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Abstract: The stochastic properties of a class of communication networks whose dynamics are
Markovian are analysed. The asymptotic behaviour of such a network in terms of the first and
second moments of a stochastic process that describes the network dynamics is characterised
and tools for their calculation are provided. Specifically, computation techniques for the
calculation of these statistics are provided and that these algorithms converge exponentially fast
is shown. Finally, how the results may be used for the design of network routers to realise
networks with desired statistical properties is suggested.

1 Introduction

1.1 General remarks

The study of communication networks that carry trans-
mission control protocol (TCP) traffic has been subject
of intense interest in the computer science, network
engineering, and applied mathematics literature [1–9].

The principal motivation for much of this work has been
to understand network behaviour, and to characterise
important network properties with a view to developing
analytic tools for the design of such networks. In particular,
much of this work has focussed on understanding the
manner in which the network allocates available bandwidth
among competing network flows (network fairness) and
the speed at which this bandwidth allocation takes place
(network convergence rate). Recently, a very accurate
random matrix model of TCP network dynamics was pro-
posed [10]. This model was shown to be capable of captur-
ing many essential features of networks in which TCP-like
network flows compete for bandwidth via a bottleneck
router. By making some simplifying assumptions con-
cerning stochastic behaviour of the network, the authors
demonstrate that this model may also be used as a basis
to design networks in which bandwidth can be allocated
in an arbitrary manner among competing flows. This may
be achieved by redesigning the manner in which individual
sources respond to network congestion, or by redesigning
the manner in which network routers respond to network
congestion (or both).

The objective of this paper is to pursue further this line of
research. However, rather than using the model as a basis
for adjusting the behaviour of the individual flows to
achieve desired network behaviour, we concentrate here
on using this model to redesign the manner in which the bot-
tleneck router drops packets when the network is congested;

in particular, we analyse the properties of such networks
when the bottleneck router drops packets according to
some Markovian rules. Redesigning the manner in which
network routers operate to allocate bandwidth is very
important for a number of reasons related to network
quality of service issues. Whereas the results in [10] are
interesting from a theoretical perspective, router redesign
along the lines suggested by this work would place an
impossible computational burden on the network routers;
on the other hand, dropping packets according to some
Markovian rule could possibly be implemented using far
fewer computational resources. Our principal contribution
in this paper is to characterise the stochastic behaviour of
these networks in terms of the first and second moments
of a stochastic process that describes the network dynamics,
and develop computational techniques for the calculation of
these statistics. We concentrate on these statistics as they
provide a characterisation of the average long-term fairness
properties of network, and some measure of the instan-
taneous deviation (instantaneous unfairness) from this
measure. Finally, we suggest how our results may be used
to design new types of communication networks.

1.2 Brief description of AIMD congestion
control algorithms

Most traffic in communication networks is carried using the
TCP protocol (85–90% of all Internet traffic is TCP-traffic
[11]). The standard TCP protocol (introduced by [12]) is a
special case of additive-increase multiplicative decrease
(AIMD) congestion control. Here we give a very brief
description of the AIMD congestion control strategy; the
interested reader is referred to [13, 14] for a detailed
description of the protocol.

A communication network consists of a number of sources
and sinks connected together via links and routers. In this
paper we assume that these links can be modelled as a con-
stant propagation delay together with a queue, that the queue
is operating according to a drop-tail discipline, and that all of
the sources are operating an AIMD-like congestion control
algorithm. AIMD congestion control operates a window-
based congestion control strategy. Each source maintains
an internal variable cwndi (the window size), which tracks
the number of sent unacknowledged packets that can be in
transit at any time, that is, the number of packets in flight.
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On safe receipt of data packets the destination sends
acknowledgement (ACK) packets to inform the source.
When the window size is exhausted, the source must wait
for an ACK before sending a new packet. Congestion
control is achieved by dynamically adapting the window
size according to an AIMD law. Roughly speaking, the
basic idea is for a source to probe the network for spare
capacity by increasing the rate at which packets are inserted
into the network, and to rapidly decrease the number of
packets transmitted through the network when congestion
is detected through the loss of data packets. In more
detail, the source increments cwndi(t) by a fixed amount
ai upon receipt of each ACK. On detecting packet loss,
the variable cwndi(t) is reduced in multiplicative fashion
to bicwndi(t). We shall see that the AIMD paradigm with
drop-tail queuing gives rise to networks whose dynamics
can be accurately modelled as a positive linear system.

1.3 AIMD model and problem description

Various types of models for AIMD networks have been
developed by several authors; see [15] or [16] and the refer-
ences therein for an overview of this work. We base our
discussion on a recently developed random matrix model
of AIMD dynamics that was first presented in [10]. This
model uses a set of stochastic matrices to characterise the
behaviour of a network of AIMD flows that compete for
bandwidth via a single bottleneck router (as depicted in
Fig. 1).

While other similar random matrix models have been
proposed in the literature [17, 18], the model proposed in
[10] has several attractive features. In particular, the
authors use sets of non-negative column stochastic matrices
to model the evolution of communication networks and
results from Frobenius–Perron theory to characterise the
stochastic properties of such networks. We begin our dis-
cussion by reviewing the essential features of this model.

Suppose that the network under consideration has n
flows, all of them operating an AIMD congestion control
algorithm, competing for bandwidth over a bottleneck link
which has drop-tail queue. Then the current state of the
network at times when a packet is dropped at the bottleneck
router (referred to as the kth congestion event) is given by
the number of packets in flight that belong to each
network source at this time. We describe the network
state at the kth congestion event by an n-dimensional
vector W(k) ¼ fwi(k)gi¼1

n where wi(k) is the ith component
of W(k), which is equal to the throughput that belongs to
the ith source when this source is informed of network con-
gestion. It has been shown in [10] that the sequence

fW(k)gk¼0
1 satisfies

W ðk þ 1Þ ¼ AðkÞW ðkÞ ð1Þ

where W(k) ¼ [w1(k), . . . , wn(k)]T, and

AðkÞ ¼

b1ðkÞ 0 � � � 0

0 b2ðkÞ 0 0

..

.
0 . .

.
0

0 0 � � � bnðkÞ

2
66664

3
77775

þ
1Pn

j¼1 ajgj

a1g1

a2g2

� � �

angn

2
6664

3
7775½1� b1ðkÞ; . . . ; 1� bnðkÞ�

ð2Þ

For every j [ f1, 2, . . . , ng, the constant aj . 0 in (2) is
the additive increase parameter and gj . 0 is the constant
1/RTTj

2. Here RTTj is the round-trip time for a packet
from the jth flow just before congestion, and either
bj(k) ¼ 1, which holds if the jth flow did not lose any
packet during the kth congestion event, or bj(k) is equal
to the multiplicative decrease parameter bj

0 [ (0, 1) if
the jth flow did lose some packet in the kth congestion
event.

Comment: We exclude the possibility that b1(k) ¼
b2(k) ¼ . . . ¼ bn(k) ¼ 1, since there is no congestion
event without losing at least one packet.

We denote by M the set of the possible values of the
matrices A(k), so that

M¼ fM1;M2; . . . ;Mmg

for some m � 2n21 and for all k. Then A(k) [M for every
k � 0, and we note that the strict inequality m , 2n21 may
hold; namely that in the models which we consider, certain
configurations of packets’ loss cannot practically occur.

Let I(k) ¼ f j: bj(k) ¼ bj
0
g be the set of labels of flows that

have experienced a loss of a packet during the kth conges-
tion event. Note that for each k the matrix A(k) has a strictly
positive jth column if and only if j [ I(k), and that for j �
I(k), the jth column of A(k) is equal to ej, the jth column of
the identity n � n matrix In. We denote by S the (n 2 1)-
dimensional simplex of all the n-dimensional stochastic
vectors. Recall that a vector v ¼ (v1, . . . , vn) [ Rn is sto-
chastic if each one of its coordinates vi is nonnegative and
v1þ . . .þ vn ¼ 1. It turns out that the matrices Mi

(1 � i � m) that compose M, are non-negative and
column-stochastic [19]. Therefore, Mi(S) , S holds for
every 1 � i � m. By normalising W(0) to belong to S, we
may therefore assume, with no loss of generality, that
W(k) [ S for every k � 0.

