. Fig. 2(a) de-
picts this idea. These types include ConvBlock, ResBlock, max
pooling, average pooling, summation, and concatenation. Con-
vBlock consists of standard convolution processing followed by
batch normalization and ReLLU [118] whereas ResBlock is a
ConvBlock followed by tensor summation. The CGP encoding
scheme represents the program as a directed acyclic graph in
a 2-D grid of N, rows by N, columns. Fig. 2(b) provides an
example of the phenotype, obtained from Fig. 2(a), in the case
of a grid defined by N, =2 by N, = 3. The corresponding
CNN architecture is depicted in Fig. 2(c). The authors used the
CIFAR-10 dataset. As evaluating each of the CGP individuals
is expensive, they adopted a simple (1+1) ES (see Section II).
The authors’ approach achieved competitive results compared
with well-known methods including ResNet [64]. The authors

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

482 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 6, DECEMBER 2021

reported encouraging results using CGP to automatically config-
ure CNN architectures regardless of the sample size used in their
work. For example, the CNN architecture produced by CGP for
the small dataset scenario is wider compared to the architecture
yielded by CGP for the standard scenario. Recently, Suganuma et
al. [151] extended this work by proposing rich initialization and
early termination. The former uses the ResNet and the densely
connected CNN (DenseNet) to build the CGP individuals. The
latter refers to terminating individual evaluation if accuracy is
poor when the reference curve built is compared to previous
accuracy curves.

Assungdo et al. [3], [4] proposed DENSER, a hybrid mech-
anism of GAs and (dynamic structured) GE [135], to evolve
DNNss architectures. The outer layer of their proposed approach
isin charge of encoding the macro structure of the DNNs evolved
by means of GAs. Dynamic structured GE is in charge of the
inner layer that encodes the parameters of the DNNs in a backus-
naur form. The authors used the typical genetic operators, includ-
ing selection, two forms of crossovers (one-point and bit-mask)
and three types of mutations (add, replicate, and remove unit)
in the outer GA-based layer. They used multiple datasets in-
cluding CIFAR-10, MNIST, and Rectangles. Similarly to other
works [112], [153], Assung@o et al. [3], [4] performed only
ten epochs to train the DNNs and reported competitive results
compared to state-of-the-art algorithms. Interestingly, they ob-
served that as the fitness increases over time the number of
hidden layers decreased suggesting that these two metrics are in
conflict when optimising CNNs architectures. Sun et al. [157]
proposed the use of a population-based GA, of a fixed-length
encoding, to evolve, by means of selection, crossover, and
mutation, unsupervised DNNs for learning meaningful repre-
sentations for computer vision tasks. Their approach included
the following two main parts (i) finding the optimal architectures
in DNNSs, the desirable initialization of weights and activation
functions, and (ii) fine-tuning all the parameter values in con-
nection weights from the desirable initialization. The first was
primarily achieved by using an encoding, which was inspired
by the work conducted by Zhao et al. [178], who captured all of
the elements described in (i). As one gene represents on average
1000 parameters in this encoding, the exploitation achieved by
crossover is reduced. To overcome this problem, Sun et al. used
backpropagation in Part (ii). By hand-crafting the various parts
of their approach, the authors demonstrated how the local search
adopted in Part (i) was necessary in order to achieve promising
results.

Recently, Sun et al. [156] proposed a GA, named evolv-
ing deep CNNss, to automatically discover CNN architectures.
Inspired by Real et al. [131], Sun et al. [157] proposed a
cost-effective method to evaluate the fitness of the individuals
in the population for 30 independent runs. They also used
selection, mutation, and crossover while crossover was not
used in the studies carried out by Real et al. [131] (a lim-
itation in Real’s work). Sun et al. [157] use variable-length
encoding for the convolutional, pooling, and full connection
layer. Using the standard deviation and the average value of
the connection weights they were able to efficiently evaluate
each chromosome. Classification error as well the number of

connection weights was used. To evaluate the chromosomes
along with the normal CNN deep architectures the authors
restricted the training to ten epochs. In the last epoch fitness
is computed for each of the chromosomes. The authors reported
highly encouraging results with many cases achieving better
results compared to state-of-the-art algorithms on benchmark
datasets.

In [163], van Wyk and Bosman described a neural architec-
ture search (NAS) method to automate the process of finding
an optimal CNN architecture for arbitrary image restoration.
Their work demonstrates the feasibility for performing NAS
under significant memory and computational time constraints.
The ImageNet64x64 dataset was chosen for evaluation. The
authors found that the human-based configured architecture was
heavily overparameterized while this was not the case with the
evolved NN, which performed the tasks with a significantly
lower number of total parameters. Sun et al. [155] proposed
an encoding strategy built on the state-of-the-art blocks namely
ResNet and DenseNet and used a variable length GA allowing
them to automatically evolve CNNs architectures of unrestricted
depth. Sun et al. [155] used selection, crossover, and mutation
to evolve candidate solutions and employed a repair mechanism
to produce valid CNNs. The authors used the CIFAR-10 and
the CIFAR-100 datasets and compared their results against nine
manually designed methods, four semiautomatic methods, and
five automatic methods. Interestingly, their results outperformed
all hand-crafted methods as well as all semiautomatic methods
in terms of the classification error rate.

Evolutionary multiobjective optimization (EMO) [21], [25],
explained in Section V-D, has been little used in the automatic
configuration of DNNs networks as well as in the optimization
of their hyperparameters. Works on the latter include the recent
approach proposed by Kim et al. [81], where the authors used
speed and accuracy as two conflicting objectives to be optimized
by means of EMO through the use of the nondominated sorting
genetic algorithm I1 [26]. The authors reported interesting results
using three classification tasks, including the use of the MNIST,
CIFAR-10, and the drowsy behaviour recognition datasets. In-
spired by the Kim ef al. [81] study, Lu er al. [106] used the
same EMO with the same conflicting objectives. Lu et al. [106]
empirically tested multiple computational complexity metrics
to measure speed including number of active nodes, number of
active connections between nodes and floating-point operations,
to mention a few. Lu ef al. [106] indicated that the latter metric
was more accurate and was used as a second conflicting objec-
tive for optimization. Moreover, the authors used an ingenious
bitstring encoding, which allowed them to use homogeneous
crossover and bit-flip mutation (at most one change for each
mutation operation) as normally adopted in GAs. The authors
used the CIFAR-10 and CIFAR-100 datasets achieving com-
petitive results against RL-based approaches and human expert
configurations.

Wang et al. [164] explored the ability of differential evolution
(DE) to automatically evolve the architecture and hyperparame-
ters of deep CNNs. The method called DECNN uses DE where
control of the evolution rate is managed by a differential value.
The DECNN evolves variable-length architectures for CNNs.

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

GALVAN AND MOONEY: NEUROEVOLUTION IN DEEP NEURAL NETWORKS: CURRENT TRENDS AND FUTURE CHALLENGES 483

An IP-based encoding strategy is implemented here to use a sin-
gle IP address to represent one layer of a DNN. This IP address
is then pushed into a sequence of interfaces corresponding to the
same order as the layers in DNNs. Six of the MNIST datasets
are used for benchmark testing and the DECNN performed very
competitively with 12 state-of-the-art competitors over the six
benchmarks. Martin et al. [110] proposed EvoDeep, which is an
EA designed to find the best architecture and optimize the nec-
essary parameters to train a DNN. It uses a finite-state machine
model in order to determine the possible transitions between
different kinds of layers, allowing EvoDeep to generate valid
sequences of layers where the output of one layer fits the input
requirements of the next layer. It is tested on MNIST datasets.
Elsken et al. [38] proposed a multiobjective optimization evo-
lutionary algorithm (MOEA), named LEMONADE employing
a Lamarckian-based inheritance mechanism based on approxi-
mate network morphism (mutation) operators for speeding up
training in DNNs architectures with better results reported for
test errors and number of parameters when compared with
NASNet search space and mobile-based architectures.

Yang et al. [169] propose a continuous evolution strategy
utilizing the knowledge learned in the last evolution genera-
tion for architecture search. A nondominated sort strategy is
adopted to select several excellent architectures. This continuous
evolutionary architecture search (CARS) provides a series of
architecture models on the Pareto front with high efficiency.
Results indicate that their CARS method gives superior results
on benchmark datasets against other state-of-the-art models.
Shirakawa et al. [144] propose a general framework for the
dynamic optimization of both the network structure and connec-
tion weights. A parametric distribution is used to generate the
network structure and then the distribution parameters are un-
derstood as the network hyperparameters. This method is shown
to be more computationally efficient than static optimization
approaches and more flexible than other conventional optimiza-
tion approaches. The methodology is applied to the selection of
layers, selection of the activation functions, adaptation of the
stochastic network, and finally the selection of the connections
for DenseNets. The authors conclude that their proposed method
is capable of learning layer size and an appropriate mix rate for
the activation functions within a reasonable computational time.

Optimizing the weights and architectures of an ANN within
a single training run by considering all possible architectures
as subgraphs of a supergraph is called one-shot architecture
search or one-shot NAS. One-shot NAS is used by Akimoto
et al. [1] to develop a generic optimization framework based on
stochastic relaxation for architecture search. This framework can
handle practically any type of architecture variation provided itis
possible to define a parametric family of probability distributions
upon it. Using a step-size adaptation mechanism for the stochas-
tic natural gradient ascent improves the optimization speed and
adds robustness against hyperparameter tuning. Experimental
analysis indicates that the adaptive stochastic natural gradient
method for one-shot NAS achieves significant speedup over
evolutionary convolutional autoencoders (CAEs) without com-
promising performance. Awad et al. [5] use DE for NAS as DE
has been shown to achieve an excellent performance on a range

of NAS benchmarks. They found the best approach for applying
DE when the parameters are discrete or categorical is to maintain
the population in continuous space and then perform canonical
DE while only using discretization of copies of individuals in
order to evaluate them. DE is shown to perform very well against
four recent NAS methods including one-shot NAS and baseline
algorithms such as random search. The authors conclude DE has
good ability to handle mixed data types and high-dimensional
spaces.

