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The Cyborg Philharmonic: Synchronizing interactive
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Music offers a uniquely abstract way for the expression of human emotions and moods,
wherein melodic harmony is achieved through a succinct blend of pitch, rhythm, tempo,
texture, and other sonic qualities. The emerging field of “Robotic Musicianship” focuses on
developing machine intelligence, in terms of algorithms and cognitive models, to capture the
underlying principles of musical perception, composition, and performance. The capability of
new-generation robots to manifest music in a human-like artistically expressive manner lies
at the intersection of engineering, computers, music, and psychology; promising to offer new
forms of creativity, sharing, and interpreting musical impulses. This manuscript explores how
real-time collaborations between humans and machines might be achieved by the integration
of technological and mathematical models from Synchronization and Learning, with precise
configuration for the seamless generation of melody in tandem, towards the vision of
human-robot symphonic orchestra. To explicitly capture the key ingredients of a good
symphony—synchronization and anticipation—this work discusses a possible approach
based on the joint strategy of: (i) Mapping— wherein mathematical models for oscillator
coupling like Kuramoto could be used for establishing and maintaining synchronization, and
(ii) Modelling—employing modern deep learning predictive models like Neural Network
architectures to anticipate (or predict) future state changes in the sequence of music gen-
eration and pre-empt transitions in the coupled oscillator sequence. It is hoped that this
discussion will foster new insights and research for better “real-time synchronized human-
computer collaborative interfaces and interactions”.
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Introduction

usic has enraptured humans for ages and offers an

unbridled avenue for the expression of emotions,

intellect, passions and moods, not only for us but also
for other creatures of nature. A heart touching melody is reached
through the perfect meld of tempo, rhythm, texture, pitch, and
other sonic features. Being one of the oldest creative art forms',
music has inspired research among scholars across different
disciplines to study the underlying aesthetics and characteristics
for achieving “the harmony of spheres” (Gaizauskas, 1974).

Musicology, the traditional field for the study of music, explores
various dimension of music in terms of theory and evolution
(Boretz, 1995), along with its societal associations (Soley and
Hannon, 2010), therapeutic benefits (Davis et al, 2008), and
connections between physics and artistic expressions (Perc, 2020).
Recent developments in the field of artificial intelligence (AI) has
led to research in Cognitive Musicology, which involves the mod-
elling of musical knowledge with computer models, enabling the
combination of cognitive science and musicology (Laske, 1999) for
developing physical-mechanical systems to produce music.
Musical Performances, on the other hand, represent a dif-

ferent manifestation of physical expression of music, wherein
several musicians perform in a precise synchronized fashion
involving a temporal change of roles and possibly improvised
chord progression—posing a varied set of challenges for
seamless interaction between humans and computational
models. It is here that we seek to investigate how real-time
cooperation between machines and humans could be achieved
through technologies and models from synchronization and
learning, with their exact configuration for the generation of
melody alongside each other, to achieve the vision of
human-robot symphonic orchestra.

Technical challenges. One of the major characteristics of musical
performances, or such multi-ensemble topologies, is that musicians
do not engage with rigidity—rather, they play, move, and act as
per the ‘feel’ of the music, and in tandem. Further, the role of
different musicians in an orchestra changes following a rhythm,
communicated in real-time either through mutual non-verbal
gestures or by the principal conductor. Thus, there is a smooth
transition of the musicians between the roles of ‘leader’ and
‘follower’. This inherent inter-dependency can be imagined as a
fully connected dynamic network topology among the musicians
as shown in Fig. 1. This multitude of challenges, in terms of (a)
synchronized generation of the desired musical chord, (b)
dynamic detection of role fluidity, along with (c) understability of
gestures and non-verbal communications in real-time, necessitate
an advanced cognitive operating level for musical robots in such
interactive, synchronized and collaborative environments
(Chakraborty and Timoney, 2020). We discuss how recent
developments in Machine Learning approaches can be integrated
with traditional oscillator coupling techniques to capture the
underlying model and dynamics and predict fine-grained tem-
poral variations in group musical performances for achieving
enhanced human-robot synchronization.