For networks with routers employing a drop-tail
queueing discipline, it is often assumed in the networking
community that congestion events may in some circums-
tances be modelled as sequences of independent events
[10, 17, 20, 21]. In terms of the model described above,
this means that for networks with a single bottleneck
link and with a drop-tail queue the following assumption
holds.

Assumption 1: fA(k)gk[N is a sequence of independent and
identically distributed (i.i.d.) random variables A(k), and

sources destinations

.

.
.
.
.

w t
1
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2
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Fig. 1 Network with single bottleneck router
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for every j [ f1, 2, . . . , ng the probability that the jth flow
detects a drop in each congestion event is positive.

As we have mentioned already, in designing rules that
determine how the network will react to congestion, one
can typically have two approaches. The first is the design
of flow-based congestion control algorithms and the
second is the design of queueing discipline. In the present
paper we concentrate on the latter and propose two new
queueing disciplines, which we characterise by computing
the stationary statistics for the vector W(k) for each
of these cases. We first consider a queuing discipline with
the property that packets are dropped from the queue in
such a manner that the following assumption is valid.

Assumption 2: fA(k)gk[N is a stationary Markov chain
on the finite set of matrices M with transition
matrix P [ Rm�m. Moreover, we assume that for each
j [ f1, 2, . . . , ng there exists a matrix M [M with positive
jth column.

We note that as in the i.i.d. case, we must have the latter
assumption in order to ensure that each flow will see a drop
at some point. We also remark that stationarity is assumed
to avoid technical difficulties and it is not essential. An
additional assumption in Sections 2 and 3 (which is
relaxed in Section 4) is that the transition matrix P has
strictly positive entries. Theorems 2 and 4 give the asymp-
totic values of E(W(k)) and E[(W(k))(W(k))T] in the limit
where k tends to infinity, which we denote V� and D�,
respectively. Although we do not have explicit formulas
for V� and D�, theorems 1 and 3 provide iterative algorithms
for computing them in a geometric convergence rate. In
Section 4 we extend the results of the previous two sections
to the case where the matrix P is merely primitive and its
entries are not necessarily strictly positive.

The second queueing discipline we propose here is the
following: the probability that a certain set of flows will
detect a drop during the kth congestion event depends
only on the vector W(k). Formally we assume that the
router drops a packet from the queue when it is full in
such a fashion that the following assumption is true.

Assumption 3: fW(k)gk[N is a stochastic process in the set of
stochastic vectors S, which has the following property:

For every i [ f1, 2, . . . , mg and w [ S, the conditional
probability of A(k) given W(k) is expressed by

P½AðkÞ ¼ MijW ðkÞ ¼ w� ¼ piðwÞ

for some positive continuous functions pi: S! Rþ, which
satisfy

P
i¼1
m pi(w) ¼ 1 for all w [ S. Again, for each

i [ f1, 2, . . . , ng we require the existence of a matrix
M [M with positive ith column.

In view of the relation W(kþ 1) ¼ A(k)W(k), assumption 3
implies that the distribution of W(kþ 1) is completely
determined by the distribution of W(k). Section 5 is
devoted to studying the behaviour of W(k) under assumption
3. It turns out that the study of the model under assumption 3
can be reduced to its study under assumption 2. This enables
to establish the analogous results concerning the asymptotic
behaviour of E(W(k)) and Var(W(k)) for this case. In
particular, the latter can be computed by iterative methods
producing schemes that converge in a geometric rate.

2 The asymptotic expectation of W(N )

In this Section we compute the equilibrium expected value
of the window size variable W(N ) under assumption 2, and
supposing that the transition probabilities Pij are positive:

Pij . 0 for every 1 � i; j � m ð3Þ

Denoting by r ¼ (r1, . . . , rm) the unique equilibrium
distribution corresponding to P, we associate with Pij the
backward transition probabilities matrix P̃ (see [22],
Chapter 1.9) given by

~Pij ¼
ri

rj

Pij ¼
P½Aðk � 1Þ ¼ Mi�

P½AðkÞ ¼ Mj�

� P½AðkÞ ¼ MjjAðk � 1Þ ¼ Mi�

¼ P½Aðk � 1Þ ¼ MijAðkÞ ¼ Mj� ð4Þ

We interpret P̃ij as the conditional probability that the
system occupied the state Mi at the previous instant of
time given that it is presently at state Mj, for the stationary
Markov chain fAkg.

Let F: (Rn)m
! (Rn)m be the linear mapping given by

FðV Þ ¼
Xm

i¼1

~Pi1MiVi; . . . ;
Xm

i¼1

~PimMiVi

 !
ð5Þ

where V ¼ (V1, . . . , Vm), Vi [ Rn and Mi [M for every
1 � i � m. We have the following result:

Proposition 1: For an arbitrary W(0) ¼ s [ S and all i ¼ 1,
2, . . . , m, the following limits exist:

Vi ¼ lim
k!1

E½W ðkÞjAðkÞ ¼ Mi�; i ¼ 1; 2; . . . ;m ð6Þ

Moreover, the vector V ¼ (V1, . . . , Vm) [ Sm whose com-
ponents are defined in (6) satisfies the fixed point equation

V ¼ FðV Þ ð7Þ

Proof: The proof will be given after establishing
Theorem 2.7. A

Let S be the subspace of Rn defined by

S ¼ x [ Rn :
Xn

i¼1

xi ¼ 0

( )

It turns out that F has the following property:

Proposition 2: The mapping F is linear from Sm into itself,
and from Sm into itself.

Proof: Both claims follow from the facts that if M is a
column stochastic n � n matrix, then for every x [ Rn we
have

Xn

i¼1

ðMxÞi ¼
Xn

i¼1

xi

and each Mi is a column stochastic matrix. A

We know that any matrix inM can be written in the form

M ¼ diagðb1;b2; . . . ;bnÞ

þ ðd1; . . . ; dnÞ
T
ðð1� b1Þ; . . . ; ð1� bnÞÞ

where 0 , bk � 1 for every 1 � k � n and not all of
them are equal to 1. We denote b ¼ (b1, . . . , bn)T,

IEE Proc.-Control Theory Appl., Vol. 153, No. 5, September 2006508

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on January 12, 2010 at 07:25 from IEEE Xplore.  Restrictions apply. 



d ¼ (d1, . . . , dn)T, and d is a stochastic vector with positive
entries. If the first q entries of b are equal to 1, namely
b1 ¼ b2 ¼ . . . ¼ bq ¼ 1 for some q , n, and the last
n 2 q ¼ r . 0 entries are all smaller than 1, then our
matrix M has the following form

M ¼
Iq M 0

0 M 00

� �
ð8Þ

The matrix Iq in (8) is the q � q identity matrix; all the
entries in the last r columns are positive, and the sum of
the entries in each of these columns is equal to 1.

The following result is the main technical tool that we
employ in studying properties of F. We denote by k.k1
the L1 norm of vectors in Rn. We will prove it as corollary
2 after having established lemma 3. A direct proof can be
found in [23].

Lemma 1: Let M [M. Then for every x [ S we have

Mx = x)kMxk1 , kxk1 ð9Þ

Proof: See the proof of corollary 2. A

Remark 1: The property that is established in lemma 1 is
referred to in the literature as the paracontracting property;
see [24] chapter 8 or [25]. We have thus shown that the
matrices Mi are paracontractive in S in L1 norm. We will
again use the notion of paracontractivity in Section 5.

Lemma 2: Suppose that M [M is such that the columns
that contain zeros are indexed by i1, i2, . . . , iq, and let
x [ S be such that Mx ¼ x. Then x belongs to the subspace
spanned by the basic vectors ei1

, ei2
, . . . , eiq

.

Proof: We suppose without loss of generality that the first q
columns of M contain zeros and the last r ¼ n 2 q columns
are positive, that is, that M has the form given by (8). We
will establish that the last r coordinates of x are equal to
0. If r ¼ 0 then there is nothing to prove. If r ¼ n then M
is a stochastic matrix with strictly positive entries, and
therefore it is a contraction on S, implying that x ¼ 0.