D. DL Architecture: Autoencoders

Suganuma et al. [152] used cartesian GP [113] by adopting an
ES (1+A) technique and using selection and mutation operators
only to optimize DNS architectures for image restoration. The
authors used convolutional autoencoders (CAEs) built upon
convolutional layers and skip connections. By optimizing the
network in a confined search space of symmetric CAEs the
authors achieved competitive results against other methods with-
out the need of using adversarial training and sophisticated
loss functions, normally employed for image restoration tasks.
Luo et al. [107] propose a novel semisupervised AE called a
discriminant AE for application in fault diagnosis. The pro-
posed method has a different training process and loss function
from traditional AEs. In the case of the discriminant AE, it
is capable of extracting better representations from the raw
data provided. A completely different loss function is used
and the representations extracted by the discriminant AE can
generate bigger differences between the sample classes. The
discriminant AE makes full use of labels and feature variables to
obtain the optimal representations. The centers of the groups of
samples should be separated as much as possible. Ashfahani et
al. [2] propose DEVDAN as a deep evolving denoising AE for
application in data stream analytics. DEVDAN demonstrates a
proposal of a denoising AE, which is a variant of the traditional
AE but focused on retrieving the original input information
from a noise perturbation. DEVDAN features an open structure
where it is capable of initiating its own structure from the begin-
ning without the presence of a preconfigured network structure.
DEVDAN can find competitive network architecture compared
with state-of-the-art methods on ten classification datasets.

E. DL Architecture: Deep Belief Networks

DBNs offer a promising solution as they can learn power-
ful hierarchical feature representations from the data provided.
Chen et al. [18] use DBNs to automatically extract features from
images by proposing the evolutionary function array classifier
voter (EFACV), which classifies features from images extracted
by a DBN (composed of stacked RBMs). An ES is used to
train the EFACV and is mainly used for binary classification
problems. For multiclass classification problems, it is necessary
to have multiple EFACV. The EFACV shows fast computational
speed and a reduction in overall training time. Experiments
are performed on the MNIST dataset. Liu et al. [104] describe
structured learning for DNNss based on multiobjective optimiza-
tion. They propose a multiobjective optimisation evolutionary
algorithm (MOEA). The DBN and its learning procedure use

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

484 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 6, DECEMBER 2021

an RBM to train the DN layer by layer. It is necessary to
remove unimportant or unnecessary connections in the DNN and
move toward discovering optimal DNN connection structure,
which is as sparse as possible without lost of representation.
Experiments based on the MNIST and CIFAR-10 datasets with
different training samples indicate that the MOEA approach
is effective. Zhang et al. [176] use DBNs for a prognostic
health management system in aircraft and aerospace design by
proposing MODBNE (multiobjective DBNs ensemble), which
is a powerful multiobjective EA based on decomposition. This
is integrated into the training of DBNs to evolve multiple DBN's
simultaneously with accuracy and diversity as two conflicting
objectives. The DBN is composed of stacked RBMs, which
are trained in an unsupervised manner. MODBNE is evaluated
and compared against a prominent diagnostics benchmarking
problem with the NASA turbofan engine degradation problem.
In the proposed approach, the structural parameters of the DBN
are strongly dependent on the complexity of the problem and
the number of training samples available. The approach worked
outstandingly well in comparison to other existing approaches.
Zhang et al. [177] considered the problem of cost-sensitive
learning methods. This idea is to assign misclassification costs
for each class appropriately. While the authors report that there
are very few studies on cost-sensitive DBNs, these networks
have drawn a lot of attention from researchers recently. Imbal-
ances in the classes in input data are a problem. If there is a
disproportionate number of class instances this can affect the
quality of the applied learning algorithms. Zhang et al. [177]
argue that DBNs are very well placed to handle these types
of imbalanced data problems. The evolutionary cost-sensitive
deep belief network (ECS-DBN) is proposed to deal with such
problems by assigning differential misclassification costs to
the data classes. The ECS-DBN is evaluated on 58 popular
knowledge extraction-based on evolutionary learning (KEEL)
benchmark datasets.

F. Other Networks: LSTM, RRN, RBM

Shinozaki and Watanabe [143] propose an optimization strat-
egy for DNN structure and parameters using an EA and a GA.
The DNN structure is parameterized by a directed acyclic graph.
Experiments are carried out on phoneme recognition and spoken
digit detection and were conducted upon a massively parallel
computing platform using 62 general-purpose computing on
graphics processing units. RBMs are used in the training phase.
Ororbia e al. [121] develop evolutionay exploration of aug-
menting models (EXAMM), which is designed to devolve RNNs
using a selection of memory structures. RNNs are well suited to
the task of performing prediction of large-scale real-world time
series data. EXAMM was designed to select from a large number
of memory cell structures and this allowed the evolutionary
approach to yield the best performing RNN architecture. Peng
et al. [123] use the LSTM NN, which is capable of analyzing
time series over long time spans in order to make predictions
and tackle the vanishing gradient problem. Their study uses
DE to identify the hyperparameters of the LSTM. The authors
claim that this is the first time that DE has been used to choose

hyperparameters for LSTM for forecasting applications. As
forecasting involves complex continuous nonlinear functions,
the DE approach is well suited to these types of problems.
Gongalvez et al. [56] introduced semantic learning machine
(SLM). This shown to outperform other similar methods in a
wide range of supervised learning problems. SLM is described
as a geometric semantic hill climber approach for NNs following
a 14 X strategy. In the search for the best NN architecture
configuration this allows the SLM to concentrate on the current
best NN without drawing any penalties for this. The crucial
aspect of the SLM approach is the geometric semantic mutation.
ElSaid et al. [36] proposed an approach based on [35], called
network-aware adaptive structure transfer learning strategy with
the goal of improving training time for deep RNNs. The authors
used statistical information about the topology of the “source
RNN” topology and the weight distributions. They reported
better performing RNNs using half the number of genomes
compared to a nontransfer learning-based method.

G. Summary: Evolving DNN Architectures Using EAs

EAs methods with different representations have been used
for designing DNNSs, ranging from methods including GAs, GP,
and ES up to using hybrids combining, for example, the use
of GA and GE. Ingenious representations and interesting ap-
proaches achieving extraordinary results against human-expert
configured networks [130] are commonplace. Approaches in
some cases employing hundreds of computers [131] to using a
few GPUs [156] are described. Most neuroevolution studies have
focused on designing deep CNNs but AE, RBM, RNN, LSTM,
and DBM have also been considered despite commending less
research attention.

Table I contains extracted information from almost 30 selected
papers in neuroevolution. We selected these papers in our own
ad-hoc way in order to find a selection of papers, which suc-
cinctly demonstrated the use of neuroevolution in DNNs. The
table is ordered in alphabetical order of the lead-author surname
and summarises: the EA representation used, the representation
of individuals, genetic operators used, and the EA parameters.
The table outlines the computational resources used in the cor-
responding study by attempting to outline the number of GPUs
used. A calculation of the GPU days per run is approximated as
in Sun et al. [155]. We indicate benchmark datasets used in the
experimental analysis. Finally, the table indicates if the neural
network architecture has been evolved automatically or by using
a semiautomated approach whilst also indicating the target DNN
architecture. Every selected paper does not report the same infor-
mation. Some papers omit details about computational resources
while others omit information about the number of runs. A very
interesting output from this table is that there are numerous
differences between the approaches used by all of the papers
listed. Crossover is omitted from several studies mostly due to
encoding adopted by various researchers. Population size and
selection strategies for the EAs change between studies. While
MNIST and CIFAR are clearly the most popular benchmark
datasets we can see many examples of studies using benchmark
datasets from specific application domains.

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

GALVAN AND MOONEY: NEUROEVOLUTION IN DEEP NEURAL NETWORKS: CURRENT TRENDS AND FUTURE CHALLENGES 485

TABLE I
EA REPRESENTATIONS, GENETIC OPERATORS, PARAMETERS, AND VALUES USED IN NEUROEVOLUTION IN DESIGN OF DNNS ARCHITECTURES. INCLUDES
DATASETS USED AND CORRESPONDING COMPUTATIONAL EFFORT IN GPU DAYS. AUTOMATIC AND SEMI-AUTO(MATIC) REFER TO WHERE ARCHITECTURE EVOLVED
AUTOMATICALLY OR USING SEMI-AUTOMATIC APPROACHES. A DASH (—) INDICATES THE INFORMATION WAS NOT REPORTED.

