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A Positive Systems Model of TCP-Like Congestion
Control: Asymptotic Results

Robert Shorten, Fabian Wirth, and Douglas Leith

Abstract—We study communication networks that employ
drop-tail queueing and Additive-Increase Multiplicative-Decrease
(AIMD) congestion control algorithms. It is shown that the theory
of nonnegative matrices may be employed to model such networks.
In particular, important network properties, such as: 1) fairness;
2) rate of convergence; and 3) throughput, can be characterized
by certain nonnegative matrices. We demonstrate that these
results can be used to develop tools for analyzing the behavior of
AIMD communication networks. The accuracy of the models is
demonstrated by several NS studies.

Index Terms—AIMD, congestion control, positive matrices,
TCP.

I. INTRODUCTION

I N THIS PAPER, we describe a design oriented modelling
approach that captures the essential features of networks of

Additive-Increase Multiplicative Decrease (AIMD) sources that
employ drop-tail queues. The novelty of our approach lies in
the fact that we are able to use the theory of nonnegative ma-
trices and hybrid systems to build mathematical models of com-
munication networks that capture the dynamic interaction be-
tween competing flows. This approach is based upon a number
of simple observations: 1) communication networks employing
congestion control systems are feedback systems; 2) communi-
cation systems exhibit event driven phenomena and may there-
fore be viewed as classical hybrid systems; and 3) network states
(queue length, window size, etc.) take only nonnegative values.
We show that it is possible to relate important network proper-
ties to the characteristics of the nonnegative matrices that arise
in the study of such communication networks. In particular, we
will demonstrate that: 1) bandwidth allocation amongst flows;
2) rate of network convergence; and 3) network throughput can
all be related to properties of sets of nonnegative matrices.

This paper is structured as follows. In Section II, we develop
a positive systems network model that captures the essential fea-
tures of communication networks employing drop-tail queueing
and AIMD congestion control algorithms. An exact model is
presented for the case where all network sources share a uni-
form round-trip time (RTT) and packet drops are synchronized.
This model is then extended to the case of sources with differing

Manuscript received April 13, 2004; revised January 18, 2005; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor F. Paganini. This work
was supported by Science Foundation Ireland under grants 00/PI.1/C067 and
04/IN1/I478 and by the Collaborative Research Center 637 “Autonomous Lo-
gistic Processes—A Paradigm Shift and its Limitations” funded by the German
Research Foundation.

The authors are with the Hamilton Institute, NUI Maynooth, Maynooth, Co.
Kildare, Ireland.

Digital Object Identifier 10.1109/TNET.2006.876178

RTTs and where packet drops need not be synchronized. This
approach gives rise to a model in which the network dynamics
are described by a finite set of nonnegative matrices. The main
results of this paper are presented in Section III. To ease expo-
sition these results, which concern the short and long term be-
havior of AIMD networks, are simply stated in this section. The
use of these results to analyze network behavior is illustrated by
a number of case studies in Section IV. Finally, in Section VI,
we present an outline of the proofs of the mathematical results
as well as a number of intermediate derivations. For reasons of
space, complete proofs have been transferred to [8].

II. NONNEGATIVE MATRICES AND COMMUNICATION

NETWORKS

A communication network consists of a number of sources
and sinks connected together via links and routers. In this paper,
we assume that these links can be modelled as a constant prop-
agation delay together with a queue, that the queue is operating
according to a drop-tail discipline, and that all of the sources are
operating an AIMD-like congestion control algorithm. AIMD
congestion control operates a window based congestion control
strategy. Each source maintains an internal variable (the
window size) which tracks the number of sent unacknowledged
packets that can be in transit at any time, i.e., the number of
packets in flight. On safe receipt of data packets the destination
sends acknowledgement (ACK) packets to inform the source.
When the window size is exhausted, the source must wait for
an ACK before sending a new packet. Congestion control is
achieved by dynamically adapting the window size according
to an additive-increase multiplicative-decrease law. Roughly
speaking, the idea is for a source to probe the network for spare
capacity by increasing the rate at which packets are inserted
into the network, and to rapidly decrease the number of packets
transmitted through the network when congestion is detected
through the loss of data packets. In more detail, the source
increments by a fixed amount upon receipt of
each ACK. On detecting packet loss, the variable is
reduced in multiplicative fashion to . We shall see
that the AIMD paradigm with drop-tail queueing gives rise
to networks whose dynamics can be accurately modelled as a
positive linear system. While we are ultimately interested in
general communication networks, for reasons of exposition it
is useful to begin our discussion with a description of networks
in which packet drops are synchronized (i.e., every source
sees a drop at each congestion event). We show that many of
the properties of communication networks that are of interest
to network designers can be characterized by properties of
a square matrix whose dimension is equal to the number of
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Fig. 1. Evolution of window size.

sources in the network. The approach is then extended to a
model of unsynchronized networks. Even though the math-
ematical details are more involved, many of the qualitative
characteristics of synchronized networks carry over to the
nonsynchronized case if interpreted in a stochastic fashion.