We now suppose that 0 , r , n, and let P be the r � r
submatrix of M, which is defined by the last r rows and
last r columns. If we denote by x0 the r-dimensional
vector composed of the last r coordinates of x, then
Px0 ¼ x0. But the sum of each column of P is smaller than
1 and x is non-negative, hence kPx0k1 , kx0k1 whenever
x0 = 0, implying that x0 must vanish. This concludes the
proof of the lemma. A

We define on (Rn)m the norm

kVk ¼ kðV1; . . . ;VmÞk ¼ max
1�i�m
ðkVik1Þ

and consider the subspace Sm and subset Sm of (Rn)m

endowed with this norm. The next result establishes that
F2 is a contraction on the metric space Sm as well as on
normed space Sm.

Proposition 3: Let F be the mapping given by (5). We
assume that (3) holds, so that in view of (4), all the back-
ward probabilities P̃ij are positive as well. Then there
exists a constant u , 1 such that

kF2
ðU Þ �F2

ðV Þk � ukU � Vk ð10Þ

holds for all U, V [ S.

Proof: We will establish that for every pair U = V in S, the
inequality kF2(U) 2 F2(V )k , kU 2 Vk holds. This will
imply the assertion of the proposition in view of the
compactness of Sm.

Thus let U ¼ (U1, . . . , Um) and V ¼ (V1, . . . , Vm) be any
two different elements belonging to Sm. We have

kFðU Þ �FðV Þk ¼ max
j

����Xm

i¼1

~PijMiðUi � ViÞ

����
1

ð11Þ

� max
j

Xm

i¼1

~PijkMiðUi � ViÞk1 ð12Þ

� max
j

Xm

i¼1

~PijkUi � Vik1 ð13Þ

� max
j

Xm

i¼1

~PijkU � Vk ¼ kU � Vk ð14Þ

We will next check under which conditions equality
kF2(U) 2 F2(V )k ¼ kU 2 Vk can hold. We thus assume
that U = V are such that kF(F(U)) 2 F(F(V )) ¼
kU 2 Vk. It follows from

kU � Vk ¼ kFðFðU ÞÞ �FðFðV ÞÞk

� kFðU Þ �FðV Þk � kU � Vk

that kF(U) 2 F(V )k ¼ kU 2 Vk. Thus, in this situation, all
the inequalities in (11)–(14) are actually equalities.

We now denote W ¼ U 2 V [ Sm and we note that in
view of (14), for some j,

Xm

i¼1

~PijkWik1 ¼ max
i
ðkWik1Þ ¼ kWk ð15Þ

Since we suppose that all P̃ij are positive, (15) implies

kWik1 ¼ kWk for every 1 � i � m ð16Þ

It then follows from (13) that

max
j

Xm

i¼1

~PijkMiðWiÞk1 ¼ max
j

Xm

i¼1

~PijkWik1 ¼ kWk

which in view of kMi(Wi)k1 � kWik1 and the positivity of
all the Pij, implies

kMiðWiÞk1 ¼ kWk ð17Þ

for all i. It follows from (16), (17) and lemma 1 that

MiðWiÞ ¼ Wi ð18Þ

for all i. We thus conclude from (12), (17) and (18) that
there exist some j such that����Xm

i¼1

~PijðWiÞ

����
1

¼
Xm

i¼1

~PijkWik1 ¼ kWk

However, this can happen if and only if for every r [
f1, 2, . . . , ng, there does not exist 1 � i, j � m such that
the rth coordinates (Wi)r and (Wj)r are of opposite signs.

By employing the above argument, and also the
conclusion (18) to the equality kF(F(W ))k ¼ kF(W )k
rather than to kF(W )k ¼ kWk, we have that for all
k [ f1, 2, . . . , mg

Mk

Xm

i¼1

~PikWi

 !
¼
Xm

i¼1

~PikWi ð19Þ
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Assumption 2 of our model is such that for every
r [ f1, 2, . . . , ng there exists a matrix Mk [M with posi-
tive rth column. It follows from lemma 2 and (19) that the
rth coordinate of

P
i¼1
m P̃ikWi must vanish. But there are no

two indices i1 and i2 such that the rth coordinates of Wi1
and

Wi2
have opposite signs. This fact implies that the rth coor-

dinate of the vector Wi must vanish, and this is true for every
1 � i � m. Because r is arbitrary, we conclude that Wi ¼ 0
for all i. We have thus established that if U, V [ Sm are
distinct then

kF2
ðU Þ �F2

ðV Þk , kU � Vk

The proof of the proposition is thus complete. A

Theorem 1: The spectral radius of the restriction of F to Sm

is smaller than 1. In particular there exists a unique solution
V� for (7), and the iteration scheme

V ðkþ1Þ ¼ FðV ðkÞÞ; k ¼ 0; 1; 2; . . .

with any starting point V(0) ¼ V0 in S satisfies

lim
k!1

V ðkÞ ¼ V � ð20Þ

Proof: We will first establish that the spectral radius of the
restriction of F to Sm is smaller than 1. But we know that
the iterations of F2 in Sm converge to zero for every starting
point. It follows that every eigenvalue of the restriction of F
to Sm, say l, satisfies jlj � 1. If, however, there exists an
eigenvalue that is equal to eiu for some real u, then there
exists a subspace P of Sm, which is invariant under F,
and is either one- or two-dimensional. The restriction
of F to P is then a rotation, contradicting the fact that the
iterations of F should tend to zero.

The uniqueness of solutions of theorem 1 follows from
the contractive property of F2. Then, for every initial
V0 [ S we have limk!1 V (2k) ¼ V�. Hence

V ð2kþ1Þ ¼ FðV ð2kÞÞ �! FðV �Þ ¼ V � as k �! 1

and (20) follows. A

Proof of Proposition 1: Let Vi(k) ¼ E[W(k)jA(k) ¼ Mi].
The sequence of vectors V(k) ¼ (V1(k), . . . , Vm(k)) [ Sm

satisfies

V ðk þ 1Þ ¼ FðV ðkÞÞ ð21Þ

From theorem 1, fV(k)gk¼0
1 converge and the existence of

the limits in (6) follows. In view of (21), these limits
satisfy the fixed point equation (7). A

We have the following result, which is actually
theorem 3.1 from [10].

Corollary 1: Let assumption (1) hold, so that the probability
that A(k) ¼ Mi is equal to ri for every k � 0 and 1 � i � m.
Then the asymptotic expected value of W(k) is the unique
stochastic eigenvector of

P
i¼1
m riMi, which corresponds

to the eigenvalue 1.

Proof: The sequence fA(k)g of i.i.d. random matrices can be
seen as a Markov chain on the set M ¼ fMi: ri . 0g with
the m � m transition matrix P given by Pij ¼ rj. Since
Pij is positive for every i and j, we have that P̃ij ¼
riPij/rj ¼ ri . 0. We look for a solution of (1) for which
all the components Vi are the same, say equal to V̄. This

yields the equation

�V ¼
Xm

i¼1

riMi

 !
�V

which implies the assertion of the corollary. A

Theorem 2: Under assumption 2, and assuming that the
transition matrix P has strictly positive entries, then the
asymptotic behaviour of the expectation of the random vari-
able W(N ) is given by

lim
N!1

EðW ðN ÞÞ ¼
Xm

i¼1

riV
�
i ð22Þ

where V� ¼ (V�1 , . . . , V�m ) [ Sm is the unique solution of
(7), and r ¼ (r1, . . . , rm) is the Perron eigenvector of the
transition probability matrix (Pij).

Proof: The proof is immediate

lim
N!1

EðW ðN ÞÞ

¼ lim
N!1

Xm

i¼1

E½W ðN ÞjAðN Þ ¼Mi�P½AðN Þ ¼Mi�

¼
Xm

i¼1

riV
�
i A

3 The asymptotic variance of W(N )

The goal of this section is to compute the asymptotic value
of the second order moment of W(N) under assumption 2
and assuming a positive transition matrix P. (What we
call variance, or second order moment is actually covari-
ance matrix for the vector W(N): E[(W(N ))i((W(N ))j)] 2
E[(W(N ))i]E[(W(N ))j].)

Define the linear mapping C: (Rn�n)m
! (Rn�n)m by:

CðD1; . . . ;DmÞ ¼
Xm

i¼1

~Pi1MiDiM
T
i ; . . . ;

Xm

i¼1

~PimMiDiM
T
i

 !

