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Abstract— One of the key challenges in systems biology is
the analysis of often complex biochemical reaction networks
which contain many uncertain parameters. Typically, the
dynamics of these systems strongly depends on a significant
amount of parameters, hampering the analysis significantly
as even small changes in the value of parameters can
have significant influences on the overall behaviour of the
entire network. Thus, one of the key problems in systems
biology is to analyse the influence of parameters on the
steady state and transient behaviour. In the first part of
this work we derive links between first order sensitivity
analysis as typically employed in systems biology and the
concepts of controllability and observability of systems theory.
Specifically we establish a close connection between cross
Gramians and the so called response coefficients as used in
Metabolic Control Analysis. In a second part we outline an
expansion of this approach using empirical cross Gramians,
allowing to overcome some of the limitations of first order
sensitivity methods such as local validity.

I. I NTRODUCTION

Dramatic advances in proteomics, genomics, and mea-
surement technologies such as DNA arrays have lead
to a significantly increased knowledge about biological
organisms. Traditionally, biological research is pursuing a
reductionistic approach and is thus interested in identifying
individual genes, proteins and cells, and studying their spe-
cific functions. However, by now it has become clear that
understanding biological organisms is not merely possible
by collecting information about all involved components.
Rather, a holistic understanding of biological organisms
requires considering all involved components as well as
the interactions between them, since the interactions are
ultimately responsible for an organism’s form and func-
tions [1], [2].

Systems biology aims at obtaining a holistic understand-
ing of biological systems such as a single cell, organ or
even a whole living organism combining approaches from
system sciences, life sciences, and information sciences.
One of the problems in systems biology is the modelling
and analysis of biochemical reaction networks governing
metabolic pathways or signalling cascades. These networks
are typically very complex involving many species and
parameters. The dynamics of the overall reaction system
often depends significantly on a rather large number of
independent parameters such as reaction rate constants or
initial conditions of single reactions. For example, even a
small change of a single enzyme concentration can lead to

significant changes in the behaviour of the entire network.
Thus, analysing the influence of these independent param-
eters on the static and transient behaviour of the network
is of paramount importance. One of the tools typically
used in systems biology to obtain deeper understanding
and insight is sensitivity analysis. One specific example is
Metabolic Control Analysis. In the frame of this work, we
outline relations between controllability and observability
as well as sensitivity analysis typically used in systems
biology. Most of these connections are based on linear
observations, e.g. are based on sensitivities of first order.
In comparison to earlier works [3] we outline an expansion
of these methods using nonlinear empirical cross Gramian
methods, which partially allow to overcome the limited
validity of linear/first order methods.

Typically, first order sensitivity analysis methods are
employed to analyse the influence of parameter changes on
the system behaviour. A common methods for biochemical
reaction networks is Metabolic Control Analysis, which
explicitly takes into account the structure and invariances
imposed on the system by the stoichiometry of the net-
work. The basic framework of Metabolic Control Analysis
can for example be found in [4]–[6]. Significant progress
with respect to Metabolic Control Analysis has been made
over the last decades [7]–[10].

Recently, deriving links between control theory and
the analysis of biochemical reaction systems has received
significant interest, see e.g. [11]–[14]. Deriving similarities
and connections between control theory and the analysis
of biochemical reaction systems, it is hoped that one can
tackle problems which are so far not solvable, for example,
with Metabolic Control Analysis such as nonlinearities,
multi-parameter interactions, large-scale parameter alter-
ations etc.

