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Abstract— Stabilisability of an open loop unstable plant is
studied under the presence of a bandwidth limited additive
coloured noise communication channel with constrained Signal
to Noise Ratio. The problem is addressed through the use of
an LTI filter explicitly modelling the bandwidth limitation,
and another LTI filter to model the additive coloured noise.
Results in this paper show that a bandwidth limitation increases
the minimum value of Signal to Noise Ratio required for
stabilisability, in comparison to the infinite bandwidth, white
noise case. Examples are used to illustrate the results in the
continuous and discrete framework.

I. INTRODUCTION

Feedback control over communication links has become

an area of growing interest in recent years with works such

as, for example, [1], [2], [3], [4], [5] and [6]. See also [7]

and the references therein.

Generally, the communication link involves some pre-

and post-processing of the signals that are sent through

a communication channel, for example, filtering, analog-

to-digital (A-D) conversion, coding, modulation, decoding,

demodulation and digital-to-analog (D-A) conversion.

Of the two possible configurations for the location of

the idealised communication channel (measurement path and

control path), we consider the case of a communication

channel over the control link. Such a setting is common in

practice and arises, for example, when actuators are far from

the controller and have to communicate through a (perhaps

partially wireless) communication network. Nonetheless, in a

single-input single-output LTI setting both forms are equiva-

lent, and it is a simple matter to restate the results for the case

of where measurement is performed over a communication

channel.

Stabilisability of the resulting feedback loop has been stud-

ied in relation to quantisation, bit rate limitations, bandwidths

constraint or time delays over the communication channel.

A different line of investigation is pursued in [8], [9] and

[10], which make use of topological and entropy concepts.

Yet another line of investigation has been developed in

[11], [12], [13],[14], and more recently in [15], which has

been linked to the topological results in [8]. The analysis

introduced in those papers includes the effects of non-

minimum phase zeros and time delays in the plant, both in
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the continuous and discrete setting, with output feedback and

state-space feedback, hinting to the possibility of a common

ground between the two lines of research.
This article, as [16], continues this last line of research

which model the communication channel through the ideali-

sation of an additive white Gaussian noise (AWGN) channel,

see for example [17, Ch.10], imposing a power constraint on

the signal that has been sent. Thus the stabilisability problem

is expressed through a bound in the signal to noise ratio

(SNR) defined by the imposed power constraint and the white

noise power spectral density.
In this paper, as in [16], we neglect all pre- and post- signal

processing involved in the communication link, which is then

reduced to the communication channel itself, modeled as an

additive coloured Gaussian noise (ACGN) channel with lim-

ited bandwidth. This bandwidth constraint may be imposed,

for example, to avoid interference between different channels

in a communication system, meanwhile, the coloured noise

is a more realistic feature for a communication channel than

the white noise case studied in [11], [12], [13] and [14].
Only output feedback structure is considered in this work,

first in a continuous time scenario and then in a discrete

time one. The reasons to introduce the discrete framework

are many and different, and just to list a few consider:

1) the relative degree is a relevant issue in the discrete case

(as different from the continuous time case).

2) a plant model can be continuous time initially, but

implementation will require a sampling process, for

which discrete counterpart results will be required.

3) most of the results from Communication theory are

devoted to the case of discrete communication links.

The points highlighted above are the main motivation behind

the inclusion of results for the discrete output feedback

structure. An interested reader should see [11] and [14] for

more detailed arguments and justification on the inclusion of

the discrete case.
Extensions to the state feedback case (both continuous and

discrete) should also follow in a similar fashion to [11], when

dealing with a minimum phase unstable plant with no time

delays.
The main result of the present work is an expression for

the minimum SNR required to guarantee stabilisability of an

output feedback loop when we face the case of a ACGN

communication channel with an assigned bandwidth in both

the continuous and discrete framework.
The paper is organised as follows: in Section 2 we address

the continuous output feedback stabilisability problem over a

band limited ACGN channel. Section 3 does the same for the
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discrete output feedback case. Section 4 presents concluding

remarks with interpretations on the results. All proofs can be

found in [18].