ð23Þ

Suppose for a moment that for W(0) ¼ s [ S the follow-
ing limits exist:

Di ¼ lim
k!1

E½W ðkÞW ðkÞT jAðkÞ ¼ Mi�

Comment: Note that each Di must be a symmetric non-
negative definite matrix, that it has non-negative entries
and it satisfies

Diu ¼ lim
k!1

E½W ðkÞW ðkÞT u jAðkÞ ¼ Mi�

¼ lim
k!1

E½W ðkÞjAðkÞ ¼ Mi� ¼ Vi ð24Þ

where u is the n-dimensional vector that satisfies ui ¼ 1 for
every 1 � i � n.

In view of (24) let D be the set

D¼ fðD1; . . . ;DmÞ jDi [ Rn�n; Di ¼ DT
i ; Diu¼ Vig ð25Þ

It turns out that C maps D into itself. Indeed, (C(D))j is
symmetric whenever all Di are such. Moreover, using (7)
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we obtain

Xm

i¼1

~PijMiDiM
T
i u ¼

Xm

i¼1

~PijMiDiu ¼
Xm

i¼1

~PijMiVi ¼ Vj

implying that C(D) [ D for every D [ D. We have the
following result.

Proposition 4: For arbitrary W(0) ¼ s [ S and all i [
f1, 2, . . . , mg the following limits exist

Di ¼ lim
k!1

E½W ðkÞW ðkÞT jAðkÞ ¼ Mi� ð26Þ

The m-tuple D ¼ (D1, . . . , Dm) [ D defined by (26)
satisfies the fixed point equation

D ¼ CðDÞ ð27Þ

Proof: The proof will be given after having established
theorem (3). A

Let

B ¼ fC jC [ Rn�n; C ¼ CT ; Cu ¼ 0g ð28Þ

Thus B is the vector space of all n � n symmetric
matrices C such that all the columns of C belong to S.
A computation similar to the one preceding proposition
4 implies that C(Bm) , Bm. Since the difference
between any two elements from D belongs to Bm, then
fixing any norm on (Rn�n)m, it follows that the linear
mapping C is a contraction on the metric space D if
it is a contraction on the vector space Bm. We wish to
establish the existence and uniqueness of solutions D [ D
of (27). To this end, it is enough to find a norm in which
the mapping C2 is a contraction on the complete metric
space D.

Let k . k be the norm on Rn�n defined by

kAk ¼
Xn

i; j¼1

jAijj for A [ Rn�n

The next result establishes a crucial connection between this
norm and the mapping C 7! MCMT for C [ B and M [M.
It is close in spirit to lemma 1.

Lemma 3: Let M [M. Then the following relation

MC = C)kMCMTk , kCk ð29Þ

holds for every C [ B.

Proof: As in the proof of lemma 2, we consider a matrix M
that has the form (8) for some 0 � q , n, and where the last
r ¼ n 2 q columns are positive.

We then have

kMCMTk ¼
X
i; j

���X
k;l

mikcklmjl

��� �X
i;j

X
k; l

mikmjljcklj

¼
X
k;l

jcklj
X

i

mik

X
j

mjl ¼
X
k;l

jcklj ¼ kCk

ð30Þ

since M is column stochastic. We have thus established

kMCMTk � kCk ð31Þ

for any column stochastic matrix M and any matrix C. We
will next prove that equality holds in (31) only if MC ¼ C.

We remark that if MC ¼ C, then in view of C ¼ CT,
we have

MCMT ¼ CMT ¼ ðMCÞT ¼ CT ¼ C

implying that equality holds in (31) if MC ¼ C.
We now suppose that M and C are such that
kMCMT

k ¼ kCk. This is possible if and only if for each
pair 1 � i, j � n, the only inequality that appears in (30)
is actually an equality. This, however, holds if and only if
for every 1 � i, j � n the following holds:

Property S: There are no two pairs of indices (k, l ) and
(k0, l 0) such that mikmjl and mik 0mjl 0 are both positive while
ckl and ck 0l 0 have opposite signs.

For 1 � i � q let Li ¼ fcil j q , l � ng ¼ fcli j q , l � ng,
and denote L0 ¼ fckl j q , k � n, q , l � ng. Using
property S for a pair i, j [ f1, 2, . . . , qg, and noting that
for all k, l [ fqþ 1, qþ 2, . . . , ng, we have mikmjj . 0,
miimjl . 0 and mikmjl . 0, and further we conclude that
there are no two elements in set Lij ¼ Li < Lj < L0 with
opposite sign. Since for each pair of indices (k, l ) and
(k0, l0) with maxfk, lg . q and maxfk0, l0g . q there is
pair i, j [ f1, 2, . . . , qg such that both ckl and ck 0l 0 are
contained in Lij, we conclude that either

ckl � 0 whenever maxfk; lg . q ð32Þ

or

ckl � 0 whenever maxfk; lg . q ð33Þ

For any integer q , l � n, the sum of the entries in
the lth column (or row) have the same sign as the
constant sign of its elements, namely non-negative
(non-positive) if (32) [(33)] holds. Since this sum is zero,
we conclude that all the entries ckl are such that at least
one of k . q and l . q holds must vanish. Thus C must
have the form

C ¼
C0 0

0 0

� �

where C0 [ Rq�q, and since

M ¼
Iq M 0

0 M 00

� �

it follows that MC ¼ C, concluding the proof of the
lemma. A

Now we are able to present the following short proof of
lemma 1.

Corollary 2: Let M [M. Then for every x [ S we have

Mx = x)kMxk1 , kxk1 ð34Þ

Proof: Note that for x [ S, C ¼ xxT [ B we can conclude
that

kMCMTk ¼ kMxxT MTk ¼ kMxk2
1 � kCk ¼ kxk

2
1

with equality if and only if MC ¼ C. Moreover, from the
proof of the previous lemma, we conclude that for all j
such that the jth column of M is positive, the jth column
of C must be zero, which also means that xj ¼ 0. Thus
kMxk1 ¼ kxk1 implies that Mx ¼ x. A
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We wish to employ the Banach fixed point theorem to the
mapping C on the set D, with the metric that is induced on
D by the following norm

kBk ¼ kðB1; . . . ;BmÞk ¼ max
1�i�m

kBik ð35Þ

on (Rn�n)m. Given this, we are now ready to establish that
C2 is a contraction on the metric space D.

Proposition 5: Let C be the mapping given by (23) and we
assume that the transition matrix P is positive. Then there
exists a constant h , 1 such that

kC2
ðDÞ �C2

ðEÞk � hkD� Ek ð36Þ

holds for all D, E [ D.

Proof: We will establish that for every non-zero B [ Bm we
have kC2(B)k , kBk, which implies that there exists a
0 , h , 1 such that

kC2
ðBÞk � hkBk ð37Þ

since B is a normed linear space. Clearly, (36) follows
from (37), since D 2 E [ Bm. We thus consider any
B ¼ (B1, . . . , Bm) = 0 such that Bi [ B and compute

kCðBÞk ¼ max
j

����Xm

i¼1

~PijMiBiM
T
i

���� ð38Þ

� max
j

Xm

i¼1

~PijkMiBiM
T
i k ð39Þ

� max
j

Xm

i¼1

~PijkBik ð40Þ

� max
j

Xm

i¼1

~PijkBk ¼ kBk ð41Þ

We will next check under which conditions the equality
kC2(B)k ¼ kBk can hold. We thus assume that B = 0 is
such that kC(C(B))k ¼ kBk. It follows from

kBk ¼ kCðFðBÞÞk � kCðBÞk � kBk

that kC(B)k ¼ kBk. Thus it follows in this situation that all
the inequalities in (38)–(41) are actually equalities.