A. Synchronized Communication Networks

We begin our discussion by considering communication net-
works for which the following assumptions are valid: 1) at con-
gestion every source experiences a packet drop; and 2) each
source has the same RTT.1 In this case an exact model of the net-
work dynamics may be found as follows [1]. Let denote
the congestion window size of source immediately before the

th network congestion event is detected by the source. Over
the th congestion epoch, three important events can be dis-
cerned: , , and , as depicted in Fig. 1. The time

denotes the instant at which the number of unacknowl-
edged packets in flight equals where is the multi-
plicative decrease factor associated with the th flow (recall that
after each congestion event the th sources decreases its number
of packets in flight by a factor of ); is the time at
which the bottleneck queue is full; and is the time at which
packet drop is detected by the sources, where time is measured
in units of RTT.2 It follows from the definition of the AIMD al-
gorithm that the window evolution is completely defined over
all time instants by knowledge of the and the event times

, , and of each congestion epoch. We therefore
only need to investigate the behavior of these quantities.

We assume that each source is informed of congestion one
RTT after the queue at the bottleneck link becomes full, that is

. Also

(1)

where is the maximum number of packets which can be in
transit in the network at any time; is usually equal to

where is the maximum queue length of the congested
link, is the service rate of the congested link in packets per

1One RTT is the time between sending a packet and receiving the corre-
sponding acknowledgement when there are no packet drops.

2Note that measuring time in units of RTT results in a linear rate of increase
for each of the congestion window variables between congestion events.

second and is the round-trip time when the queue is empty.
At the th congestion event

(2)

It follows from (1) and (2) that

(3)

Hence, it follows that

(4)

and that the dynamics of an entire network of such sources is
given by

(5)

where , and where with
we have

(6)
and the initial condition is subject to the constraint (1).

The matrix is a positive matrix (all the entries are pos-
itive real numbers) and it follows that the synchronized net-
work (5) is a positive linear system [2]. Many results are known
for positive matrices and we exploit some of these to charac-
terize the properties of synchronized communication networks.
In particular, from the viewpoint of designing communication
networks, the following properties are important: 1) network
fairness; 2) network convergence and responsiveness; and 3)
network throughput. While there are many interpretations of
network fairness, in this paper we concentrate on window fair-
ness. Roughly speaking, window or pipe fairness refers to a
steady state situation where sources operating AIMD algo-
rithms have an equal number of packets in flight at each
congestion event; convergence refers to the existence of a unique
fixed point to which the network dynamics converge; respon-
siveness refers to the rate at which the network converges to the
fixed point; and throughput efficiency refers to the objective that
the network operates at close to the bottleneck-link capacity. It
is shown in [3] and [4] that these properties can be deduced from
the network matrix . We briefly summarize here the relevant
results in these papers.

Theorem 1: [1], [4] Let be defined as in (6). Then
is a column stochastic matrix with Perron eigenvector

and whose eigenvalues
are real and positive. Further, the network converges to a unique
stationary point , where is a positive constant
such that the constraint (1) is satisfied; ;
and the rate of convergence of the network to is bounded
by the second largest eigenvalue of .

The following results may be deduced from the above.
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Fig. 2. Example of window fairness between two TCP sources with different
increase and decrease parameters (NS simulation, network parameters: 10 Mb
bottleneck link, 100 ms delay, queue 40 packets.)

(i) Fairness: Window fairness is achieved when the Perron
eigenvector is a scalar multiple of the vector ; that
is, when the ratio does not depend on . Further,
since it follows for conventional TCP-flows ( , )
that , any new protocol operating an AIMD variant
that satisfies will be TCP-friendly—i.e., fair with
legacy TCP flows.

(ii) Network responsiveness: The magnitude of the second
largest eigenvalue of the matrix bounds the conver-
gence properties of the entire network. It is shown in [4] that
all the eigenvalues of are real and positive and lie in the in-
terval , where the are ordered as

. In particular, the second largest eigen-
value is bounded by . Consequently, fast
convergence to the equilibrium state (the Perron eigenvector) is
guaranteed if the largest backoff factor in the network is small.
Further, we show in [4] that the network rise-time when mea-
sured in number of congestion epochs is bounded by

. In the special case when for
all , ; see, for example, Fig. 3. Note that gives the
number of congestion epochs until the network dynamics have
converged to 95% of the final network state: the actual time to
reach this state depends on the duration of the congestion epochs
which is ultimately dependent on the .

(iii) Network throughput: At a congestion event the net-
work bottleneck is operating at link capacity and the total data
throughput through the bottleneck link is given by

(7)

where is the link capacity, is the bottleneck buffer size,
is the round-trip time when the bottleneck queue is empty

Fig. 3. NS packet-level simulation (� = 1, � = 0:5, dumbbell with 10 Mbs
bottleneck bandwidth, 100 ms propagation delay, 40 packet queue).

and is the round-trip time when the queue is full.
After backoff, the data throughput is given by

(8)

under the assumption that the bottleneck buffer empties. It is
evident that if the sources backoff too much, data throughput
will suffer as the queue remains empty for a period of time and
the link operates below its maximum rate. A simple method to
ensure maximum throughput is to equate both rates, which may
be achieved by the following choice of the :

(9)

(iv) Maintaining fairness: Note that setting
requires a corresponding adjustment

of if it is not to result in unfairness. Both network fairness
and TCP-friendliness are ensured by adjusting according to

.

B. Models of Unsynchronized Network

The preceding discussion illustrates the relationship between
important network properties and the eigensystem of a positive
matrix. Unfortunately, the assumptions under which these re-
sults are derived, namely of source synchronization and uniform
RTT, are quite restrictive (although they may, for example, be
valid in many long-distance networks [5]). It is therefore of great
interest to extend our approach to more general network condi-
tions. To distinguish variables, we will from now on denote the
nominal parameters of the sources used in the previous section
by , , .

