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We compute gluon and quark propagators in 2-colour QCD gélaaryon chemical potentigl.
The gluon propagator is found to be antiscreened in the Bujkrconfined phase and screened
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1. Introduction

Determining the phase diagram of QCD at large baryon density and small rizomes re-
mains one of the outstanding problems of strong interaction physics. THikeprds of both theo-
retical and phenomenological interest: on the theoretical side, an exzaptioch phase structure
may be present, while the phenomenological interest is spurred by thbifityshat some of these
phases may be present in compact stars, and may have observaklguemtes.

Direct lattice simulations of QCD at high density and low temperature are hithtdgrine sign
problem, so alternative approaches are required. One such apjsdactudy QCD-like theories
which may be simulated on the lattice, and apply the lessons learnt from thesedite the case
of real QCD. Foremost among these theories is QCD with gauge group 8Q{zZD).

Medium modifications of quark and gluon propagators is one topic whep®Q@tay directly
inform real QCD calculations. The gluon propagator is used as input iatgaj equation for the
superfluid gap at high density, but the propagator that is used is usaabylleither on (resummed)
perturbation theory or on simple generalisations of the vacuum propaddtmtrivial medium
modifications or nonperturbative effects may thus significantly alter thétsedthe quark propa-
gator encodes information about effective quark masses and gapegdara, while first-principles
results for gluon and quark propagators together can be used to ttleeaksumptions going into
dense QCD calculations in the Dyson—Schwinger equation framedrk [1, 2

2. Formulation

We will be usingN; = 2 degenerate flavours of Wilson fermion, with a diquark source
included to lift low-lying eigenvalues and study diquark condensation withiogontrolled ap-
proximations. The fermion action can be written

s = (v, 4]) <“f<]’;5> Mgfu)> (T‘%) — W (), (2.1)

whereM( ) is the usual Wilson fermion matrix with chemical potentiallt satisfies the symme-
tries

KM()K ™t =M*(1), M (1)ys=M(—p), (2.2)

with K = Cys1. The first of these is the Pauli-Glrsey symmetry. The invers# a$ the Gor’kov
propagator,

(0T el o) _ [(Sey) Toey
o= ‘(@n;(x)wl(y» WL ouf <y>>>‘<T<x,y> s<x,y>>' @3

The componentS$ and T denote normal and anomalous propagation respectively. The Gor’kov
propagator has the symmetry properties

) s _T
KZK1 = <_T—* 5 ) : (2.4)
Sxy)=-Syx",  TEY=THx", Txy)=Tyx". (2.5)
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We will also write the inverse propagator as

a_(NA
- (2) oo

which has the same symmetry propertieas
The normal propagatd can in general be written in terms of four momentum-space form
factors,

=P SU(P? pa) +So(B?, pa) + Va(pa— i) (P, pa) +iva BS(P? pa). (2.7)

In QC,D the Pauli-Glrsey symmetry ensures that all form factors are purdlyTha structure
of the anomalous propagator depends on the pattern of diquark catidensAssuming that the
condensation occurs in the colour singlet channel with quarks of ahéauour, the anomalous
propagator can be written 8gp) = T'(p)CI 12 (and similarly for the anomalous paktp) of the
inverse propagator), wheFe= s for condensation in the scalar’(pchannel. Spin-1 condensation
leads to more complicated structures, but is energetically disfavoured oednoaspin-0 conden-
sation and will not be considered here. The remaining spin structureecamitben in terms of
form factorsT,, Ty, Tc, Tq analogous to[(2 7), ie

=P Ta(P% pa) +To(P? pa) + Ya(pa— i) Te( P, pa) +iva BTa(P? pa). (2.8)

Similarly, the inverse propagator can be written in terms of form fa&oBsC andD for the normal
partN, and@, @, @, @ for the anomalous pa'(p). The form factorsy are the gap functions.

