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Abstract. Understanding the relationship between queueing delays and
link utilization for general traffic conditions is an important open prob-
lem in networking research. Difficulties in understanding this relation-
ship stem from the fact that it depends on the complex nature of ar-
riving traffic and the problems associated with modelling such traffic.
Existing AQM schemes achieve a “low delay” and “high utilization” by
responding early to congestion without considering the exact relation-
ship between delay and utilization. However, in the context of exploiting
the delay/utilization tradeoff, the optimal choice of a queueing scheme’s
control parameter depends on the cost associated with the relative im-
portance of queueing delay and utilization. The optimal choice of control
parameter is the one that maximizes a benefit that can be defined as the
difference between utilization and cost associated with queuing delay.
We present a generic algorithm Optimal Delay-Utilization control of t
(ODU-t) that is designed with a performance goal of maximizing this
benefit. Its novelty lies in fact that it maximizes the benefit in an online
manner, without requiring knowledge of the traffic conditions, specific
delay-utilization models, nor does it require complex parameter estima-
tion. Moreover, other performance metrics like loss rate or jitter can be
directly incorporated into the optimization framework as well. Packet
level ns2 simulations are given to demonstrate the behavior of the pro-
posed algorithm.

1 Introduction

Current router buffers are generally sized by the rule-of-thumb given in [25]:
router buffers require approximately space for B = RTT × C packets, where
RTT is the “average” round trip time for connections that use the link and C
is capacity of the link. Following this rule, most router buffers are designed in
such a fashion that they result in up to 100ms to 250ms of queueing[1, 4]. This,
together with TCP’s mechanism of congestion avoidance, serves to ensure a high
link utilization.

In the last few years a number of results related to buffer sizing for congested
links have appeared [1, 2, 4, 5] that suggest significantly smaller buffers. Although
the bounds from these papers yield important theoretical insights into the rela-
tion between link utilization and the required buffering they are not immediately
applicable to buffers in the real Internet routers for a number of reasons. Firstly,
these bounds are functions of various parameters such as the number of active
users that are bottlenecked at the link; RTT distribution of TCP users, TCP
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parameters (maxcwnd−), etc. These quantities vary, and are also usually very
hard to estimate [6, 14, 13, 24, 3]. Secondly, the mathematical assumptions used
in deriving of these bounds are quite restrictive and do not take into account the
various and variable traffic mixes possible, the level of loss synchronization, the
existence of non-TCP traffic, etc. Most importantly, while it is useful to know
that delay and utilization are related in some manner, it is not immediately clear
how to utilize this relationship in a meaningful manner.

In this paper we build an optimization framework for the design of queue
management schemes in which (low) queueing delays are considered as a scarce
resource together with link utilization. The relative importance between queue-
ing delays and utilization is a user1 specified parameter. Therefore the optimal
choice of queueing scheme parameter t is one that maximizes overall benefit B(t)
that takes into account the relative importance of queueing delays and utiliza-
tion. Queueing scheme parameter t can be: (1) available DropTail queue space,
or (2) per packet drop probability, or (3) virtual queue service rate or any other
parameter that can control utilization and queueing delays.

In Section 3 we propose an online algorithm for control of generic parameter
t: Optimal Delay-Utilization control of t (ODU-t). It does not require intricate
measurement techniques neither specific assumptions related to the nature of
traffic mix. In Section 4 we present a brief simulation study of ODU-t for t
denoting available DropTail space.

2 Optimization framework

Let us consider a synthetic example in which average queueing delay (aQD(t))
and utilization u(t) depend on choice of queueing parameter t given in Table
1. For simplicity, assume for the moment that the parameter t is the available
buffer space on the congested FIFO Drop-Tail queue; for buffer size equal to
t1 the average queue delay is 100ms and the utilization is 100%, for buffer size
equal to t2 the average queue delay is 20ms and the utilization is 98%, and so
on. Which choice of t is optimal (among 4 possible in this example), depends on
the “importance” of low queueing delays. To formalize this, one can identify the
“importance” by the relative price between utilization and queueing delays. Let
P : [0,∞) 7→ [0,∞) be a function that specifies relative price between utilization
and delays. In other words, a queueing delay of d seconds has same value as
utilization of P (d). Formally, a price function is any function that satisfies the
following definition.

