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Abstract: Raman spectroscopy is a powerful diagnostic tool in biomedical science, whereby different
disease groups can be classified based on subtle differences in the cell or tissue spectra. A key
component in the classification of Raman spectra is the application of multi-variate statistical models.
However, Raman scattering is a weak process, resulting in a trade-off between acquisition times and
signal-to-noise ratios, which has limited its more widespread adoption as a clinical tool. Typically
denoising is applied to the Raman spectrum from a biological sample to improve the signal-to-
noise ratio before application of statistical modeling. A popular method for performing this is
Savitsky–Golay filtering. Such an algorithm is difficult to tailor so that it can strike a balance between
denoising and excessive smoothing of spectral peaks, the characteristics of which are critically
important for classification purposes. In this paper, we demonstrate how Convolutional Neural
Networks may be enhanced with a non-standard loss function in order to improve the overall signal-
to-noise ratio of spectra while limiting corruption of the spectral peaks. Simulated Raman spectra
and experimental data are used to train and evaluate the performance of the algorithm in terms
of the signal to noise ratio and peak fidelity. The proposed method is demonstrated to effectively
smooth noise while preserving spectral features in low intensity spectra which is advantageous
when compared with Savitzky–Golay filtering. For low intensity spectra the proposed algorithm was
shown to improve the signal to noise ratios by up to 100% in terms of both local and overall signal to
noise ratios, indicating that this method would be most suitable for low light or high throughput
applications.

Keywords: Raman spectroscopy; deep learning; denoising

1. Introduction

Raman scattering is an inelastic light matter interaction that is resonant with molecular
vibrational states. This process can be leveraged to probe for chemical information about
a sample by use of a laser source. A laser source is focused onto the sample and the
resulting scattered light can be collected by a Raman spectrograph in order to construct a
spectrum of the resulting chemical information. This can be useful for probing disparate
samples, for example, cell biology or material science applications. However, a core
drawback of Raman spectroscopy is that it is a weak process [1] due to the Raman scatter
being isotropic from the source but the collection methodology is constrained to a fraction
of the radiating angles. For this reason Raman spectra are susceptible to having their
distinguishing features corrupted or even obscured by noise which can, under constrained
circumstances, limit their sensitivity and reduce their efficacy for classification applications.
Therefore, integrating rigorous noise removal methodologies into the post-processing
software protocols for the aforementioned experimental procedures is beneficial [2].
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Noise can be introduced from thermal effects and the digitization process within
the sensor, it can also occur as a result of the statistical inconsistencies associated with
monitoring an irradiance source [3]. The effect of these noise sources can be alleviated if
the system configuration/application has no restrictions in terms of cost or time. However,
in many cases this is not practical [4–8]. It must also be noted that even with an optimal
Raman spectrometer and the most carefully designed experimental procedure, a noisy
Raman spectrum is unavoidable for many sample types. Therefore the most flexible method
of reducing the effect of these noise sources is through software post-processing.

Savitzky–Golay (SG) filtering [9] is a post-processing technique that is commonly used
to filter spectra in order to reduce the impact of noise on statistical classification [10,11].
This filtering technique works by dynamically fitting a polynomial to consecutive windows
of data points in the spectrum in order to approximate the shape of the spectrum in the
presence of a randomly varying noise signal. Under certain conditions, this can have a
negative impact on spectral features, especially sharp local features or ’peaks’, in particular,
high noise/low light applications that require high levels of smoothing. Identifying the
optimal polynomial order and window that optimally smooths a given dataset with a
given Signal-to-Noise Ratio (SNR) can also be cumbersome; e.g., a spectrum with a high
SNR should be smoothed using an SG filter with a window size only sightly greater
than the polynomial order in order to preserve the peak formations, while a spectrum
with a low SNR would require a large window to effectively smooth the noise. For this
reason, a trade-off is required between peak preservation (higher polynomial and relatively
small window size) and effective noise smoothing (lower polynomial and relatively large
window size). Therefore, the implementation of a denoising technique that simultaneously
smooths while maintaining peak fidelity, without the need for initial testing/optimisation,
is highly desirable.