Proposal outline. To explicitly capture the key features of
musical performances and alleviate the above challenges, this
manuscript proposes a joint strategy of: (i) Mapping—responsible
for ensuring control and sensing of the components of musical
instruments along with the parameters in sound synthesis, and
(ii) Modelling—helps in anticipating state changes in the music
generation sequence and captures the overall representation of

Fig. 1 Modelling the interdependencies of an ensemble musical performance as a dynamic network. Interconnected network among musicians during a
musical ensemble depicts individual musician to be connected to others to synchronize their performances with the leader.
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the musical process. We consider each musician (human or
machine) to act as an independent oscillator, wherein mathe-
matical models for oscillator coupling like Kuramoto could be
used for establishing and maintaining synchronization. This takes
into account the generation of in-sync musical parameters like
beat and tempo for creating a harmonious melody, and forms the
mapping phase. The modelling stage employs deep learning
predictive models like Neural Network architectures to capture
long-distance patterns and associations in the music sequence to
learn the overall musical feature space comprising beat, onset,
sustain, decay and pitch. This would enable the system to
anticipate or predict future state changes in the sequence of music
generation, enabling faster synchronization of the coupled oscil-
lator sequences, and seamless prediction of role transitions.

Finally, as food for thought, we put forth the possibility of
future use of Swarm Robotic Intelligence for musical ensembles
with only a troupe of robots, providing scalability, adaptability to
the environment, and cooperative robustness—a fully automated
orchestra. We hope that our discussion will foster new insights
and research in the direction of human-robot ensemble-based
music creation and its underlying dynamics, and in future inspire
better “real-time synchronized human-computer collaborative
interfaces”.

Background and preliminaries
The vision of “creative” intelligence instilled in machines has
fanned the imagination of humans for decades, and has inspired
inter-disciplinary work across diverse domains such as arts,
music, engineering, and psychology (Boden, 1998). The recent
advancements in Al, Machine Learning and Quantum Comput-
ing have re-invigoration this research domain (Kurt, 2018) for
capturing and modelling higher cognitive capabilities for
machines. The perceived “humanness” in art forms can be
manifested in myriad ways, ranging from art generation, poem or
music composition to creative writing.

We initially present to the readers a brief literature overview of
the evolution from classical study of music to the modern
development of robotic musicianship.

Evolution of robotic musicianship. Musicology, the study of
music, explores various traditional dimensions in terms of
musical beauty (Kant in 18th century), melody theory and clas-
sifications (Boretz, 1995), compositional evolution (Wallin et al.,
2001), historical associations, religion and societal cultures (Soley
and Hannon, 2010). Recent research in this domain explores the
benefits of music for medicinal diagnostics and therapy (Davis
et al., 2008; Silverman, 2008), as well as in cognitive psychology
(Tan et al., 2010). Cognitive Musicology involves the modelling of
musical knowledge coupled with the use of computer models, and
provides the roots for combining AI, cognitive science and
musicology (Laske, 1999). Owing to the advancement in the fields
of AI and Robotics, physical-mechanical systems for producing
music via mechatronic systems have been used to develop
musical robots (Kemper and Barton, 2018); while Deep Learning
approaches have shown promise in music composition
(Payne, 2019).

“Robotic Musicianship” has always been a challenging domain
and has garnered significant interest among researchers over
recent years for the generation of musical pieces. Along with
sonic features like beats and chords, time plays a crucial role in
terms of the rhythmic aspect of musical performance. Robotic
musicians have been developed over the years and have been
taught to play different musical instruments such as piano (Kato
et al. 1987), strings (Chadefaux et al., 2012), percussion (Kapur
et al., 2007), and wind instruments (Solis et al., 2005). However,

musical performances involving multiple musicians further
complicates the issue of synchronization. Hoffman and Weinberg
(2010) introduced the concept of musical improvisation and
developed ‘Shimon’, a robotic marimba player that could
effectively interacted with other musicians.