Specifically, we derive links between classical systems
theory concepts, such as controllability and observability,
and Metabolic Control Analysis. We establish a clear
connection between the cross Gramian, which is closely
related to observability and controllability Gramians, and
the response coefficients of Metabolic Control Analysis.
Conceptually these results are of interest, since they re-
late the analysis via the consideration of whole system
trajectories (Gramians) to purely static considerations such
as used in Metabolic Control Analysis. Furthermore, the
derived results can be expanded to time varying systems
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and higher order/nonlinear sensitivity analysis.
The paper is structured as follows: In Section II we

introduce the considered biochemical reaction networks
and problem setup. Section III contains a brief outline
of first order sensitivity analysis, including Metabolic
Control Analysis which is typically used in the analysis
of biochemical reaction networks. Furthermore we derive
in this Section a link between between Metabolic Con-
trol Analysis and cross Gramians as known from control
theory. In Section IV we derive an “nonlinear” expansion
of the derived results using empirical Gramian methods.
These allow to obtain less local results. The derived result
is exemplified in Section V considering a small example
system, before we conclude in Section VI.

II. CONSIDEREDSYSTEM CLASS

We consider in this paper the analysis of dynamical
systems describing the behaviour of biochemical networks.
Typically biochemical reaction networks are modelled in
terms of the evolution of then-dimensional vectorx of
concentrations

ẋ = Nv
(

x,p(t)
)

, x(t0) = x0. (1)

The rate vectorv is an m-dimensional function of the
state and thel-dimensional parametersp. Parameters are
typically reaction rate constants or enzyme concentrations,
but can be initial conditions. The stoichiometryN ∈
R

n×m relates the rate vector to the rate of change of the
states.

A. Conserved Moieties

A common feature of many biochemical reaction sys-
tems is the existence of conserved moieties. These corre-
spond to linear dependent states, often restricted to linear
dependencies with non-negative coefficients.

In the presence of linear dependent states, the state space
can be partitioned into independent statesx̃ and dependent
statesz̃:

x =

[

x̃

z̃

]

. (2)

With a suitably chosen link matrixL, (1) can be rewritten
as

d

dt

[

x̃

z̃

]

=

[

I

L

]

Ñv(x,p(t)). (3)

whereÑ has full row rank. It directly follows that the evo-
lution of z̃ can be described by pure algebraic equations:

z̃(t) = Lx̃(t). (4)

Thus, only the differential equation for̃x is necessary
for describing the systems dynamics. In the following,
we assume that the reduction via conserved moieties has
already been performed, i.e. for simplicity of notationx

corresponds to the reduced state vectorx̃.

B. First Order considerations

Around a steady-state(xss,pss), the system (1) can be
approximated by its linearisation:

∆ẋ = Ass∆x + Bss∆p, (5)

where

∆x = x − xss,

∆p = p − pss,

Ass = N
∂v

∂x
(xss,pss),

Bss = N
∂v

∂p
(xss,pss).

For an asymptotically stable steady-state, straightforward
calculation shows that a constant parameter deviation of
∆pss results in a steady-state shift of

∆xss = −A−1
ss Bss∆pss. (6)

The asymptotic stability of the steady-state directly implies
thatAss is invertible and therefore a unique solution of (6)
exists.

III. F IRST ORDER SENSITIVITY ANALYSIS IN SYSTEMS

BIOLOGY

Equation (6) relates small parameter change towards
changes in the steady-state. More generally, sensitivity
analysis describes the influence of the parameters on
the states. The linear sensitivity is defined as the partial
derivative of the state vector

S =
∂x

∂p
, S(t) ∈ R

n×l (7)

where, for mathematical convenience, we assume constant
parameters. These linear sensitivities can be calculated as
the solution of the following equation:

Ṡ = N
∂v

∂x
(x,p) + N

∂v

∂p
(x,p), (8)

S(0) =
[

S1(0), · · · , Sl(0)
]

,

with

Si(0) =

{

ei if pi is an initial condition,

0 otherwise,
(9)

whereei is the Euclidean basis vector whose i-th entry is
equal to one. Equation (8) follows from (1) by taking the
partial derivatives with respect to the parameters on both
sides and swapping the order of differentiation.