In recent years, deep learning Convolutional Neural Networks (CNNs) have been
shown to perform well at denoising coherent Raman spectra when compared to established
denoising techniques [12–14]. In these contributions deep learning was applied to three-
dimensional hyperspectral image sets. Recently, a 1-D CNN was developed to denoise
Raman spectra using a standard loss function [15] and was shown to outperform wavelet
denoising for a range of samples. The primary difference between the model proposed
in this paper and previously developed neural network solutions is that, in this instance,
a custom loss function is used in order to balance the networks prioritization between
overall improvement in spectral SNR and the preservation of important spectral peaks
that facilitate the identification of varying samples. This is a key contribution which has a
significant impact on performance. Furthemore, in order to improve the general applica-
bility of the network so that it may be used with spectra obtained from diverse sources,
the algorithm was trained on large datasets of simulated Raman spectra with randomised
spectral profiles. Testing was performed on experimental data. These simulated datasets
included spectra containing only sharp features, which are similar to spectra recorded from
pure chemicals, as well as spectra containing peaks of highly varying width and amplitude,
which are similar to spectra recorded from biological samples. The results presented in this
paper, clearly demonstrate that by training the CNN with a custom loss function sensitive
to Raman features significant for chemical characterization, there is a clear improvement in
the performance of the network with respect to denoising than compared with using the
traditional L2 Norm.

The paper is split into four main sections. Section 2 provides an overview of the
properties of the chosen neural network and custom loss function. Section 3 defines the
custom loss function. Section 4 deals with the simulated spectral datasets that are used
to train the network and also specifies the training parameters of the network. Section 5
provides details on the experimental data and in Section 6 the results of the proposed
algorithm are provided and are compared with two SG smoothing algorithms, one designed
to prioritize smoothing and the other designed to prioritize peak preservation.
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2. Theory

Deep learning has become a widely used practical approach to solve a plethora of
research problems in different areas including computer vision, natural language pro-
cessing and signal processing. Many deep learning architectures have been deployed for
image recognition tasks based on the use of convolutional layers as the main building
block. Two reasons for the success of CNNs are their high efficiency in capturing low-level
details in the input samples and their highly-parallel nature which facilitates their execu-
tion on Graphical Programming Units (GPU) more so than conventional fully connected
networks. For this reason, CNNs are chosen as the algorithmic basis for the proposed
denoising algorithm.

2.1. Convolutional Neural Networks

Unlike fully-connected neural networks where each unit in a layer depends on the
entirety of the units in the previous layer, a CNN regularizes spatial patterns using a
moving window type of processing. The convolutional layers of CNNs are spatially in-
variant, which can be useful for similar features that appear in different areas such as
Raman peaks. In this case, each unit in a layer depends on units in the previous layer
within a specific patch. The moving window consists of multiple filters (also referred to as
kernels or convolutions) where each filter contains weights for the corresponding patch.
The window moves through the entire image with a specific stride. After computing the
convolutions, the resulting feature map is normalized using batch normalization [16]. Af-
ter that, the activation function is performed on the normalized feature map. The activation
function is usually a rectified linear unit (ReLU) defined as follows f (x) = max(0, x). Such
activation was found to be advantageous compared to the sigmoid function in terms of
minimizing the loss function [17]. Pooling layers may also be used in CNNs. These layers
operate a moving window in which a single value is chosen per patch per kernel. Two
types of pooling layers are commonly used, max pooling and average pooling. The output
of each convolutional layer is referred to as a feature map. The final layers usually follow
the structure of fully-connected MLP. Similar to the conventional MLP, CNNs are also
trained using the back-propagation learning algorithm in which convolutional gradients
are derived using the chain rule.

1D-CNNs for Denoising Tasks

In addition to computer vision and image processing tasks, deep convolutional net-
works have also been applied to many signal processing applications including signal
denoising tasks. Only a number of representative and relevant papers are discussed here.
Liu et al. studied deep learning networks for speech denoising and compared their results
with non-negative matrix factorization (NMF) [18]. Their results showed that the deep
learning model provided significantly better performance. However, only fully connected
deep learning models were investigated. Park and Lee investigated the performance of
CNNS for hearing aid systems and compared them against recurrent neural networks [19].
They proposed a convolutional deep learning architecture based on multiple convolutional
units referred to as Recurrent-Convolutional Encoder Decoder network (R-CEC). Not only
was the performance better than the recurrent network model but it also required signifi-
cantly less memory, making the model suitable for deployment as part of an embedded
system for hearing aids.