Definition 1. The function P : [0,∞) 7→ [0,∞) is a price function if it is twice
differentiable, increasing and convex. In other words if:
(a) ∀d ∈ [0,∞) ∃P ′′(d)
(b) ∀d ∈ [0,∞) P ′(d) ≥ 0
(c) ∀d ∈ [0,∞) P ′′(d) ≥ 0

1 In this context user is an ISP or link owner.
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t t1 t2 t3 t4
aQd(t)(sec) 0.1 0.02 0.005 0.001

u(t) 1.00 0.98 0.90 0.60

Table 1. Synthetic example of aQd(t) and u(t) for 4 different possible choices of
parameter t.

Having defined a price function, the overall benefit (in the case given by the
parameter t) can be written in the form:

B(t) = u(t)− P (aQd(t)). (1)

Comment. Notion, similar to the benefit B(t) is introduced in [2] for t
representing the available buffer size.

The definition of benefit allows us to define a notion of optimal choice, as the
value of t that maximizes the benefit. Formally:

Definition 2. For a given price function P and set T of possible choices of t,
an optimal Delay-Utilization(D-U) choice is any t0 such that

B(t0) = max{B(t) | t ∈ T }, (2)

if the maximum on the right hand side exists.

In the example given in Table 1, if we completely ignore the importance of
low queueing delays, by setting P (d) ≡ 0 for all d, then the optimal D-U choice
is given by t1, as this maximizes the benefit B(t) = u(t)− P (aQd(t)) = u(t) on
the set T = {t1, t2, t3, t4}. For the price function P (d) = 5 · d, the optimal D-U
choice is t2, and for the price function P (d) = 100 · d, the optimal D-U choice is
t4.

Throughout this paper we assume:

Assumption 1 Under static traffic conditions the overall benefit given by (1)
is a concave function of t.

Assumption 1 is very hard to analytically check. In a theoretical framework,
this would require accurate models of various traffic mixes, and as we already
noted, modelling such complex environments is highly nontrivial. Some results
related to the convex relationship between utilization and buffer size in non-
elastic traffic environments are developed in [17, 18]. However, our empirical
observations suggest that for the traffic mix that is consisted from the static
number of TCP and UDP flows, Assumption 1 holds when t is (1) the available
DropTail space or (2) per-packet drop probability or (3) Virtual queue service
rate. Technical report [22] discuss this in more detail, and contains the packet
level ns2 simulations results that validate Assumption 1 under mentioned cir-
cumstances.

3 Optimal Delay-Utilization control of t

Convex optimization has been widely employed in the networking community
see [15, 23]. In our case, we need an efficient algorithm for solving (2). A standard
control strategy for solving (2) is given by
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t(k + 1) = t(k)
(

1 + g(k)
B(t(k))−B(t(k − 1))

t(k)− t(k − 1)

)
, g(k) ≥ ε > 0, (3)

The problem with employing this strategy in the present case is twofold. First,
as we do not have explicit relationship between t and B(t), we can not instantly
compute the derivative B′(t(k)). Second, the noise to signal2 ratio in measuring
of both queueing delays and utilization can be very large (see [22]) especially
in the neighborhood of the solution of (2). This would potentially imply low
confidence in the estimation of B′(t) in the neighborhood of the solution of (2).

We emphasize again that t is any parameter such that by controlling t, one
can control both utilization and queueing delays. Thus, if the performance goal
is given by keeping the average utilization at a certain level λ, one can design
a strategy for achieving that goal by controlling t. Similarly, if the performance
objective is keeping the average queueing delay (at the times of congestion) at
a prescribed level d0, another control strategy can be designed for solving that
problem. At this point we should note that by controlling t one can (usually)
control not only utilization and queueing delays, but also other (important)
performance metrics such as jitter and loss rate. Embedding them into an op-
timization framework could be done in straightforward manner, but is out of
scope of the present paper.

Following the delay-utilization optimization framework developed in the pre-
vious section, the performance goal of interest will be the maximization of the
benefit B(t). We proceed by presenting an ODU-t algorithm, a strategy with
that performance goal.