The gluon propagator in presence of a chemical potential in Landae gaagbe decomposed
into an magnetic and electric form factor,

Dy (G, 0o) = P, Dm (T2, 05) + P, De (T2, a4 (2.9)

The projectorsPJV(q), PEV(q) are both 4-dimensionally transverse, and are spatially transverse and

longitudinal respectively.

3. Resaults

We have generated gauge configurations on two lattices: a “coarse” laitic@ = 1.7,k =
0.178V = 82 x 16, and a “fine” lattice witl3 = 1.9, k = 0.168 V = 12% x 24. The lattice spacings
are 0.23fm and 0.18fm respectively, whitg;/m, = 0.8 in both cases. A range of chemical poten-
tials u were used with diquark sour@g = 0.04, while additional configurations were generated
with aj = 0.02,0.06 for selected values @f. In addition to this, we have also generated configura-
tions atu = 0 for two “finer” lattices, with3 = 2.0, k = 0.162 (“heavy”) anck = 0.163 (“light”),
both with volumes/ = 128 x 24,

3.1 Gluons

Results for the gluon propagator on the coarse lattice have been pregeffE; we will
supplement those here with results from the fine lattice. On both lattices, ahtoarssition to a
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Figure 1: The gluon dressing function at zero chemical potentialdftferent lattice spacings and volumes.

phase with nonzero baryon density and diquark condensate was dbppd: my/2, while BCS-
like scaling of energy density, baryon density and diquark condensestéownd at higheu. On the
coarse lattice the crossover to BCS-like scaling was associated with anmsining Polyakov loop
L, indicating a coincident deconfinement transitign [3]. On the fine latticeetivastransitions are
separate, with the deconfining transition occuring at considerably larfr

First of all, we investigate the scaling behaviour of the gluon propagatoe ivettuum (i = 0).
Figure[l shows the gluon dressing functigiD(q) for three of our four different lattices. For the
coarse lattice parameters, we also have data for two different volumes dath have all been
cylinder cut [b] to select the points with smallest lattice artefacts. Since the laftagng for the
finer lattice has not yet been independently determined, the matching precdescribed in[[5]
has been used to find the ratio of lattice spaciag&; that gives the best match for the gluon
propagator on the finef§ and finer ¢ f) lattices.

We see that finite volume effects are small for the momenta considered heseabing viola-
tions (finite lattice spacing effects) are very large between the coardbenslo finer lattices. The
good scaling observed between the two finer lattices may be somewhat miglesiioe the match-
ing procedure used in setting the scale for the finer lattice assumes we aeesicating régime.
Nonetheless, the good agreement over a wide range of momenta indicatagtiteaartefacts here
are not too large.

Figure[? shows the two lowest Matsubara modes of the unrenormalisediopagator as a
function of spatial momenturg | for a range of chemical potentials, on both lattices. In all cases,
the propagator at the lowest chemical poterfiahown is consistent with the vacuum propagator.
On the coarse lattice both magnetic and electric propagator are stronginadrat large:, while
they are enhanced at low momentum in the intermediate-density region. Thegati®) mag-
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Figure 2: The unrenormalised gluon propagator on the coarse lattgg &nd on the fine lattice (bottom),
for various chemical potentialgu = 0.25—1.10.

netic gluon propagator turns out to have a surprisingly strong depeedasnthe diquark source,
which counteracts the infrared suppression at large j — 0, but does not remove it completely.
This is demonstrated in fig] 3, which shows the magnetic gluon propagattihédwo lowest
Matsubara frequencies, extrapolated to zero diquark source. Wi¢ydea a strong infrared en-
hancement at intermediate but atay = 0.9(u = 0.78GeV) both the static and non-static modes
are suppressed in the infrared.

The same qualitative picture can be seen on the fine lattice, but in this caséraedrsup-
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Figure 3: Magnetic gluon propagator on the coarse lattice, extrapoléo zero diquark sourcg The
left-hand plot shows the lowest Matsubara mogle=£ 0), while the right-hand plot shows the first nonzero
Matsubara mode.

pression sets in at much larggr(aroundau = 0.8 or u = 0.9GeV). This is consistent with the
hypothesis that the screening effect is linked with the deconfinemenitivange that it is a result
of the gluons being screened by coloured quark degrees of freedom.

