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Abstract: Regression using Gaussian process models is applied to time-series data 
analysis. To extract from the data separate components with different frequency 
scales, the Gaussian regression methodology is extended through the use of multiple 
Gaussian process models. Fast and memory-efficient methods, as required by 
Gaussian regression to cater for large time-series data sets, are discussed. These 
methods are based on the generalised Schur algorithm and a procedure to determine 
the Schur decomposition of matrices, the key step to realising them, is presented. In 
addition, a procedure to appropriately initialise the Gaussian process model training 
is presented. The utility of the procedures is illustrated by application of a multiple 
Gaussian process model to extract separate components with different frequency 
scales from a 5000-point time-series data set with gaps. Copyright © 2006 
USTRATH 
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1. INTRODUCTION 

 
Following the early work by MacKay (1998) and 
Williams (1999), there has been increasing interest in 
the application of Gaussian process prior models to 
data analysis (Gibbs and MacKay, 2000; Yoshioka, 
and Ishii, 2001), including data filtering and fitting, 
statistical modelling and system identification. 
Gaussian regression based on models with two 
stochastic processes is discussed in Leithead et al 
(2005b). During training of the prior model the two 
Gaussian processes are conditioned on data subject 
to the condition that they remain independent. 
Separate components in the data with different 
characteristics or, more precisely, their description 
by probability distributions can then be extracted. 
 
In this paper, the application of Gaussian regression 
to time-series data analysis is considered. A brief 
overview of Gaussian regression is given in Section 
2. The methodology based on Gaussian process 
models with two stochastic processes is extended in 

Section 3 to models with M stochastic processes. 
When applied to time-series data, separate 
components with different frequency scales can then 
be extracted. However, for a data set of size N, many 
matrix manipulations requiring O(N3) operations and 
O(N2) memory-storage, such as matrix inversion and 
log-determinant, are necessary during training and 
prediction. Since the matrices, encountered in the 
application of Gaussian regression to the analysis of 
large time-series data sets, are Toeplitz-like, fast and 
memory-efficient methods for matrix manipulation 
are possible. Methods, based on the Schur algorithm 
rather than the Modified Levinson-Durbin’s 
algorithm (Zhang and Leithead, 2004), are more 
general and so are preferred; for example, when 
analysing time-series data with gaps. Fast and 
memory-efficient methods based on the Schur 
algorithm, with the focus on the key step of 
determining the Schur decomposition, are discussed 
in Section 4. A procedure to determine the Schur 
decomposition is proposed. In addition, training of 
the Gaussian process prior models is non-convex. 



     

Hence, it may be inefficient and can converge on an 
incorrect model. A procedure to ensure appropriate 
initialisation, when applying Gaussian regression to 
time-series data, is presented in Section 5. Finally, 
the utility of the above procedures is illustrated in 
Section 6 by application of a multiple Gaussian 
process model to extract independent components 
from a time-series data set with gaps. 
 
 

2. GAUSSIAN PROCESS PRIOR MODELS 
 

A   brief   explanation   of   the    standard    Gaussian 
regression methodology and its application to data 
analysis is reviewed in this section. Consider a 
smooth scalar function f(.) dependent on the 
explanatory variable, pℜ⊆∈ Dz . Suppose N 
measurements, ( ){ }N

iii 1y, =z , of the value of the 
function with additive Gaussian white measurement 
noise, i.e. yi=f(zi)+ni, are available and denote them 
by M. It is of interest here to use this data to learn the 
mapping f(z) or, more precisely, to determine a 
probabilistic description of f(z) on the domain, D, 
containing the data. Note that this is a regression 
formulation and it is assumed the input z is noise 
free. The probabilistic description of the function, 
f(z), adopted is the stochastic process, fz, with the 
E[fz], as z varies, interpreted to be a fit to f(z). By 
necessity, to define the stochastic process, fz, the 
probability distributions of fz for every choice of 
value of D∈z  are required together with the joint 
probability distributions of 

izf  for every choice of 
finite sample, {z1,…,zk}, from D, for all k>1. Given 
the joint probability distribution for 

izf , i=1..N, and 
the joint probability distribution for ni, i=1..N, the 
joint probability distribution for yi, i=1..N, is readily 
obtained since the measurement noise, ni, and the 
f(zi) (and so the 

izf ) are statistically independent. M 
is a single event belonging to the joint probability 
distribution for yi, i=1..N. 
 