The ODU-t algorithm controls the variable t such that the value t is updated
once per sample time period (∆) in the following manner:

t(k + 1) = t(k) ·m(k), (4)

where m(k) is defined by:

m(k) = α, if
B̂(l(k))− B̂(l(k − 1))

t(k)− t(k − 1)
≥ 0, (5)

m(k) =
1
α

, if
B̂(l(k))− B̂(l(k − 1))

t(k)− t(k − 1)
< 0. (6)

Here, α > 1 is a constant parameter, close to 1. The choice of α determines
the responsiveness of the algorithm. Since t is either multiplied with α or divided
by α, in each step k, t(k) = t(0)·αl(k), for some integer l(k). By B̂(l(k)) we denote
the estimated value of B(x) at the point x = t(k) = t(0) · αl(k). Algorithms of

2 By definition B(t) is function of average utilization u(t) and average queueing delay
aQd(t). Instantaneous utilization (queueing delay) can be seen as random variable
that is sum of u(t) (aQd(t)) and appropriate zero mean random variable, that we
refer to as noise.
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this type can be seen as a version of (3) that do not allow arbitrarily small
steps. We again emphasize that strategies of the form of (3) are inappropriate
in our problem since any algorithm of type (3) that allows very small changes
in the parameter t would suffer from a high noise to signal ratio around global
maximum of B(t), and would require a long time for accurate estimation of
B in the neighborhood of the global maximum. Moreover, it has been proved
in [21], using information-theoretical techniques, that any algorithm for finding
an optimum using noisy observations of a benefit function has slow expected
convergence. Namely, O(ε−4) queries have to be made before one can ensure
ε-accuracy in the estimation of the optimum x∗. Under dynamic, Internet-like
traffic conditions, frequent (small) changes of the traffic patterns might not allow
such (exact) algorithms to converge, and can potentially cause undesirable large
oscillations.

Algorithms of the form of (4) that do not converge to the certain value,
but rather continuously search for the optimal value have been extensively used
in the networking literature. Examples of such algorithms are AIMD3 cwnd−
control in TCP [11], AIAD algorithm for controlling the drop probability in
BLUE[8] as well as MIMD algorithm for the adaptation of RED parameters in
Self-Configuring RED [7].

The parameters of ODU-t are: P (d) - price function, ∆ - length of sampling
period and α - MIMD parameter. While in general P (d) can be an arbitrary
function that satisfies Definition 1, throughout this paper we will mainly use
functions that are linear in d:

Pγ(d) = γd, γ > 0. (7)

If we restrict ourselves to price functions of this form then the parameter
Pγ(d) can be specified by a single scalar γ. A higher value of γ assigns more
importance to low delays and vice versa. The sampling period time ∆ should
be chosen to cover several “typical” round trip times, in order to allow traffic
to respond to change of t. Choosing ∆ in range [1sec, 5sec] usually satisfies this
condition. The parameter α determines the responsiveness of ODU-t, and should
be selected such that it allows doubling/halving of t within several seconds (up
to one minute).

At this point we discuss the notion of variability in the traffic conditions.
Measurements from [20] show that on typical 150Mbps+ links, basic IP param-
eters such as the number of active connections, the proportion of TCP traffic,
the aggregate IP traffic, etc., do not change dramatically. Although we do not
exclude the possibility that there can be drastic changes in the traffic mixes, our
basic presumption in the design of ODU-t is that such events are rare enough to
be considered as exception rather than rule. Thus, ODU-t is designed to search
for an optimal solution in the “regular” intervals, during which traffic conditions
vary slowly. In the cases of dynamic traffic conditions, one can perform self tun-
ing of the parameters ∆ and α depending on the level of changes in the traffic
conditions.
3 Additive Increase Multiplicative Decrease.
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The following theorem shows that, assuming that estimator B̂ preserves order
of B on the grid Tα = {t(0) · αn, n ∈ Z} the controller (4) runs system to the
state that is close to global optima. The proof is given in [22].

Theorem 1. Let t∗ be the point where global maximum of B is attained. Suppose
that estimator B̂ preserves the order on the grid Tα, ie. for all m1,m2 ∈ Z:

B̂(m1) ≥ B̂(m2) ⇔ B(t(0)αm1) ≥ B(t(0)αm2).

Then there exist m0 such that for all positive integers r:

t(m0 + 2r) = t(m0 + 2r + 2) = t̄

t(m0 + 4r + 1) = t̄α, and t(m0 + 4r − 1) =
t̄

α
,

and the relative error between t̄ and t∗ satisfies:

t̄− t∗

t∗
≤ α− 1.¥

4 Case study: t is the available DropTail space

In this section we evaluate the behavior of ODU-t for t denoting the available
DropTail space.