It is worth pointing out that the enhancement resp. screening notedshiei@mparison to the
vacuum gluon propagator, which is known to be infrared suppressetbchonperturbative effects
(as discussed at length in other contributions to this conference). ntssemsonable to assume
that although the static magnetic gluon is unscreened to all orders in péidartieory, nonper-
turbative effects may be responsible for the additional screeningwsaseere in the deconfined
phase.

We have attempted to fit the gluon propagator to a simple massive form,

o Zem
DE,M( q 7q41u) = a2+q‘21-|—|’n%m(l.l) '

The resulting electric and magnetic gluon massegs are shown as functions @f in figure[}. It
is worth noting that the quality of these fits is quite poor. This is expected, aknbign that at
U = 0itis not possible to describe the gluon propagator by a simple, momentuneimm mass,
while at largeu one should reproduce the results of hard-dense-loop (HDL) resuipengabation
theory, which also has a more complicated functional form. A form whichpiolates between
HDL and available results fou = 0 [B, [B,[T] is likely to yield better results. A further technical
complication is that we have defin€2k only at nonzero spatial momenta, while the fitshig
include the@ = 0 point. This is the reason for the discrepancy betweemnd my at 4 = 0,
where they should be equal. This also tends to yield lower valuasftroughout.

With these provisos, we can see that both the electric and magnetic gluonsmessen
roughly constant for small and intermediatgbefore increasing at large corresponding roughly

(3.1)
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Figure 4: The electric and magnetic gluon mass as a function of chépatantial ., determined from a fit
to a simple massive propagator on each lattice. For the edattice, the filled symbols denotes fits to data
with zero diquark sourcg, while the open symbols are frofa = 0.04. For the fine lattice all data are for
ja=0.04. It was not possible to get any fit for the electric gluontoafine lattice forau < 0.7.

to the deconfined phase. We see, however, that there is a largerntiffdretween the mass values
from the two lattices, indicating that scaling violations are still very large aetlstce spacings.

3.2 Quarks

In the vacuum, there are only two independent tensor components of dhle propagator,
which is conventionally written as
Z(p)
P = v (3-2)
whereM is the mass function and the renormalisation function. These are shown in |ﬂg. 5,
for the different lattice spacings and quark masses available. Bgth and M(p) have been
multiplicatively tree-level corrected][8]; however, since the critical §uagass is not yet known,
the tree-level correction dfl (p) is not yet properly carried out.

We immediately see that there are large scaling violations in both form factuslasge
violations of rotational symmetry id(p). In particular, we note that(p) increases in the infrared
for the coarser lattices, whereas it is usually found to be infrared sappd. We see that this
suppression appears to be recovered as we move towards the contimitus careful continuum
extrapolation will be needed to obtain quantitative results.

At nonzero chemical potential, we find that the form fact®yss, and<; (spatial-vector, scalar
and temporal-vector) of the normal quark propagator and the formr&@iand Ty (scalar and
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Figure 5: The quark propagator renormalisation function (left) arasmfunction (right) at zero chemical
potential, for different lattice spacings.

tensor) of the anomalous propagator are nonzero, while the remainingoentp are zero. Results
for the coarse lattice were shown {ih [9]; here we will show results for treeléittice only.

Figure[ shows the spatial-vector p&tand scalar pai$, of the normal quark propagator for
a range of chemical potentiadégt = 0.25— 1.1. These both exhibit dramatic medium modifica-
tions. The scalar propagats is strongly suppressed in the superfluid phase, suggesting a drastic
reduction in the in-medium effective quark mass. This is linked to the appeaw the diquark
condensate: the chiral condensate rotates into the diquark condenseesimperfluid phasé [[LO].
We would therefore expect to find the missing strength in the anomalousgatopaThe change
in behaviour is sudden and takes place aroune- m;/2, while for largeru there is little change.