In the Bayesian probability context, the prior belief is 
placed directly on the probability distributions 
describing fz which are then conditioned on the 
information, M, to determine the posterior 
probability distributions. In particular, in the 
Gaussian process prior model, it is assumed that the 
prior probability distributions for the fz are all 
Gaussian with zero mean (in the absence of any 
evidence the value of f(z) is as likely to be positive 
as negative). Only a definition of the covariance 
function ]f,f[),(

ji
EC ji zzzz = , for all zi and zj, is 

required to complete the statistical description. The 
resulting posterior probability distributions are also 
Gaussian. This model is used to carry out inference 
as follows. 

 
Clearly, by Bayes’ rule, p(fz|M)=p(fz,M)/p(M) where 
p(M) acts as a normalising constant. Hence, with the 
Gaussian prior assumption, 
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where Y=[y1,…yN]T, Λ11 is E[fz, fz], the ijth element 
of the covariance matrix Λ22 is E[yi, yj] and the ith 
element of vector Λ21 is E[yi, fz]. Both Λ11 and Λ21 
depend on z. Applying the partitioned matrix 
inversion lemma, it follows that 

( ) ( )

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 −Λ−−∝ −

zzzzzz f̂ff̂f
2
1exp)|f( 1Mp  

with Yz
1

2212f −= ΛΛ , 21
1

221211 ΛΛΛ −−Λ=Λ z . 
Therefore, the prediction from this model is that the 
most likely value of f(z) is the mean, zf̂ , with 

variance Λz. Note that zf̂  is simply a z-dependent 
weighted linear combination of the measured data 
points, Y, using weights 1

2212
−ΛΛ . The measurement 

noise, ni, i=1,..N, is statistically independent of f(zi), 
i=1,..N, and has covariance matrix B. Hence the 
covariances for the measurements, yi, are simply 

]f,f[E]fy[E;B]f,f[E]yy[E ,, zzzzz iji iijji =+=  
 
The prior covariance function is generally dependent 
on a few hyperparameters, θ. To obtain a model 
given the data, M, the hyperparameters are adapted to 
maximise the likelihood, p(M|θ), or equivalently to 
minimise the negative log likelihood, L(θ), 

YY 1)(
2
1|)(|log

2
1)( −+= θθθ CCL T  (1) 

where 22)( Λ=θC , the covariance of the 
measurements. 
 
When, as here, the data set is a time series, the 
explanatory variable is simply time, i.e. zi=ti. A 
common choice of the covariance function for time 
series analysis is ])tt(exp[ 2

2
1

jida −− , where the 
hyperparameter, d, is related to the length-scale of 
the data and the hyperparameter, a, to the amplitude 
of the data such that ]f,f[E tt ii

a = . Assuming the 
measurement noise is white, its covariance function 
is ijnδ , where n is the noise variance such that 

],[E ii nnn = . It follows that the covariance function 
for the measured data and so the ij-th element of C(θ) 
is 

{ }ijji bda δ+−− ])tt(exp[ 2
2
1  (2) 

where abn = . The hyperparameters for the prior 
model (2) are θ=(a,d,b). 
 
 

3. MODELS WITH MULTIPLE GAUSSIAN 
PROCESSES 

 
The procedure outlined in Section 2 is very effective 
when used to identify a single function. However, 
suppose that the measurements are the sum of the 
values of M functions, each with different 
characteristics; that is, the measured values are 

iiii ny +++= )(f)(f M1 zz K . The case with M=2 is 
discussed in detail in (Leithead et al 2005b). A 
possible probabilistic description of 

)(f)(f)(h M1 zzz ++= K  is by means of the sum of 
M independent Gaussian processes, zz M1 f,..,f . Let 
the covariance functions for these independent 



     

Gaussian processes be ),( jif1
zzC ,…, ),( jifM

zzC , 
respectively, then zzz M1 ffh ++= L , is itself a 
Gaussian process with covariance function 

M1 ffh CCC ++= L . 
 
 With T

kkk K
]f,,f[

1 zzzF L= , the ijth element of  

],[E ˆ~ˆ~ zz
FF

zz FF nm
nm =Λ  is nm

ji

ff
ˆ~ zzΛ . The prior joint 

probability distribution for zF ˆ1 ,…, zF ˆM  and Y is 
Gaussian with mean zero and covariance matrix 
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where MM11 FF
zz

FF
zzBQ ΛΛ +++= L  and B is the noise 

covariance matrix. Applying the partitioned matrix 
lemma, the posterior joint probability distribution for 

zF ˆ1 ,…, zF ˆM   conditioned on the data, Y remains 
Gaussian with mean, M , and covariance matrix, Λ , 
where 
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The mean and covariance matrix for 

zzz FFH ˆMˆ1ˆ ++= L  are, respectively, YQH
zz

1
ˆ

−Λ  and 
H
zz

H
zz

H
zz Q ˆ

1
ˆˆˆ ΛΛΛ −− , where MM11

ˆˆˆ
FF

zz
FF

zz
H
zz ΛΛΛ ++= K . 