Around an asymptotically stable steady-state(xss,pss),
the solution of (8) converges to

Sss = −A−1
ss Bss. (10)

This is equivalent to (6) as

Sss = lim
∆pss→0

∆xss

∆pss
. (11)
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In metabolic engineering, a classical approach for sen-
sitivity analysis is Metabolic Control Analysis (MCA), see
e.g. [15] for a review. Two sensitivities are commonly
used in MCA. First, theconcentration response coefficient
which is equivalent to the steady-state sensitivity as given
in (10):

Rx

p
= −A−1

ss Bss. (12)

Second, theflux response coefficientmeasures the linear
sensitivity of the parameters with respect to the rate vector,
also at steady state, and is given by

Rv

p
=

∂v

∂x
(xss,pss)R

x

p
+

∂v

∂p
(xss,pss). (13)

Remark 1 Common in MCA is the use of relative sensitiv-
ities, sometimes also called scaled sensitivities, measuring
the impact of a relative change of parameter. To simplify
the presentation, this paper discusses only the unscaled
case. Other sensitivity approaches also not discussed here
are higher-order sensitivities and bifurcation analyses.

In this section, we will restrict the system class to linear
systems with an asymptotically stable steady state:

ẋ = Ax + B p

y = C x,
(14)

where the parameterp is used as input.
How easily the input can influence the state is quantified

by the controllability GramianWc, the minimal input
energy necessary for steering the system from0 at time
−∞ to x0 at time0

‖popt(·)‖
2 =

∫ 0

−∞

p(τ)T p(τ) dτ = xT
0 W−1

c x0. (15)

The controllability GramianWc is defined by:

Wc =

∫ 0

−∞

e−AτBBT e−AT τ dτ (16)

and is the solution of the Lyapunov equation [16]:

−BBT = AWc + WcA
T . (17)

The Gramian based energy‖popt(·)‖ is proportional to
the “norm” of x0. To gain insight into how controllable
specific directions in the state-space are, we therefore scale
popt by the Euclidean length ofx0:

‖popt(·)‖
2

‖x0‖2
=

xT
0 W−1

c x0

xT
0 x0

, x0 6= 0. (18)

An analysis of the Eigenvalues and corresponding
Eigenvectors of the controllability Gramian reveals which
directions the system can be easily steered to, and which
are more energy-demanding. In particular, the direction
of the Eigenvector corresponding to an Eigenvector zero
cannot be reached. In other words, a controllable system
has a positive definite controllability Gramian.

The best controllable directions are spanned by the
Eigenvectors with the smallest Eigenvalues ofW−1

c . These

are equivalent to the span of the Eigenvectors to the largest
Eigenvalues of the controllability GramianWc.

Equivalently to the controllability case, observability can
be analysed quantitatively using the observability Gramian
Wo defined by

Wo =

∫

∞

0

eAT τCT CeAτ dτ (19)

or by

−CT C = AT Wo + WoA. (20)

The observability Gramian is a measure of the energy
visible in the output signal when letting the system freely
evolve fromx0 at time0 towards the steady state0:

‖y(·)‖2 =

∫

∞

0

yT (τ)y(τ) dτ = xT
0 Wox0. (21)

The observability Gramian is also symmetric and posi-
tive semi-definite. Scaling the output energy (21) byx0,

‖y(·))‖2

‖x0‖2
=

xT
0 Wox0

xT
0 x0

x0 6= 0. (22)

reveals that also here the directions in the span of the
Eigenvectors to the largest Eigenvalues are best observable.
In particular, states in the kernel of the observability
Gramian are unobservable.

Therefore, in both controllability and observability anal-
ysis, the direction corresponding to large Eigenvalues are
most sensitive to perturbations of the statex0.

A. Cross Gramians and Sensitivity Analysis

Analysing controllability and observability gives distinct
views about the importance of directions in the state
space. For an input-output analysis, a combination of both
is required. Moore [16] showed that a straightforward
combination can be misleading: For example, the least
observable states could be very good controllable. Thus
a small input signal could result in a non-negligible output
signal.

