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Abstract— One of the key challenges in systems biology is significant changes in the behaviour of the entire network.
the analysis of often complex biochemical reaction networks Thus, analysing the influence of these independent param-

which contain many uncertain parameters. Typically, the atarg on the static and transient behaviour of the network
dynamics of these systems strongly depends on a significant .

amount of parameters, hampering the analysis significantly is of paramount |mportance. On_e of the tools typlcall_y
as even small changes in the value of parameters can US€d in systems biology to obtain deeper understanding
have significant influences on the overall behaviour of the and insight is sensitivity analysis. One specific example is

entire network. Thus, one of the key problems in systems Metabolic Control Analysis. In the frame of this work, we
biology is to analyse the influence of parameters on the g tjine relations between controllability and obseniapil

steady state and transient behaviour. In the first part of I itivit vsis tvoicall di X
this work we derive links between first order sensitivity 2S5 WEIl aS SENSItivity analysis typically used in systems

analysis as typically employed in systems biology and the biology. Most of these connections are based on linear
concepts of controllability and observability of systems theory. observations, e.g. are based on sensitivities of first order

Specifically we establish a close connection between crossin comparison to earlier works [3] we outline an expansion
Gramians and the so called response coefficients as used iNof these methods using nonlinear empirical cross Gramian

Metabolic Control Analysis. In a second part we outline an thod hich tially all ¢ the limited
expansion of this approach using empirical cross Gramians, methods, which partially allow to overcome the fimite

allowing to overcome some of the limitations of first order Validity of linear/first order methods.
sensitivity methods such as local validity. Typically, first order sensitivity analysis methods are

employed to analyse the influence of parameter changes on
the system behaviour. A common methods for biochemical
Dramatic advances in proteomics, genomics, and meeeaction networks is Metabolic Control Analysis, which
surement technologies such as DNA arrays have leaplicitly takes into account the structure and invariance
to a significantly increased knowledge about biologicalmposed on the system by the stoichiometry of the net-
organisms. Traditionally, biological research is purgugn work. The basic framework of Metabolic Control Analysis
reductionistic approach and is thus interested in ideintify can for example be found in [4]—-[6]. Significant progress
individual genes, proteins and cells, and studying thesr spwith respect to Metabolic Control Analysis has been made
cific functions. However, by now it has become clear thabver the last decades [7]-[10].
understanding biological organisms is not merely possible Recently, deriving links between control theory and
by collecting information about all involved componentsthe analysis of biochemical reaction systems has received
Rather, a holistic understanding of biological organismsignificant interest, see e.g. [11]-[14]. Deriving sinitias
requires considering all involved components as well aand connections between control theory and the analysis
the interactions between them, since the interactions aoé biochemical reaction systems, it is hoped that one can
ultimately responsible for an organism’s form and funciackle problems which are so far not solvable, for example,
tions [1], [2]. with Metabolic Control Analysis such as nonlinearities,
Systems biology aims at obtaining a holistic understandnulti-parameter interactions, large-scale parametar-alt
ing of biological systems such as a single cell, organ ations etc.
even a whole living organism combining approaches from Specifically, we derive links between classical systems
system sciences, life sciences, and information sciencéleory concepts, such as controllability and observabilit
One of the problems in systems biology is the modellingnd Metabolic Control Analysis. We establish a clear
and analysis of biochemical reaction networks governingonnection between the cross Gramian, which is closely
metabolic pathways or signalling cascades. These netwoniedated to observability and controllability Gramiansdan
are typically very complex involving many species andhe response coefficients of Metabolic Control Analysis.
parameters. The dynamics of the overall reaction syste@onceptually these results are of interest, since they re-
often depends significantly on a rather large number déte the analysis via the consideration of whole system
independent parameters such as reaction rate constantdrajectories (Gramians) to purely static consideratiarchs
initial conditions of single reactions. For example, even as used in Metabolic Control Analysis. Furthermore, the
small change of a single enzyme concentration can lead derived results can be expanded to time varying systems

I. INTRODUCTION
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and higher order/nonlinear sensitivity analysis. B. First Order considerations

The paper is structured as follows: In Section Il we Around a steady-statérss, psJ), the system (1) can be
introduce the considered biochemical reaction networkgnnroximated by its linearisation:
and problem setup. Section Ill contains a brief outline
of first order sensitivity analysis, including Metabolic Az = AssAz + BssAp, )
Control Analysis which is typically used in the analysis
of biochemical reaction networks. Furthermore we derivd/1€re
in this Section a link between between Metabolic Con-