 
However, the requirement here is to determine the 
posterior probability distribution for zF1 ,…, zFM , 
conditioned on the data, subject to the condition that 
they remain independent. It is met (Leithead et al 
2005b) through a transformation of the zF1 ,…, zFM  
such that the mean and covariance of the posterior 
joint probability distribution become, respectively, 
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where kk
k

FFFF
ZZZZ

ΛΛΛ ++= L11  and BQ += kk Λ . 
(Note, the likelihood of the data remains unaffected 
by the transformation). 
 
When applied to time-series data, these multiple 
Gaussian process models enable separate 
components with different frequency scales to be 
extracted. 
 

 
4. GENERALISED SCHUR ALGORITHM  

 
For time-series data with a constant sampling 
interval, as here, the covariance matrix, C(θ), is 

Toeplitz (or, when there are gaps in the data, block-
Toeplitz), and has low displacement rank. Applying 
the generalised Schur algorithm (Kailath and Sayed, 
1999), many manipulations of these low 
displacement rank matrices require only O(N2) 
operations, rather than O(N3). These fast memory-
efficient methods then enable the use of Gaussian 
regression with large time-series data. 
  

Consider a positive-definite matrix, NNR ×∈R . The 
triangular decomposition is denoted by 

TLLDR 1−=  
where D = diag{d0,d1,..dN-1} is a diagonal matrix. 
The lower triangular matrix L is normalised so that 
the elements on its main diagonal are the {di}. This 
LDL-decomposition can be obtained through the 
Schur reduction algorithm. 
 
The Schur algorithm applies to strongly regular 
Hermitian Toeplitz-like matrices, R, satisfying 

** GJGFRFRR ≅−=∆ , IJJJ T == 2,  (3) 
for some full rank generator matrix G, and lower 
triangular matrix, F, for which the diagonal elements, 

}{ if , satisfy 

01 * ≠− ji ff  for all i, j (4) 
The signature matrix, J, is defined to be J-unitary, 

)( qp IIJ −⊕= , where p and q are, respectively, the 
number of strictly positive and strictly negative 
eigen-values of ∆R. K=p+q, the total number of non-
zero eigen-values, is the displacement rank of R. 
 
A key requirement is a procedure to determine 
explicitly the rank-revealing decomposition, {G, F 
and J}. In the context of Gaussian process prior 
models, R is real, symmetric and positive-definite. 
(Its successive Schur complements are also positive-
definite.) J is simply defined to be )( 2/2/ KK II −⊕ , 
i.e. p = q. F is the strictly lower-triangular shift 
matrix, )(

321
K⊕⊕⊕= NNN ZZZF , depending on 

the number of inner Toeplitz-blocks inside R. Matrix 
ZN is defined here to be a square lower-triangular 
shift matrix with ones on the first subdiagonal and 
zeros elsewhere (i.e. a lower-triangular Jordan block 
with eigenvalue equal to zero). The generator matrix, 
G, can be obtained by the following procedure. 
 
Procedure 1: 
1) Let NNR ×∈R  be a symmetrical and Hermitean 
matrix, with low displacement rank, K<<N, such that 
the reduced-row echelon form (RREF) is 
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where [ ]TT BAB ~~
=  and 2/2/ KKA ×∈R  is 

symmetric. Any symmetric Hermitean block-Toeplitz 
matrix can be transformed into a matrix with the 
above RREF by permuting its rows and columns. Let 

EDE =Γ  be the eigen-value decomposition of  
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where D is diagonal. The non-zero eigen-values of 
∆R are real and positive and identical to the eigen-
values of Γ. In addition, the eigen-vectors of ∆R are 
real and equal to the columns of YIBX T]0[+  

where KKTTT EYX ×∈= R][ . 
2) The values of some of the eigen-values of G 
can be very similar. For numerical reasons, the 
computed eigen-values and eigen-vectors can then 
include complex conjugate pairs, i.e. D and E are 
complex. Although, the imaginary parts of these 
computed eigen-values are extremely small, the 
imaginary parts of the eigen-vectors can be large. 
Hence, to ensure D and E are real, the following 
corrections are made, 

)()(
)(

EimagErealE
DrealD

+→
→

 