Simulation4 1. Our first set of simulations illustrate the dynamics of t under
static conditions of 50 TCP flows with RTT’s uniformly distributed in range
[20, 220]msec and with packet sizes of 1000 bytes. We run ODU-t with param-
eters ∆ = 2sec, α = 1.05. The price function used is P10(d) = 10 · d. Initially:
t(0) = 100Kbytes. The off-line (see Simulation 2) optimal value are approxi-
mately t∗ ≈ 130Kbytes. Figure 1 depicts the queue occupancy, evolution of t
and utilization for both cases.

Simulation 2. The second set of simulations shows how close the average
queueing delays and average utilization are to the optimal values, in static con-
ditions with a constant number TCP flows. We ran the set of 50 TCP flows,
with RTT’s uniformly distributed in range [20, 220]ms and packet sizes of 1000
bytes, over a bottleneck link with capacity 10MBps. By running a sequence of
simulations with buffer of constant size we can empirically find aQd(t) and u(t)
and thus the optimal values t∗ corresponding to different price functions. We
refer to these (empirically obtained) optimal values as offline-optimal. Rows 3,5
and 7 in Table 2 contains aQd, u and Bγ for the offline-optimal value of param-
eter that maximize Bγ in three cases: γ = 2, 10, 20. For same value of γ’s we
run ODU using price function Pγ(d) = γ · d as the parameter. Online averages
(5 minutes per simulation) of aQd, u and Bγ are presented in Table 2 in each of
these three cases.
4 Scripts used in all simulations from this paper can be found at

http://www.hamilton.ie/person/rade/Optimal/
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Fig. 1. Simulation 1. Queue occupancy, available buffer space(t), and utilization for
ODU-t queue servicing 50 TCP flows.

Scheme, γ aQd(sec) u Bγ

ODU, γ = 2, online 0.01075 0.9890 0.9675
DT, γ = 2, off-line 0.01058 0.9876 0.9664

ODU, γ = 10, online 0.00471 0.9544 0.9074
DT, γ = 10, off-line 0.00521 0.9589 0.9067
ODU, γ = 20, online 0.00283 0.9222 0.8655
DT, γ = 20, off-line 0.00293 0.9269 0.8683

Table 2. Numerical results: off-line optima and online ODU-t. The last column represents Bγ(t) =
u(t)− γ · aQd(t).

Simulation 3. This simulation shows stable behavior of ODU in the case
of mixtures of TCP and (variable) UDP traffic. In this simulation, the same
set of 50 TCP flows that were defined previously compete for a bandwidth on
10Mbyte/sec link, with 50 UDP flows that have exponentially distributed on
and off periods. The on-periods have a mean of 1000ms, and the off-periods
have mean of 3000ms. The sending rate in on-periods is 1000Kbit/sec. The ag-
gregate UDP arrival rate has a mean of 1.4867Mbyte/sec which is approximately
14.9% of the link’s service rate. A histogram, given in Figure 2(left), shows the
distribution of the aggregate UDP sending rate sampled on 100ms intervals.
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Fig. 2. Simulation 3. Left: histogram of aggregate UDP sending rate (sampling intervals
100ms). Right: available buffer space as function of time. Queue service 50 TCP flows
and 50 on-off UDP flows.
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The ODU parameters are the same as in previous simulations: ∆ = 2sec,
α = 1.05. The price function used in both cases is P10(d) = 10 · d. Initially:
t(0) = 100Kbytes. Figure 2(right) depicts evolution of t together with obtained
values of average utilization, average queueing delay and benefit .

We refer the reader to [22] to explore the behavior of ODU-t some other
scenarios which: empirically show stable behavior in cases of sudden changes of
traffic pattern; compare ODU that controls DropTail queue size with ODU that
controls per-packet drop probability; etc.