Study EA Var./Fixed Genetic Operators EAs Parameters’ values Computational Datasets GPU days Automatic/ Baselines DNNs
Method Length Cross Mut Selec Pop Gens Runs Resources per run Semi-auto
Assungdo et al. [3], GAs, GE Fixed and v vV 100 100 10 Titan X GPUs CIFAR-10, 3 MNIST - Automatic Manual, RL, EAs, CNN
4] variable variants, Fashion, SVHN, Bayesian
Rectangles, CIFAR-100
Charte et al. [17] GAs, ES,DE Variable v v V150 20 - I NVidia RTX 619 CIFARIO, Delicious, ~ Limited to Automatic Random Search, AE
2080 GPU Fashion, Glass, 24 hours Exhaustive Search
Tonosphere, MNIST,
Semeion, Sonar, Spect
Chen et al. [18] EAs Fixed X v’ v’ 1+A, =4 15000 30 - MNIST - Automatic RBM, RBM DBN
(SVM), RBM (ES)
Desell [28] NEAT-based Variable N N N 100 10 4,500 PCs MNIST - Semi-auto Manual CNN
ElSaid [35] EAs Variable v’ N 40 (max.) - 10 - National General Aviation — — Automatic None RNNs
Flight Information, Coal-
fired Power Plant
ElSaid [36] EAs Variable v’ v’ v’ 40 (max.) - 10 - National General Aviation — — Automatic None RNN
Flight Information
Elsken et al. [38] EAs - X v’ v’ - 100 - 16 Titan X GPUs CIFARI0, CIFAR100, Im- 80 Automatic NASNet, Mobile- CNN
ageNet, TmageNet64x64 based architecture
Gongalvez et GAs Fixed v’ v’ 1+, A=4 gens runs No GPUs 4 Binary datasets: Cancer, —— Automatic Two MLP variants CNN
al. [56] Diabetes, Sonar, Credit (both SGD)
Hajewski etal. [60] EAs Variable v vV u+A=100 20 20- AWS (Nvidia K80 STLIO - Automatic Random Search, AE
(Ape not 40 GPU) Image Denoising,
specified) Manifold Learning
Kim et al. [81] EAs - - - - 50, 40, 60 - - 60 Tesla M40 GPUs MNIST, CIFAR-10, - Semi-auto None CNN
Drowsiness Recognition
Lander et al. [91] GAs Variable v v 30 50 5 No GPU MINST - Automatic Manual, Rnd AEs AE
Liu et al. [104] EAs Variable v’ v’ v’ 100 5000 30 - MINST, CIFAR-10 - Automatic - AE,RBM
Lu et al. [106] GAs Fixed v v v 4w 30 - 1 NVIDIA 1080Ti CIFAR-10, CIFAR-100 8 in both Automatic Manual, RL, RL + CNN
Weight sharing
Martin et al. [110] EAs Fixed vV VT =10 20 - - MNIST - Automatic None CNN
(A.p=5)
Peng et al. [123] EAs Fixed N N N 10 20 - - Electricity price - Automatic Various forecasting LSTM
models incl ANNs,
BPNN
Real et al. [130] GAs Variable X v’ v’ 100 - 5 450 K40 GPUs CIFAR-10, TmageNet 3150, 3150 Semi-auto Rnd Search, RL CNN
Real et al. [131] GAs Variable X N N 1000 - 5 250 PCs CIFAR-10, CIFAR-100 2750, 2750 Automatic None CNN
Shinozaki and GAs, ES Fixed v’ v’ v’ 62 30 - 62 GPUs AURORA?2 Spoken Digits ~ 2.58 Automatic Manual, GAs RBM
Watanabe [143]
Suganuma et CGP Variable X v’ v’ 1+, A=2 500, 10 2 GPUs (GTX 1080 CIFAR-10 (2 variants), See paper Automatic Manual, Evolution, CNN
al. [151] 300 and 1080 Ti) CIFAR-100 RL
Suganuma et ES Fixed X vV A A= 2500 - 4 P100 GPUs Cars, CelebA, SVNH 12 (inpaint- Automatic Manual AE
al. [152] {1,2,4,8,16} ing), 16 (de-
noising)
Suganuma et GP, ES Variable X v’ v’ 4+A A = 300, 3 Multiple PCs, 2 CIFAR-10 (2 variants) 27,27 Automatic Manual, RL CNN
al. [153] 2 500, GPUs: GTX 1080,
1500 Titan X
Sun et al. [155] GAs Variable v’ N v’ 20 20 5 3 GTX 1080 Ti GPUs CIFAR-10, CIFAR-100 27, 36 Automatic Manual, EAs, RL CNN
Sun et al. [156] GAs Variable v v v 100 100 30 2 GTX1080 GPUs Fashion, Rectangle, Con- 8 (Fashion), ~ Automatic Manual, EAs CNN
vex Set, MNIST 5 (others)
Sun et al. [157] GAs Fixed v v Vv 50 - 30 - Fashion, Rectangle, Con- — Automatic Manual CNN
vex Set, MNIST , CIFAR-
10-BW
van Wyk and EAs Fixed v v v 2 20000 1 1 GPU (GTX 1080) ImageNet64x64 Halted after ~ Automatic Manual CNN CNN
Bosman [163] 2 hrs
Wang et al. [164] EAs Variable v v v 30 20 30 - MNIST and Convex Set — Automatic - CNN
Xie et al. [167] GAs Fixed vV v 0 50 - 10 GPUs (type not CIFAR-10, MNIST, 17 (CIFAR- Semi-auto Manual, Stochastic CNN
specified) ILSVRC2012, SHVN 10), 2
(MNIST), 20
(ILSVRC2012)
Zhang et al. [176] EAs Variable X v’ v’ 20 500 10 No GPUs NASA C-MAPSS - Automatic DBN, SVM, DBN
(Aircraft Engine Random Forest
i Datasets) and others
Zhang et al. [177] EAs Fixed v v v - 30 10 1 NVIDIA GTX 980 58 Knowledge Extraction — Automatic Resampling Meth- DBN
GPU based on Evolutionary ods DBNs

Learning (KEEL) datasets

IV. TRAINING DNNS THROUGH EAS
A. Motivation

Backpropagation has been one of the most successful and
dominant methods used in the training of ANNs over the past
number of decades [134]. This simple, effective, and elegant
method applies stochastic gradient descent (SGD) to the weights
of the ANN where the goal is to to minimize the overall error.
However, as remarked by Morse and Stanley [117], the widely
held belief, up to around 2006, was that backpropagation would
suffer loss of its gradient within DNNs. This turned out to be
false and it has subsequently been shown that backpropagation
and SGD are effective at optimizing DNNs even when there
are millions of connections [69]. Both backpropagation and
SGD benefit from the availability of sufficient training data
and the availability of computational power. In a problem space
with so many dimensions the success of using SGD in DNNs

is still surprising. Practically speaking, SGD should be highly
susceptible to local optima [117]. Jin et al. [73] and Kleinberg
and Li [85] argue, independently that the noise helps SGN
escape saddle points due to the randomness in the estimator.
Choromanska et al. [20] and Kawaguchi and Huang [77] hypoth-
esise, independently that the presence of multiple local optima
is not a problem as they are very similar to the best solution.
EAs perform very well in the presence of saddle points as was
discussed in Section I.

B. Critique

As there are no guarantees of convergence, the solutions
computed using EAs are usually classified as “near optimal”.
Population-based EAs are in effect an approximation of the
gradient as this is estimated from the individuals in a population
and their corresponding objectives. On the other hand, SGD

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

486 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 6, DECEMBER 2021

computes the exact gradient. Subsequently, some researchers
consider EAs unsuitable for DL tasks for this reason. However,
it has been demonstrated that the exact approximation obtained
by SGD is not absolutely critical in the overall success of
DNNs using this approach. Lillicrap et al. [99] demonstrated that
breaking the precision of the gradient calculation has no negative
or detrimental effect on learning. Morse and Stanley [117]
speculate that the reason for the lack of research focus on using
evolutionary computation in DNNs was not entirely related to
concerns around the gradient but rather from the belief that
new approaches to DNN could actually emerge from outside
of SGD.

C. DL Architecture: Convolutional Neural Networks

Such et al. [150] proposed a gradient-free method to evolve
the weights of convolutional DNNs by using a simple GA, with a
population of chromosomes of fixed length. The proposed mech-
anism successfully evolved networks with over four million free
parameters. Some key elements in the study conducted by Such
et al. [150] to successfully evolve these large neural networks
include the following: (1) the use of the selection and mutation
genetic operators only; (2) the use of a novel method to store
large parameter vectors compactly by representing each of these
as an initialization seed plus the list of the random seeds that
produces the series of mutations that produced each parameter
vector; and (3) the use of a state-of-the-art computational setting,
including one modern computer with 4 GPUs and 48 CPU cores
as well as 720 CPU cores across dozens of computers.

Instead of using reward-based optimization techniques by
means of a fitness function, Such er al. [150] used novelty
search [97] rewarding new behaviors of individuals. The authors
used RL benchmark problems including atari 2600 [10], [114],
hard maze [98], and humanoid locomotion [15]. They demon-
strated how their proposed approach is competitive with state-
of-the-art algorithms in these problems including DQN [114],
policy-gradient methods [140], and ES [137]. Pawelczyk et
al. [122] focused on encoding CNNs with random weights
using a GA where the main goal was to let the EA learn the
number of gradient learning iterations necessary to achieve a
high-accuracy error using the MNIST dataset. Their EA-based
approach reported the best results with around 450 gradient
learnt iterations compared to 400 constant iterations, which
yielded the best overall results.

D. DL Architecture: Autoencoders

David and Greental [24] used a GA of fixed length to evolve
the weight values of an AE DNN. Each chromosome was
evaluated by using the RMS error for the training samples. The
authors used only ten individuals with a 50% elitism-policy.
The weights of these individuals were updated using backprop-
agation and the other half of the population were randomly
generated in each generation. They tested their approach with
the CIFAR-10 dataset. They compared their approach against the
traditional AE using SVM, reporting a better classification error
when using their proposed GA-assisted method for the autocoder
DNN (1.44% versus 1.85%). The authors indicated the reason

why their method produced better results was because gradient
descent methods such as backpropagation are highly susceptible
to being trapped at local optima and their GA method helped to
prevent this. Fernando et al. [40] introduced a differentiable ver-
sion of the compositional pattern producing network called the
differentiable pattern producing network (DPPN). The DPPN
approach attempts to combine the advantages and results of
gradient-based learning in NN with the optimization capabilities
of evolutionary approaches. The DPPN has demonstrated supe-
rior results for the benchmark dataset MNIST. A generic EA is
used in the optimization algorithm of DPPN. The results indicate
that the DPPNs and their associated learning algorithms have
the ability to dramatically reduce the number of parameters of
larger NN. The authors argue that this integration of evolutionary
and gradient-based learning allows the optimization to avoid
becoming stuck in local optima points or saddle points.

E. Other Relevant Works

Morse and Stanley [117] proposed limited evaluation evo-
lutionary algorithm (LEEA) using a population-based GA of
fixed length representation to evolve, by means of crossover and
mutation, 1000 weights of a fixed-architecture network. Inspired
by SGD, LEEA can compute an error gradient from a single
instance of the training set with fitness computed using a small
fraction of the training set. As LEAA does not generalize to
the whole training sample the authors proposed the following
two approaches: (i) using small batches of instances and (ii)
using a fitness function that considered both performance on the
current minibatch and the performance of individuals’ ancestors
against their minibatches. In testing on tasks such as function
approximation and time series prediction task the authors de-
clared LEEA competitive against the other approaches. Even
when the authors do not use DNNs, but a small artificial NN, it
is interesting to note how this can be used in a DNN setting.
Khadka and Tumer [79] remark that deep RL methods are
“notoriously sensitive to the choice of their hyperparamaters and
often have brittle convergence properties”. These methods are
also challenged by long time horizons where there are sparse
rewards. EAs can respond very positively to these challenges
where the use of fitness metrics allows EAs to tolerate the sparse
reward distribution and endure long time horizons. However,
EAs can struggle to perform well when optimization of a large
number of parameters is required. The authors introduce their
evolutionary RL (ERL) algorithm. The EA is used to evolve
diverse experiences to train an RL agent. These agents are
then subjected to mutation and crossover operators to create
the next generation of agents. This ERL can be described as a
“population-driven guide” that guides or biases exploration to-
ward states with higher and better long-term returns, promoting
diversity of explored policies, and introduces redundancies for
stability.