Musical Performances, on the other hand, represent a different
manifestation of physical expression of music, wherein several
musicians perform in a precise synchronized fashion involving a
temporal change of roles and possibly improvised chord
progression. To this end, the arising research field of “Robotic
Musicianship” is centered on creating machine intelligence, using
algorithms and cognitive models to obtain novel musical
perception and composition, for achieving a harmonious and
interactive human-machine performance. The ability of new
generation robots to express music artistically in the same way as
a human being lies at the intersection of engineering, psychology,
music, and computers; and promises to bring about better
sharing, creativity, and interpretation of musical impulses.

To alleviate the technical challenges towards human-robot
symphonic orchestra, in this manuscript, we propose the joint
strategy of Mapping and Modelling. This involves the coupling of
oscillator-based synchronization models from Cognitive Musi-
cology with predictive algorithms from AL We next provide a
summary introduction to the concepts and background for both
techniques.

Synchronization models. Synchronization techniques provide an
effective mathematical model for harmonizing several oscillators,
each with a possibly different intrinsic natural frequency. The
problem of precise interaction between the players in musical
performances or for ensemble settings can be aptly formulated as
optimizing the synchronization between coupling oscillators, by
considering each musician as an independent oscillator. The
audio features of the different sources could then be used to
achieve global sync, via detection of temporal frequency and
phase changes. Kuramoto’s model is a mathematical model for
synchronization problems (Kawamura et al., 2010), and can be
used for efficient and scalable synchronization in such musical
ensemble scenarios. Mizumoto et al. (2010) developed a robotic
thereminist, which uses a Kuramoto’s oscillator to synchronize
with a human drummer. For establishing synchrony, the human
drummer’s onset should be correctly adjudged in practice, and
the oscillator concept was found to reduce the onset time error by
10-38%, even with sounds with varying tempo. We propose to
augment the Kuramoto model with AI techniques for predicting
such onsets and other features that could lead to futher reduction
in timing and sync error.

Ren et al. (2015) explored the agent-based firefly’ model to
study the synchronization dynamics between agents and their
deviation from the original written music. It was found that the
model attained synchronization with a lesser total deviation, even
in the presence of ambient noise or multiple players, due to the
incorporation of conditional interactions between the musician
group. Such models could potentially also be used to find
synchronization among the musicians’ networks.

Incorporating additional cues from gestures or movements
among the musicians has been shown to further reduce the
deviations in the above oscillator models. Currently, researchers
combine gesture recognition with auditory features for enabling
machines to “interpret” the visual cues and interactions between
musicians during a performance. In such multi-ensemble
topological settings, humans do not play in a rigid fashion, and
the roles of ‘leader’ and ‘follower’ within the musicians keep
changing in a fluid manner (Kawase, 2014). Mizumoto et al.
(2012) reported that choosing the correct leader at any given time
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is a challenging problem for two main reasons—firstly, each
participant is mutually affected by the rhythm of others, and
secondly, they compete with as well as complement each other.
Although, they showed that Kalman filters can be used to predict
musical onset and potential leader states, the estimates were
significantly less accurate as compared to that of humans.

The work of Bishop and Goebl (2018) demonstrated the
importance of gestural communication, such as head nods or foot
taps, and the leader-follower model as useful features in an
ensemble environment. They found that gestural communica-
tions helped in establishing early synchronization, sometimes
even from the very first chord, and that the identification of the
leader had a very high impact on maintaining the beat and timing
in-sync with the others. A three-phase trial experiment to study
the effect of such interactions between musicians was conducted
by Maezawa and Yamamoto (2017) by using cameras, motion
sensors, and microphones.