Consider the general case of a number of sources competing
for shared bandwidth in a generic dumbbell topology (where
sources may have different round-trip times and drops need not
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Fig. 4. Evolution of window size over a congestion epoch. T (k) is the length
of the congestion epoch in seconds.

be synchronized). The evolution of the of a typical source
as a function of time, over the th congestion epoch, is depicted
in Fig. 4. As before a number of important events may be dis-
cerned, where we now measure time in seconds, rather than
units of . Denote by the time at which the number
of packets in flight belonging to source is equal to ;

is the time at which the bottleneck queue begins to fill;3

is the time at which the bottleneck queue is full; and
is the time at which the th source is informed of congestion.
In this case the evolution of the th congestion window vari-
able does not evolve linearly with time after seconds due to
the effect of the bottleneck queue filling and the resulting varia-
tion in RTT; namely, the of the th source increases ac-
cording to after , where is
the RTT of source when the bottleneck queue is empty and

denotes the number of packets in the queue.
Note also that we do not assume that every source experiences
a drop when congestion occurs. For example, a situation is de-
picted in Fig. 4 where the th source experiences congestion at
the end of the epoch, whereas the th source does not.

Given these general features, it is clear that the modelling task
is more involved than in the synchronized case. Nonetheless, it
is possible to relate and using a similar ap-
proach to the synchronized case by accounting for the effect of
nonuniform RTTs and unsynchronized packet drops as follows.

(i) Unsynchronized source drops: Consider again the situation
depicted in Fig. 4. Here, the th source experiences congestion
at the end of the epoch whereas the th source does not. This
corresponds to the th source reducing its congestion window
by the factor after the th congestion event, and the th
source not adjusting its window size at congestion. We therefore
allow the backoff factor of the th source to take one of two
values at the th congestion event corresponding to whether the
source experiences a packet loss or not:

(10)

(ii) Nonuniform RTT: Due to the variation in round trip time,
the congestion window of a flow does not evolve linearly with
time over a congestion epoch. Nevertheless, we may relate

3In the case when the queue does not empty following a congestion event
t (k) = t (k).

and linearly by defining an average rate
depending on the th congestion epoch:

(11)

where is the duration of the th epoch measured in sec-
onds. Equivalently, we have

(12)

In the case when , , the average
are (almost) independent of and given by for
all , . The situation when

(13)

is of considerable practical importance and such networks are
the principal concern of this paper. This corresponds to the case
of a network whose bottleneck buffer is small compared with
the delay-bandwidth product for all sources utilizing the con-
gested link. Such conditions prevail on a variety of networks, for
example, networks with large delay-bandwidth products, and
networks where large jitter and/or latency cannot be tolerated.
Note, however, that the model is not restricted to such situations;
see Comment 4.1 below. In view of (10) and (12), a convenient
representation of the network dynamics is obtained as follows.
At congestion, the bottleneck link is operating at its capacity ,
i.e.,

(14)

where is the RTT experienced by the th flow when
the bottleneck queue is full. Note, that is independent
of . Setting we have that

(15)

By interpreting (15) at and inserting (12) for

(16)

Using (15) again it follows that

(17)

Inserting this expression into (12) we finally obtain

(18)

and the dynamics of the entire network of sources at the th
congestion event, subject to (15), are described by

(19)
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where setting we have

(20)
and where is either 1 or . The nonnegative matrices

are constructed by taking the matrix :

...
. . .

(21)

and setting some, but not all, of the to 1. This gives rise to a
set of matrices associated with the system (19)
that correspond to the different combinations of source drops
that are possible.

Finally, we note that another, sometimes very useful,
representation of the network dynamics can be obtained
by considering the evolution of scaled window sizes
at congestion, namely, by considering the evolution of

. Here one
obtains the following description of the network dynamics:

(22)

where and the are obtained by the similarity
transformation associated with the change of variables, in
particular

...
. . .

As before, the nonnegative matrices are con-
structed by taking the matrix and setting some, but not
all, of the to 1. All of the matrices in the set are now
column stochastic; in our proofs we use this representation of
the network dynamics.

III. MAIN RESULTS

The ultimate objective of our work is to use the network
model developed in Section II to establish design principles for
the realisation of AIMD networks. In this section, we present
two results, both of which are derived from our network model
in Section II, which in a sense characterize the asymptotic be-
havior of both long and short lived flows.

A. Preamble to Main Results

It follows from (19) that , where
. Consequently, the behavior of ,

as well as the network fairness and convergence properties, are
governed by the properties of the matrix product . The ob-
jective of this section is to analyze the average behavior of

with a view to making concrete statements about these network
properties. To facilitate analytical tractability, we will make two
mild simplifying assumptions.

Assumption 1: The probability that in (19) is
independent of and equals .

Comment 1: In other words, Assumption 1 says that the prob-
ability that the network dynamics are described by

, over the th congestion epoch is and
that the random variables , are independent and
identically distributed (i.i.d.).

Given the probabilities for , one may
then define the probability that source experiences a loss
event at the th congestion event as follows:

where the summation is taken over those which correspond
to a matrix in which the th source sees a drop. Or to put it
another way, the summation is over those indexes for which
the matrix is defined with a value of . Note that
can be thought of as a synchronization factor—it is unity when
a flow experiences a loss at every congestion event.

Assumption 2: Let for all .
Simply stated, Assumption 2 states that almost surely all

flows must see a drop at some time (provided that they live for
a long enough time).