Recurrent neural networks (RNNs) (see Section II-A4) incor-
porate memory into an NN by storing information from the past
within the hidden states network. Kahdka er al. [78] introduced
anew memory-augmented network architecture called the mod-
ular memory unit (MMU). This MMU disconnects the memory

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

GALVAN AND MOONEY: NEUROEVOLUTION IN DEEP NEURAL NETWORKS: CURRENT TRENDS AND FUTURE CHALLENGES

487

TABLE II
EA REPRESENTATIONS, OPERATORS, AND PARAMETERS VALUES FOR NEUROEVOLUTION IN DNN TRAINING WITH DATASETS USED AND
COMPUTATIONAL EFFORT (GPU DAYS). A (-) INDICATES INFORMATION WAS NOT REPORTED.

Study EA Representation Genetic Operators EAs Parameters’ values Computational Datasets GPU days DNN
Method Cross Mut Selec Pop Gens Runs Resources per run
Cui et al. [22] ES Fixed v v v - - - GPUs used but not BN50, SWB300, CIFAR- — -
specified 10, PTB
David and Green- GAs Fixed v’ v’ v’ 10 - - MNIST - AE
tal [24]
Dufourq and Bas- GAs Variable X v’ v’ 100 10 5 1 GTX1070 GPU CIFAR-10, MNIST, EM- - CNN
sett [32] NIST (Balanced & Dig-
its), Fashion, IMDB
Fernando et GAs - v v Vv 50 - - - MNIST, Omniglot - AE
al. [40]
Khadka and EAs Variable N N N 10 [e) 5 - 6 Mujoco (continuous — Read text
Tumer [79] control) datasets
Khadka et al. [78] EAs Fixed X N v’ 100 1000 - GPU used but not Sequence Recall, - Read text
10000 specified Sequence Classification
15000
Morse and Stan- GAs Fixed v’ v’ NG 1,000 - 10 - Function Approximation, - Read text
ley [117] Time Series, Housing
Pawelczyk et GAs Fixed v v v - - 1 GPU (Intel Core i7 ~ MNIST - CNN
al. [122] 7800X, 64GB RAM)
Such et al. [150] GAs Fixed X v V1000 (A), - 5(A), 1 PC (4 GPUs, 48 Atari 2600, Image Hard 0.6 (Atari, 1 CNN
12,500 (H), 10 () CPUs) and 720 CPUs maze, Humanoid locomo- PC), 0.16 (Atari,

20,000 (I)

across dozens of PCs tion dozens of PCs)

and central computation operations without requiring costly
memory management strategies. Neuroevolutionary methods
are used to train the MMU architecture. The performance of the
MMU approach with both gradient descent and neuroevolution
is examined and the authors find that neuroevolution is more
repeatable and generalizable across tasks. The MMU NN is
designed to be highly configurable and this characteristic is
exploited by the neuroevolutionary algorithm to evolve the net-
work. Population size is set to 100 with a fraction of elites set at
0.1. In the fully differentiable version of the MMU, they find that
gradient descent performs better for sequence recall tasks than
neuroevolution. However, neuroevolution performs significantly
better than gradient descent in sequence classification tasks. Cui
et al. [22] proposed the use of EAs and SGD to speed up the
training of ANN:Ss. Interestingly, the authors use multiple SGD
optimizers with certain hyperparameters and learning schedules,
and these are used to build the EAs individuals. They showed
for different tasks (see Table II) how their proposed approach
achieved better results compared to traditional SGD-based meth-
ods to speed up the training of neural networks. Meier et
al. [111] proposed a gradient estimator that considers surrogate
gradient directions as well as random search directions. The
authors demonstrated that their proposed approach considerably
improves the gradient estimation capabilities when employed
with ES, particularly, when used the MNIST dataset, and to a
lesser degree, in RL tasks. Shahab and Grot [141] proposed
the use of EAs along with SGD for training neural models.
The main motivation to do so is due to the fact that EAs are
inherently parallel and it is suitable for a large-scale distributed
training setup compared to data-parallel minibatch SGD. This is
important because it has been demonstrated that the latter fails
to reduce the number of training iterations beyond a minibatch
size [142].

F. Summary: Training DNNs Using EAs

In the early years of neuroevolution, it was thought that
evolution-based methods might exceed the capabilities of back-
propagation [170]. As ANNS, in general, and as DNNS, in partic-
ular, increasingly adopted the use of SGD and backpropagation,

the idea of using EAs for training DNNSs instead has been almost
abandoned by the DNN research community. EAs are a “gen-
uinely different paradigm for specifying a search problem” [117]
and provide exciting opportunities for learning in DNNs. When
comparing neuroevolutionary approaches to other approaches
such as gradient descent, authors such as Khadka et al. [78] urge
caution. A generation in neuroevolution is not readily compa-
rable to a gradient descent epoch. Despite the fact that it has
been argued that EAs can compete with gradient-based search
in small problems as well as using NN with a nondifferentiable
activation function [109], the encouraging results achieved in
the 1990s [54], [116], [126] have inspired some researchers to
carry out research in training DNNs. This includes the work
conducted by David and Greental [24] and Fernando et al. [40]
both of which using deep AE and Pawelczyk ef al. [122] and
Such et al. [150] who use deep CNNs. Table II is structured in a
similar way to Table I. As with Table I, we selected these papers
in our own ad-hoc way in order to find a selection of papers,
which succinctly demonstrated the use of EAs in the training
of DNNs. Again we see mutation and selection used by all of
the selected works with crossover omitted in certain situations.
We see greater diversity in the types of benchmark datasets used
with a greater focus on domain-specific datasets and problems.

V. FUTURE WORK ON NEUROEVOLUTION IN DNNS
A. Surrogate-Assisted EAs in DNNs

EAs have successfully been used in automatically designing
artificial DNNs, as described throughout this article, and mul-
tiple state-of-the-art algorithms have been proposed in recent
years including genetic CNN [167], large-scale evolution [131],
evolving deep CNN [156], hierarchical evolution [102]. Despite
their success in automatically configuring DNNs architectures,
a common limitation in all of these methods is the training
time needed. This can range from days to weeks in order to
achieve competitive results. Surrogate-assisted, or meta-model
based, EC uses efficient models, also known as meta-models
or surrogates, for estimating the fitness values in EAs [74].
Hence, a well-posed surrogate-assisted EC considerably speeds

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

488 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 6, DECEMBER 2021

up the evolutionary search by reducing the number of fitness
evaluations while at the same time correctly estimating the
fitness values of some potential solutions. The adoption of this
surrogate-assisted EA is limited in the research discussed in
this article and is dealt with in a few limited exceptions. Sun
et al. [154] demonstrate how meta-models, using ensemble
members, can be successfully used to correctly estimate CNN
accuracy. This considerably reduced training time, from 33
to 10 GPU days, while still achieving competitive accuracy
results compared to the state-of-the-art. A limitation here is the
unknown number of training runs necessary to achieve a good
prediction performance.

B. Combining SGD and EAs

As discussed in Section IV, backpropagation is one of the
most successful methods currently used in the training of ANNs.
Backpropagation normally involves the application of SGD to
the weights of the ANNs with the goal to minimize the overall
error. Before this era of DL began (perhaps we consider the early
1990s as a date in time), the use of EAs to do so was common,
but it was abandoned thanks to the impressive results of deep
models trained with SGD. As we discussed in Section IV, there
has been a small number of works appearing recently, which
have considered replacing SGD by EAs. Indeed, we have begun
to observe a trend of combining both techniques yielding better
results while at the same time speeding up the training process
of ANNSs [117], [129]. This is another exciting and promising
area of research.

C. Mutations and Neutral Theory

We have seen that numerous studies used selection and mu-
tation only to drive evolution in automatically finding a suitable
DNN architecture (see Section III) or to train a DNN (see
Section IV). Tables I and II present a summary of the genetic
operators used by various researchers. Interestingly, many re-
searchers have reported highly encouraging results when using
these two genetic operators, including the works conducted by
Real et al. [130], [131] using GAs and hundreds of GPUs as
well as the work carried out by Suganuma et al. [153] employing
Cartesian GP and using only a few GPUs.

Kimura’s neutral theory of molecular evolution [82], [83]
states that the majority of evolutionary changes at molecular
level are the result of random fixation of selectively neutral mu-
tations. A mutation from one gene to another is neutral if it does
not affect the phenotype. Thus, most mutations that take place in
natural evolution are neither advantageous nor disadvantageous
for the survival of individuals. It is then reasonable to extrapolate
that, if this is how evolution has managed to produce the amazing
complexity and adaptations seen in nature, then neutrality should
aid also EAs. However, whether neutrality helps or hinders the
search in EAs is ill-posed and cannot be answered in general.
One can only answer this question within the context of a
specific class of problems, (neutral) representations, and set of
operators [46]-[51], [124], [125].

We are not aware of any works in neuroevolution in DNN's
on neutrality. This work [45] discusses some venues of research
on neutrality in DNNs. There are some interesting encodings
adopted by researchers including Suganuma’s work [153] (see
Fig. 2) that allow the measurement of the level of neutrality
present in evolutionary search and indicates whether its presence
is beneficial or not in certain problems and DNNSs. If neutrality is
beneficial, taking into consideration specific classes of problems,
representations, and genetic operators, this can also have an
immediately positive impact in the training time needed because
the evaluation of potential EA candidate solutions will not be
necessary.