Predictive learning models. Artificial neural networks (ANN)
have been long studied (Hopfield, 1982) in the literature of Al for
mimicking the functionality of the human brain to create
“intelligent machines.” ANN comprises a network or circuit of
nodes (termed artificial neurons), and the importance of their
interactions are depicted by weights between the node connec-
tions. A positive weight refers to an excitation, while a negative
weight denotes inhibition—wherein a combination coupled with
a final activation function controls the output of the network.
Such ANNs have been shown to be useful for predictive model-
ling tasks after an initial training process, where the weights are
computed based on a dataset containing annotations and ground-
truth information.

In this context, with the current advancement in Al, recurrent
neural networks (RNN) were proposed for capturing the node
connections in terms of a directed graph along a temporal
sequence, enabling the network to model temporally dynamic
behaviours on variable input lengths (Tealab, 2018). In fact,
RNN s have been shown to be effective in handwriting recognition
(Graves et al,, 2009). With the advent of the field of Deep
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Learning, an enhanced ANN was proposed to solved predictive
tasks of a higher order complexity. Long short-term memory
(LSTM), a variant of RNN with memory and feedback, were
shown to be able to capture long-term interactions among a
sequence of data points (Sepp and Schmidhuber, 1997), thereby
highly suited for classification and predictive applications on
temporal data series. In fact, the work of Shlizerman et al. (2018)
provides an interesting insight as to how body movements can be
accurately predicted from audio inputs by using LSTM models.

Interestingly, it can be observed that our above discussion
automatically outlines a possible approach to tackle the dual
problems of feature synchronization and predicting transitions in
leader—follower roles in a temporal setting, for robotic musical
performances. Thus, in this manuscript, we outline how
traditional oscillator coupling techniques and modern deep
learning approaches could be integrated to capture the underlying
dynamics of music analysis and to predict fine-grained changes
with musical rhythm for achieving enhanced human-robot
synchronization.

The Cyborg Philharmonic architecture

In this section, we describe the components and the working of
the proposed system to enable a synchronized human-robot
collaborative musical performance.

The creation of melody hinges on two aspects as discussed
previously—synchronization (a steady interaction among players)
and anticipation (predict what is going to happen)—both of
which are moulded by learning and experience in humans. To
capture the intrinsic interplays between the components of har-
mony, the proposed Cyborg Philharmonic leverages a joint
strategy based on the following modules (as pictorially depicted in
Fig. 2, described later in this section):

(i) Mapping—responsible for ensuring the control and sensing
of the components of musical instruments along with the
parameters in sound analysis for synchronization.

(ii) Modelling—focuses on predicting the temporal transitions
of leader-follower roles via the understanding of gesture

Camera Wearable
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Gaze Body

Detection Sway

MiDiScore
Deep Learning
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GAZE
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Ensemble Learning Model
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Fig. 2 System architecture and interaction flow between the modules of Cyborg Philharmonic. The proposed architecture showing the modules of
Cyborg Philharmonic and their inter-play to achieve a synchrony for human-robot musical performances.
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and non-verbal interaction among the other musicians,
thereby capturing the overall representation and pre-
empting the evolution of the musical process.

The deep learning models employed in Cyborg Philharmonic,
the proposed musical robot, are initially trained by emulating a
real-time orchestra ensemble performance under controlled and
supervised conditions. A set of musical performances are selected,
preferably across a diverse combinations in terms of beats, tempo,
chord progression and other sonic features for robustness. Evo-
lutions in leader—follower role or key temporal changes are
appropriately marked for each of the pieces. The machine is now
provided with the relevant musical chord notations and the
annotated temporal transitions as primary input, while the
auditory and visual features will be captured as secondary inputs
in real-time during the simulated performance (Keller and Appel,
2010). A group of musicians would then be entrusted to perform
the selected musical piece in as realistic manner as possible,
simulating an actual performance for training the model. The
associated training and performance of the individual modules
are described next.

Mapping module. The mapping module ensures the control and
sensing of different musical instruments along with the para-
meters for sound synthesis. Ensemble performance is always a
well-rehearsed activity, and due to its complex nature musicians
are trained on the musical piece as well as on coordination with
other players and conductors to understand and maintain
rhythm. To capture the above interactions, the mapping module
relies on three vital channels:

L. the audio stream for ‘listening’ to detect auditory informa-
tion like major chord, frequency, etc.;

II. MIDI notations to understand the different instrumental
sheet for capturing a global ‘score-follow” or interaction
information between the auditory inputs from different
instruments input and the actual musical rendition (Bellini
et al., 1999).