II. GENERAL PROBLEM: CONTINUOUS CASE.

Consider the stabilisation problem for a continuous, un-

stable, non-minimum phase plant with delay, defined as:

G(s) = Go(s)e−sτ , (1)

where Go(s) contains m different unstable poles (pi, i =
1, · · · ,m) and q different non minimum phase (NMP) zeros

(zj , j = 1, · · · , q).

We assume a limited bandwidth ACGN channel with input

output relation given by:

ur(t) = f(t) ∗ us(t) + h(t) ∗ n(t), t ≥ 0, t ∈ R, (2)

where us(t) is the channel input, ur(t) is the channel output,

and n(t) is a zero-mean white Gaussian noise with power

spectral density Φ1. We restrict our attention to the case

where the overall feedback system is stabilised, such that

for any distribution of initial conditions, the distribution

of all signals converges exponentially fast to a stationary

distribution. Without loss of generality, we therefore consider

directly the properties of the stationary distribution of the

relevant signals. Denote the power spectral density of us(t)
by Sus (ω). The power in the channel input, defined by

‖us‖Pow � E
{
u2

s(t)
}

, is related to its spectral density by

‖us‖Pow =
1
2π

∫ ∞

−∞
Sus

(ω) dω (3)

The channel input is required to satisfy the power constraint

‖us‖Pow < P, (4)

for some predetermined input power level P > 0. A power

constraint such as (4) may arise from a range of factors such

as electronic hardware limitations or regulatory constraints

introduced to minimise interference to other communication

system users. The limited bandwidth ACGN channel is thus

characterised by two stable transfer functions, F (s) and

H(s), and two parameters: the admissible input power level

P , and the noise spectral density Φ.

Consider now the control feedback described in Figure

1 in which Us(s) = −K(s)Y (s). The closed loop transfer

function from channel noise n(t) to channel input us(t) is

equal to −(T (s)/F (s))H(s), where T is the complementary

sensitivity function of the output feedback loop:

TFH(s) = −(T/F (s))H(s) = − KG

1 + KGF
H (5)

If the feedback system is stable, then the power of the

channel input signal is given by:

‖us‖Pow = ‖TFH‖2
H2

Φ. (6)

1A formal approach of stochastic differential equations (see for example
[19]) requires the use of Ito Calculus and related tools. However, under
reasonable stationarity assumptions presented in [20]§4.4, it reduces to the
analysis proposed here.

− us
K(s) G(s)

y

Channel n

F (s)

H(s)

++ ur

Fig. 1. Stabilisation via output feedback over a band limited ACGN
channel.

We see that the input power constraint (4) may be restated

as a constraint imposed on the transfer function (5) by the

admissible channel SNR, specifically

P
Φ

> ‖TFH‖2
H2

(7)

Let K denote the class of all proper controllers K(s) that

internally stabilise the feedback system of Figure 1.

Problem 1: (Continuous-Time SNR Constrained Band
Limited Output Feedback Stabilisation). Find a proper
rational function K(s) ∈ K such that the transfer function
(5) satisfies the constraint (7) imposed by the admissible
channel SNR.

Denote the Blaschke product containing the C
+ poles of

Go(s) by

Bp(s) =
m∏

i=1

s − pi

s + p̄i
(8)

Equivalently denote the Blaschke product for the NMP zeros

of Go(s) by

BzG(s) =
q∏

i=1

s − zi

s + z̄i
(9)

There are also cases in which is common to model a com-

munication channel as having NMP zeros, see for example

[21], [22] and [23]. Define therefore the analog of (9) for F
as:

BzF (s) =
f∏

i=1

s − zi

s + z̄i
(10)

In general, if it is not necessary to stress the different origin

of the zeros we will use Bz as notation, with Bz = BzG ·
BzF .

Theorem 1: Consider the feedback system of Figure 1.

Define TFH as in (5) and assume also that G(s) has m
unstable poles {pi; i = 1, 2, · · · ,m} and that these poles

are distinct. Denote the NMP zeros of G(s) and F (s) by

{zi; i = 1, · · · , q + f} and assume also that these zeros are

distinct2. Then

P
Φ

> inf
K(s)∈K

‖TFH‖2
H2

=
m∑

i=1

m∑
j=1

rir̄j

pi + p̄j
e(pi+p̄j)τ , (11)

2The assumptions of distinct zeros and distinct poles simplify the result
of this theorem, but they are not essential to it.
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where

ri = 2Re {pi}B−1
z (pi) F̃−1 (pi)H (pi)

m∏
k=1
k �=i

pi + p̄k

pi − pk
(12)

Where F̃ = FB−1
zF is the filter F with its NMP zeros

mirrored to their MP counterpart locations (if no NMP zeros

are contained in F then F̃ = F and Bz = BzG). Proof:
See [18].