; . Ar=x—=x
trol Analysis and cross Gramians as known from control s

theory. In Section IV we derive an “nonlinear” expansion Ap =p —Pss

of the derived results using empirical Gramian methods. A= N@(w Pe)
These allow to obtain less local results. The derived result s ox VTS
is exemplified in Section V c_on5|der|ng a small example Bss = N —(ss, Dss)-
system, before we conclude in Section VI. op

For an asymptotically stable steady-state, straightfoiwa
calculation shows that a constant parameter deviation of
We consider in this paper the analysis of dynamical\p results in a steady-state shift of
systems describing the behaviour of biochemical networks. 4
. - : ; ; Azss= —Agg BssApgs (6)
Typically biochemical reaction networks are modelled in ss sS

terms of the evolution of the-dimensional vector: of  The asymptotic stability of the steady-state directly i@l
concentrations that A is invertible and therefore a unique solution of (6)

& = Nv(z,p(t), =(t) = xo. ) exists.

The rate vectorv is an m-dimensional function of the
state and thé-dimensional parametens. Parameters are )
typically reaction rate constants or enzyme concentration Eduation (6) relates small parameter change towards
but can be initial conditions. The stoichiometty ¢ changes in the steady-state. More generally, sensitivity
R"*™ relates the rate vector to the rate of change of thanalysis describes the influence of the parameters on

Il. CONSIDEREDSYSTEM CLASS

IIl. FIRSTORDER SENSITIVITY ANALYSIS IN SYSTEMS
BioLoGY

states. the'sta}tes. The linear sensitivity is defined as the partial
derivative of the state vector
A. Conserved Moieties ox ;
. . . = a0 S(t) e R™ (7)
A common feature of many biochemical reaction sys- Jp

tems is the existence of conserved moieties. These Corighere, for mathematical convenience, we assume constant
spond to linear dependent states, often restricted torlinegarameters. These linear sensitivities can be calculated a

dependencies with non-negative coefficients. the solution of the following equation:
In the presence of linear dependent states, the state space P P
can be partitioned into independent stateand dependent S =N—(z,p) + N—(x,p), (8)
statesz: oz op
. S(0) = [81(0), -+, Su(0)],
€T
T = [~] . (2) )
z with
With a suitably chosen link matrix, (1) can be rewritten e; if p; is an initial condition
as Sz(o) = . (9)
0 otherwise
d i': I - s . . i .
= {J = [L] No(z,p(t)). (3) Wheree; is the Euclidean basis vector whose i-th entry is
dt |z equal to one. Equation (8) follows from (1) by taking the

- ) partial derivatives with respect to the parameters on both
whereN has full row rank. It directly follows that the evo- gjqes and swapping the order of differentiation.
lution of Z can be described by pure algebraic equations: arqund an asymptotically stable steady-stétgs, p.),
~ 5 the solution of (8) converges to
2(t) = L&(t). 4)
) . ) - . SSS: _AS_SIBSS' (10)
Thus, only the differential equation faf is necessary
for describing the systems dynamics. In the followingThis is equivalent to (6) as
we assume that the reduction via conserved moieties has
already been performed, i.e. for simplicity of notati@n Ses= lim A“’SS.
corresponds to the reduced state vedtor Apy—0 Apgg

11)
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In metabolic engineering, a classical approach for semre equivalent to the span of the Eigenvectors to the largest
sitivity analysis is Metabolic Control Analysis (MCA), see Eigenvalues of the controllability Gramidiv...
e.g. [15] for a review. Two sensitivities are commonly Equivalently to the controllability case, observabilignc
used in MCA. First, theconcentration response coefficientbe analysed quantitatively using the observability Gramia
which is equivalent to the steady-state sensitivity asrgivelV, defined by

in (10): -
_ AT+ ~T AT

R; — *A;SIBSS- (12) WO = /0 (& C*Ce dr (19)
Second, thdlux response coefficiemheasures the linear by
sensitivity of the parameters with respect to the rate vecto
also at steady state, and is given by _OTC = ATW, + WA (20)

ov ov
Ry = %(mSSvpss)R:; + %(mss’pss)' (13)  The observability Gramian is a measure of the energy