III. wearable sensors capturing body sway for beat or tempo
information from movements like foot taps or head jerks.

The audio stream receives raw audio data using an array of
microphone sensors. For a small ensemble, a single microphone
would be sufficient, but for a large group, an array of several
microphones placed at different positions would be necessary to
capture all the audio signals. Observe that positioning of the
microphone is a vital issue, as it would record nearby instruments
louder than the others, resulting in loss of information. Ambient
noises are also captured, thus minimizing the number of the
microphone is vital for optimizing the time complexity in such a
real-time system. Howie et al. (2016) proposed a novel way of
recording an orchestra of using the dedicated microphone to
create a three-dimensional image of an orchestra. The captured
recording is subsequently denoised by the independent compo-
nent analysis (ICA) filtering technique (Otsuka et al., 2010;
Takeda et al., 2008).

Researchers have found (as mentioned in the previous section)
that instrumentalists moves their body to produce an expressive
artwork (Bishop and Goebl, 2018; Davidson, 2012; Sakata et al.,
2009), and furthermore, the sway information would add
confidence to the audio-based phase synchrony due to additional
cues from wearable sensors. Demos et al. (2018) studied the
relationship between body movements and expressive music
performance using a weighing sensor. Similarly, we propose the
use of Wii weighing plate to measure the overall body movement,
and the fluctuation in sensor values during movements would be
used to decode movement patterns and link them to a musical

beat and other features necessary for synchronization. A Kalman
filter or a complementary filter (for faster performance) can be
used to remove noise from the obtained readings and understand
the movement dependencies (Valade et al, 2017; Wolpert and
Ghahramani, 2000).

In such real-time music systems even a small latency could
initiate a butterfly effect (Lorenz, 2000), potentially throwing the
system out-of-sync. In this regard, MIDI information is beneficial
for reducing the time delay over a data transmission (Moog, 1986;
Yuan et al,, 2010), with the use of ‘MidiScore’, a score-aligning
model based on a bootleg score synthesis, for alignment
(Tanprasert et al., 2020). This would help in tracking the portion
of the song being played and detect the tempo, as well as provide
a global overview of the sonic properties.

The major objective of the mapping module is to enable our
Cyborg framework to dynamically synchronize itself with the tempo
and beat of the leader musician (detected by the modelling module)
during the performance of the orchestra, as described next.

Phase synchronization. The primary goal of Cyborg Philharmonic
is to play music harmoniously via a balanced synergy between the
human and robot musicians. To this end, information from all
the above channels is combined to achieve phase synchronization
by using an online beat-tracking algorithm on the audio input
filtered by ICA, to calculate the tempo of the song at each time
period.

However, data inconsistency and latency in real-time beat
tracking algorithms is observed due to the listening window size.
To alleviate the above problem, we propose the use of Kuramoto’s
model to maintain stability in beat tracking. Here, each musician
is considered as individual oscillators, and their frequency and
phase of audio and body sway output would represent the tempo
of the song and time of the beat, respectively.

Mathematically, consider a system of N oscillators (in our case
musicians), where w is the frequency (or tempo) of the Kuramoto
oscillator, K is the coupling constant and 6 is the phase value (or
beat timing). The oscillator would then follow the beat tracker to
obtain the phase and frequency of the music being played and
compute the synchronized system phase value using Eq. (1)
below.

éi:wi—i—zN:Kijsin(Gj—Gi), i=1

=1

LN (1)

The solution to the above equation provides the basis for
tuning our framework for partial or full synchronization between
the musicians during the performance. This, in combination with
information from the MIDI standard, enables Cyborg to generate
the desired musical notes in-sync with the other musicians for a
seamless interactive performance.