D. Multiobjective Optimization

In most reported research results one objective or variable
has been used for NN training such as classification error in
CNNs. Two or more objectives are rarely considered as the task
becomes much more difficult [21], [25] as these objectives may
conflict with each other. MO is concerned with the simultaneous
optimization of more than one objective function. When such
functions are in conflict, a set of tradeoff solutions among the
objectives are sought as no single global optimum exists. The
optimal tradeoffs are those solutions for which no objective can
be further improved without degrading one of the others. This
idea is captured in the Pareto dominance relation: a solution x
in the search space is said to Pareto-dominate another solution y
if z is at least as good as y on all objectives and strictly better on
at least one objective. This is an important aspect in EMO [21],
[25] because it allows solutions to be ranked according to their
performance on all objectives with respect to all solutions in
the population. EMO is one of the most active research areas
in EAs [38]. Yet it is surprising to see that EMO approaches
have been scarcely used for the automatic configuration of
artificial DNNs architectures or learning in DNNs. Often, the
configuration of these artificial DNNs requires simultaneously
satisfying multiple objectives such as reducing the computa-
tional calculation of these on the training dataset while attaining
high accuracy. EMO offers an elegant and efficient framework
to handle these conflicting objectives. We are aware of only a
few works in the area, e.g., [38], [81], [104], [106], [176], as
summarised in Section III.

E. DNNs Fitness Landscape Analysis and Genetic Operators

All of the works in neuroevolution in DNNs have used core
genetic operators including selection and mutation. Crossover
has also been used in most of these works. The use of these
operators are summarised in Tables I and II. The use of crossover
can sometimes be difficult to adopt depending on the encoding
used and some variants have been proposed such as in [156].
Other studies have adopted standard crossover operators such
as those discussed in [81]. There are, however, no works in
the area of neuroevolution in DNNs that have focused their
attention in explaining why the adoption of a particular ge-
netic operator is well-suited for that particular problem. The
notion of a fitness landscape [165] has been with us for several
decades. It is a nonmathematical aid that has proven to be

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

GALVAN AND MOONEY: NEUROEVOLUTION IN DEEP NEURAL NETWORKS: CURRENT TRENDS AND FUTURE CHALLENGES 489

TABLE III
COMMON DATASETS USED IN NEUROEVOLUTION IN DNNS

D Number of examples Input RGB, B&W, No. of
ata set P " ! y

Training Testing Size Grayscale classes
MNIST [96] 60,000 10,000 28x28 Grayscale 10
MNIST variants [92] 12,000 50,000 28x28 Grayscale 10
CIFAR-10 [89] 50,000 10,000 32x32 RGB 10
CIFAR-100 [89] 50,000 10,000 32x32 RGB 100
Fashion [166] 60,000 10,000 28x28 Grayscale 10
SVHN [120] 73,257 26,032 32x32 RGB 10
Rectangle [92] 1,000 50,000 28 x 28 B&W 2
Rectangle images [92] 10.000 50,000 28 %28 Grayscale 2
Convex set [92] 6.000 50,000 28 x 28 B&W 2
ILSVRC2012 [27] 1.3M 150,000 224 x 224 RGB 1,000

GERMAN Traffic Sign [147] 50,000 12,500 32 x 32 Grayscale 43

very powerful in understanding evolutionary search. Viewing
the search space, defined by the set of all potential solutions,
as a landscape, a heuristic algorithm such as an EA, can be
thought of as navigating through it to find the best solution
(essentially the highest peak in the landscape). The height of
a point in this search space, represents in an abstract way, the
fitness of the solution associated with that point. The landscape
is, therefore, a knowledge interface between the problem and the
heuristic-based EA. This can help researchers and practitioners
to define well-behaved genetic operators, including mutation
and crossover, over the connectivity structure of the landscape.

E. Standardised Neuroevolution Studies in DNNs

In Section II, multiple DNNs architectures have been pro-
posed in the specialized literature. Many of the research works
reviewed in this article have compared their results to those
yielded by neuroevolution algorithms. However, it is unclear
why some techniques are better than others. Is it because of
the type of operators used? Is it because of the representation
adopted in these studies or is it because of the type of learning
employed during training? Due to the lack of standardised
studies in neuroevolution on DNNS, it is difficult to draw final
conclusions that help us to identify what elements are promising
in DNNs. The lack of these standardised studies means we
cannot indicate what EAs paradigm with associated genetic
operators should be preferred for the automatic configuration
of a particular DNN architecture as well as its training.

G. Diversifying the Use of Benchmark Problems and DNNs

New, large, datasets combined with increasingly powerful
computational resources have allowed DNNSs to solve hard prob-
lems in domains such as image classification and speech process-
ing. Image classification is certainly considered as the primary
benchmark against which to evaluate DNNs [180]. Benchmark
datasets (many included in Table III) are used to compare com-
putational results of experimental setups produced by different
research groups. We believe the success of DNNs provides
opportunities to expand DNNs to other domains. However, to
do so successfully comprehensive domain-specific benchmark
datasets will be required. Without such benchmarks, it may be
difficult to make convincing arguments to support DNNs for
problems beyond traditional domains such as image classifica-
tion and machine translation. New benchmark problems must
allow for the appropriate comparison performance testing of

NAS algorithms. Some steps have already been taken. For ex-
ample, Ying et al. [171] propose NAS-Bench-101 that provides a
search space on which to test NAS algorithms without incurring
much compute cost. NAS-Bench-1-shot-1 was proposed by Zela
et al. [175], which adapts NAS-Bench-101 so it can be used to
search for 1-shot methods, such as DARTS, Proxyless NAS,
and so on. Dong and Yang [30] extended NAS-Bench-101 with
a different search space and results on multiple datasets.

Itis critical that benchmark datasets are available freely and as
open-data. Stallkamp et al. [147] argue that in a niche area such
as traffic sign recognition it can be difficult to compare published
work because studies are based on different data or consider
classification in different ways. The use of proprietary data in
some cases, which is not publicly available, makes comparison
of results difficult. Zhang et al. [176] access data from a prognos-
tic benchmarking problem related to NASA and aero-propulsion
systems. Specific problem domains outside of those of vision,
speech recognition, and language also have benchmark datasets
available but may be less well-known. Zhang et al. [177] use
datasets from KEEL but also use a real-world dataset from a
manufacturing drilling machine in order to obtain a practical
evaluation. Chen and Li [19] argue that as big data continues
to play a vital role in areas such as predictive analytics new
ways of thinking and novel algorithmic approaches will be
needed due to the difficulty of defining big data benchmark
datasets.

VI. CONCLUSION

A comprehensive survey of neuroevolution approaches in
DNNs and key aspects of EAs in DL has been presented with
important issues and challenges discussed in this area. Readers
with abackground in EAs will find this article useful in determin-
ing the state-of-the-art in NAS methods. DL community readers
will be encouraged to use EAs approaches in their DNN work.
Configuration of DNNS is not a trivial problem often becoming
a tedious and error-prone process. EAs are competitive in auto-
matic creation and configuration of such networks in situations
where poorly or incorrectly configured networks can lead to the
failure or underutilization of DNNs.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
providing very insightful comments for this article. Additional
valuable comments were provided by many public mailing lists
including genetic_programming @yahoogroups.com, UAI, and
Connectionists. Numerous NN / DL / Neuroevolution experts
provided additional valuable comments.

REFERENCES

[17 Y. Akimoto, S. Shirakawa, N. Yoshinari, K. Uchida, S. Saito, and K.
Nishida, “Adaptive stochastic natural gradient method for one-shot neu-
ral architecture search,” in Proc. 36th Int. Conf. Mach. Learn., 2019,
pp- 171-180.

[2] A. Ashfahani, M. Pratama, E. Lughofer, and Y. Ong, “Devdan:
Deep evolving denoising autoencoder,” Neurocomputing, vol. 390,
pp. 297-314, 2020.

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

490

(3]

(4]

[5

—_

[7

—

[8

[l

(91

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 6, DECEMBER 2021

F. Assuncio, N. Lourengo, P. Machado, and B. Ribeiro, in Evolving the
Topology of Large Scale Deep Neural Networks, M. Castelli, L. Sekanina,
M. Zhang, S. Cagnoni, and P. Garcia-Sanchez, Eds. Berlin, Germany:
Springer, 2018, pp. 19-34.

F. Assun¢do, N. Lourengo, P. Machado, and B. Ribeiro, “DENSER:
Deep evolutionary network structured representation,” Genet. Program.
Evolvable Mach., vol. 20, no. 1, pp. 5-35, 2019.

N. Awad, N. Mallik, and E. Hutter, “Differential evolution for neural
architecture search,” in Proc. 1st Workshop Neural Architecture Search
Int. Conf. Learn. Representations, 2020.

T. Béck, Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford,
U.K.: Oxford Univ. Press, 1996.

B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network
architectures using reinforcement learning,” in Proc. 5th Int. Conf. Learn.
Representations, Conference Track Proceedings, Toulon, France, Apr.
24-26,2017.

P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,”
in Proc. Workshop Unsupervised Transfer Learning, 2012, pp. 37-49.
A. Baldominos, Y. Saez, and P. Isasi, “On the automated, evolutionary
design of neural networks: Past, present, and future,” Neural Comput.
Appl., vol. 32, no. 2, pp. 519-545, 2020.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” Proc.
24th Int. Joint Conf. Artif. Intell., Buenos Aires, Argentina, Jul. 25-31,
2015, pp. 4148-4152.

J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Mach. Learn. Res., vol. 13, pp. 281-305, 2012.

J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in Proc. 30th Int. Conf. Int. Conf. Mach. Learn.,
2013, pp. I-115-1-123.

H. Beyer and H. Schwefel, “Evolution strategies -a comprehensive intro-
duction,” Nat. Comput.: Int. J., vol. 1, no. 1, pp. 3-52, 2002.

A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “SMASH: One-shot
model architecture search through hypernetworks,” in Proc. 6th Int. Conf.
Learn. Representations, Conf. Track Proc., Vancouver, BC, Canada, Apr.
30 - May 3, 2018.

G. Brockman et al., “Openai gym,” CoRR, vol. abs/1606.01540, 2016.
[Online]. Available: http://arxiv.org/abs/1606.01540

H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, “Efficient architecture
search by network transformation,” in Proc. 32nd AAAI Conf. Artif. Intell.,
30th Innovative Appl. Artificial Intell., 8th AAAI Symp. Educational Adv.
Artificial Intell., 2018, pp. 2787-2794.