In view of (40) and (41), for some j

Xm

i¼1

~PijkBik ¼ max
i
ðkBikÞ ¼ kBk ð42Þ

Since we assume that all the P̃ij are positive, (42) implies

kBik ¼ kBk for every 1 � i � m ð43Þ

It then follows from (39) that

max
j

Xm

i¼1

~PijkMiBiM
T
i k ¼ max

j

Xm

i¼1

~PijkBik ¼ kBk

which together with the positivity of all the P̃ij imply that

kMiBiM
T
i k ¼ kBk ð44Þ

for all i. In view of lemma 3 it therefore follows from (43)
and (44) that

MiBiM
T
i ¼ BiM

T
i ¼ ðMiB

T
i Þ

T
¼ ðMiBiÞ

T
¼ Bi

namely the equalities

MiBi ¼ Bi and MiBiM
T
i ¼ Bi ð45Þ

hold for all i. It follows from (38), (44) and (45) that there
exist some j such that����Xm

i¼1

PijBi

���� ¼Xm

i¼1

PijkBik ¼ kBk

However, this can happen if and only if the following prop-
erty holds.

A sign condition: For every r, s [ f1, 2, . . . , ng, there does
not exist 1 � i, j � m such that the (rs)th coordinates (Bi)rs

and (Bj)rs have opposite signs.

Employing the above argument, and the conclusion (45),
to the equality kC(C(B))k ¼ kC(B)k it follows that for all
k [ f1, 2, . . . , mg

Mk

Xm

i¼1

PikBi

 !
¼
Xm

i¼1

PikBi ð46Þ

Now let l [ f1, 2, . . . , ng be arbitrary. Then by assumption
2 of our model, there exists some matrix Mk [M with
positive lth column. From (46) we can conclude that the
columns of

P
i¼1
m PikBi are eigenvectors of the matrix Mk,

which correspond to the eigenvalue 1. Moreover, they are
a convex combination of vectors from S; hence they also
belong to S. Using lemma 2, we can therefore conclude
that the lth column of the matrix

P
i¼1
m PikBi must vanish,

and by employing the above sign condition, it follows that
corresponding entries of the various lth columns of
the matrices Mi do not have opposite signs. This implies
that all the entries in the lth columns of the matrices
B1, . . . , Bm must vanish. Since l is arbitrary, we conclude
that

B1 ¼ B2 ¼ � � � ¼ Bm ¼ 0

This contradiction concludes the proof of the lemma. A

Theorem 3: The spectral radius of the restriction of the
mapping C to Bm is smaller than 1. In particular, there
exists a unique solution D� for (27), and the iteration
scheme

Dðkþ1Þ ¼ CðDðkÞÞ; k ¼ 0; 1; 2; . . .

with the starting point D(0) ¼ D0 satisfies

lim
k!1

DðkÞ ¼ D�

for every D0 [ D.

Proof: The proof of this theorem follows the same lines
and uses the same arguments as those employed in the
proof of theorem 1. A

Proof of proposition 4: Similarly to the proof of
proposition 1, let Di(k) ¼ E[W(k)W(k)T

j A(k) ¼ Mi] and
D(k) ¼ (D1(k), . . . , Dm(k) [ (Rn�n)m. Then Di(k)u ¼
E[W (k)W(k)Tu j A(k) ¼ Mi] ¼ E[W (k) j A(k) ¼ Mi] ¼ Vi(k)
!Vi as k! 1, which means that

lim
k!1

distðDðkÞ;DÞ ¼ 0

Let 1 . 0 and let k0 [ N be such that kD(k0) 2 D̃k , 1 for
some D̃ [ D. Since the mapping C is non-expansive in the
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norm given by (35) on all (Rn�n)m we have

kDðk0 þ rÞ �Cr
ð ~DÞk ¼ kCr

ðDðk0Þ � ~DÞk

� kDðk0Þ � ~Dk � 1

On the other hand, since D̃ is in D,

lim
r!1

Cr
ð ~DÞ ¼ D0

exists by the previous theorem. This means that there is k1

such that for all r . k1,

kCr
ð ~DÞ � D0k � 1

Now we conclude that for all r . k0þ k1:

kDðrÞ � D0k � kDðrÞ �Cr�k0ð ~DÞk þ kCr�k0ð ~DÞ � D0k

� 21

The last relation means that the sequence fD(r)g is a
Cauchy, and therefore limr!1 D(r) exists and (26) follows.
Having this, (27) follows from the continuity of the linear
mapping C.

Theorem 4: Under assumption 2 and the positivity of
the transition matrix P, the asymptotic behaviour of the
variance

VarðW ðN ÞÞ ¼ E½W ðN ÞW ðN ÞT � � E½W ðN Þ�E½W ðN Þ�T

is given by

lim
N!1

VarðW ðN ÞÞ ¼
Xm

i¼1

riD
�
i �

Xm

i¼1

riV
�
i

 ! Xm

i¼1

riV
�
i

 !T

ð47Þ

where D� ¼ (D�1, . . . , D�m) [ D is the unique solution of
(27), and r ¼ (r1, . . . , rm) is the Perron eigenvector of
the transition matrix (Pij).

Proof: We have the following equalities:

lim
N!1

VarðW ðN ÞÞ

¼ lim
N!1

E½W ðN ÞW ðN ÞT �� lim
N!1

E½W ðN Þ�E½W ðN Þ�T

¼ lim
N!1

Xm

i¼1

E½W ðN ÞW ðN ÞT jAðN Þ ¼Mi�

�P½AðN Þ ¼Mi�� lim
N!1

E½W ðN Þ�E½W ðN Þ�T

¼
Xm

i¼1

riD
�
i �

Xm

i¼1

riV
�
i

 ! Xm

i¼1

riV
�
i

 !T

A

Corollary 3: Let assumption 1 hold, so that the probability
that A(k) ¼ Mi is equal to ri for every k � 0 and 1 � i � m.
Then the asymptotic behaviour of Var(W(k)) is given by

lim
N!1

VarðW ðN ÞÞ ¼ �D� �V �V
T

ð48Þ

where V̄ is the unique stochastic eigenvector of the matrixP
i¼1
m riMi, and D̄ is the unique solution of the matrix

equation

Xm

i¼1

riMiDMT
i ¼ D

which satisfies Du ¼ V̄. Moreover, D̄ is the unique eigen-
vector corresponding to eigenvalue 1 and satisfying
Du ¼ V̄ of the linear mapping

D 7!
Xm

i¼1

riMiDMT
i ð49Þ

defined on Rn�n.

Proof: The sequence fA(k)g of i.i.d. random matrices can
be seen as Markov chain on the set M ¼ fMi: ri . 0g
with the m � m transition matrix P given by Pij ¼ rj.
Since P is positive for every i and j, it follows that
P̃ij ¼ riPij/rj ¼ ri . 0. We look for a solution of (27) for
which all the components Di are the same, say equal to D̄.
This yields the equation

�D ¼
Xm

i¼1

riMi
�DMT

i ð50Þ

which implies the first assertion of the corollary.
For the second assertion we represent the linear mapping

in (49) by an n2
� n2 matrix with non-negative entries, call

it T, and apply Perron–Frobenius theorem to T. By theorem
3 the spectral radius of the restriction of T to B is smaller
than 1, but by (50) we have that D̄ is an eigenvector
corresponding to the eigenvalue 1. Since the iterations of
the mapping (49) converge to D̄, it follows that 1 is the
unique eigenvector satisfying D̄u ¼ V̄. The second assertion
follows. A

Example 1: In this example we illustrate how the previous
results can be applied. We consider a network where the
bottleneck router operates according to assumption 2. In
particular, consider a network of five flows with additive
increase parameters a ¼ [5, 4, 3, 2, 1], multiplicative
decrease parameters given by b ¼ [1/3, 2/4, 3/5, 4/6,
5/7], and with corresponding vector g given by g ¼ [1/60,
1/70, 1/80, 1/90, 1/100]. We assume that at congestion
events the router drops packets from only one flow. Thus
the setM has five elements:

M1 ¼

0:5054 0 0 0 0

0:1475 1:0000 0 0 0

0:1291 0 1:0000 0 0

0:1147 0 0 1:0000 0

0:1033 0 0 0 1:0000

2
6666664

3
7777775

M2 ¼

1:0000 0:1291 0 0 0

0 0:6106 0 0 0

0 0:0968 1:0000 0 0

0 0:0860 0 1:0000 0

0 0:0774 0 0 1:0000

2
6666664

3
7777775

M3 ¼

1:0000 0 0:1033 0 0

0 1:0000 0:0885 0 0

0 0 0:6774 0 0

0 0 0:0688 1:0000 0

0 0 0:0620 0 1:0000

2
6666664

3
7777775
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M4 ¼

1:0000 0 0 0:0860 0

0 1:0000 0 0:0738 0

0 0 1:0000 0:0645 0

0 0 0 0:7240 0

0 0 0 0:0516 1:0000

2
6666664

3
7777775

M5 ¼

1:0000 0 0 0 0:0738

0 1:0000 0 0 0:0632

0 0 1:0000 0 0:0553

0 0 0 1:0000 0:0492

0 0 0 0 0:7585

2
6666664

3
7777775

Let the transition matrix P be given by

P ¼

0:2667 0:2467 0:2133 0:1667 0:1067

0:2606 0:2424 0:2121 0:1697 0:1152

0:2526 0:2368 0:2105 0:1737 0:1263

0:2444 0:2311 0:2089 0:1778 0:1378

0:2370 0:2259 0:2074 0:1815 0:1481

2
66664

3
77775

Then

lim
k!1

EðW ðkÞÞ ¼ V � ¼

0:2359

0:2295

0:2124

0:1852

0:1370

2
66664

3
77775

The meaning of this result is that the first flow should expect
to get 23.59% of bandwidth, while the fifth flow should
expect to get 13.70% of the bandwidth over the bottleneck
link, provided that they last long enough. The asymptotic
behaviour of the variance of W(k) in this example is given by

lim
k!1

VarðW ðkÞÞ

¼

0:0144 �0:0061 �0:0042 �0:0027 �0:0013

�0:0061 0:0118 �0:0029 �0:0019 �0:0009

�0:0042 �0:0029 0:0089 �0:0012 �0:0005

�0:0027 �0:0019 �0:0012 0:0060 �0:0002

�0:0013 �0:0009 �0:0005 �0:0002 0:0030

2
6666664

3
7777775

The rate at which V(k) and D(k) converge to their equilibrium
values is depicted graphically in Figs. 2 and 3, respectively.

4 A useful extension

In this Section we will extend the results of the previous
sections in the following sense. We will consider a tran-
sition probability matrix P that does not necessarily have
positive entries, but is rather primitive, namely Ps . 0,
for some integer s � 1. We note here that if P is primitive
then P̃ is primitive too, since they have the same zero–
non-zero pattern.

Lemma 4: If P is a primitive matrix such that Ps . 0 for
some positive integer s, then F2s is a contraction on Sm.

Proof: We first note that for all k, j, l [ f1, 2, . . . , mg, there
is sequence (i) ¼ (i1, i2, . . . , i2s21) of indices that contain l,
such that

~Pki2s�1
~Pi2s�1i2s�2

� � � ~Pi2i1
~Pi1j . 0

Indeed, since Ps . 0 there must exist sequences
(i0) ¼ (i01, . . . , i0s21) and (i00) ¼ (i001, . . . , i 00s21) such that

~Pki0
s�1

~Pi0
s�1

i0
s�2
� � � ~Pi0

2
i0
1

~Pi0
1
l . 0

and

~Pli00
s�1

~Pi00
s�1

i00
s�2
� � � ~Pi00

2
i00
1

~Pi00
1
j . 0

implying the existence of a sequence (i) with the desired
property.

As we noted in Section 2, proving that F2s is a
contraction on the metric space Sm is equivalent to
proving that it is a contraction on the vector space Sm,
and here we establish the latter. Thus for an arbitrary
W [ Sm the j component of F2s(W ) has the form

ðF2s
ðW ÞÞj ¼

X
ðiÞ2s

~Pi2si2s�1
~Pi2s�1i2s�2

� � � ~Pi1jMi1 Mi2 � � �Mi2s
Wi2s

where we denote by (i)2s a sequence of indices that has
length 2s, and the summation is over all possible
sequences (i)2s. The sum in the last equality can be
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rewritten as

ðF2s
ðW ÞÞj ¼

Xm

k¼1

X
ðiÞ

~Pki2s�1
� � � ~Pi1jMi1 � � �Mi2s�1

MkWk ð51Þ

The inner sum in (51) is over all the sequences of indices
(i) that have the length 2s 2 1. Having this in mind, we
write

kF2s
ðW Þk

¼ max
j

����Xm

k¼1

X
ðiÞ

~Pki2s�1
� � � ~Pi1jMi1 � � �Mi2s�1

MkWk

����
1

ð52Þ

� max
j

Xm

k¼1

X
ðiÞ

~Pki2s�1
� � � ~Pi1jkMi1 � � �Mi2s�1

MkWkk1 ð53Þ

� max
j

Xm

k¼1

X
ðiÞ

~Pki2s�1
~Pi2s�1i2s�2

� � � ~Pi1jkWkk1 ð54Þ

� max
j

Xm

k¼1

X
ðiÞ

~Pki2s�1
~Pi2s�1i2s�2

� � � ~Pi1jkWk ¼ kWk ð55Þ

We will next establish that kF2s(W )k ¼ kWk implies
that W ¼ 0, which will conclude the proof of the lemma.
If W [ Sm satisfies kF2s(W )k ¼ kWk then all the previous
inequalities (52)–(54) are actually equalities. This means
that there exists some j [ f1, 2, . . . , mg for which all the
above maxima are attained at this j. For a k [ f1, 2, . . . ,
mg and a sequence (i) of indices we denote

QkjððiÞÞ ¼ ~Pki2s�1
~Pi2s�1i2s�2

� � � ~Pi1j

It follows from P2s ¼ (Ps)2.0 that for each k [ f1, 2, . . . ,
mg we have

P
(i) Qkj((i)) . 0. From this property together

with

Xm

k¼1

kWkk1

X
ðiÞ

QkjððiÞÞ

 !
¼ max

k
kWkk1 ¼ kWk

and

Xm

k¼1

X
ðiÞ

QkjððiÞÞ ¼ 1

we can conclude that for every k [ f1, 2, . . . , mg

kWkk1 ¼ kWk

It follows from the equality

Xm

k¼1

X
ðiÞ

QkjððiÞÞkMi1 Mi2 � � �Mi2s�1
MkWkk1

¼
Xm

k¼1

X
ðiÞ

QkjððiÞÞkWkk1

that for every sequence (i) such that Qkj((i)) .0 the follow-
ing holds

kMi1 Mi2 � � �Mi2s�1
MkWkk1 ¼ kWkk1

which in turn implies

kMi1 � � �Mi2s�1
MkWkk1 ¼ kMi2 � � �Mi2s�1

MkWkk1 ð56Þ

� � � ¼ kMi2s�1
MkWkk1 ¼ kMkWkk1 ¼ kWkk ð57Þ

Employing lemma 1, we conclude that for all sequences (i)
with Qkj((i)) . 0:

Wk ¼ MkWk ¼ Mi2s�1
Wk ¼ � � � ¼ Mi1 Wk ð58Þ

Recall now that for arbitrary k and l there exists a sequence
(i) which contains l such that Qkj((i)) . 0. Using (58) we
conclude that

MlWk ¼ Wk; 8k; l [ f1; 2; . . . ;mg ð59Þ

and the relations (59) imply

W1 ¼ � � � ¼ Wm ¼ 0 ð60Þ

Indeed, for each h [ f1, 2, . . . , mg there exists a matrix
Ml [M with positive h column (by assumption 2). Thus,
lemma 2 implies that the h coordinate of each Wk vanishes,
and since h is arbitrary, (60) follows. The proof of the
lemma is complete. A

The following result may be established by using the
same arguments as those employed in proving the previous
lemma, and we will not repeat it here.

Lemma 5: If P is a primitive matrix, such that Ps . 0 for
some positive integer s, then C2s is a contraction on D.

Inspecting the proof of theorem 1, we realise that we did
not use any special properties of the second power in
deriving the proof while using the contractive property of
F2. Namely, for any positive integer q, if Fq is contractive
on Sm, then theorem 1 follows. Similarly, if Cq is contrac-
tive on D for some positive integer q then theorem 3
follows. As a consequence of the previous two lemmas,
we have the following results.