Raman spectral denoising falls into this class of 1-D processing. In general, the problem
of signal and speech denoising is to generate a clean version of the signal from a noisy
one. This can be achieved by simply training a deep convolutional network on signal pairs.
One of the pair is a clean synthetic signal and the other is the same synthetic signal but
with appropriately modeled noise added. This is known as a supervised learning problem.
In this case, the deep learning model will try to find a suitable mapping that transforms a
noisy signal to its original clean version. The gradient descent optimization (or its variants
such as ADAM optimization) are used to find such a mapping. This requires defining
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a loss (error) function based on the training samples and the application of a gradient
descent algorithm to find the optimal solution that minimizes the loss over all the training
data. For signal denoising problems, the L2 Norm (or Mean-Squared-Error) between the
resulting transformed signal and the original one is commonly used as the loss function. In
this paper, however, we introduce a loss function that is more sensitive to the information-
bearing structure of Raman spectral data. When used in conjunction with an appropriate
neural network, it results in excellent performance compared to existing methods. Most
applications of CNNs involve image processing and are inherently two-dimensional in
design. Since in the case of Raman denoising we are dealing with one-dimensional (1D)
signals, the convolutional network will be relatively simple.

3. Establishing a Non-Standard Loss Function

SNR is an important metric for establishing signal quality in all fields of engineering
and a modified definition of SNR is employed here to design a custom loss function, as well
as to evaluate the performance of the proposed algorithm.

3.1. Signal to Noise Ratio and the SNR Product

SNR may be defined as the ratio of the maximum value of the intensity of the spectrum
across the wavenumber range of interest to the Root Mean Square Error (RMSE) of the
noise present in the spectrum [20]. It is possible to estimate the noise level through a
comparison between the spectrum in question, xe, and a low noise reference spectrum, xre f .
This definition of SNR and the procedure used to calculate it are defined as follows:

SNR(xe) =
max(xre f )

RMSE(xe, xre f )
(1a)

RMSE(xe, xre f ) =

√√√√ 1
N

N

∑
i=1

(xe
i − xre f

i )2 (1b)

where max() is a function that returns the maximum value in the input vector and both
spectra are of length N. Going forward, this is referred to as global SNR for the remainder
of the manuscript. However, while smoothing may increase the global SNR of a spectrum
it can also negatively affect sharp local features, which are generally of more importance
for subsequent multivariate statistical classification of the spectra. In order to evaluate the
performance of the denoising algorithm specifically on sharp spectral features, the SNR
is also calculated specifically in the neighbourhood of a peak region. More specifically,
the SNR is calculated in a 2n + 1 sample window of xe that is centered on the most
prominent peak, which has been identified to be centered at index pk. The 2n + 1 sample
window is determined based on the Full Width Half Maximum (FWHM) of the peak in
question. The SNR for this peak region is defined as follows.

SNR(xe[pk − n : pk + n]) =
max(xre f )

RMSE(xe[pk − n : p + n], xre f [pk − n : pk + n])
(2)

Let it be noted that, in order to provide a consistent comparison between global and
peak SNR, the same maximum value is used in both Equations (1) and (2). Both distinct
SNR measurements may be combined into a single metric so that the evaluation of the
overall performance of the algorithm can be contained in a single calculation known as the
SNR product [21] as described in the following:
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SNRprod =
SNR(xe)

SNR(x)
× SNR(xe[pk − n : pk + n])

SNR(x[pk − n : pk + n])
(3)

where x is the raw noisy spectrum before denoising and xe represents the denoised spectrum.
The global and peak SNR values of x may also be obtained using Equations (1) and (2). In the
case where the algorithm negatively affects peak fidelity or alters the underlying structure
of the spectrum, the SNR product may return a value <1. In the case that the denoising
method improves the SNR of the spectrum, the value returned from the SNR product will
be >1.