Comment 2: A consequence of the above assumptions is that
the probability that source experiences a drop at the th con-
gestion event is not independent of the other sources. For ex-
ample, if the first sources do not see a drop then this im-
plies that source must see a drop (in accordance with the usual
notion of a congestion event, we require at least one flow to see
a drop at each congestion event).

We now present two results that characterize the expected
behavior of AIMD networks that satisfy Assumptions 1 and 2.
The first characterizes the ensemble average behavior of flows,
while the second characterizes the time average behavior.

B. Result 1. Ensemble Average Behavior of TCP-Flows

Theorem 2: Consider the stochastic system defined in the pre-
amble. Let be the random matrix product arising from the
evolution of the first steps of this system:

Then, the expectation of is given by

(23)

and the asymptotic behavior of satisfies

(24)

where
, . Here is chosen such that (15)

is satisfied if is replaced by .
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Comment 3: Theorem 2 characterizes the ensemble average
behavior of the congestion variable vector . The conges-
tion variable vector of a network of flows starting from ini-
tial condition and evolving for congestion epochs is
given by . The average window vector over
many repetitions is given by . Theorem 2 pro-
vides an expression for calculating this average in terms of the
network parameters and the probabilities . Furthermore, we
have that as becomes large tends asymptoti-
cally to . The rate of convergence of
to this limiting value is bounded by the second largest eigen-
value of the matrix .

Comment 4: Theorem 2 is concerned with the ex-
pected behavior of the source congestion windows at the

th congestion epoch. For sufficiently large the ex-
pected throughput before backoff can be approximated
as . The expected worst
case throughput after backoff (which occurs when the
queue is on average empty after backoff) is approximately

. An immediate consequence
of this observation is that the bottleneck link is guaranteed
to be operating at capacity (on average) for large enough if

.

C. Result 2. Time Average Behavior of Flows

We now present the following theorem which is concerned
with networks characterized by long-lived flows.

Theorem 3: Consider the stochastic system defined in the pre-
amble and let

where . Then, with probability
one

(25)

where the vectors and are as defined in Theorem 2.
Comment 5: (i) Theorem 3 states that the time-average vector

of window sizes almost surely converges asymptotically to a
scalar multiple of . Hence, determines the time-averaged
relative number of unacknowledged packets in the network from
each source at each congestion event.

(ii) In view of Comment 4, it again follows that asymptoti-
cally, the time-averaged throughput through the bottleneck link
will approach the capacity for sufficiently large if

.
(iii) In the spirit of Theorem 2 one may also consider the

expectation of : . Denoting
it follows from our assumptions that

(26)

(27)

Fig. 5. Dumbbell topology.

Fig. 6. Predictions of the network model compared with packet-level NS sim-
ulation results. Key: � flow 1 (model); flow 2 (model); - flow 1 (NS); — flow
2 (NS). Network parameters: B = 100 Mb, q = 80 packets, �T = 20 ms,
T = 102 ms; T = 42 ms; no background web traffic.

where the matrix is column stochastic matrix, and whose
second largest eigenvalue is given by

(28)

where is the second largest eigenvalue of . Further,
tends asymptotically to as tends to 0.

IV. MODEL VALIDATION

The mathematical results derived in Section III are surpris-
ingly simple when one considers the potential mathematical
complexity of the unsynchronized network model (19). The
simplicity of these results is a direct consequence of Assump-
tions 1 and 2. The objective of this section is therefore twofold:
1) to validate the unsynchronized model (19) in a general con-
text; and 2) to validate the analytical predictions of the model
and thereby confirm that the aforementioned assumptions are
appropriate in practical situations.

A. Two Unsynchronized Flows

We first consider the behavior of two TCP flows in the dumb-
bell topology shown in Fig. 5. Our analytic results are based
upon two fundamental assumptions: 1) that the dynamics of the
evolution of the source congestion windows can be accurately
modelled by (19); and 2) the allocation of packet drops amongst
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Fig. 7. Evolution of 
 w . The peaks correspond to congestion events.
Network parameters: B = 100 Mb, q = 80 packets, �T = 20 ms, T =
102 ms; T = 42 ms; no background web traffic.

Fig. 8. Variation of meanw (k) with level of background web traffic in dumb-
bell topology of Fig. 5. Key: + NS simulation result; � mathematical model
(19); � Theorem 3. Network parameters: B = 100 Mb, q = 80 packets,
�T = 20 ms, T = 102 ms; T = 42 ms.

the sources at congestion can be described by random variables.
We consider each of these assumptions in turn.

1) Accuracy of dynamics model: A comparison of the pre-
dictions of the model (19) against the output of a packet-level
NS simulation is depicted in Fig. 6. Here, the pattern of packet
drops observed in the simulation is used to select the appropriate
matrix from the set at each congestion event when eval-
uating (19). As can be seen, the model output is very accurate.
Also plotted in Fig. 7 is the evolution of the linear combination

where the are defined in (15). It can be seen that
has the same value at each congestion event, thereby

validating the constraint (15) used in the model.
2) Validity of random drop model: It is well known that net-

works of TCP flows with drop-tail queues can exhibit a rich va-
riety of deterministic drop behaviors [6]. However, most real

Fig. 9. Variation of mean w (k) with propagation delay T in dumbbell
topology of Fig. 5. Key: + NS simulation result; � mathematical model (19); �
Theorem 3; solid lines correspond to synchronized case. Network parameters:
B = 100 Mb, q = 80 packets, �T = 20 ms, T = 102 ms; approximately
0.5% bidirectional background web traffic.