F. Charte, A. J. Rivera, F. Martnez, and M. J. delJesus, “EvoAAA: An
evolutionary methodology for automated neural autoencoder architecture
search,” Integr. Comput.-Aided Eng., vol. 27, pp. 211-231, 2020.

S. Chen, G. Liu, C. Wu, Z. Jiang, and J. Chen, “Image classification
with stacked restricted Boltzmann machines and evolutionary function
array classification voter,” in Proc. IEEE Congr. Evol. Comput., 2016,
pp. 4599—-4606.

X. Chen and X. Lin, “Big data deep learning: Challenges and perspec-
tives,” IEEE Access, vol. 2, pp. 1 514-525, 2014.

A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun,
“The loss surfaces of multilayer networks,” in Proc. Int. Conf. Artif. Intell.
Statist., 2015, pp. 192-204.

C. A. C. Coello, “Evolutionary multi-objective optimization: A historical
view of the field,” IEEE Comput. Intell. Mag., vol. 1, no. 1, pp. 28-36,
Feb. 2006.

X. Cui, W. Zhang, Z. Tiiske, and M. Picheny, “Evolutionary
stochastic gradient descent for optimization of deep neural net-
works,” in Adv. Neural Inf. Process. Syst., vol. 31, S. Bengio, H.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
Eds. Red Hook, NY, USA: Curran Associates, Inc., 2018, pp. 6048—6058.
A. Darwish, A. E. Hassanien, and S. Das, “A survey of swarm and
evolutionary computing approaches for deep learning,” Artif. Intell. Rev.,
vol. 53, no. 3, pp. 1767-1812, 2019.

0. E. David and I. Greental, “Genetic algorithms for evolving deep neural
networks,” in Proc. Companion Publication Annu. Conf. Genet. Evol.
Comput., 2014, pp. 1451-1452.

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
New York, NY, USA: Wiley, 2001.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-11,” [EEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182-197, Apr. 2002.

[27]

[28]

[29]

[30]

(31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2009, pp. 248-255.

T. Desell, “Large scale evolution of convolutional neural networks us-
ing volunteer computing,” in Proc. Genet. Evol. Comput. Conf., 2017,
pp. 127-128

G. Desjardins and Y. Bengio, “Empirical evaluation of convolu-
tional RBMs for vision,” Département d’Informatique et de Recherche
Opérationnelle, Université de Montréal, Montreal, QC, Canada, Tech.
Rep. 1327, 2008.

X. Dong and Y. Yang, “Nas-Bench-201: Extending the scope of re-
producible neural architecture search,” in Proc. 8th Int. Conf. Learn.
Representations Addis Ababa, Ethiopia, Apr. 26-30, 2020.

C. dos Santos and M. Gatti, “Deep convolutional neural net-
works for sentiment analysis of short texts,” in Proc. 25th Int.
Conf. Comput. Linguistics: Tech. Papers, Dublin, Ireland, 2014,
pp. 69-78.

E. Dufourq and B. A. Bassett, “Eden: Evolutionary deep networks for
efficient machine learning,” in Proc. Pattern Recognit. Assoc. South Afr.
Robot. Mechatronics, 2017, pp. 110-115.

A. E. Eiben and J. Smith, “From evolutionary computation to the evolu-
tion of things,” Nature, vol. 521, pp. 476-482, May 28, 2015.

A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Berlin, Germany: Springer-Verlag, 2003.

A.ElSaid, J. Karnas, Z. Lyu, D. Krutz, A. Ororbia, and T. Desell, “Neuro-
evolutionary transfer learning through structural adaptation,” in Proc. Int.
Conf. Appl. Evolutionary Comput., 2020, pp. 610-625.

A.ElSaid, J. Karns, Z. Lyu, D. Krutz, A. Ororbia, and T. Desell, “Improv-
ing neuroevolutionary transfer learning of deep recurrent neural networks
through network-aware adaptation,” in Proc. Genet. Evol. Comput. Conf.,
2020, pp. 315-323.

T. Elsken, J.-H. Metzen, and F. Hutter, “Simple and efficient architecture
search for convolutional neural networks,” in Proc. 6th Int. Conf. Learn.
Representations, Vancouver, BC, Canada, Apr. 30 -May 3, 2018, 2017.
T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective neural
architecture search via lamarckian evolution,” in Proc. 7th Int. Conf.
Learn. Representations, New Orleans, LA, USA, May 6-9, 2019.

T. Elsken, J. H. Metzen, and F. Hutter, Neural Architecture Search. Cham,
Switzerland: Springer, 2019, pp. 63-77.

C. Fernando et al., “Convolution by evolution: Differentiable pat-
tern producing networks,” in Proc. Genet. Evol. Comput. Conf., 2016,
pp. 109-116.

A. Fischer and C. Igel, “An introduction to restricted Boltzmann ma-
chines,” in Progress in Pattern Recognition, Image Analysis, Computer
Vision, and Applications, L. Alvarez et al., Eds. Berlin, Germany:
Springer, 2012, pp. 14-36.

D. Floreano, P. Diirr, and C. Mattiussi, “Neuroevolution: From architec-
tures to learning,” Evol. Intell., vol. 1, no. 1, pp. 47-62, 2008.

L. Fogel, A. Owens, and M. Walsh, Artificial Intelligence Through
Simulated Evolution. Chichester, U.K.: Wiley, 1966.

J. A. Foster, “Evolutionary computation,” Nat. Rev. Genet., vol. 2,
pp. 428-436, 2001.

E. Galvan, “Neuroevolution in deep learning: The role of neutrality,”
CoRR, vol. abs/2102.08475, 2021. [Online]. Available: https://arxiv.org/
abs/2102.08475

E. Galvan-Lopez, “An analysis of the effects of neutrality on problem
hardness for evolutionary algorithms,” Ph.D. thesis, Dept. Sch. Comput.
Sci. Elect. Eng., Univ. Essex, United Kingdo, Colchester, U.K., 2009.
E. Galvan-Lopez, S. Dignum, and R. Poli, “The effects of constant
neutrality on performance and problem hardness in GP,” in Proc. 11th
Eur. Conf. Genet. Program., 2008, pp. 312-324

E. Galvan-Loépez and R. Poli, “An empirical investigation of how and why
neutrality affects evolutionary search,” in Proc. 8th Annu. Conf. Genet.
Evol. Comput., 2006, pp. 1149-1156.

E. Galvan-Lépez and R. Poli, “Some steps towards understanding how
neutrality affects evolutionary search,” in Proc. 9th Int. Conf. Parallel
Problem Solving Nat., Springer, 2006, pp. 778-787.

E. Galvan-Lépez and R. Poli, “An empirical investigation of how degree
neutrality affects GP search,” in Proc. 8th Mexican Int. Conf. Artif. Intell.
Adv. Artif. Intell., 2009, pp. 728-739.

E. Galvan-Lopez, R. Poli, A. Kattan, M. O’Neill, and A. Brabazon,
“Neutrality in evolutionary algorithms... what do we know?,” Evolving
Syst., vol. 2, no. 3, pp. 145-163, 2011.

F. Gers, “Learning to forget: Continual prediction with LSTM,” in Proc.
IET Conf., 1999, pp. 850-855.

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1606.01540
https://arxiv.org/abs/2102.08475

GALVAN AND MOONEY: NEUROEVOLUTION IN DEEP NEURAL NETWORKS: CURRENT TRENDS AND FUTURE CHALLENGES

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

F. A. Gers and E. Schmidhuber, “LSTM recurrent networks learn simple
context-free and context-sensitive languages,” IEEE Trans. Neural Netw.,
vol. 12, no. 6, pp. 1333-1340, Nov. 2001.

C. Goerick and T. Rodemann, “Evolution strategies: An alternative to
gradient based learning,” in Proc. Int. Conf. Eng. Appl. Neural Netw.,
1996, pp. 479-482.

D. E. Goldberg, Genetic Algorithms in Search Optimization and Machine
Learning. Reading, MA, USA: Addison-Wesley, 1989.

I. Gongalves, M. Seca, and M. Castelli, “Explorations of the seman-
tic learning machine neuroevolution algorithm: Dynamic training data
use,” in Ensemble Construction Methods, and Deep Learning Per-
spectives. Cham, Switzerland: Springer International Publishing, 2020,
pp. 39-62.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2013, pp. 6645-6649.

K. Greft, R.K. Srivastava, J. Koutnk, B. R. Steunebrink, and J. Schmidhu-
ber, “LSTM: A search space odyssey,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 28, no. 10, pp. 2222-2232, Oct. 2017.

J. Hajewski, S. Oliveira, and X. Xing, “Distributed evolution of deep
autoencoders,” CoRR, vol. abs/2004.07607, 2020. [Online]. Available:
https://arxiv.org/abs/2004.07607

N. Hansen, S. D. Mller, and P. Koumoutsakos, “Reducing the time com-
plexity of the derandomized evolution strategy with covariance matrix
adaptation (CMA-ES),” Evol. Comput., vol. 11, no. 1, pp. 1-18, 2003.
N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation
distributions in evolution strategies: The covariance matrix adaptation,”
in Proc. IEEE Int. Conf. Evol. Comput., 1996, pp. 312-317.

N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evol. Comput., vol. 9, no. 2,
pp. 159-195, Jun. 2001.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527-1554,
Jul. 2006.

J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis With Applications to Biology, Control and Artificial
Intelligence. Cambridge, MA, USA: MIT Press, 1992.

C. Hong, J. Yu, J. Wan, D. Tao, and M. Wang, “Multimodal deep
autoencoder for human pose recovery,” IEEE Trans. Image Process.,
vol. 24, no. 12, pp. 5659-5670, Dec. 2015.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 2261-2269.

Y. Huang et al., “Gpipe: Efficient training of giant neural networks using
pipeline parallelism,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, pp.
103-112, 2019.

D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex,” J. Physiol., vol. 160,
no. 1, pp. 106-154, 1962.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in Proc. 32nd Int.
Conf. Mach. Learn., 2015, pp. 448-456

K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best
multi-stage architecture for object recognition?”” in Proc. IEEE 12th Int.
Conf. Comput. Vis., 2009, pp. 2146-2153.