The result from this theorem nicely put to the front the

important features of a continuous plant model in terms of

the minimum required SNR to guarantee stabilisability, that

is: unstable poles, NMP zeros and time delay. All other

possible features of the plant do not play a role in this

discussion.

The following example considers the case of an infinite

bandwidth AWGN channel and a plant with time delay,

therefore not taking full advantage of the result in Theorem

(1), but allowing to tie this same theorem with earlier results

presented in [13].

Example 1: Consider the case of two unstable real poles

p1 and p2, and an infinite bandwidth AWGN communication

channel. For this selection (11) becomes:

P
Φ

> inf
K(s)∈K

‖TFH‖2
H2

=

=
r2
1

2p1
e2p1τ +

2r1r2

p1 + p2
e(p1+p2)τ +

r2
2

2p2
e2p2τ

= 2p1

(
p1 + p2

p1 − p2

)2

e2p1τ − 8p1p2

p1 + p2

(
p1 + p2

p1 − p2

)2

e(p1+p2)τ

+ 2p2

(
p1 + p2

p1 − p2

)2

e2p2τ

(13)

The expression obtained in (13) matches the result in exam-

ple 2.2, equation (21), in [13].

Example 2: Consider in this example at first a plant with

unstable pole located at p = 5. The LTI filters used to

model the finite bandwidth and coloured noise features of

the communication link are both chosen to be Butterworth

filters of order 4. The result presented in Figure 2 shows

the effect of bandwidth limitation on one axis and coloured

noise on the other axis. The vertical scale is the SNR value

in Decibels required to guarantee stabilisability.

Two facts can be appreciated from Figure 2. First, the

bandwidth limitation of the communication link forces an

increase in the value of SNR required to guarantee stabilis-

ability, and second the colouring of the noise by a low pass

filter has the opposite effect of reducing this required value.

The overall result approaches the case of SNR for an

infinite bandwidth AWGN communication channel, that is

10 ∗ log10(2p) = 10[dB] in this occasion.

More generally for the case of one unstable real pole p
and two possible selections for filters F and H , say (F̃1,H1)

Fig. 2. SNR bound for stabilisability, unstable pole at 5. Limited bandwidth
coloured noise case.

and (F̃2,H2), with the following condition:

|F̃1(jω)−1H(jω)| ≥ |F̃2(jω)−1H(jω)|, ∀ω (14)

It is possible to verify, through Poisson integral formula, see

[24], that:

log |F̃−1
1 (p)H1(p)| =

1
π

∫ ∞

−∞
log |F̃−1

1 (jω)H1(jω)| p

p2 + ω2
dω ≥

1
π

∫ ∞

−∞
log |F̃−1

2 (jω)H2(jω)| p

p2 + ω2
dω

= log |F̃−1
2 (p)H2(p)|

(15)

This is equivalent to claim |F̃−1
1 (p)H1(p)| ≥ |F̃−1

2 (p)H2(p)|
and since for this general case the SNR required for stabil-

isability as a closed form given by 2p|F̃−1(p)H(p)|2, we

can conclude that the first case will always demand a higher

SNR for stabilisability than the second case.

The second plant presented here as an example has an

unstable pole at p = 5, as before, but also includes now

a variable NMP zero, in a range between 0 and 15. The

communication link in this occasion is set to be a finite

bandwidth AWGN channel. The coloured noise is dropped

in order to make the result presentable in a 3 dimensional

graphic, as per Figure 3.