Remark 1 Common in MCA is the use of relative sensitiv-VISIble In the output signal when letting the system freely

i, : e : evolve froma at time 0 towards the steady sta@e

ities, sometimes also called scaled sensitivities, méagur

the impact of a relative change of parameter. To simplify 5 < T

the presentation, this paper discusses only the unscaled ()l :/O y (My(r) dr =z Woao.  (21)
case. Other sensitivity approaches also not discussed here N o ) )
are higher-order sensitivities and bifurcation analyses. 1€ observability Gramian is also symmetric and posi-

i . ) ) ~ tive semi-definite. Scaling the output energy (21)4ay
In this section, we will restrict the system class to linear

systems with an asymptotically stable steady state: ly()I* — &d Wz
= zo # 0. (22)
#=Ax+ Bp |20l Ty Lo
y=Cz, (14) reveals that also here the directions in the span of the

Eigenvectors to the largest Eigenvalues are best observabl
In particular, states in the kernel of the observability
ramian are unobservable.
Therefore, in both controllability and observability anal
ysis, the direction corresponding to large Eigenvalues are
most sensitive to perturbations of the state

where the parameter is used as input.

How easily the input can influence the state is quantifie
by the controllability GramianiW,, the minimal input
energy necessary for steering the system fi@rat time
—oo to g at time 0

0
A2 — T _ Tyy—1
el / p(7) p(r)dr =2y W0 (15) A. Cross Gramians and Sensitivity Analysis

The controllability GramiarV, is defined by: Analysing controllability and observability gives distin
0 views about the importance of directions in the state
W, = / e A" BBTe AT dr (16) space. For an input-output analysis, a combination of both
-0 is required. Moore [16] showed that a straightforward
and is the solution of the Lyapunov equation [16]: combination can be misleading: For example, the least
observable states could be very good controllable. Thus
—BBT = AW, + W, AT, (A7) asmall input signal could result in a non-negligible output

signal.

Balancing allows to overcome this problem, as it trans-
forms the states in such a way that the controllability
And observability Gramian are diagonal and identical (see
e.g. [17]). Then, the well controllable states are also well
Hpopt(')”Q B eI Wz, observable.

J o # 0. (18) A further alternative is to combine observability and
controllability using the so called cross Gramian [18],][19

_An analysis of the E|gen_v_alues af‘d correspono!mgor systems with as many inputs as outputs, the cross
Eigenvectors of the controllability Gramian reveals Wh'dbramian is defined as

directions the system can be easily steered to, and which

The Gramian based enerdy,,, ()| is proportional to
the “norm” of xy. To gain insight into how controllable
specific directions in the state-space are, we therefote sc
Do DY the Euclidean length at:

lzoll* afxo

are more energy-demanding. .In particula_r, the direction W, = /OO eATBCeAT dr, (23)

of the Eigenvector corresponding to an Eigenvector zero 0

cannot be reached. In other words, a controllable system i . ]

has a positive definite controllability Gramian. and is the unique solution of the Sylvester equation
The best controllable directions are spanned by the

Eigenvectors with the smallest Eigenvaluediof 1. These —BC = Weo A+ AW (24)

439



The cross Gramian is not only related to the controllato frequency weighting, it is interesting to note that the
bility and observability Gramians by its similar definition Hankel norm of a linear system is equal to the largest
it also holds that singular value of the cross Gramian. This allows to inves-

9 tigate the sensitivity for certain frequency bands, see for
Weo = WeWo, (25 instance [22].
showing that the cross Gramian contains both the control-
lability and observability Gramian [20]. Furthermore, rtae
is a direct relation between the cross Gramian and steady-
state response as discussed next. Several extensions to standard Metabolic Control Anal-

For single-input single-output systems, the steady-staysis have been proposed. Among these are extensions for
system gairy with respect to a step input is given by  non-equilibrium trajectories [23] or an approach that for
large scale parameter alterations [24].

IV. “N ONLINEAR” SENSITIVITIES USING EMPIRICAL
NONLINEAR GRAMIANS

g=-CA™'B. (26) The link shown here between Metabolic Control Anal-

This steady-state gain is closely related to the crossis on the one hand and controllability and observability
Gramian [18] as on the other will allow a new viewpoint on non local
1 sensitivity analysis. In the first part of this work we

trace We, = 59 (27)  outlined a link between the system theoretic concepts of

o . gbservability and controllability and first order senstiiv
_Note_ that the frace of a malrix is equ_lva_lent to the sum g 04s such as Metabolic Control Analysis as typically
its Eigenvalues. The stegdy—state gain is therefore mla_tﬁsed in systems biology. Specifically we showed that there
to the average of thg Eigenvalues of the cqrrespondlqg a clear connection between cross Gramians known from
Cross Gramlan. Equation (2,7,) thus allow§ to link bEtWeeEontrol theory and concentration response coefficienta fro
controllability and observability in a consistent way. Metabolic Control Analysis. This connection is then used