3) Each column of KNT YIBX ×∈Ψ=+ R]0[  is 
an eigen-vector of ∆R with eigen-value unchanged; 
that is, the diagonal elements of D. However, since 
all the eigen-values are not distinct, the columns of 
Ψ are not automatically orthonormal as required. To 
enforce orthogonality the columns of Ψ are updated 
recursively for k = 2,…K such that, ki ≥∀ , 

i
T
i

i
T
kk

ii ΨΨ
ΨΨΨ

−Ψ→Ψ −− )( 11  

where iΨ  is the i-th column of Ψ. To obtain 
orthonormality the columns are then rescaled such 
that, k∀ , 

k
T
kkk ΨΨΨ→Ψ /  

4) With KN×∈Ψ R , obtained as above, 
TDR ΨΨ≅∆ . D has a decomposition  

TT XHHXD )( Ω=  
where H is the unitary permutation matrix separating 
the positive and negative eigen-values, λi from each 
other. X is a diagonal matrix with its diagonal 
elements comprised of the square-root of the 
absolute values of the eigen-values, iλ ; that is 

)||,,||( 1 KdddiagX L=  
The required decomposition of ∆R is obtained with 

XHG
J

Ψ=
Ω=

 

that is, TGJGR ≅∆ , where XHG Ω∆  is the 
generator matrix for ∆R. 
 
 

5. HYPERPARAMETER INITIALISATION 
 
As discussed in Section 2, in Gaussian regression the 
hyperparameters, on which the covariance function 
depends, must first be trained; that is, to obtain the 
Gaussian process prior model given some data M, 
the hyperparameters are adapted to maximise the 
likelihood of the data or equivalently to minimise the 
negative log likelihood, (1). However, in general, 
minimising the log likelihood is not a simple convex 
optimisation problem; for example, the log 
likelihood can have multiple local minima. The local 
minima can be associated with different aspects of 

the data. For instance, when the data is a time series 
consisting of a long length-scale component and a 
short length-scale component, one minimum may 
correspond to the long length-scale and another 
minimum to the short length-scale component. 
Depending on the choice of initial values for the 
hyperparameters, the outcome of the optimisation 
process could be a model of either. To obtain an 
efficient optimisation of the hyperparameters, that 
converges quickly, it is essential to choose 
appropriate initial values. In this section, a procedure 
for doing so, when Gaussian regression is applied to 
time-series data, is presented. 
 
For time-series data, suppose the mean of the data is 
zero. (if not it can always be made so). The initial 
values of the hyperparameters θ=(a,d,b) for the 
covariance function (2) are determined by the 
following procedure. The discussion is illustrated 
using the power spectral density in Fig.1. 
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Fig. 1. Power spectrum of time-series data. 

 
Procedure 2: 
1) Provided the time series data is of sufficient 
length, its variance is roughly equal to a+n, since the 
amplitude hyperparameter /Na T

ii
YY== ]f,f[E tt  

and the noise hyperparameter ],[E ii nnn = . Let Vy 
and Vn, respectively, be the variances of the 
measured data and the measurement noise. It follows 
that 

)1/()/(V/V bbnanv yn +=+≈=  
2) The value for Vy is easily estimated. Since 
different values of the hyperparameters, especially 
the length-scale hyperparameter, correspond to 
models with different length-scale, the value for Vn 
depends on the choice of time-series components that 
is interpreted to be noise. For example, the spectral 
density in Fig 1 clearly indicates that the 
corresponding time series data consists of several 
components with different length-scales. Only the 
long length-scale component with frequency less 
than χ1 might be of interest when all components 
with higher frequency are interpreted as noise. In this 
case, Vn would be estimated as the cumulative sum of 
the spectrum between χ1 and χ2, the Nyquist rate. 
Hence, a* and b*, initial value for a and b, are 
obtained from  

yny vvvbva V/V;)1/(,V)1( ** =−=−=  



     

3) Let C(θ)=aP(d,b) in (1). The negative log-
likelihood function becomes 

YY 11
2
1

2
1

2
1 ),(|),(|loglog)( −−++= bdPabdPaL Tθ  

The length-scale hyperparameter, a, can be explicitly 
eliminated from L(θ) by substituting the minimising 
value of a as a function of d and b. The log 
likelihood function is thus reformulated to be 
dependent on only two hyper-parameters, d and b, 
instead of three, viz., 

[ ]YY 1T ),(log|),(|log),(~ −+= bdPNbdPbdL    (6) 
with 

NbdPa T /),( 1 YY −=   (7) 
The initial value, d*, for the length-scale 
hyperparameter, d, is obtained by solving the 
nonlinear equation NbdPa T /),( 1*** YY −= . 
 