Balancing allows to overcome this problem, as it trans-
forms the states in such a way that the controllability
and observability Gramian are diagonal and identical (see
e.g. [17]). Then, the well controllable states are also well
observable.

A further alternative is to combine observability and
controllability using the so called cross Gramian [18], [19].
For systems with as many inputs as outputs, the cross
Gramian is defined as

Wco =

∫

∞

0

eAτBCeAτ dτ, (23)

and is the unique solution of the Sylvester equation

−BC = WcoA + AWco. (24)
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The cross Gramian is not only related to the controlla-
bility and observability Gramians by its similar definition,
it also holds that

W 2
co = WcWo, (25)

showing that the cross Gramian contains both the control-
lability and observability Gramian [20]. Furthermore, there
is a direct relation between the cross Gramian and steady-
state response as discussed next.

For single-input single-output systems, the steady-state
system gaing with respect to a step input is given by

g = −CA−1B. (26)

This steady-state gain is closely related to the cross
Gramian [18] as

trace Wco =
1

2
g. (27)

Note that the trace of a matrix is equivalent to the sum of
its Eigenvalues. The steady-state gain is therefore related
to the average of the Eigenvalues of the corresponding
cross Gramian. Equation (27) thus allows to link between
controllability and observability in a consistent way.

B. Linking Metabolic Control Analysis to Cross Gramians

This section provides a bridge between the system
theoretic concepts of controllability and observability with
Metabolic Control Analysis. Specifically, the the equiva-
lence of the concentration flux coefficient commonly used
in Metabolic Control Analysis and the cross Gramian is
shown. The cross Gramian can be seen as combining
quantitative controllability and observability properties of
the system into a single matrix.

Theorem 1 The concentration response coefficient of
Metabolic Control Analysis can be expressed by an ap-
propriately chosen cross Gramian:

Rxi

π :=
∂xi,ss

∂π
= 2 trace W (π,xi)

co (28)

in which the matrixW (π,xi)
co is the cross Gramian for the

input π and the outputxi.

Proof: The steady-state system gain (26) for the single-
input single-output system with inputp = π and output
y = Cx = xi is equivalent to the concentration response
coefficient (12). Combining this with (27) result in:

Rxi

π = CRx

π = −CA−1
ss Bss = g = 2 trace Wco.

This theorem shows the relationship between Metabolic
Control Analysis (a pure steady state consideration) and
a joint controllability/observability consideration viathe
cross Gramian. With this relation, it is possible to quantify
how the steady state response of a particular output is
influenced by a step perturbation of a particular parameter.

Remark 2 Further extensions of the provided result are
possible considering frequency-weighting as done in model
reduction, see for example [21], or [17]. With respect

to frequency weighting, it is interesting to note that the
Hankel norm of a linear system is equal to the largest
singular value of the cross Gramian. This allows to inves-
tigate the sensitivity for certain frequency bands, see for
instance [22].

IV. “N ONLINEAR” SENSITIVITIES USING EMPIRICAL

NONLINEAR GRAMIANS

Several extensions to standard Metabolic Control Anal-
ysis have been proposed. Among these are extensions for
non-equilibrium trajectories [23] or an approach that for
large scale parameter alterations [24].

The link shown here between Metabolic Control Anal-
ysis on the one hand and controllability and observability
on the other will allow a new viewpoint on non local
sensitivity analysis. In the first part of this work we
outlined a link between the system theoretic concepts of
observability and controllability and first order sensitivity
methods such as Metabolic Control Analysis as typically
used in systems biology. Specifically we showed that there
is a clear connection between cross Gramians known from
control theory and concentration response coefficients from
Metabolic Control Analysis. This connection is then used
in a second part to outline a new sensitivity analysis ap-
proach considering empirical cross Gramians for nonlinear
systems, allowing to overcome the local validity of first
order sensitivity methods. This allows to directly taking
nonlinearities as well as parameter-parameter-interactions
into account [25].