B. Linking Metabolic Control Analysis to Cross Gramiansin & second part to outline a new sensitivity analysis ap-

This section provides a bridge between the syster‘?\roaCh considering empirical cross Gramians for nonlinear

theoretic concepts of controllability and observabilitithw systems, a_IIpvymg to overcome the local Va.ll'd'ty of f|_rst
Metabolic Control Analysis. Specifically, the the equiva-order sensitivity methods. This allows to directly taking

lence of the concentration flux coefficient commonly usegonlmeannes as well as parameter-parameter-intenast

in Metabolic Control Analysis and the cross Gramian iémo account [25]. L .
shown. The cross Gramian can be seen as combinin The method for the approximation of the empirical

guantitative controllability and observability propesi of n nhne_ar_ cross-Gramian relies on the use.of (_S|mulated)
the system into a single matrix. data, similarly to the method for the approximation of the

empirical controllability and observability Gramian [25]
Theorem 1 The concentration response coefficient offhe data is collected from system trajectories which result
Metabolic Control Analysis can be expressed by an agfrom simultaneous perturbations of the investigated input

propriately chosen cross Gramian: and the initial conditions. The perturbations are defined by
O o5 4 the following sets:
Ry = Tiss _ 9 trace W ime) (28
om RP ={Ry,...,Ry;R; e R"™" RTR, = I,i=1,....p}
in which the matrixiv5"*) is the cross Gramian for the P — {PL=1,P, = -1}
input — and the outputz;. Kr={er,...,ch5¢i €Re; >0,i=1,..., Kk}

Proof: The steady-state system gain (26) for the singles” = {d,,... d,;d; € R,d; > 0,i=1,...,0},
input single-output system with inpyt = = and output . ]
y = Cz = z; is equivalent to the concentration responsé‘"here” is the number of states of the nonlinear system (1).

coefficient (12). Combining this with (27) result in: R” is a set ofp orthogonal matrices. This set should
be chosen in such a way that it covers the simultaneous

Ry = CRE = —CAG/ By, = g = 2traceWo. ™ perturbations of the initial conditions which are of intsre

This theorem shows the relationship between Metabolik"® se'FP IS asgoqated with the mpqt perturbatiors,
Control Analysis (a pure steady state consideration) arjd’ Positive deviations from the nominal value, aitd
a joint controllability/observability consideration vide [OF Negative deviationsk™ and 57 are sets of positive
cross Gramian. With this relation, it is possible to quantif €onstantsc; and d;, respectively. X should cover the
how the steady state response of a particular output amplitudes of interest for the perturbations of the initial

influenced by a step perturbation of a particular parameté©nditions, and? those for the inputs. The cross Gramian
can now be approximated for linear and nonlinear systems

Remark 2 Further extensions of the provided result arepy the empirical cross Gramian defined as follows:
possible considering frequency-weighting as done in model
reduction, see for example [21], or [17]. With respect
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Definition 1 (Empirical Cross Gramian) Let R”, 7P, V. EXAMPLE
K", andS? be given sets as described above. For the sys- an enzymatic reaction pathway, see Figure 1, illustrates

tem(1), define the empirical cross Gramia#i., around an  the yse of empirical cross Gramians for sensitivity analysi

exponentially stable steady-statgom with corresponding The example consists of four states, E, C, P and the
nominal parametepnom by

. 2 o p K foo R \I}psrk: (t)RTdt (%} S (%] C U3 P Uy
— 0 ”' T
D 3) 3) B PR i Ll LApES) o ro—" ro—r
p=1s=1r=1k=1 s
where the entries of the x n-matrix ¥»*"*(¢) are given E

foralli=1,...,nandj=1,...,n by

psrk _ T pT psTkj (1. T psrkj (4.
\Ij’ij (t) = ei R, Az z dS)PP CAx (t; cx) Fig. 1. Enzymatic reaction pathway. All reaction follow tlaevl of mass
(30)  action and are irreversible, except.
with _
' 4 . four reactions
AT (€)= a? T (1) — T .o S =k
_ (wpsrkj‘gzo (t) _ jps7'kj}£:0>7 ° UQE S+E «— C ’Ugj kose — k_qc
e v3. C— P+E:v3 = k3¢

wherez?*"*J (.} is the state of the systeft) corresponding o v4: P —i vy = kyp.
to the impulsive input:*? (t) = prom+ds P,0(t) and initial  The corresponding system is described by

condition ™" = xpom+ ¢ R,e; and &P*"%i denotes its .
steady-stat(t)e. rom T §=ky — kgse+k_oc (31ay)
. L ) _— c = —k k_ k 31b
Albeit the approximation method given by Definition 1 ci 256 o€t i (31b)
¢ = kose — k_oc — ksc (31¢)

requires the collection of a large amount of data, it allows
to calculate a cross Gramian for nonlinear systems that P = ksc — kap. (31d)
falls back to the classical definition (23) in the case Obbviously B