The hyperparameter values a*, d* and b*, obtained by 
procedure 2 are appropriate initial values for 
minimising the log likelihood, whether (1) or (6). 
The latter has the advantage of only being dependent 
on two hyperparameters and so converges more 
quickly. There are two cases. In the first, all the 
hyperparameters are adjusted during the optimisation 
to converge on a nearby local minimum 
corresponding to the prior model with the required 
length-scale characteristic. In the second, the 
optimisation may fail to locate a suitable local 
minimum, when all the hyperparameters are 
adjusted. In the latter situation, d* needs to be held 
constant during the optimisation.  It may then be 
necessary to adjust manually the value of d* and 
repeat the optimisation to obtain the prior model with 
the required length-scale characteristic. 
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Fig. 2. Data and long length-scale prediction with 

confidence intervals. 
 
 

6. APPLICATION TO DATA WITH GAPS  
 
In this section, by exploiting the procedures 
presented in Sections 4 and 5, the Gaussian 
regression methodology of Sections 2 and 3 are 
applied to a data set of 5,000 points sampled at 1Hz 
(CATS Benchmark, 2004). It contains four gaps, 
specifically, the intervals, (981s-1000s), (1981s-
2000s), (2981s-3000s), (3981s-4000s) and (4981s-
5000s). When applying Gaussian regression to data 
with gaps, depending on the context, a single 
Gaussian process model with covariance function 

having more than one term or a multiple Gaussian 
process model may be required (Leithead et al 
2005b). The data is shown in Fig. 2 (the grey line) 
together with its spectral density function in Fig. 3 
(the grey line). The data has a component with 
length-scale longer than the gaps at frequencies less 
than 0.045Hz, a component with length-scale similar 
the gaps at frequencies between 0.045Hz and 
0.095Hz and a component with length-scale shorter 
than the gaps above 0.096Hz. Here, to extract each of 
the above components separately, a multiple 
Gaussian process model with three processes is 
employed. 
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Fig. 3. Power Spectra of the three components. 

 

2850 2900 2950 3000 3050 3100 3150
-50

-40

-30

-20

-10

0

10

20

30

Seconds

Medium length-scale prediction with confidence intervals

 
Fig. 4. Medium length-scale component prediction 

with confidence intervals. 
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Fig. 5. Short length-scale prediction with confidence 

intervals. 
 
The values of the hyperparameters, a and d, for the 
long, medium and short length-scale components are 
determined sequentially, the first from the data, the 



     

second from the residues of the long length-scale 
prediction and the third from the residues of the 
combined long and medium length-scale prediction. 
The fast and memory efficient generalised Schur 
algorithm of Section 4 is used together with 
initialisation algorithm of Section 5. The 
hyperparameter values for the three components are 
a=2.422x104 & d=0.0038, a=83.6391 & d=0.0473 
and a=55.962 & d=1.274, respectively. The noise 
hyperparameter value is n=35.9130. The long length-
scale component prediction and confidence intervals 
are shown in Fig. 2 (black lines). A typical section, 
from 2850s to 3150s, of the medium length-scale 
component prediction and confidence intervals are 
shown in Fig. 4 and a typical short section, from 
2900s to 3100s, of the short length-scale component 
prediction and confidence intervals in Fig. 5. The 
spectral density functions for the three components 
are depicted in Fig. 3. In addition, the differences 
between the data and the predictions from the 
complete three Gaussian process model together with 
the confidence interval (grey lines) are shown in Fig. 
6. As would be expected, the confidence interval is 
much wider during the gaps. 
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Fig. 6. Complete model: difference between 

prediction and data with confidence intervals. 
 

 
7. CONCLUSION 

 
The application of Gaussian regression to time-series 
data analysis is examined. Through the use of models 
consisting of multiple independent Gaussian 
processes, the general methodology is extended such 
that the individual Gaussian processes are 
conditioned on the data subject to the condition that 
they remain independent. When applied to time-
series data, separate components with different 
frequency scales can be extracted. 
 
Fast and memory-efficient methods for the matrix 
manipulations required by the Gaussian regression 
methodology are discussed. A procedure to 
determine the Shur decomposition of Toeplitz-like 
matrices, a key issue, is presented. A procedure to 
ensure appropriate initialisation, when training the 
prior model, is also presented. 
 
A multiple Gaussian process model is applied, using 
the above procedures, to extract separate components 
with different frequency scales from a 5,000-point 

time-series data set with gaps. The effectiveness of 
the methods is clear. 
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