It is possible to observe, again from Figure 3, that limiting

the bandwidth of the communication channel embedded in

a LTI continuous output feedback scheme forces an increase

in the SNR value necessary to guarantee stabilisability. The

presence of an NMP zero also increases the minimum SNR

value required for stabilisability, as per the same figure. The

closer the NMP zero is to the pole the harder the system

is to stabilise and therefore the greater the necessary value
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Fig. 3. SNR bound for stabilisability. Unstable pole at 5, NMP zero between
0 and 15. Limited bandwidth, white noise case.

of SNR. The extreme case happens when the NMP zero

is exactly at the unstable pole location, in which case the

system would be not stabilisable and the SNR value would

be infinite.

The plot in Figure 3 has been limited on the z-axis to

approximately 50[dB] to make its appreciation more clear.

The summary for this section leaves us with an expression

in terms of the unstable poles, NMP zeros and time delay

of the plant which quantify the minimum SNR required to

guarantee stabilisability in an output feedback continuous

time case. This result can be used as a first approach to

quantify a communication channel parameters in a control

design solution which may use a modem or radio commu-

nication to send the control signal to the plant, moreover it

can also be used to study the feasibility of a given design

solution. Lastly, but not less important, it can be used as a

first approach in lifting the usual ideal assumption in control

feedback loop design of exact transmission for all the signals

involved in the loop.

III. GENERAL PROBLEM: DISCRETE CASE.

We now turn to the problem of using output feedback to

stabilise an unstable discrete-time plant over a noisy discrete-

time channel. Let the plant have transfer function Gd(z) and

state variable description

xk+1 = Adxk + Bduk, ∀k = 0, 1, 2, · · ·

yk = Cdxk

(16)

Assume that (Ad, Bd, Cd) is minimal. We assume a discrete-

time Gaussian channel with input output relation

wk = fd[k] ∗ vk + hd[k] ∗ nk, (17)

where nk is zero mean Gaussian white noise with variance

σ2. The channel input vk is assumed to be a discrete-

time stationary stochastic process with power spectral den-

sity Sv (ω). The power in the channel input, defined by

‖v‖Pow � E
{
v2

k

}
may be computed from its spectral

density by

‖v‖Pow =
1
2π

∫ π

−π

Sv (ω) dω. (18)

Note that the power in a discrete-time white noise signal is

equal to its variance. The discrete channel input is required

to satisfy the power constraint

‖v‖Pow < Pd, (19)

for some predetermined input power level Pd. Consider the

−

Channel

++
Kd(z) Fd(z)

Hd(z)

Gd(z)
vk

nk

wk yk

Fig. 4. Stabilisation of a discrete-time system via output feedback over a
discrete band limited ACGN channel.

discrete-time feedback system of Figure 4, where the channel

input is dynamic output feedback, V (z) = −Kd(z)Y (z). If

the feedback system is stable, then

‖v‖Pow = ‖TFHd‖2
H2

σ2, (20)

where

TFHd(z) = − Kd(z)Gd(z)
1 + Kd(z)Gd(z)Fd(z)

Hd(z), (21)

is the transfer function that relates vk with nk. The input

power constraint (17) imposed by admissible SNR is thus

equivalent to requiring that TFHd satisfies the bound

Pd

σ2
> ‖TFHd‖2

H2
(22)

Denote the class of all stabilising output feedback controllers

by Kd.

Problem 2: (Discrete-Time SNR Constrained Band
Limited Output Feedback Stabilisation). Find a proper
rational function Kd(z) such that the transfer function in
(21) satisfies the constraint (22) imposed by the admissible
channel SNR.
Denote the Blaschke product containing the D

C
poles of

Gd(z) (D
C

= {z ∈ C : |z| > 1}) by:

Bρ(z) =
m∏

i=1

z − ρi

1 − zρ̄i
, (23)

and define

βk � 1
k!

dk

dzk
Bρ(z)

∣∣∣∣
z=0

(24)

Denote, also, the Blaschke product containing the D̄
C zeros

of Gd(z) by

BζGd
(z) =

q∏
i=1

z − ζi

1 − zζ̄i
, (25)
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and the Blaschke product containing the D̄
C zeros of Fd(z)

by

BζFd
(z) =

f∏
i=1

z − ζi

1 − zζ̄i
(26)

In general, if it is not necessary to stress the different origin

we will use Bζ as notation, with Bζ = BζGd
· BζFd

.