It is interesting to note, additional information from the
modelling phase, employing deep learning techniques, are used as
informative cues for enhanced synchronization. Specifically, to
help reduce latency, a predicted synchronization state is provided
as initialization to the Kuramoto model for faster convergence.
Also, information about the identified leader role is provided to
focus more on the audio stream and body sensor input from the
leader for a better understanding of the current primary chord
and beat, to reduce the phase difference from the identified
leader. In this context, the body swaying information of the
musicians (or solely the identified leader) can be captured using
PhaseMod, a deep learning model, to understand the relationship
between movements and the audio phase (Shlizerman et al,
2018). The trained LSTM network used in PhaseMod provides
additional confidence for real-time music phase detection.
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Fig. 3 Beat detection and phase synchronization for single instrumental piece. a Accurate Beat Detection by predictive LSTM model on an input audio
stream. The model is seen to closely follow the Aubio’s (Brossier, 2006) output obtained. b Phase Synchronization achieved between an audio stream and
Kuramoto Oscillator (Blue line shows the output phase from Aubio and orange line denotes the Kuramoto's phase). The LSTM model was trained and tested to
follow the tempo of the dominant instrument in terms of beat per minute (BPM) on the MUSDB18 STEM dataset (obtained from sigsep.github.io/datasets/
musdb.html#musdb18-compressed-stems). The dataset consists of 150 full songs encoded at 44.1kHz, and ~10 h duration of different genres with their isolated
drum, vocal, bass and other stem. In this experiment, the pitch, tempo and volume features were extracted from each stem in real-time. A LSTM model was
created to predicit and follow the tempo of the dominant instrument which was guiding the rhythm of the full mix. The Kuramoto's Oscillator was explored to see
how multiple instruments can achieve synchronization. As input to the model, we used a a drum beat with varying tempo between the ranges of 85 BPM to 170
BPM with a increase by 5 units at every 64 beats (obtained from www.youtube.com/watch?v=LVJ32rQXDbw&t=8s&ab_channel=MessiahofFire), and as
detected by the Aubio Python library. The Kuramoto's Oscillator was allowed to synchronize with the drum beat.

To this end, we show in Fig. 3a an instantiation of the
effectiveness of beat detection from audio streams using LSTM
models as proposed by Chakraborty et al. (2020). Further, the use
of such beat information helps the Kuramoto oscillators to achieve
phase synchronization with better convergence, as depicted in Fig.
3b with one instrument (considered as the leader).

Modelling module. The modelling module is responsible for
providing the cognitive capabilities to the Cyborg Philharmonic
framework, by predictive analysis of the music generation
sequence. In practice, an orchestral conductor plays a crucial role
in managing and synchronizing the whole system. Further, the
gestures of the conductor establish the leader-follower relation-
ship among the troupe. Specific instruments lead the performance
for a certain period of time, and then the leadership changes
seamlessly. In the absence of a conductor, the leader or dominant
musician is established using directional gazes and gestures
among musicians towards the lead (Capozzi et al.,, 2019). This
fluidity of role or state transition of musicians enables the crea-
tion of the orchestra. However, detecting and following such
leader transitions in real-time by integrating diverse information
from different sources is a major challenge, the detection of which
comprises one of the major focus of the modelling module, as
presented next.

Leader detection. Attention to gaze tracking and conductor ges-
tures for establishing the leader—follower can be obtained from
cameras in our proposed Cyborg Philharmonic framework. Spe-
cifically, we utilize the GAZE system (Kawase, 2014), which uses a
machine learning model based on support vector machines to
distinguish between leaders and followers based on multi-party
gaze features using the PredPsych tool (Koul et al., 2018). Further,
multi-variate cross-classification (MVCC) can be used to achieve
greater accuracy in recognizing the lead performer and followers
based on leadership styles and situational conditions.