C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. 1. Jordan, “How to
escape saddle points efficiently,” in Proc. 34th Int. Conf. Mach. Learn.,
D. Precup and Y. W. Teh, Eds., Proc. Mach. Learn. Res., vol. 70, Aug.
6-11,2017, pp. 1724-1732.

Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges,” Swarm Evol. Comput., vol. 1, no. 2, pp. 61-70,
2011.

R. J6zefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” in Proc. 32nd Int. Conf. Mach.
Learn., 2015, pp. 2342-2350.

K. Kandasamy, W. Neiswanger, J. Schneider, B. P6czos, and E. P. Xing,
“Neural architecture search with Bayesian optimisation and optimal
transport,” in Proc. Adv. Neural Inf. Process. Syst. 31: Annu. Conf. Neural
Inf. Process. Syst., 2018, pp. 2020-2029.

[77]

[78]

[79]

[80]

[81]

[82]
[83]
[84]
[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]
[101]

[102]

[103]

[104]

491

K. Kawaguchi and J. Huang, “Gradient descent finds global minima for
generalizable deep neural networks of practical sizes,” in Proc. 57th Annu.
Allerton Conf. Commun., Control, Comput., 2019, pp. 92-99.

S. Khadka, J. J. Chung, and K. Tumer, “Neuroevolution of a modular
memory-augmented neural network for deep memory problems,” Evol.
Comput., vol. 27, no. 4, pp. 639-664, 2019.

S. Khadka and K. Tumer, “Evolution-guided policy gradient in reinforce-
ment learning,” in Proc. 32nd Int. Conf. Neural Inf. Process. Syst., 2018,
pp. 1196-1208.

A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the
recent architectures of deep convolutional neural networks,” Artif. Intell.
Rev., vol. 53, no. 8, pp. 5455-5516, 2020.

Y.-H. Kim, B. Reddy, S. Yun, and C. Seo, “Nemo: Neuro-evolution
with multiobjective optimization of deep neural network for speed and
accuracy,” ICML 2017 AutoML Workshop, 2017, pp. 1-8.

M. Kimura, “Evolutionary rate at the molecular level,” Nature, vol. 217,
pp. 624-626, 1968.

M. Kimura, The Neutral Theory of Molecular Evolution. Cambridge,
U.K.: Cambridge Univ. Press, 1983.

H. Kitano, “Designing neural networks using genetic algorithms with
graph generation system,” Complex Syst., vol. 4, pp. 461-476, 1990.

R. Kleinberg, Y. Li, and Y. Yuan, “An alternative view: When does SGD
escape local minima?,” Int. Conf. Mach. Learn., 2018, pp. 2698-2707.
J. Koza, M. Keane, M. Streeter, W. Mydlowec, J. Yu, and G. Lanza,
Genetic programming 1V: Routine Human-Competitive Machine Intelli-
gence, vol. 5. Berlin, Germany: Springer, 2006.

J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.
J. R. Koza, “Human-competitive results produced by genetic program-
ming,” Genet. Program. Evolvable Mach., vol. 11, no. 3/4, pp. 251-284,
Sep. 2010

A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (Canadian Institute for
Advanced Research),” 2021, Accessed: 2021-06-10. [Online]. Available:
http://www.cs.toronto.edu/kriz/cifar.html

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84-90, May 2017.

S.Lander and Y. Shang, “Evoae—A new evolutionary method for training
autoencoders for deep learning networks,” in Proc. IEEE 39th Annu.
Comput. Softw. Appl. Conf., 2015, pp. 790-795.

H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, “An
empirical evaluation of deep architectures on problems with many factors
of variation,” in Proc. 24th Int. Conf. Mach. Learn., 2007, pp. 473-480.
H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio, “Learning al-
gorithms for the classification restricted Boltzmann machine,” J. Mach.
Learn. Res., vol. 13, no. 22, pp. 643-669, 2012.

Y.LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, 2015.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” in Proc. IEEE, 1998,
pp. 2278-2324.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

J. Lehman and K. Stanley, “Novelty search and the problem with objec-
tives,” Genet. Programm. Theory Pract., vol. 11, pp. 37-56, 2011.

J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution through
the search for novelty alone,” Evol. Comput., vol. 19, no. 2, pp. 189-223,
Jun. 2011.

T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Random
feedback weights support learning in deep neural networks,” Nature
Commun., vol. 7, no. 13276, 2016.

M. Lindauer and F. Hutter, “Best practices for scientific research on neural
architecture search,” J. Mach. Learn. Res., vol. 21, no. 243, pp. 1-8, 2020.
C. Liu et al., “Progressive neural architecture search,” in Proc. Eur. Conf.
Comput. Vision, Sep. 2018.

H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
“Hierarchical representations for efficient architecture search,” in Proc.
6th Int. Conf. Learn. Representations, 2018, pp. 461-476.

H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” 2018.

J. Liu, M. Gong, Q. Miao, X. Wang, and H. Li, “Structure learning for
deep neural networks based on multiobjective optimization,” I[EEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2450-2463, Jun. 2018.

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/2004.07607
http://www.cs.toronto.edu/kriz/cifar.html

492

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 6, DECEMBER 2021

W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey
of deep neural network architectures and their applications,” Neurocom-
puting, vol. 234, pp. 11-26, 2017.

Z.Luetal., “NSGA-Net: Neural architecture search using multi-objective
genetic algorithm,” in Proc. Genet. Evol. Comput. Conf., 2019, pp. 419—
427.

X. Luo, X. Li, Z. Wang, and J. Liang, “Discriminant autoencoder for
feature extraction in fault diagnosis,” Chemometrics Intell. Lab. Syst.,
vol. 192, 2019, Art. no. 103814.

Y. Ma and J. C. Principe, “A taxonomy for neural memory networks,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 6, pp. 1780-1793,
Jun. 2020.

M. Mandischer, “A comparison of evolution strategies and backprop-
agation for neural network training,” Neurocomputing, vol. 42, no. 1,
pp. 87-117, 2002.

A. Martin, R. Lara-Cabrera, F. Fuentes-Hurtado, V. Naranjo, and D.
Camacho, “Evodeep: A new evolutionary approach for automatic deep
neural networks parametrisation,” J. Parallel Distrib. Comput., vol. 117,
pp. 180-191, 2018.

F. Meier, A. Mujika, M. M. Gauy, and A. Steger, “Improving gradi-
ent estimation in evolutionary strategies with past descent directions,”
CoRR, vol. abs/1910.05268, 2019. [Online]. Available: http://arxiv.org/
abs/1910.05268

R. Miikkulainen et al., “Evolving deep neural networks,” CoRR, vol.
abs/1703.00548, 2017. [Online]. Available: http://arxiv.org/abs/1703.
00548

J.E Miller, Cartesian Genetic Programming. Berlin, Germany: Springer,
2011, pp. 17-34.

V. Mnih et al., “Playing atari with deep reinforcement learning,” CoRR,
vol. abs/1312.5602, 2013. [Online]. Available: http://arxiv.org/abs/1312.
5602

A. Mohamed, T. N. Sainath, G. Dahl, B. Ramabhadran, G. E. Hinton,
and M. A. Picheny, “Deep belief networks using discriminative features
for phone recognition,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2011, pp. 5060-5063.

D.J. Montana and L. Davis, “Training feedforward neural networks using
genetic algorithms,” in Proc. 11th Int. Joint Conf. Artif. Intell., 1989,
pp. 762-767.

G. Morse and K. O. Stanley, “Simple evolutionary optimization can rival
stochastic gradient descent in neural networks,” in Proc. Genet. Evol.
Comput. Conf., 2016, pp. 477-484.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Proc. 27th Int. Conf. Int. Conf. Mach. Learn.,
2010, pp. 807-814.

R. Negrinho and G. Gordon, “Deeparchitect: Automatically designing
and training deep architectures,” CoRR, vol. abs/1704.08792, 2017. [On-
line]. Available: http://arxiv.org/abs/1704.08792

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng,
“Reading digits in natural images with unsupervised feature learning,”
in Proc. Conf. Neural Inf. Process. Syst., Jan. 2011. [Online]. Avail-
able: https://storage.googleapis.com/pub-tools-public-publication-data/
pdf/37648.pdf

A. Ororbia, A. ElSaid, and T. Desell, “Investigating recurrent neural
network memory structures using neuro-evolution,” in Proc. Genet. Evol.
Comput. Conf., 2019, pp. 446-455.

K. Pawelczyk, M. Kawulok, and J. Nalepa, “Genetically-trained deep
neural networks,” in Proc. Genet. Evol. Comput. Conf. Companion, 2018,
pp. 63-64.

L. Peng, S. Liu, R. Liu, and L. Wang, “Effective long short-term memory
with differential evolution algorithm for electricity price prediction,”
Energy, vol. 162, pp. 1301-1314, 2018.

R. Poli and E. Galvan-Lépez, “On the effects of bit-wise neutrality
on fitness distance correlation, phenotypic mutation rates and problem
hardness,” in Foundations of Genetic Algorithms, C. R. Stephens et al.,
Eds. Berlin, Germany: Springer, 2007, pp. 138—-164.

R. Poli and E. Galvan-Lopez, “The effects of constant and bit-wise neu-
trality on problem hardness, fitness distance correlation and phenotypic
mutation rates,” IEEE Trans. Evol. Comput., vol. 16, no. 2, pp. 279-300,
Apr. 2012.

V. W. Porto, D. B. Fogel, and L. J. Fogel, “Alternative neural network
training methods,” IEEE Expert: Intell. Syst. Appl., vol. 10, no. 3,
pp. 16-22, Jun. 1995.

K. Price, R. Storn, and J. Lampinen, Differential Evolution—A Practical
Approach to Global Optimization. Berlin, Germany: Springer, Jan. 2005.

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]
[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Opposition-
based differential evolution,” IEEE Trans. Evol. Comput., vol. 12, no. 1,
pp. 6479, Feb. 2008.