Theorem 5: Let assumption 2 hold and suppose that the
transition matrix P is primitive, so that there exists an
integer s � 1 such that Ps has positive entries. Then the
spectral radius of the restriction of F to Sm is smaller
than 1. In particular there exists a unique solution V� for
(7), and the iteration scheme

V ðkþ1Þ ¼ FðV ðkÞÞ; k ¼ 0; 1; 2; . . .

with any starting point V(0) ¼ V0 in S

lim
k!1

V ðkÞ ¼ V � ð61Þ

Moreover, the asymptotic behaviour of the expectation of
the random variable W(N ) is given by

lim
N!1

EðW ðN ÞÞ ¼
Xm

i¼1

riV
�
i ð62Þ

where V� ¼ (V�1, . . . , V�m) [ Sm is the unique solution of
(7), and r ¼ (r1, . . . , rm) is the Perron eigenvector of the
transition probability matrix (Pij).

Theorem 6: Let assumption 2 hold, and assume that the
transition probability matrix P is primitive. Then the spec-
tral radius of the restriction of the mapping C to Bm is
smaller than 1. In particular there exists a unique solution
D� for (27), and the iteration scheme

Dðkþ1Þ ¼ CðDðkÞÞ; k ¼ 0; 1; 2; . . .

with the starting point D(0) ¼ D0 satisfies

lim
k!1

DðkÞ ¼ D�
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for every D0 [ D. Moreover, the asymptotic behaviour of
the variance

VarðW ðN ÞÞ ¼ E½W ðN ÞW ðN ÞT � � E½W ðN Þ�E½W ðN Þ�T

is given by

lim
N!1

VarðW ðN ÞÞ ¼
Xm

i¼1

riD
�
i �

Xm

i¼1

riV
�
i

 ! Xm

i¼1

riV
�
i

 !T

ð63Þ

where D� ¼ (D�1, . . . , D�m) [ D is the unique solution of
(27), and r ¼ (r1, . . . , rm) is the Perron eigenvector of
the transition matrix (Pij).

5 R-model

In the previous sections we considered the process f(A(k),
W(k))gk¼0

1 under the assumption that fA(k)gk¼0
1 is a

Markov process, and the distribution of W(kþ 1) is deter-
mined by the value of A(k) and the distribution of W(k).
In this model, the emphasis is put on the process
fA(k)gk¼0

1 , and fW(k)gk¼0
1 may be considered as a ‘shadow’

of it since the properties of fW(k)gk¼0
1 are derived from

the distribution of fA(k)gk¼0
1 .

However, one can construct a router such that the prob-
ability that a packet will be dropped at the kth congestion
event depends on the information provided by the vector
W(k), whose jth coordinate is equal to the throughput of
the jth flow at the kth congestion. We thus assume through-
out this section that assumption 3 holds, and we will
describe it again below.

When we consider the model under assumption 3, which
we call the R-model, we assume that the value of W(k) at the
kth congestion event, say W(k) ¼ w, determines the distri-
bution of A(k). Namely, there exist continuous functions
w 7! pi(w) [ Rþ on S such that

P½AðkÞ ¼ MijW ðkÞ ¼ w� ¼ piðwÞ ð81 � i � mÞ ð8w [ SÞ

ð64Þ

and

Xm

i¼1

piðwÞ ¼ 1 for every w [ S

In order to ensure that each flow has non-zero probability to
detect a drop we assume that for each flow i there exist
matrix inM with positive ith column.

We begin this section by proving that for any initial
distribution of W(0) almost all products fA(k) . . .A(0)gk[N

are weakly ergodic. Recall that a sequence fQkgk[N of
column-stochastic matrices is called weakly ergodic if

lim
k!1

distðQk;RÞ ¼ 0

where we denote by R set of rank-1 column stochastic
matrices. For any column stochastic matrix Q, we know
that Q(S) , S (see the proof of proposition 2). Thus the
restriction of Q to S is a mapping to itself, and we denote
this map by Q̃. It follows from the definition of weak ergo-
dicity given above that the sequence fQkgk[N is weakly
ergodic if and only if

lim
k!1

~Qk ¼ 0

(see [8]).

Recall also that a linear operator on a vector space V is
called paracontractive with respect to norm k.k if for
all x [ V

Vx = x ¼) kVxk , kxk

The main tool in establishing almost sure weak ergodicity
will be the following result, which is given in [6].

Theorem 7: Let k.k be a norm on Rm and let F , Rm�m be a
finite set of linear operators that are paracontractive with
respect to k.k. Then for any sequence fAkgk[N , FN, the
sequence of left products fAkAk21

. . . A1gk[N converges.

Proposition 6: Let the random variable W(0) have arbitrary
distribution on S. Under assumption 3, the sequence of pro-
ducts fA(k)A(k 2 1) . . . A(0)gk[N is weakly ergodic with
probability 1, that is,

lim
k!1

~AðkÞ ~Aðk � 1Þ � � � ~Að0Þ ¼ 0 almost surely ð65Þ

Proof: From the assumption of positivity and the continuity
of the mappings pi on the compact set S it follows that

h ¼ inffpiðsÞ j s [ S; i [ f1; . . . ;mgg . 0

This means that p(A(k) = Mi) � 1 2 h , 1 for every
1 � i � m. For every such i let Ti be a matrix with positive
ith column. Then with probability 1 the matrix Ti appears
infinitely often in fA(k)gk¼0

1 . We will next establish weak
ergodicity for left products fAk . . . A1A0gk[N whenever for
every i there exist matrix Ti with positive ith column that
occurs infinitely often in sequence A0, A1, A2, . . .

By lemma 1, for all M [M, M̃ is paracontracting on S
with respect to the L1 norm. By theorem 7 it follows that
the sequence fÃkÃk21

. . . Ã0gk[N is convergent, and we
claim that the limit is zero. To show this let s [ S. Then
there exist a y [ S such that y ¼ limk!1 ÃkÃk21

. . . Ã0s.
For any fixed i let fAnk

gk[N be a subsequence of fAkgk[N

with Ank
¼ Ti. Then

y ¼ lim
k!1

~Ank
~Ank�1 � � � ~A0s ¼ Ti lim

k!1

~Ank�1 � � � ~A0s ¼ Tiy

hence Tiy ¼ y. But by lemma 2, the ith coordinate of y must
be zero. Since i is arbitrary, it follows that y ¼ 0. We have
thus established that limk!1 Ã(k)Ã(k 2 1) . . . Ã(0) ¼ 0,
which implies the assertion of the proposition. A

Comment: The previous proposition is also established
in [23], under assumption 1, that is, when all the functions
pi are constant.

Note that, in a sense, under assumption 3, the roles of
fA(k)gk¼0

1 and fW(k)gk¼0
1 are interchanged compared to

their roles in the model under assumption 2: the emphasis
is put on fW(k)gk¼0

1 , and fA(k)gk¼0
1 is considered as its

shadow process.
We will henceforth restrict attention to stationary pro-

cesses. The process fA(k), W(k)gk¼0
1 is Markovian in the

compact state space f1, 2, . . . , mg � S, and we will next
establish that it has a unique equilibrium distribution

fr1; . . . ; rmg � ðl1ðdwÞ; . . . ; lmðdwÞÞ

namely the probability that A(k) ¼ Mi and W(k) [ U is
equal, in the limit where k! 1, to rili(U). The equili-
brium measure is defined on the set of limit points of
fW(k)gk¼0

1 , and for a prescribed W0 ¼ s we denote by F(s)
the set of all limit points of sequences fW(k)gk¼0

1 with
W(0) ¼ s. We use the following terminology and say that
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weak ergodicity holds for fM1, . . . , Mmg ¼M if every
product

AkAk�1 � � �A0; Ak [M for every k � 0

in which each Mi appears infinitely often is weakly ergodic.

Proposition 7: Suppose that pi(w) . 0 for every 1 � i � m
and w [ S, and assume that weak ergodicity holds for
fM1, . . . , Mmg. Then

Fðs1Þ ¼ Fðs2Þ ¼: F for every s1; s2 [ S ð66Þ

Thus F is the smallest closed subset of S that is invariant
under each Mi [M, so that it satisfies

F ¼
[m
i¼1

MiðFÞ

and it is the support of the unique equilibrium invariant
measure (l1(dw), . . . , lm(dw)).

Proof: For a prescribed starting point W0 ¼ s we define the
sequence of subsets Fk(s) , S as

F0ðsÞ ¼ fsg; Fkþ1ðsÞ ¼
[m
i¼1

MiðFkðsÞÞ; k ¼ 0; 1; 2; . . .