Theorem 2: Consider the feedback system of Fig-

ure 4, assume that Ad has D̄
C distinct eigenvalues

{ρi; i = 1, 2, · · · ,m}, and define TFHd(z) as in (21). Let

Gd(z) have relative degree r ≥ 1. Let also Gd(z) and Fd(z)
have q + f distinct zeros {ζi; i = 1, 2, · · · , q + f} in D̄

C ,

then

Pd

σ2
> inf

Kd(z)∈Kd

‖TFHd‖2
H2

=
m∑

i=1

m∑
j=1

rir̄j

ρiρ̄j − 1
+ δ, (27)

in which

ri = (1 − |ρi|2)B−1
ζ (ρi) F̃−1

d (ρi)Hd (ρi)
m∏

j=1
j �=i

1 − ρiρ̄j

ρi − ρj

δ =
{

0, if r = 1∑r−1
k=1 |μk|2 if r > 1

,

(28)

where

μk =
m∑

i=1

riρ
k−1
i , (29)

and F̃d is the filter Fd with its NMP zeros mirrored to their

MP counterpart locations (if no NMP zeros are contained in

Fd then F̃d = Fd and Bζ = BζGd
).

Proof: See [18].

Remark 1: It may also be possible to think of the relative

degree case for discrete time as equivalent to having repeated

non-trivial, NMP zeros at infinity. Note that in continuous

time, there are also repeated zeros at infinity, but in some

sense they are trivial, since they are on the stability boundary

and turn out not to affect the final result.

The discrete output feedback case proves to be algebraically

more demanding due to the presence of potentially a relative

degree greater than one. Nonetheless a similar objective as

per section 2 is achieved. Theorem 2 present us with a lower

bound for the required SNR which guarantees stabilisability,

in terms of specific features of the plant, namely unstable

poles, NMP zeros and relative degree. Any other aspect in-

volved in an discrete output feedback scheme is not relevant

in terms of the required SNR for stabilisability.

Example 3: Consider a plant with unstable pole located

at ρ = 2. Since the main difference between the discrete

and continuous case is the presence of relative degree in

the plant, the communication link characteristic of coloured

noise is dropped in favour of a limited bandwidth AWGN

communication channel model and the possible plant zeros

are chosen all to be minimum phase.

The filter modelling the bandwidth limitation is selected

to be a Butterworth low pass filter of order 4. For discrete

filters as the one chosen, the cut off frequency of the filter

is expressed in terms of a factor Wn between 0 and 1, in

which 1 corresponds to half the sample rate (in order to avoid

aliasing issues).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

W
n

P
/Φ

 [d
B

]

r = 1
r = 2
r = 3

Fig. 5. SNR bound for stabilisability. Unstable pole at 2, relative degree
1, solid line, relative degree 2, dashed line, relative degree 3, dash-dotted
line. Limited bandwidth, white noise case.

In Figure 5 the result is presented and we can observe

that an increase in relative degree implies an increase in

the minimum required SNR value to guarantee stabilisability.

The point around 0.55 is a consequence of the filter selection

and indeed disappears when one considers a Chebyshev filter

instead (not shown).

IV. CONCLUSION AND REMARKS.

In this paper a lower bound expression for the SNR

necessary in order to guarantee stabilisability of an output

feedback scheme, both in the continuous and discrete time

frameworks, has been achieved. This bound solely depends

on features from the plant, unstable pole locations, NMP ze-

ros locations and time delay or relative degree, depending on

the case. This result is valuable in terms of adding explicitly

the condition of limited bandwidth and coloured noise in the

communication channel model. The bandwidth limitation,

modelled as a low pass filter, has proved to increase the

required value of SNR which guarantees stabilisability of

the control feedback loop. Opposite, the adding of low-

pass coloured noise has proved to lower the same required

SNR value. This nicely expose the flexibility of the chosen

communication model to fit different possible scenarios for

the communication link. Future lines of work will include on

the side of the communication channel model the possible

effect of NMP zeros in the filter transfer function modelling

the bandwidth limitation, and the case of more complex

channel models, e.g., fading channel case. On the side of

the plant, future lines of work will include a study of target

performances for the closed control loop, inspired by [15],

and possible consequences of modelling error in the plant.
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