S. Rajbhandari, Y. He, O. Ruwase, M. Carbin, and T. Chilimbi, “Opti-
mizing CNNs on multicores for scalability, performance and goodput,” in
Proc. 22nd Int. Conf. Architectural Support Program. Lang. Oper. Syst.,
2017, pp. 267-280.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proc. 33rd AAAI Conf. Artif.
Intell., AAAL 31st Innovative Appl. Artif. Intell. Conf., IAAL, 9th AAAI
Symp. Edu. Adv. Artif. Intell., 2019, pp. 4780-4789.

E. Real et al., “Large-scale evolution of image classifiers,” in Proc. 34th
Int. Conf. Mach. Learn., 2017, pp. 2902-2911.

I. Rechenberg, “Evolutionsstrategien,” in Simulationsmethoden in Der
Medizin Und Biologie, B. Schneider and U. Ranft, Eds. Berlin, Germany:
Springer, 1978, pp. 83-114.

I. Rechenberg, “Evolution strategy: Nature’s way of optimization,” in
Optimization: Methods and Applications, Possibilities and Limitations,
H. W. Bergmann, Ed. Berlin, Germany: Springer, 1989, pp. 106126
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal
Representations by Error Propagation. Cambridge, MA, USA: MIT
Press, 1986, pp. 318-362.

J. Ryan Collins, and M. O. Neill, “Grammatical evolution: Evolving pro-
grams for an arbitrary language,” in Genetic Programming, W. Banzhaf,
R. Poli, M. Schoenauer, and T. C. Fogarty, Eds., Berlin, Germany:
Springer, 1998, pp. 83-96

R. Salakhutdinov and G. Hinton, “Deep Boltzmann machines,” in Proc.
20th Int. Conf. Artif. Intell. Statist., Proc. Mach. Learn. Res., Apr. 16-18,
2009, pp. 448-455.

T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” 2017,
arXiv:1703.03864.

J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Netw., vol. 61, pp. 85-117, 2015.

H.-P. Schwefel, Numerical Optimization of Computer Models. Hoboken,
NJ, USA: Wiley, 1981.

F. Sehnke, C. Osendorfer, T. Rckstie, A. Graves, J. Peters, and J. Schmid-
huber, “Parameter-exploring policy gradients,” Neural Netw., vol. 23,
no. 4, pp. 551-559, 2010.

A. Shahab and B. Grot, “Population-based evolutionary distributed
SGD,” in Proc. Genetics Evol. Comput. Conf. Companion, 2020,
pp. 153-154.

C.J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and G.
E. Dahl, “Measuring the effects of data parallelism on neural network
training,” J. Mach. Learn. Res., vol. 20, pp. 112:1-112:49, 2019.

T. Shinozaki and S. Watanabe, “Structure discovery of deep neural
network based on evolutionary algorithms,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2015, pp. 4979-4983.

S. Shirakawa, Y. Iwata, and Y. Akimoto, “Dynamic optimization of neural
network structures using probabilistic modeling,” in Proc. AAAI Conf.
Artif. Intell., vol. 32, no, 1, 2018.

D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484—489, Jan. 2016.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. 3rd Int. Conf. Learn. Represen-
tations, San Diego, CA, USA, May 7-9, 2015.

J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural Netw., vol. 32, pp. 323-332, 2012, 2011.

K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing
neural networks through neuroevolution,” Nat. Mach. Intell., vol. 1,
pp. 24-35, 2019.

K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, no. 2, pp. 99-127,
Jun. 2002.

F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning,”
CoRR, vol. abs/1712.06567, 2017. [Online]. Available: http://arxiv.org/
abs/1712.06567

M. Suganuma, M. Kobayashi, S. Shirakawa, and T. Nagao, “Evolution
of deep convolutional neural networks using cartesian genetic program-
ming,” Evol. Comput., vol. 28, no. 1, pp. 141-163, 2020.

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1910.05268
http://arxiv.org/abs/1703.00548
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1704.08792
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37648.pdf
http://arxiv.org/abs/1712.06567

GALVAN AND MOONEY: NEUROEVOLUTION IN DEEP NEURAL NETWORKS: CURRENT TRENDS AND FUTURE CHALLENGES

[152] M. Suganuma, M. Ozay, and T. Okatani, “Exploiting the potential of

[153]

[154]

[155]

[156]

[157]

[158]
[159]
[160]
[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

standard convolutional autoencoders for image restoration by evolution-
ary search,” in Proc. 35th Int. Conf. Mach. Learn., Stockholmsméssan,
Stockholm, Sweden, vol. 80, Jul. 10-15, 2018 pp. 47784787

M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming
approach to designing convolutional neural network architectures,” in
Proc. Genet. Evol. Comput. Conf., 2017, pp. 497-504.

Y. Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen, and M. Zhang, “Surrogate-
assisted evolutionary deep learning using an end-to-end random forest-
based performance predictor,” IEEE Trans. Evol. Comput., vol. 24, no. 2,
pp. 350-364, Apr. 2020.

Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Completely automated CNN
architecture design based on blocks,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 31, no. 4, pp. 1242-1254, Apr. 2020.

Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Evolving deep convolutional
neural networks for image classification,” IEEE Trans. Evol. Comput.,
vol. 24, no. 2, pp. 394-407, Apr. 2020.

Y. Sun, G. G. Yen, and Z. Yi, “Evolving unsupervised deep neural
networks for learning meaningful representations,” IEEE Trans. Evol.
Computation, vol. 23, no. 1, pp. 89-103, Feb. 2019.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction
(A Bradford Book). Cambridge, MA, USA: MIT Press, 2018.

C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1-9.

E. Talbi, “A taxonomy of hybrid metaheuristics,” J. Heuristics, vol. 8,
no. 5, pp. 541-564, 2002.

N.I. Tapia and P. A. Estevez, “On the information plane of autoencoders,”
in Proc. Int. Joint Conf. Neural Netw., Jul 2020.

N. Tishby and N. Zaslavsky, “Deep Learning and the Information Bot-
tleneck Principle,” IEEE Inf. Theory Workshop, Jerusalem, Israel, Apr.
26 - May 1, 2015, pp. 1-5, doi: 10.1109/1TW.2015.71331609.

G. J. Van Wyk and A. S. Bosman, “Evolutionary neural architecture
search for image restoration,” in Proc. Int. Joint Conf. Neural Netw.,
2019, pp. 1-8.

B. Wang, Y. Sun, B. Xue, and M. Zhang, “A hybrid differential evolution
approach to designing deep convolutional neural networks for image
classification,” In Proc. Adv. Artif. Intell. 31st Australasian Joint Conf.,
Lecture Notes Comput. Sci., Springer, vol. 11320, 2018, pp. 237-250.
S. Wright, “The role of mutation, inbreeding, crossbreeding and selection
in evolution,” in Proc. 6th Int. Congr. Genet., 1932, pp. 356-366.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-Mnist: A novel image
dataset for benchmarking machine learning algorithms,” CoRR, vol.
abs/1708.07747, 2017. [Online]. Available: http://arxiv.org/abs/1708.
07747

L. Xie and A. Yuille, “Genetic CNN,” in Proc. IEEE Int. Conf. Comput.
Vis., 2017, pp. 1388-1397.

S. Xie, H. Zheng, C. Liu, and L. Lin, “SNAS: Stochastic neural architec-
ture search,” Proc. 7th Int. Conf. Learn. Representations, New Orleans,
LA, USA, May 6-9, 2019.

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

493

Z. Yang et al., “Cars: Continuous evolution for efficient neural ar-
chitecture search,” in Proc. IEEE/CVF Conf. Comput. Vision Pattern
Recognition, 2020, pp. 1829-1838.

X. Yao, “Evolving artificial neural networks,” Proc. IEEE, vol. 87, no. 9,
pp. 1423-1447, Sep. 1999.

C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, and F. Hutter,
“Nas-Bench-101: Towards reproducible neural architecture search,” in
Int. Conf. Mach. Learn., 2019, pp. 7105-7114.

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J.
Leskovec, “Graph convolutional neural networks for web-scale recom-
mender systems,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2018, pp. 974-983.

S. Yu and J. C. Principe, “Understanding autoencoders with information
theoretic concepts,” Neural Networks, Elsevier, vol. 117, pp. 104-123,
2019.

S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proc.
Brit. Mach. Vis. Conf., R. C. Wilson, E. R. Hancock, and W. A. P. Smith,
New York, UK: BMVA Press, Sep. 19-22, 2016.

A. Zela, J. Siems, and F. Hutter, “Nas-bench-1shot1: Benchmarking and
dissecting one-shot neural architecture search,” in Proc. Int. Conf. Learn.
Representations, Addis Ababa, Ethiopia: OpenReview.net, Apr. 26-30,
2020.

C. Zhang, P. Lim, A. K. Qin, and K. C. Tan, “Multiobjective deep belief
networks ensemble for remaining useful life estimation in prognostics,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2306-2318,
Oct. 2017.

C.Zhang, K. C. Tan, H. Li, and G. S. Hong, “A cost-sensitive deep belief
network for imbalanced classification,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 30, no. 1, pp. 109122, Jan. 2019.

Q. Zhao, D. Zhang, and H. Lu, “A direct evolutionary feature extraction
algorithm for classifying high dimensional data,” in Proc. 21st Nat. Conf.
Artif. Intell., 2006, pp. 561-566.

Z. Zhong, J. Yan, and C. Liu, “Practical network blocks design with
Q-learning,” CoRR, vol. abs/1708.05552,2017. [Online]. Available: http:
//arxiv.org/abs/1708.05552

H. Zhu et al., “Benchmarking and analyzing deep neural network
training,” in Proc. IEEE Int. Symp. Workload Characterization, 2018,
pp- 88-100.

B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning.” in Proc. 5th Int. Conf. Learn. Representations, Conf. Track
Proc., Toulon, France, Apr. 24-26, 2017. [Online]. Available: https://
openreview.net/forum?id=r1 Ue8Hcxg

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” IEEE Conf. Comput. Vision
Pattern Recognition, Salt Lake City, UT, USA: IEEE Comput. Soci., Jun.
18-22, 2018, pp. 8697-8710.

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 24,2023 at 13:45:57 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/ITW.2015.7133169
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.05552
https://openreview.net/forum{?}id$=$r1Ue8Hcxg

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