The second challenge is to track and follow the correct leader
transitions in real-time during a performance. Traditionally in a
large orchestra, there is always a conductor who directs the whole
production. GAZE would predict the leader musician based on a
statistical approximation of the individual musician’s visual gazes.
However, the visual stream information would be less efficient for
a large orchestra with more musicians, resulting in more
computation time. On the other hand, the conductor is not
necessary for a smaller group. Relying solely on the detection of
subtle gestures between musicians, in such cases, might be prone
to errors and involve large latencies—both detrimental for
synchronization.

Thus, to overcome the above issues, the modelling module
can internally simulate the role of a conductor, by using an
ensemble learning model based on the visual features of GAZE
and MidiScore among the musicians, as in Qiu et al. (2014).
The MidiScore of the different instruments can be used to
calculate the ‘leadership index’ of each instrument at any given
point of time, based on its dominance. In fact, such deep
learning ensemble models can benefit from the introduction of
additional features like the leadership index and phase
identification from mapping module, to learn time series-
based relationships between chord progression and leader
transition. This would enable the early prediction of ‘candidate
leaders’ for transition, that can later be refined in real-time,
reducing the overall latency.

Beat prediction. Another aspect of the modelling module, apart
from identifying the temporal leader transitions, is its predictive
capabilities in terms of overall representation of the musical
process. Specfically, by providing a healthy prediction of the
synchronized state characteristics (like beats per minutes), the
modelling module can reduce the latency in Kuramoto oscillator
convergence in the mapping phase. To this end, a deep learning-
based regression model (like LSTM) can be trained to predict
sonic feature values using the identified leader and chord
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recognition the musical notation sheet as features. This infor-
mation will enable the robot to interpret the musical score in a
human-like manner and generate appropriate MIDI data,
including control information, that will drive a naturalistic
synthesis engine, so as to behave and be perceived like any other
musician.

To study the performance of leader detection and synchroniza-
tion in a natural orchestral setting, we consider the instrumental
composition titled “The Art of Fugue” from Bach (Li et al., 2018).
A fugue is a contrapuntal composition for a number of separate
parts or voices. A short melody or phrase (the subject) is
introduced by one part and successively taken up by the other
parts and developed by interweaving between them. Thus, the
piece appears to be ‘led’ by different parts at different times
throughout, while the other parts ‘follow’. The musical piece
consists of four different woodwind instruments (flute, oboe,
clarinet and bassoon) with changing leadership roles at different
timeslots and time-varying tempo, as shown in Fig. 4a. Further,
our Kuramoto model was observed to successfully achieve
synchronization throughout the musical piece, by accurately
identifying leader transitions and beat detection, as demonstrated
in Fig. 4b—providing a practical application of the proposed idea.

We thus observe an intricate interaction and feedback of
information between the two modules, wherein the detected
leader and the predicted beat from the modelling module enables
the mapping module to provide better synchronization and
interaction between the human-robot musicians. On the other
hand, MIDI information and gesture sensory data from the
mapping phase provides more efficient leader detection in the
modelling module.

Thus the functioning of Cyborg Philharmonic can be outlined
as—(i) Leader Detection, (ii) Beat Prediction, (iii) Music
Synchronization—showcasing a unique fusion between tradi-
tional mathematical models and recent Al predictive techniques
for achieving a synchronous human-machine musical orchestra
performance.

Discussion

It is interesting to observe that such Al-based automated
approaches for human-robot synchronized musical performance
have several possible positive societal ramifications. The inte-
gration of such frameworks would enable even individuals to
compose and perform musical pieces as a troupe (formed by
robots). This would provide even people with medical issues to
seek solace in creativity and performance—as music has been
shown to demonstrate medical benefits (Davis et al., 2008).

Song Instrumental Composition

Flute

Oboe

Clarinet

Basson

ofo

Since, human performances are perfected through rigourous
training and practice, it might be difficult to find musicians for
varied instruments (e.g., for niche traditional instruments, and
dependence on musician’s skill level or their time schedule) that is
associated with ensemble settings. In this scenario, the use of
robotic musicianship might reduce such dependences, enabling
“musical performance on demand”.