Simulation 4. Here we demonstrate how other performance metrics are im-
pacted by changes in available DropTail buffer space. We concentrate on fairness
and loss rate. We use Jain’s Fairness Index (JFI) [12] as a fairness indicator and
is defined as follows. For set of users u1, . . . , uk let r = (r1, . . . , rk) be vector of
their achieved average rates during the measurement interval. Then

JFI(r) =

(∑N
i=1 ri

)2

N
∑N

i=1 r2
i

. (8)

The simulation setup is same as in Simulation 1 and consists of 50 TCP flows
serviced by the 10MBps bottleneck link with RTT’s uniformly distributed in
[20, 200]ms. The bottleneck link has a DropTail queue with size of S kilobytes.
We varied S in range 10 to 300. A basic observation is that the performance
of TCP-like congestion control algorithms, whose dynamics depend on round-
trip time, is significantly affected by queueing delays. By increasing the queue-
ing delay, the aggressiveness of TCP senders is decreased, implying lower loss
rates. From a fairness perspective, larger queueing delays decrease bias against
long-RTT connections. Indeed, for two TCP connections, with round trip times
RTT1, RTT2, RTT1 < RTT2, bottlenecked at a single link with queueing delay
d0, the ratio of their expected rates5 is RTT1+d0

RTT2+d0
. Increasing d0 leads this ratio

to a value closer to one. Figure 3 presents the dependance between available
space in FIFO Drop-Tail queue and loss rate and JFI. We note that for very
small queue sizes (< 50 kilobytes), loss rates are large and TCP dynamics is
dominated by timeouts. In this regime the square root formula is not valid and
fairness is impacted mainly by timeout mechanism.

5 Summary

In this paper we have addressed the problem of utilizing the tradeoff between
queueing delays and link utilization. By specifying the relative importance of
queueing delays and utilization, an optimal choice of a queue management pa-
rameter is the one that maximizes the overall benefit defined by (1). There could
be two possible approaches for solving this problem. First, suppose that one can,
by accurate modelling and effective estimation, predict the delay/utilization de-
pendance from the control parameter. Then, by an off-line solving of the under-
lying optimization problem we can set the parameter that controls queue scheme
5 This follows from the square root formula.
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Fig. 3. Simulation F. Loss rates (top) and JFI (bottom) for 50 TCP flows serviced by
Drop-Tail queues of different sizes.

to the optimal value; see [2] for one strategy of this type. And second, where
one can adapt the control parameter such that on average the overall benefit
is maximized. We argue, that the first approach is not feasible in the current
Internet because of both nonexistence of accurate and tractable enough models
for the delay/utilization dependance, and the highly nontrivial estimation tech-
niques that such an approach would require. We thus follow the second approach
and design an online algorithm Optimal Delay-Utilization control of t which aim
to solve the underlying optimization problem by online adaptation of generic
parameter t.

The optimization problem (2) assumes a linear dependance between utiliza-
tion and benefit, and neglected other important performance metrics such as
jitter, loss probability, and fairness. In fact, one can define the general overall
benefit of the queueing scheme controlled by parameter t as:

BG(t) = V (u(t), aQd(t), j(t), L(t), f(t)), (9)

where j(t) is jitter, L(t) is the loss rate, f(t) is a fairness indicator, V is the utility
function. We again emphasize the importance of fairness in TCP environments
where long-RTT connections could heavily suffer from low queueing delays at the
congested links. The embedding of jitter and loss rate into current framework
can be done in straightforward manner. However, including fairness into the
optimization framework, would be much more challenging as we are not aware
of any, computationally light, estimation technique that would faithfully indicate
level of fairness. One possible approach to estimate level of the fairness could be
by counting runs6 as suggested in [16].

From the theoretical point of view, an important open issue is convexity
(concavity) of the average utilization/Q-delays/ loss-rates as function of con-
trol parameter t (available buffer space, random drop probability, virtual queue
capacity, etc). While some results exist for the nonelastic traffic [17, 18], in the
case of elastic traffic, the arrival process depends on the control parameter, which
makes modelling of the corresponding tradeoff curve more difficult.

6 Run is event where arriving packet belongs to the same flow as some, previously
arrived packet.
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Other AQM schemes could be seen in the optimization framework as well. For
example the AVQ algorithm developed in [19] or PI[10] have strict performance
goals in terms of utilization(AVQ) or queueing delay(PI). Such schemes can be
easily incorporated into our framework, taking appropriate utility functions (see
[22]).

The MIMD nature of ODU-t algorithm introduced here is just one possible
approach for solving the optimization problem (2). In Section 3 we discussed the
rationale for choosing MIMD algorithm that continuously searches for optimal
value instead of an algorithm that will search for an exact optimal value under
noisy measurements. It will be interesting to investigate other control strategies
as part of future work.
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