TABLE I
TABULAR DATA FOR FIG. 9

networks carry at least a small amount of web traffic. In Fig. 8,
we plot NS simulation results showing the mean congestion
window as the level of background web traffic is varied (back-
ground information on the web traffic generator in NS is de-
scribed in [7]). To illustrate the impact of small amounts of web
traffic, these results are given for a network condition where
phase effects are particularly pronounced. While the agreement
between the simulation and our random matrix model is poor
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Fig. 10. Convergence of the empirical mean of the window size to asymp-
totic values shown in Fig. 9. NS simulation results; network parameters: B =
100 Mb, q = 80 packets, �T = 20 ms, T = 102 ms.

with no web traffic, even a very small volume of web traffic ap-
pears to be enough to disrupt the coherent structure associated
with phase effects and other complex phenomena previously ob-
served in simulations of unsynchronized networks. From the
packet-based simulation results we can determine the propor-
tion of congestion events corresponding to both flows simulta-
neously seeing a packet drop, flow 1 seeing a drop only, and flow
2 seeing a drop only. Using these estimates of the probabilities

, the mean congestion window can be estimated using expres-
sion (24) from Theorem 3. The resulting estimates are shown
in Fig. 9, and are also presented in tabular form in Table I. In
these figures is the fixed delay associated with source 1 that
is depicted in Fig. 5. The first column for each flow gives the ac-
tual average window size as predicted by the NS simulator; the
second column gives the predictions of the model (19); and the
third column gives the long-time average predictions of The-
orem 3. It can be seen that there is close agreement between
the packet-level simulation results and the predictions obtained
using (24). The actual convergence of the simulation data to the
mean values is depicted in Fig. 10.

Also shown in Fig. 9 are the analytic predictions for the
case where each source has an equal probability of backing off
when congestion occurs, namely, when . The
corresponding ratio of the elements of the average congestion
window vector is the same as that under the assumption of
source synchronization (it is important to note that patterns of
packet drop other than synchronized drops can lead to the same
distribution as long as the proportion of backoff events experi-
enced by the two flows is the same). Observe that the resulting
predictions are an accurate estimate of the mean congestion
window size and that as the level of web traffic increases the
mean window size approaches that in the synchronized case
(see Fig. 8).

Before proceeding, we also present results from several other
two-flow networks in Figs. 11 and 12. As can be seen from the

Fig. 11. Variation of mean w (k) with propagation delay T in dumbbell
topology of Fig. 5. Key: + NS simulation result; � mathematical model (19); �
Theorem 3; solid lines correspond to synchronized case. Network parameters:
B = 100 Mb, q = 80 packets, �T = 20 ms, T = 2 ms; approximately
0.5% bidirectional background web traffic.

Fig. 12. Variation of mean w (k) with propagation delay T in dumbbell
topology of Fig. 5. Key: + NS simulation result; � mathematical model (19); �
Theorem 3; solid lines correspond to synchronized case. Network parameters:
B = 100 Mb, q = 80 packets, �T = 100 ms, T = 102 ms; approxi-
mately 0.5% bidirectional background web traffic.

figures, the predictions of Theorem 3 and the NS simulations are
consistently in close agreement.

The foregoing results are for networks with two competing
TCP sources. We note briefly that we have also validated our
results against packet-level simulations for networks of up to
five flows. As in the two-flow case, the simulation and analyt-
ical predictions are in close agreement (to the same degree of
accuracy).

Comment 6: (i) Predictions based upon the model (19) rely on
knowledge of the rate at which each of the sources increases
its window size. In the case of networks with small queue sizes,

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on January 5, 2010 at 05:29 from IEEE Xplore.  Restrictions apply. 



624 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 3, JUNE 2006

Fig. 13. Variation of mean w (k) with propagation delay T in dumbbell
topology with three TCP flows. Key: + NS simulation result; � mathematical
model (19); �, �, Theorem 3 flows 1, 2, and 3 respectively; solid lines
correspond to synchronized case. Network parameters: B = 100 Mb,
q = 80 packets, �T = 20 ms, T = 102 ms, T = 62 ms; approximately
0.5% bidirectional background web traffic.

(13) gives a good approximation of these rates. However, this
approximation neglects the curvature in the evolution in-
duced by time-varying round-trip time and can therefore be ex-
pected to become less accurate as the queue provisioning in-
creases. We emphasize that the loss of predictive power is due to
the validity of the approximation (13) and not the fidelity of the
network model (19); a more accurate estimate of would lead
to better model performance. Techniques for approximating
when the queue is not small have already been explored in [9].

(ii) The model (19) also neglects the fact that the number of
packets in flight for TCP flows is quantised: namely, restricted
to integer values, owing to the packet based nature of the traffic.
Hence, the accuracy of the model (19) can be expected to de-
grade under network conditions where the peak window size
of a flow is small.

B. Many Unsynchronized Flows

The foregoing results are for networks with two competing
TCP sources. We note briefly that we have also validated our
results against packet-level simulations for networks of up to
five flows. As in the two-flow case, the simulation and analytical
predictions are in close agreement; a sample of the results that
we have collected is depicted in Figs. 13 and 14.