The method for the approximation of the empirical
nonlinear cross-Gramian relies on the use of (simulated)
data, similarly to the method for the approximation of the
empirical controllability and observability Gramian [25].
The data is collected from system trajectories which result
from simultaneous perturbations of the investigated input
and the initial conditions. The perturbations are defined by
the following sets:

Rρ =
{

R1, . . . , Rρ;Ri ∈ R
n×n, RT

i Ri = I, i = 1, . . . , ρ
}

P = {P1 = 1, P2 = −1}

Kκ = {c1, . . . , cκ; ci ∈ R, ci > 0, i = 1, . . . , κ}

Sσ = {d1, . . . , dσ; di ∈ R, di > 0, i = 1, . . . , σ} ,

wheren is the number of states of the nonlinear system (1).
Rρ is a set ofρ orthogonal matrices. This set should
be chosen in such a way that it covers the simultaneous
perturbations of the initial conditions which are of interest.
The setP is associated with the input perturbations,P1

for positive deviations from the nominal value, andP2

for negative deviations.Kκ and Sσ are sets of positive
constantsci and di, respectively.Kκ should cover the
amplitudes of interest for the perturbations of the initial
conditions, andSσ those for the inputs. The cross Gramian
can now be approximated for linear and nonlinear systems
by the empirical cross Gramian defined as follows:
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Definition 1 (Empirical Cross Gramian) Let Rρ, P,
Kκ, andSσ be given sets as described above. For the sys-
tem(1), define the empirical cross Gramian̂Wco around an
exponentially stable steady-statexnom with corresponding
nominal parameterpnom by

Ŵco =

2
∑

p=1

σ
∑

s=1

ρ
∑

r=1

κ
∑

k=1

∫

∞

0
RrΨ

psrk(t)RT
r dt

2σdsρκck

(29)

where the entries of then × n-matrix Ψpsrk(t) are given
for all i = 1, . . . , n and j = 1, . . . , n by

Ψpsrk
ij (t) = eT

i RT
r ∆xpsrkj(t; ds)P

T
p C∆xpsrkj(t; cκ)

(30)

with

∆xpsrkj(t; ξ) = xpsrkj(t) − x̄psrkj

−
(

xpsrkj
∣

∣

ξ=0
(t) − x̄psrkj

∣

∣

ξ=0

)

,

wherexpsrkj(·) is the state of the system(1) corresponding
to the impulsive inputusp(t) = pnom+dsPpδ(t) and initial
condition x

rkj
0 = xnom + ckRrej and x̄psrkj denotes its

steady-state.

Albeit the approximation method given by Definition 1
requires the collection of a large amount of data, it allows
to calculate a cross Gramian for nonlinear systems that
falls back to the classical definition (23) in the case of
linear systems, as shown next.

Proposition 1 For any nonempty setsRρ, P, Kκ andSσ

the empirical cross GramianŴco of the asymptotically
stable linear system(14) is equal to the usual cross
GramianWco (cf. (23)).

Proof: Due to the linearity of (14),xnom = 0 andpnom =
0. For the initial conditionxrkj

0 = ckRrej and the input
usp(t) = dsPpδ(t), the trajectory of the state vector is

xpsrkj(t) = eAtckRrej + eAtBdsPp,

and its steady-state is the origin, independently ofp, s, r,
k and j. Then, (30) simplifies to

Ψpsrk
ij (t) = eT

i RT
r eAtBdsPpP

T
p CeAtckRrej ,

and

Ψpsrk(t) = ckdsR
T
r eAtBPpP

T
p CeAtRr.

Hence,

Ŵco =
∑

p,s,r,k

∫

∞

0
RrckdsR

T
r eAtBPpP

T
p CeAtRrR

T
r dt

2σdsρκck

=
2

∑

p=1

ρ
∑

r=1

RrR
T
r

∫

∞

0
eAtBPpP

T
p CeAtdtRrR

T
r

2ρ
.