; (t) + c(t) is constant, a so-called conserved
linear systems, as shown next.

moiety. Therefore, (31c) can be replaced by
Proposition 1 For any nonempty set® ,, P, £ and §° -
the empirical cross GramiaiV,, of ttfme asymptotically e(t) = o —elt) (32)
stable linear system(14) is equal to the usual cross with ey the total amount of enzyme. We use the notation:
Gramian W, (cf. (23)). T

T = [57 €, p} )
Proof: Due to the linearity of (14)&nom = 0 and pnom = Ik 3 2 I 1T
0. For the initial conditionz}*/ = ¢, R,e; and the input k= [k, ko ko2 ks k]
u®P(t) = dsP,0(t), the trajectory of the state vector is  Exemplarily, we choose the following numerical values for

aP ki (1) = ey Rye; + eAtBd, Py, the nominal state and the parameters:

T
and its steady-state is the origin, independently,of, r, Lnom = [00534 9.6667 0'2500] g
k andj. Then, (30) simplifies to knom=[1, 2, 0.1, 3, 4]T,
\Ijg’;rk(t) = elTR?eAthSPpcheAtCerej7 €ot = 10.
and analyse the sensitivity 0f; on p. The setP =

K _— - {1,—1}, R” is chosen as
v (t) - deSRr ¢ tBPpPp Ce tRT' RP = {IvQ}

Hence,

and

- oA o - where () is a random orthonormal matrix, while the sets
W — Z Jo RrcrdsRy e BB, P/ Ce™ R, Ry dt S° and K~ are taken as logarithmically spaced intervals,

St 20dspKey, two values per decade, fron®—* up to a maximal value
2, I oA . which is varied from10~3 to at most100. Finally, the
= ZZ R.R; [, e BB, P, CedtR R, . systems is simulated over the time sgan 100] and the
111 2p Dirac function is approximated as
As R, and P, are orthonormal, 5(t) = 21-4) te {0, e}
. o0 0 else
Weo = / e BCeMdt = W, . o
0 with ¢ = 10~*. For large values ofc, or d,, initial
which is the desired result. m conditions or parameters can be negative. These cases have
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been excluded from the corresponding sets to prevent norz]
sensical simulations. Figure 2 shows the empirical control
coefficients calculated using (28) for different maximal 5
values of the set&C” and S?. Figure 2 shows that for

[4]

0.3 [5]

0.28

0.26 [6]
o

0.24

(7]
(8]

0.22

0.2
100

100

1 10

01 0.1 !
. .001
max{d_} max{c, }
Fig. 2. Empirical cross Gramian for the exemplary pathway otiFgégl [10]
from parametek; to statex,.
[11]

a large range of the parameter and initial conditions,
the sensitivity is close td).25, the value obtained by
calculating the sensitivity coefficient from the lineatiea
in the nominal case using (12).

This example shows that combining a sensitivity analy3]
sis such a Metabolic Control Analysis with system theor 4
retic concepts such as controllability and observabiligym
provide more insights into the systems.

(12]

[15]
VI. SUMMARY

The dynamics of biochemical reaction networks as typH6l
ically encountered in systems biology often significantly
depends on a large amount of parameters such as maximpm
reaction rates. Since even small changes e.g. the kinetic
properties of only one single enzyme can cause pronounc
changes in the behaviour of the entire network, an analysis
of the influence of these parameters on the steady staté$]
and transient behaviour is of paramount importance. In th[90]
first part of this work we outlined a link between the system
theoretic concepts of observability and controllabilityda
first order sensitivity methods such as Metabolic Contrd?H
Analysis as typically used in systems biology. Specifically
we showed that there is a clear connection between cross
Gramians known from control theory and concentration €501
sponse coefficients from Metabolic Control Analysis. This
connection is then used in a second part to outline a new
sensitivity analysis approach considering empirical grod?®l
Gramians for nonlinear systems, allowing to overcome the
local validity of first order sensitivity methods.

This allows to directly taking nonlinearities as well as
parameter-parameter-interactions into account.

[24]
(25]
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