Further, considering times of natural calamities, like even in
the present context of a viral pandemic, musical performances are
practically infeasible, due to travel and other societal restrictions.
In such brooding situations, a troupe of robotic musicians might
be a viable option—where music has been shown to help improve
mental health and instill motivation and hope in communities.

One important aspect is the genre of reproductive art forms,
defining the nature and format of the art piece. For example, jazz
significantly differs from classical music which differs from rap. In
fact, the ease offered by the use of robotic musicians in ensembles
would encourage research in terms of compositional aspects as well
as inter-mixing of different genres to provide new musical art forms.

Another important consideration in this domain of research is
development of an evaluation framework to quantify the objective as
well as subjective performance of such robotic performances. Musical
note generation, rythym, tempo and other sonic qualities along with
synchronization (by the robots) can be detected and objectively
evaluated against the notation compositional sheet. However, musi-
cal performances have far more abstract dimensions in terms of
evoking feelings of joy, nostalgia, calm, harmony and excitement. To
this end, development of human evaluation metrics would benefit
the further development of this area. This would provide measures to
explore and judge as to which aspects (in terms of genres, instru-
ments, etc.) are more amenable to interactive and synchronized
human-machine music composition and performances.

Conclusion and future work

In a nutshell, this manuscript proposes a potential architecture for
creating human-robot ensemble-based musical performances. We
discuss the possibility of integrating mathematical modelling and
machine-learning models to efficiently tackle the pivotal challenge of
human-robot synchronization in real-time for a musical ensemble.
This manuscript puts forth how existing technologies like time series
predictive models, gaze and gesture detection and synchronization
techniques can enable the unique experience of human-robot live
orchestra performance, a leap forward towards true “Robotic
Musicianship”. We hope that our discussions and insights on Cyborg
Philharmonic would fuel novel inter-disciplinary research avenues

Kuramoto’s Oscillator
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Fig. 4 Phase synchronization for multi-instrumental composition with dynamic leader changes. a Multi-instrumental orchestra composition with leader
transition across four woodwind instruments along with time-varying tempo. b Phase Synchronization achieved between musical piece with different leader
and Kuramoto Oscillator for generating tap sound on every beats is seen to observe close similarity (Blue line shows the musical composition and orange
line denotes the Kuramoto's phase). Bach's composition titled “The Art of Fugue”, which is 2:55 min long, was obtained from www2.ece.rochester.edu/

projects/air/projects/URMP.html.
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for better “real-time synchronized human-computer collaborative
interfaces and interactions”.

A natural direction of future work would involve studying the
effects of more recent synchronization techniques like Janus oscil-
lators (Nicolaou et al., 2019) shown to concurrently handle phe-
nomena like network synchronization and asymmetry-induced
synchronization for scenarios with (a) explosive synchronizations
and (b) extreme multi-stability of chimaera states. Further, use of
Quantum Neural Networks (Narayanan and Menneer, 2000) might
provide enhanced predictive power for better leader—follower esti-
mation in our architecture. A futuristic purely robotic musical per-
formance can be envisioned by the use of Swarm Intelligence
algorithms to model a collective behaviour of decentralized and self-
organized system (Beni and Wang, 1993; Schranz et al., 2020). Such
agglomerative robotic ensembles would employ communication
protocols to broadcast leaderfollower information, and allow for
predictive tasks based on a global information overview—providing
scalability, adaptability, and cooperative robustness.

Data availability

The datasets analysed during the current study are available from the
following public domain resources: https:/sigsep.github.io/datasets/
musdb.html#musdb18-compressed-stems; https://www.youtube.com/
watch?v=LV]32rQXDbw&t=8s&ab_channel=MessiahofFire; http://
www2.ece.rochester.edu/projects/air/projects/URMP .html.

Received: 14 October 2020; Accepted: 17 February 2021;
Published online: 17 March 2021

Note
1 Musical instruments have been found even from Paleolithic or Old Stone Age
archaeology sites.
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