C. Limitations of Modelling Framework

The derived model (19) provides a framework for capturing
the dynamics of certain types of communication networks.
However, while the model encompasses features such as
drop-tail queueing, flows with different round-trip times, un-
synchronized loss events and the switched nature of AIMD
flows, it does not capture some features of communication
networks.

Fig. 14. Variation of mean w (k) with propagation delay T in dumb-
bell topology with five TCP flows. Network parameters: B = 100 Mb,
q = 80 packets, �T = 20 ms, T = 102 ms, T = 62 ms; approximately
0.5% bidirectional background web traffic.

1) The model is only valid for a network of AIMD flows that
compete for bandwidth at a single common bottleneck router
with drop-tail queue, i.e., the so-called dumbbell topology.

2) The model does not include the effects of slow start and
TCP timeouts (although these can easily be introduced into the
model through the introduction of more matrices into the set ).

3) In the simulation results presented, consideration is con-
fined to situations where the queue size is small compared to the
bandwidth-delay product, but this is to streamline the presenta-
tion and is not an inherent constraint of the modelling approach.
There is also no assumption in the model that the queue empties
following a congestion event.

4) While not intrinsic to the matrix product model itself, key
assumptions for the asymptotic analysis presented are that: 1)
the pattern of losses at each congestion event is random and
independent of the congestion epoch (we do not assume that the
losses seen by a flow are independent of the losses seen by other
competing flows); and 2) each flow almost surely experiences a
loss event provided that it sufficiently long-lived.

5) The time average results necessarily apply to long-lived
flows only but our ensemble average results apply to flows of
any duration.

Perhaps the most significant limitation of our model is that the
probabilities of the different patterns of losses are assumed to be
known beforehand (or can be measured) and are not predicted
by the model. This certainly reduces the predictive power of the
model. However, our objective in developing the model was not
only to understand the dynamics of AIMD networks, but also to
provide a basis for the design of such networks. When viewed in
this context, the probabilities play an important role in con-
trolling the network dynamics, and as they can be controlled by
the bottleneck router, are an important design parameter avail-
able to the network designer. Our model provides an analytic
basis for understanding the effect of various dropping strategies
of the network dynamics, and for incorporating this aspect of
network dynamics into the network design procedure.
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V. RELATED WORK

An extensive literature exists relating to the modelling of TCP
traffic. The well-known square-root formula of Padhye et al.
[10] provides an approximate expression for the congestion
window achieved by a TCP flow. The statistical independence
assumptions in this model however neglect interactions be-
tween competing flows (e.g., the frequency of loss events is
generally not independent of the values of the AIMD increase
and decrease parameters of competing flows). Many of the
more recent results are based on so-called fluid approaches
and focus on active queueing disciplines, see, for example,
[11]–[21]. Fundamental difficulties exist in applying fluid
models to networks with drop-tail queues. Recently, several
authors have developed new types of hybrid systems model
suited to drop-tail networks, most notably Hespanha [22] and
Baccelli and Hong [23]. We note that the model derived in [23]
is similar to the model presented here. In particular, under mild
assumptions, the sets of solutions of the model in [23] and of
our model coincide, so that the results of that reference are
immediately applicable to the model presented here. However,
the model derived by Baccelli and Hong is both affine and the
homogeneous (linear) part is characterized by general matrices
(namely, not by nonnegative matrices), whereas in this paper
we develop a linear, nonnegative matrix model. The properties
of linearity (no affine term) and nonnegativity play a key role
in the tractability of our model, both in respect of the analysis
of its dynamic characteristics and of its equilibrium properties.

VI. MATHEMATICAL DERIVATIONS

Theorem 2 and Theorem 3 follow from several interesting
properties of the set of matrices . Roughly
speaking, these results may be classified as being algebraic or
stochastic in nature. The purpose of this section is to elucidate
these properties and to use them to prove the results given in
Section III.

It was noted before that the matrices in the set are not
column stochastic. However, the matrices in this set are simul-
taneously similar to a set of column stochastic matrices under
the transformation . Denote ,

. For , determined by a choice of parameters
we have

...
. . .

It is easy to see that the transformed matrices are column
stochastic. We shall exploit this observation in the se-
quel as column stochastic matrices are easier to deal
with than nonstochastic ones. In view of this fact we
note that a Perron eigenvector of is given by

,
and that the corresponding Perron eigenvector of is

. In the
sequel we will derive results that are expressed in terms of

. These correspond to the dynamics of the system (22) and
refer to the stochastic properties of the vector . The
corresponding results for the system (19) are directly deduced
from these results by similarity.

A. Algebraic Properties of the Set

We will from now on assume without loss of generality that
the matrices in the set are column stochastic, which corre-
sponds to the case . Should this not be
the case we can always apply the transformation to obtain
this property, which just amounts to a rescaling of the . In the
derivation of the main results of this paper we make frequent
use of the fact that the matrices in the set , and products of
matrices in this set, are nonnegative and in particular column
stochastic. This observation implies the existence of an
dimensional subspace that is invariant under . We will also see
that the matrices in this set can be simultaneously transformed
into block triangular form with an dimensional symmetric
block. Given these observations, we will then show under mild
assumptions that the distance of a matrix product of length ,
constructed from matrices in , from the set of rank-1 matrices
converges asymptotically to zero as increases.

Lemma 1: There exists an dimensional subspace in-
variant under .

Proof: The row vector is a left eigenvector
of all of the matrices in the set as they are column stochastic.
This implies that the dimensional subspace orthogonal to

is invariant under [24].
Lemma 2: Consider the set of matrices . There exists a real

nonsingular transformation such that for all we have

(29)

where is symmetric, so that in particular the
eigenvalues of are real and of absolute value 1.