The spatial-vector propagat® is also infrared suppressed at laggebut this suppression
happens gradually as a functionofand sets in only above,. At the largest densities we see that
Sa(?, ks = T ) becomes negative for small spatial momemﬁ)ﬁ.

The two lowest Matsubara modes of the temporal-vector propaatwe shown if]7. We see
that the lowest Matsubara mode & 11T) becomes negative at intermediate momenta, approaching
zero from below at high momenta. This is a dramatic change compared to théewgcopagator,
which stays positive at all momenta, and indicates the formation of a supagéipidThe location
of the zero crossing in thky — O limit corresponds to the Fermi momentdg. In accordance
with this, the zero crossing moves to Iargé_¢>| as U increases. On closer inspection, we find
that the second Matsubara mode £ 37T) also becomes negative for large(at large spatial
momentum). It would therefore in principle be possible to extrapolate this ressing tok, = 0
and thus findkg as a function ofu.

Figure[8 shows the nonzero components of the anomalous Gor’kovgatapaThe dominant
part is, as expected, the scalar p&yit but a clear signal is also found for the tensor pattin
accordance with what was found on the coarse lat{ice [9]. We find thaattiee artefacts in
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Figure 6: The lowest Matsubara frequency of the spatial-vector)(beid scalar (right) part of the normal
quark propagator, on the fine lattice, for different chernicaentialsy.
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Figure7: The temporal-vector part of the normal quark propagatotheriine lattice, for different chemical
potentialsu.

the scalar part is substantially reduced compared to the coarse lattice, wehilengor part is
still subject to very large violations of rotational symmetry. It may thereforefsn to question
whether this component will survive the continuum limit.

The scalar anomalous propagator shows a clear change in behaviomg gges from small to
large chemical potential. Firstly, we note that it increases betwgen 0.25 and 0.35. The former
point is below the superfluid transition, but anomalous propagation isrirdae to the explicit



Gluons, quarks and deconfinement at high density Jon-Ivar Skullerud

w

28%
E T o-op=025L T B ¢ >
- b ooz d 5
©--6 p=0.50 ||~ . I
3 N 1=0.65 IR gy ¥
22N >--p u=0.80 || N
= §\\‘ ' N 5 ’\ 1
= el se--x P=1.00||_ % pi A
ll-T‘ NS *--% u=1.10 \E/ ’,' ST
xfr L . X | 3 § ’,
) R T,
¥ 31
0 ! Ll L. Ll 1
05 1 15
kla

Figure 8: The scalar (left) and tensor (right) part of the anomalowakjpropagator, on the fine lattice.

diquark source. We expect thRt(andTy) will vanish in thej — O limit for u < t,. As U increases
abovey,, T, develops a plateau at low momentum, which extends to ladgéwith increasingu.
At large i, T, thus becomes approximately constant, suggesting that anomalous prapagafio
be described by a momentum-independent diquark’gap

4. Discussion and outlook

We have found substantial modifications of both gluon and quark progaga the dense
medium. In the superfluid, confined phase, the electric and magnetic glupagators are both
enhanced in the infrared compared to the vacuum. In the deconfinegl, piheys are both screened
(infrared suppressed). This screening is evident even in the staticetiagfuon, which is un-
screened to all orders in perturbation theory. If these results caento\sU(3) they would inval-
idate the use of an unscreened static-magnetic gluon propagator in thgugdjoe at largg:. A
careful analysis at different volumes and lattice spacings is howeeesgary to draw quantitative
conclusions.

The dramatic modifications seen in the quark propagator are directly relatesldppearance
of a diquark gap. Our next step will be to compute the form factors, inojuthie diquark gap
and mass function, by inverting the quark propagator. Further quargitstidies will include
determining the Fermi momentupmr by extrapolating the zero crossing in the temporal-vector
propagatolS; to ks = 0, and determining the size of Cooper pairs from the anomalous propagator
to study the BEC—BCS crossover in more detail.
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