3.2. The Custom Loss Function

The loss function plays a critical role in training deep learning models. It provides
a metric to evaluate model performance and the choice of the metric can be application
dependent. In signal denoising tasks, the Ł2 Norm or Mean Square Error is commonly
employed as the loss function. This can be defined as follows:

MSE(xe, xre f ) =
1
N

√√√√ N

∑
i=1

(xe
i − xre f

i )2 (4)

where xre f
i is an observed sample from the target signal, xe

i is the predicted value for
this sample using the deep learning model and N is the total number of samples in the
vector. During the training phase, the deep learning model adjusts its inner weights so
that the MSE is reduced towards zero. While this loss function has been extensively used
in regression and denoising tasks, recent studies suggest adding the structured similarity
index (SSIM) to enhance the quality of the recovered signal [13,14]. One point to consider
in the Raman denoising problem is that the dominant peaks in the signal are of high
importance in analyzing the material structure. Therefore, it is essential to ensure that
such peaks are appropriately preserved in the denoised signal. One problem that may
occur when using the L2 Norm is the fact that higher priority might be given to denoising
areas of limited spectral information (regions of low intensity variation). While removing
such a type of noise is essential, one needs to consider the noise in the area of a spectral
peak (i.e., a region of high intensity variation). To the best of our knowledge, this problem
has not been addressed in the literature. The SNR product, which we have introduced,
provides a suitable solution to this problem. However, such a non-linear function is difficult
to optimize due to the fact that it is unbounded and results in stability problems when
using stochastic gradient descent optimization or its variants. Hence, we propose a more
practical solution by simply adding another term to the MSE loss. This term corresponds
to the MSE computed at a local region occupied by the most prominent peak. The new loss
function is described as follows:

Loss(xe, xre f ) = MSE(xe, xre f ) + αMSE(xe
peak, xre f

peak) (5)

where xe
peak and xre f

peak are the samples located in the region around the single most promi-
nent peak (identified easily by the maximum value of the spectrum) in the spectrum and
α is a weighting factor that determines the relative priority that the algorithm places on
smoothing versus peak preservation during the training process, which is discussed more
in the following sections.
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4. Network Architecture and Training Settings
4.1. Simulation of Raman Spectra for Training

The Neural Network was trained using a dataset of simulated noise-free Raman
spectra Xre f . The susceptibility response of a single Raman transition can be described by
a Lorentzian lineshape described as follows:

χ(ω) =
A

Ω − ω − iΓ
(6)

where A is peak amplitude, Ω is resonant frequency, Γ is the Raman linewidth and ω is the
wave number. The spectra are constructed as a sum of a random number of such functions
with random frequencies, amplitudes and linewidths. By modifying and randomising
the peak amplitude, width and location in the spectra, it is possible to generate a training
dataset of simulated spectra that can vary from isolated distinct peaks, which are analogous
to chemical spectra, to a complex mix of overlapping peaks that are more analogous to
biological spectra. As simulated spectra are not constrained to a specific type of spectral
profile, it was possible to train the algorithm as a general purpose denoiser that would be
capable of denoising multiple spectral profiles.

The reference Raman dataset, Xre f , was then used to generate a matching noisy dataset,
X, with both datasets then used for training. Raman spectral noise has its own distinct
characteristics, which can be modeled and artificially added to the reference dataset. Shot
noise is described as the discrepancy between the incident irradiance and the collected
intensity. It can be modeled by a Poisson distribution for which the mean value is dependent
on the collected intensity at a particular wavenumber index, i. Each individual wave
number index is input to the ’poissrnd‘ function in MATLAB and the resulting value is used
to simulate the effect of shot noise in the system [5]. For this reason, the noise added will
vary based on intensity of the simulated spectrum, which is programmed to vary randomly
between 0 and 4000. In this manner, it is possible to create large datasets of randomised
spectral profiles and SNRs that may be used to train the network. The maximum range
of SNRs produced using this method is the following: 15 < SNR < 145. Figure 1 depicts
three example spectra from different SNR levels to highlight the broad range of spectra
that the method is capable of producing.

Let it be noted that the peak region highlighted in Figure 1 is defined by the FWHM
of the most prominent peak within the spectrum, as detailed in the discussion contained in
Section 3.1 related to the use of Equation (2).

4.2. Network Architecture

The proposed architecture is described as a fully convolutional deep neural network
for denoising. The proposed model accepts a low SNR Raman spectrum of 600 samples as
input and the goal is to generate a denoised version of the signal.