Proof: We denote and
. Let , where is the

diagonal matrix with entries equal to 1 or and is the
corresponding vector with entries 0 or . Consider the
diagonal matrix

(30)

Then is a nonnegative matrix with a left eigen-
vector given by , (with defined in the
proof of the previous lemma). Further, it follows that,

and by inspection .
We now chose an orthogonal matrix whose last column is

. Then (the th unit row vector) is a left eigenvector
of , and furthermore

Now as is a multiple of the last column of it follows that
and hence the entries of are

nonzero only in the last row. Thus, using that is a left eigen-
vector we have

(31)
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where is equal to the upper left -minor
of and thus symmetric. The assertion follows by setting

. The eigenvalues of are bounded in absolute
value by 1 as the matrix is column stochastic and thus has
spectral radius equal to 1.

We denote the the of matrices that appear as the upper left
block in (29) by .

Corollary 1: Consider the system (19). Then for each
the function is a quadratic Lyapunov
function for the dynamic system

(32)

i.e., for all solutions of we have
for all .

Proof: The assertion follows immediately as the matrices
are symmetric column stochastic matrices.

There are some interesting consequences of Corollary 1 for
products of matrices from the set . As these matrices are sym-
metric and of norm less than or equal to 1, they form what is
called a paracontracting set of matrices. This property is de-
fined by the requirement that

(33)

This is true for our set , as the matrices are symmetric
and of spectral radius at most 1. It is known [25] that finite sets
of matrices that are paracontracting have left convergent prod-
ucts, i.e., for any sequence in , the following limit
exists:

(34)

For related literature on paracontracting sets of matrices, refer
to [25] and [26] and references therein.

In the following, we prove results on the convergence of prod-
ucts of the matrices in to the set of column-stochastic matrices
of rank 1. To this end, it will be convenient to introduce a nota-
tion that identifies each matrix with the sources that do
not see a drop in that congestion event. Let be
the index set of sources not experiencing congestion at a con-
gestion event. (Clearly, can be ignored, as
this means that there is no congestion.)

The matrix corresponding to an index set is given by

(35)
where , if and otherwise and

. We now recover our set of possible matrices by

(36)

which results in a set of matrices, as it should. Note that
all are column stochastic, so that they have an eigenvalue
equal to 1 equal to the spectral radius.

If , i.e., if at least one source does not experience con-
gestion, then the dimension of the eigenspace corresponding to
1 is equal to the number of sources not seeing the congestion
event. To see this consider first the case that the first sources

do not see a drop and the others do. In this
case

(37)

where by definition. As the matrix is column stochastic
this means that all columns of sum to a value strictly less than
one, and hence and the claim follows for

. Now an arbitrary matrix , may be brought
into the form (37) by permutation of the index set and we have
shown the desired property.

Note also that the eigenspace of associated to the eigen-
value 1 is given by

(38)

where denotes the th unit vector.
Let us briefly discuss the eigenspaces of corresponding

to the eigenvalue 1, which we denote by . If ,
, then as we have seen in (38), the multiplicity

of 1 as an eigenvalue of is 1, so from (29) we have that
. In this case we will (with slight abuse of notation)

set . We denote the subspace orthogonal to
by . Recall from Lemma 1, that this is

an invariant subspace of . In general, we see from (38)
and Lemma 1 that if then
a basis for

(39)

is given, e.g., by

Hence, the eigenspace of is spanned by
(40)

From this it follows that

(41)

justifying our abuse of notation above. In particular,
if and only if contains at least two

elements.
Proposition 1: Let be a sequence with asso-

ciated index sets . The following statements are equivalent.
(i) For all , it holds that

(ii) For all but one , it holds that for each
, there is an with .

(iii) If are the matrices that appear infin-
itely often in the sequence , then
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is a matrix that, with the exception of at most one column, has
strictly positive entries.

If in (iii) the th column of has zero entries then this column
is equal to .

Proof: (ii) (iii): Note first that the th column of is
not equal to if and only if for one of the matrices ,

, the corresponding column is not a unit vector. The
assumption on the matrix implies that the th source experi-
ences a drop infinitely many times. Under assumption (iii) this
is true for all but at most one column, which implies (ii). Con-
versely, under the assumption (ii) the th source experiences a
drop infinitely many times. As there are only finitely many ma-
trices in which the th column is not equal to , one of these
appears infinitely often in the sequence of matrices and there-
fore in the definition of . This implies (iii).

(i) (ii): If (ii) does not hold, then (without loss of generality)
there is a such that for all we have

. This implies that for all , the matrix has the
eigenspace as an eigenspace corresponding
to the eigenvalue one. Hence, any such that
is a multiple of does not satisfy (i). Such a

exists as all the matrices in are invertible. This shows the
assertion.

(ii) (i): Denote . Using para-
contractivity of and (34) it follows that
exists. If there is nothing to show. Otherwise, we claim
that for some sufficiently large, it follows that
for all . To this end, note that because is finite, there
exists a constant such that for all we have

By convergence, this implies for all and all sufficiently
large that

On the other hand, the sequence is decreasing, so it fol-
lows that for all . This implies that for

sufficiently large it must hold that . This, how-
ever, means that lies in the eigenspace for all
large enough. From (41) it follows that at least two sources do
not see a drop for all large enough.