As Rr andPp are orthonormal,

Ŵco =

∫

∞

0

eAtBCeAtdt = Wco

which is the desired result.

V. EXAMPLE

An enzymatic reaction pathway, see Figure 1, illustrates
the use of empirical cross Gramians for sensitivity analysis
The example consists of four states,S, E, C, P and the

S C P

E

v2 v3 v4v1

Fig. 1. Enzymatic reaction pathway. All reaction follow the law of mass
action and are irreversible, exceptv2.

four reactions
• v1: → S: v1 = k1

• v2: S+E↔ C: v2 = k2se − k−2c

• v3: C→ P+E: v3 = k3c

• v4: P →: v4 = k4p.
The corresponding system is described by

ṡ = k1 − k2se + k−2c (31a)

ė = −k2se + k−2c + k3c (31b)

ċ = k2se − k−2c − k3c (31c)

ṗ = k3c − k4p. (31d)

Obviously, e(t) + c(t) is constant, a so-called conserved
moiety. Therefore, (31c) can be replaced by

c(t) = etot − e(t) (32)

with etot the total amount of enzyme. We use the notation:

x =
[

s, e, p
]T

,

k =
[

k1, k2, k−2, k3, k4

]T
.

Exemplarily, we choose the following numerical values for
the nominal state and the parameters:

xnom =
[

0.0534 9.6667 0.2500
]T

,

knom =
[

1, 2, 0.1, 3, 4
]T

,

etot = 10.

and analyse the sensitivity ofk1 on p. The setP =
{1,−1}, Rρ is chosen as

Rρ = {I,Q}

whereQ is a random orthonormal matrix, while the sets
Sσ andKκ are taken as logarithmically spaced intervals,
two values per decade, from10−4 up to a maximal value
which is varied from10−3 to at most100. Finally, the
systems is simulated over the time span[0, 100] and the
Dirac function is approximated as

δ(t) =

{

2
ǫ

(

1 − t
ǫ

)

t ∈
[

0, ǫ
]

0 else

with ǫ = 10−4. For large values ofck or ds, initial
conditions or parameters can be negative. These cases have
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been excluded from the corresponding sets to prevent non-
sensical simulations. Figure 2 shows the empirical control
coefficients calculated using (28) for different maximal
values of the setsKκ and Sσ. Figure 2 shows that for

0.001
0.01

0.1
1

10
100

0.001
0.01

0.1
1

10
100
0.2

0.22

0.24

0.26

0.28

0.3

max{c
k
}max{d

s
}

R

Fig. 2. Empirical cross Gramian for the exemplary pathway of Figure 1
from parameterk1 to statex4.

a large range of the parameter and initial conditions,
the sensitivity is close to0.25, the value obtained by
calculating the sensitivity coefficient from the linearisation
in the nominal case using (12).

This example shows that combining a sensitivity analy-
sis such a Metabolic Control Analysis with system theo-
retic concepts such as controllability and observability may
provide more insights into the systems.

VI. SUMMARY

The dynamics of biochemical reaction networks as typ-
ically encountered in systems biology often significantly
depends on a large amount of parameters such as maximum
reaction rates. Since even small changes e.g. the kinetic
properties of only one single enzyme can cause pronounced
changes in the behaviour of the entire network, an analysis
of the influence of these parameters on the steady states
and transient behaviour is of paramount importance. In the
first part of this work we outlined a link between the system
theoretic concepts of observability and controllability and
first order sensitivity methods such as Metabolic Control
Analysis as typically used in systems biology. Specifically
we showed that there is a clear connection between cross
Gramians known from control theory and concentration re-
sponse coefficients from Metabolic Control Analysis. This
connection is then used in a second part to outline a new
sensitivity analysis approach considering empirical cross
Gramians for nonlinear systems, allowing to overcome the
local validity of first order sensitivity methods.

This allows to directly taking nonlinearities as well as
parameter-parameter-interactions into account.
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