The model consists of five convolutional layers, each of which have a stride of one and
operate in same-padding mode so that the resulting signals in the feature map will have
the same width (number of samples) as the input signal. It is acknowledged that fewer
convolutional layers are used in comparison to similar network structures [19]. A larger
number of layers was tested but did not enhance the performance. Each convolutional
layer is followed by batch normalization and ReLU activation layers, with the exception of
the final convolutional layer. Details of the different convolutional units of the network are
provided in Table 1. Pooling layers or fully-connected MLP were not considered for the
proposed model.
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Figure 1. An example of the simulated data used to train the proposed algorithm. The original
spectrum, Xre f , that was produced using Equation (6) and the spectrum after simulated Poisson noise
were introduced where the SNR for each resulting spectrum is (a) 120, (b) 60 and (c) 25, respectively.
The peak formations that were selected for training the algorithm for the local MSE are outlined by a
black box in reach case.

Table 1. Network structure.

Convolutional Unit No. No. of Filters Filter Width # Parameters Output Size

1 256 9 2560 600 × 256
2 128 5 163,968 600 × 128
3 64 5 41,024 600 × 64
4 1 9 577 600 × 1
5 1 600 601 600 × 1
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Hyperparameter tuning for the learning rate was performed using the grid search
technique. An initial learning rate of 10−9 was input to a stochastic gradient descent
optimization with a momentum of 0.9 in order to train the model. The value of 0.9 was
chosen as it is a commonly accepted default value for this optimization method in the
literature. During the training phase, the model received training examples in mini-batches
of size 128 examples/minibatch. Size 128 in this case represented a good compromise
between speed of convergence and performance, although we recommend to the adopters
of our methodology to experiment with this parameter for their own datasets. The gradient
descent update is performed after each mini-batch and each one that passes through the
entire dataset (comprising multiple mini-batches) is referred to as a training epoch. The
presented model is trained for 100 epochs where the learning rate is halved after 50 epochs
in order to enhance the convergence as dictated by convention. The majority of the learning
takes place in the first few epochs, which is illustrated in Figure 2.

A further optimization step was required to establish the optimal weighting of the
local vs. global MSE. In order to perform this, the value of α was changed to five distinct
values, i.e., 0, 1, 10, 50 and 100 and, in each case, the proposed algorithm was used to
denoise the same test dataset of simulated spectra. The resulting denoised spectra were
then examined in terms of the SNR product to establish the optimal weighting. The results
of this analysis are depicted in Figure 3.

Figure 2. Training and Validation loss for α = 50.

Figure 3 shows that the performance of the network improves through the use of
the custom loss function. This improvement is due to the enhanced peak fidelity of the
denoised spectrum when compared to the reference spectrum. The improvement in the
resulting SNR product ceases to increase beyond α = 50. Therefore, the custom loss
function is fixed at this value of α for the results shown in Section 6.
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Figure 3. Optimizing the SNR product of CNN denoised spectra by evaluating the custom loss
function, defined in Equation (5), for α = 0, 1, 10, 50, 100.

The training loss and validation loss is shown in Figure 2 for the case of α = 50. In this
case, 10,000 spectra were used in both the training sets and validation set. The validation
loss is taken to be the average loss of the validation set calculated at the end of each epoch.
The training loss is plotted for each of the 79 batches in each epoch and this is smoothed
using a Savitsky–Golay filter of window size 29 and polynomial order 3. This result clearly
demonstrates that there is no over-training of the model. It is also notable that the majority
of improvement in network performance happens within the first epoch, although slow
improvement is observed over the entire range.