For the statement of the next result, we denote the set of
column stochastic matrices of rank 1 by . Note that the ma-
trices in are of the form

where is a nonnegative vector, the entries of which sum to
1. In particular, the matrices in are idempotent, because

. In the following statement, we denote
the distance of a matrix to the set by

Theorem 4: Let be a sequence with associ-
ated index sets . Then each of the statements of Proposition
1 is equivalent to

(42)

Proof: Consider Proposition 1(ii). It follows from Corol-
lary 1 that the system (22) can be transformed to an equivalent
system (29). This implies that for each the product

is similar to

(43)

where we do not give the expression for the entry of the
matrix as it is of no relevance for our further discussion. By
Proposition 1 it follows that . As
the distance of to a matrix of rank 1 is upper bounded
by this implies that the distance of

to the set of matrices of rank 1 con-
verges to zero. As each of these matrices is column stochastic
any limit point of the sequence is
column stochastic.

Conversely, it is clear that the (42) implies Proposition 1(i).
This shows the assertion.

The minor drawback of Proposition 1 is that no rate of conver-
gence is supplied. Indeed, the reader may convince himself that
the rate of convergence may be made arbitrarily slow by con-
sidering sequences that have repetitions of the same matrices
for longer and longer intervals as . It is therefore useful
to provide conditions that guarantee an exponential decay. One
such condition is provided in the following proposition.

Proposition 2: For every there exists
a constant with the following property. For any sequence
of index sets such that for all and all
there is a with it
holds for all that

with defined by (29).
Note that any actual flow on a real network has to satisfy the

assumption on the drops seen described in the previous propo-
sition. The reason for this is that if a flow does not see a drop
it will continue to increase the amount of packages sent by a
constant rate. Eventually this leads to the case the the amount of
packages sent exceeds the capacity of the pipe if no drops are
seen. But at this point the source necessarily sees a drop. This
very coarse argument shows that all realistic flows will satisfy
the assumptions of the previous proposition for some .

B. Stochastic Properties of the Set

We now proceed to give a number of results that relate to
random products of matrices from the set . In this section, we
assume that Assumptions 1 and 2 hold.

We first note that under our assumptions that the expec-
tation of is a positive matrix that is column stochastic
with Perron eigenvector

. We then proceed to show that the
expectation of

is also a column stochastic matrix with the same Perron eigen-
vector. The second result in this section concerns the asymptotic
behavior of the expectation of . These results immediately
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yield Theorem 2 and Theorem 3, using the transformation , if
necessary.

The final results in this section revisit the convergence of
to the set of rank-1 idempotent matrices. We show that

for all the probability of being at least a distance
from the rank-1 idempotent matrices goes to zero as becomes
large.

In the following we will use the notation
, where denotes the diagonal matrix

in (35), and is the vector with entries
.

Lemma 3: Assume that for , then the
expectation

is positive, column stochastic, and a Perron eigenvector for it is
given by

(44)

Proof: By definition of the expectation and using (35) we
have

(45)

The th diagonal entry of the diagonal matrix is

(46)

and the th entry of is

(47)

Hence, the matrix is of the form of defined in (21)
with the same vector and replaced by

. It follows by Theorem 1 that a Perron eigen-
vector of is given by

.
Lemma 4: Consider the random system (19) subject to As-

sumptions 1 and 2. The expectation of is

(48)

Proof: By independence, we have that the expectation of
the product is the product of the expectations. This implies the
equality.

Proof (of Theorem 2): It is sufficient to show the assertion
for the case , . The assertion of (23) is
shown in Lemma 4. As is positive and column stochastic
it follows that

where , are left, respectively right, Perron eigenvectors of
. As is column stochastic we may normalize

. Finally, the assertion concerning follows
from Lemma 3.

Proposition 3: Consider the random system (19) subject to
Assumptions 1 and 2. Then, with probability one,

Proof: Under the assumptions that the are positive and
the independence assumptions, with probability one each source
will see infinitely many drops. Now the result follows from
Theorem 4.

C. Proof of Theorem 3

We now proceed to present an outline of the proof of main
result of this paper, Theorem 3. In [27], it is shown that the result
can be derived from general results on Markov e-chains. The
technical preparations that this line of argumentation requires,
however, are beyond the scope of this paper. In [8], we give a
proof that relies on fairly elementary arguments in order to keep
the main ideas accessible.

Outline of Proof: We are interested in the asymptotic be-
havior of the average window variable :

as tends to infinity. Our proof consists of the following main
steps.

Step 1) For a fixed we partition each sufficiently long
product , where is the leading product
of length . We know that as , the leading product ap-
proaches almost surely the set of rank one matrices, which im-
plies that as all matrices involved are column
stochastic.

Step 2) We thus may approximate as

(49)

(50)

where are column stochastic rank-1 matrices
and are error terms that approach 0 as .

Step 3) Using the law of large numbers, it is then seen that
can be approximated as .

Step 4) And it follows that

where .

VII. CONCLUSION

In this paper, we have presented and validated using packet
level simulations, a random matrix model that describes the dy-
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namic behavior of a network of AIMD flows that compete for
shared bandwidth via a bottleneck router employing drop-tail
queueing. We have used this model to relate several important
network properties to properties of sets of nonnegative matrices
that arise in the study of such networks. We have also derived
under simplifying assumptions a number of analytic results that
characterize the asymptotic time-average and ensemble-average
throughput of such networks.
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