5. Data Collection

Effective testing of denoising algorithms requires spectra that have been collected un-
der rigorous and highly controlled experimental procedures so that the SNR can be reliably
calculated using the definitions given. For this reason, biological samples are unsuitable as
they are non-homogeneous and prone to photo-bleaching over long exposures. Based on
the randomized spectral profiles used in training and detailed in Section 4.1, it is expected
that the algorithm is suitable for use on any spectral dataset including biological spectra.
However, in order to test the algorithm on experimental data in a manner that satisfies
the definition of SNR provided in Equation (1), an alternative sample that produces a
spectral profile similar to that of a biological spectrum without the aforementioned draw-
backs of investigating a biological sample is required. Therefore, spectra were recorded
for testing from a PMMA plastic sample in the form of a micro-fluidic slide from Ibidi
GmBH. Polymers, such as the micro-fluidic slide, are not affected by the aforementioned
drawbacks although the spectra obtained from them exhibit spectral features that may be
considered analogous to those obtained from of biological samples. More details on this
sample can be found in Ref. [22]. By recording experimental data from this source, it is
possible to ensure that the performance of the CNN algorithm is assessed on a sample that
produces a spectral profile with similar features to a cell spectrum while also reducing the
experimental variability. The thermal stability of the polymer in question also facilitates the
acquisition of a high SNR spectrum that can be used as benchmark with which to estimate
the experimental noise in short-acquisition spectra.
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The experimental system that was used to acquire the spectra has been detailed in
previous publications by the research group and so the specifics of the Raman spectrometer
may be found in Ref. [4]. A low Numerical Aperture (NA) microscope objective (Olympus
UMplanFl 4x/0.1) was used primarily due to its large depth of field, thereby minimizing
the impact of system drift over the course of an extended experiment. The polymer also
inherently produces a strong Raman response and therefore the low NA also enabled the
system to record spectra in the low SNR range for the purposes of this paper. A low SNR
level is considered to be where the noise has the potential to obscure or prevent reliable
reconstruction of small peak formations. A low SNR value would be considered to be <50.
Six datasets, comprised of fifty spectra each were recorded using this method. Distinct
mean SNR values for each dataset were achieved by specifying an acquisition time for each
dataset and maintaining the other system parameters. A low noise reference spectrum to be
used as xre f was recorded using an extended exposure and the spectra were standardized
for comparison to this reference through the use of an Extended Multiplicative Signal
Correction (EMSC) algorithm [23,24].

6. Experimental Results

The datasets that are detailed in the previous section were denoised both by the CNN
denoiser and by two distinct SG filters chosen from an array of SG filter parameters that
were evaluated to be most competitive to the proposed algorithm in terms of peak fidelity
and overall SNR, particularly in the low SNR ranges. An SG filter of polynomial 3 and
window of 9 (SG39) was selected, which produces denoised spectra with comparable
global SNR with respect to the proposed algorithm; however, this SG filter smooths the
peak regions more than the proposed algorithm. Similarly, an SG filter of polynomial 5
and window 7 (SG57) was selected, which preserves sharp features in the spectrum [21]
and, therefore, produces denoised spectra with comparable peak SNR with respect to
the proposed algorithm; however, this SG filter is naturally less effective at denoising
smooth regions than the SGH39 filter as well as the proposed algorithm. Both sets of
resulting denoised spectra were evaluated in terms of global SNR (Equation (1)), peak
SNR (Equation (2)) and the SNR product (Equation (3)). A single sharp local feature was
chosen to benchmark peak fidelity in the spectra. This feature is centered at 896.2 cm−1,
chosen since its formation is visually similar to the phenylalanine peak in biological
spectra and was investigated across a window of 13 samples, i.e., the maximum point
and the surrounding ±6 samples. The results of this analysis can be observed in Figure 4.
Figure 4a,b show the relative SNR improvement for various noisy datasets for peak regions
and for the entire (global) spectrum, respectively.

The CNN algorithm shows a significant improvement of the SNR product, in par-
ticularl, for very noisy spectra, i.e., spectra that have an SNR of below 50. While SG57
exceeds the CNN performance for spectra with SNR > 40 in terms of peak fidelity, the CNN
significantly outperforms SG57 in terms of global SNR for almost all datasets. For the
second SG filter, the CNN algorithm outperforms SG39 in almost all cases of both peak
and global SNR. In terms peak SNR, the CNN is significantly superior to SG39 (with the
latter showing an SNR improvement <1 for the majority of the datasets, indicating that it is
negatively affecting the peak formations), while in the case of global SNR there exists only
a marginal difference in the two methods.
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Figure 4. A comparison of the mean improvement in (a) global SNR, (b) peak SNR and (c) the SNR
product from the the proposed CNN denoising algorithm and the competing SG filters. The x-axis is
labeled in terms of the mean SNR of the raw datasets collected under the experimental conditions
detailed in Section 5.

Clearly the SG filters can each operate comparably to the CNN in one context while
performing less effectively in the second context; i.e., the two SG filters are not effective at
balancing denoising of both sharp and smooth spectral features. This is illustrated using a
single metric, the SNR Product metric, which is shown in Figure 4c. This metric demon-
strates that the CNN is able to balance both peak and global denoising most effectively
for the case of low light spectra. A visual representation of how these processing methods
affect the spectra is shown in Figure 5. In Figure 5a, we show the results of denoising a
low SNR polymer spectrum (SNR = 25) and in Figure 5b we show results for denoising a
relatively higher SNR spectrum (SNR = 40). In both cases, the raw spectrum is shown in
red and the low noise irradiance is shown in black recorded over a long acquisition time.
The results of the CNN denoiser is shown in pink and the two SG filters are shown in cyan
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and blue. Two regions are highlighted corresponding to a sharp spectral peak as well as a
smooth region of the spectrum.

Figure 5. A visual comparison of the denoising properties of the SG filters when compared to the
CNN and the raw data. Areas of interest, i.e. a sharp local peak and an area of low frequency noise,
have been enlarged to highlight the difference in performance. (a) Illustrates a sample spectrum of
raw SNR 25 as well as its denoised counterparts and (b) Illustrates a sample spectrum of raw SNR 40
as well as its denoised counterparts.

From the enlarged sections of the spectra around the peak area of interest in Figure 5a,
it can be seen that the CNN is able to effectively reconstruct the peak. However, SG39 smooths
the peak formation and thus reduces the intensity, while SG57 does not appear to change
the raw spectrum in the peak region. From the peak area of interest for the less noisy
spectrum shown in Figure 5b, it can be observed that both the CNN and SG57 effectively
preserves the peak height. In the smooth region that has been enlarged on the right hand
side of the image, for both cases it is shown that the CNN is able to effectively smooth the
spectrum to a level that is comparable to SG39 and superior to SG57. This demonstrates



Sensors 2021, 21, 4623 13 of 16

that by using the CNN denoising algorithm, it is possible to achieve the benefits of both SG
filters simultaneously and, in some cases, to exceed their performance.

As an example of the algorithms applicability to spectra from disparate sources,
a qualitative comparison of a spectrum recorded from a biological source was performed
and is shown in Figure 6. A spectrum was recorded from a prostate cancer cell line
(PC3) fixed to a calcium fluoride substrate with 785 nm laser illumination and additional
information on the sample preparation and system parameters may be found at Ref. [8].

Figure 6. A qualitative comparison between (a) an unprocessed spectrum recorded from a biological
sample, (b) a reference spectrum and (c) the resulting denoised spectrum.

Let it be noted that spectrum (b), as shown in Figure 6, is an estimation of expected
collected irradiance that has been achieved by taking the average across a dataset of spectra.
Due to the inherent heterogeneity of cell spectra, minor differences in the spectral profile
that are unique to individual spectra within the dataset will be present and therefore a
quantitative comparison could not be performed. However, the proposed algorithm is
capable of quite accurately smoothing areas of high noise while preserving and effectively
reconstructing local features.

These results also demonstrate that the network is capable of denoising experimental
spectra from multiple sources. It is capable of recognising peak formations and prioritizing
the preservation of these features while still reducing visible noise. From these results,
it may be concluded that the CNN algorithm would be most appropriate for low-light
or high throughput applications that would inherently collect spectra with a low SNR,
i.e., SNR < 50. It may also be used to increase the throughput of applications whereby a
reduced acquisition time could be compensated for by utilizing the CNN algorithm in the
post-processing procedure.

7. Conclusions

This paper demonstrates that it is possible to train a convolutional neural network
using artificial datasets of diverse spectral profiles in order to develop a denoising algorithm
that may be applied to datasets comprised of spectral profiles that the network has not
been specifically trained to recognize.

By creating a custom loss function through a weighted combination of global and
local Mean Square Error, the performance of the algorithm increased significantly in terms
of the SNR product, demonstrating the capability of the algorithm to effectively balance
between smoothing the spectrum and preserving the peaks.
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Spectra collected under experimental conditions that inherently produce low SNR
spectra could be improved by as much as four times compared to their raw versions
based on the improvements indicated by the quadrupling of the SNR product (effective
doubling of SNR both globally and locally) that were evaluated on experimental data in
this paper. Due to the square root relationship of the standard deviation of shot noise
with respect to the collected irradiance (as it is modeled by a Poisson distribution), this
improvement in SNR is analogous to recording spectra for longer exposures. Therefore, the
low-SNR spectra that have been processed using the proposed algorithm will have an SNR
equivalent to that of a spectrum collected using four times the acquisition time. For this
reason, utilizing this algorithm in the post processing procedure for low light applications
or for applications where high throughput is a priority would be advantageous.
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