ð67Þ

Then F(s) may be expressed in the form

FðsÞ ¼
\1
p¼1

cl
[1
k¼p

FkðsÞ

 !
ð68Þ

Denote by h(., .) the Hausdorff metric in S. It then follows
from the weak ergodicity ofM that

hðFkðs1Þ;Fkðs2ÞÞ �! 0 as k �! 1 ð69Þ

This follows from the fact that each point in Fk(s) is of the
form

Mik Mik�1
� � �Mi1 s

for some matrices Mij
[M, 1 � j � k, and that

Mik Mik�1
� � �Mi1 s1 �Mik Mik�1

� � �Mi1 s2 �! 0 as k �! 1

by weak ergodicity. It follows from (69) that the Hausdorff
distance between

S
k¼p
1 Fk(s1) and

S
k¼p
1 Fk(s2) is arbitrarily

small provided p is sufficiently large. In view of (68) it
follows that F(s1) ¼ F(s2) for every s1, s2 [ S, establishing
(66) and concluding the proof of the proposition. A

The dynamics of f(A(k), W(k)gk¼0
1 can be described as

follows. For a vector W(k) ¼ w at the instant of time k,
choose a matrix A(k) fromM according to the distribution
fpi(w)gi¼1

m , and set W(kþ 1) ¼ A(k)w. We then follow the
steps

W ð0Þ �! Að0Þ �! W ð1Þ ¼ Að0ÞW ð0Þ �! Að1Þ �! � � �

�! W ðkÞ �! AðkÞ �! W ðk þ 1Þ ¼ AðkÞW ðkÞ �! � � �

ð70Þ

We restrict attention only to the terms W(k) in the chain
of variables (70), and if W(0) � (l1, . . . , lm) then
fW(k)gk¼0

1 turns out to be a stationary Markov process.
We now view the dynamics in a different manner, and

this time we focus on the terms A(k) in the above chain
(70). If in the outset we restrict attention to stationary
processes, then the distribution of each variable W(k) is

(l1(dw), . . . , lm(dw)). Assuming this, we restrict attention
only to the variables A(k) in (70), which turns out to be a
stationary Markov chain in M provided that we take the
initial distribution A(0) � r. We thus suppose that
W(k) � (l1, . . . , lm), and that A(k) ¼ Mi for some
1 � i � m. This determines the distribution of
W(kþ 1) ¼ MiW(k), as well as the distribution of A(kþ 1).
More explicitly, we define Pij ¼ Epj(MiW(k)) where E
denotes the expectation operation with respect to the
distribution l(dw), namely

Pij ¼

ð
pjðMiwÞliðdwÞ ð71Þ

Although we defined Pij ¼ Epj(MiW(k)), Pij in (71) does not
actually depend on k since all the variables W(k) have the
same distribution l. However, we have to verify that
our construction does yield this distribution to all W(k).
But indeed, since r � (l1, . . . , lm) is an equilibrium
distribution for the Markov process fA(k), W(k)gk¼0

1 , it
follows that if we have A(k) � r, then the distribution of
W(kþ 1) is (l1, . . . , lm), and that of A(kþ 1) is r. We sum-
marise the above discussion in the following.

Theorem 8: The matrix P is a transition probability matrix
of a stationary Markov chain fA(k)gk¼0

1 inMwith stationary
distribution A(k) � r. This Markov chain consist of the A(k)
terms in the process fA(k), W(k)gk¼0

1 , which describes the
R-model of the process.

We are interested in the asymptotic behaviour of W(N )
where N! 1, which in view of W(kþ 1) ¼ A(k)W(k),
reduces to the study of the asymptotic distribution of the
products

YN
k¼0

AðkÞ

 !
W ð0Þ ð72Þ

when N! 1. Since weak ergodicity holds for the matrix
products

Q
N
k¼0 A(k), it follows that the asymptotic beha-

viour of the expressions in (72) does not depend on W(0)
there, and we consider these expressions with an arbitrary
choice of W(0) [ S. Although fA(k)gk¼0 is a stationary
process, the process fA(N) . . . A(0)Wg is not stationary,
and we define

V N
i ¼ E½AðN � 1ÞAðN � 2Þ � � �Að0ÞW ð0Þ jAðN Þ ¼Mi� ð73Þ

where the expectation is with respect to the measure in
which fA(k)gk¼0

1 is a stationary Markov chain with the tran-
sition probability matrix P in (71). Associated with this P is
the matrix P̃ of backward probabilities, so that P̃ij is the
probability of having A(k) ¼ Mi given that A(kþ 1) ¼ Mj.
Thus assuming A(Nþ 1) ¼ Mj, it follows from (73) that

V Nþ1
j ¼ E½AðN ÞAðN � 1Þ � � �Að0ÞW ð0Þ jAðN þ 1Þ ¼Mj�

¼
Xm

i¼1

~PijE½MiAðN � 1Þ � � �Að0ÞW ð0Þ jAðN Þ ¼Mi;

AðN þ 1Þ ¼Mj�

¼
Xm

i¼1

~PijMiE½AðN � 1Þ � � �Að0ÞW ð0Þ jAðN Þ ¼Mi�

where in the last equality we have used the Markov prop-
erty. Equating the first and last terms and using (73), we
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obtain the relations

V Nþ1
j ¼

Xm

i¼1

~PijMiV
N
i ; N � 0 ð74Þ

However, we observe now that (74) is an iterations scheme
for the fixed point equation (7). Thus, the results of the
previous sections imply that the following limits exist:

lim
N!1

V N
i ¼ V �i for every 1 � i � m ð75Þ

where V� ¼ (V�1, . . . , V�m) is the unique solution of (7). As a
consequence of this discussion we have the following:

Theorem 9: The conclusions of theorems 5 and 6 hold true
when we replace assumption 2 there by assumption 3.

6 Conclusions

In this paper we consider the dynamics of AIMD networks
that evolve according to Markovian dynamics. We have
shown that such networks have well-defined stochastic
equilibria and provide tools that can be used to characterise
these equilibria. In particular, for routers that operate
according to assumption 2, we have developed tools for
computing limk!1 E(W(k)) and limk!1 Var(W(k)). We
then extended these results to the R-model given by
assumption 3.

Results presented here are concerned with long flows.
Although most flows in the Internet are short, the
majority of Internet traffic is generated by long flows.
Measurements in [26] indicate that for a typical backbone
link, 5% of long flows give rise to 70–85% of all transferred
bytes. Whereas very short flows usually do not have time to
react in response to a congestion signal, and in addition it is
very hard to predict their behaviour in terms of resource
allocation, it will be nevertheless interesting, as a topic
for further research, to characterise the behaviour of
medium-sized AIMD users. One possible approach for
this problem is given in [27].

While developing these tools represents an important
first step in studying such networks, much work remains
to be done. The results derived in this paper provide tools
to address the problem of designing routers that achieve,
in the long run, certain goals. By controlling the distribution
of the random variable A(0) in the i.i.d. case (1), or the
transition matrix P in the Markov cases 2 and 3, one can
guarantee that, in the long run, the asymptotic expected
value of W(k) is close to a certain prescribed vector V�. A
major objective of future work will be to investigate how
this might in fact be achieved.

Another interesting designing problem that is of great
practical interest, and which may be addressed in the
setting provided by either assumption 2 or assumption 3,
is the following. For a prescribed vector V�, consider all
the transition matrices P for which

lim
k!1

EðW ðkÞÞ ¼ V � ð76Þ

and among them pick one for which

lim
k!1

VarðW ðkÞÞ ¼ T� ð77Þ

is the smallest possible in a certain sense. Minimising the
variance makes it more likely that the desired long-run
behaviour expressed by limk!1 E(W(k)) ¼ V� will be
realised faithfully (although the cost of this choice may
be a slow network convergence or some other undesirable

network behaviour). This goal defines a constrained optim-
isation problem that may be addressed either numerically or
theoretically. We note that the minimisation may be
approached in various ways: either minimising a certain
functional, such as the trace of T�, or looking for a T�0
such that

T�0 � T�

in the positive definite sense, where T�0 and T� correspond to
certain matrices P0 and P such that (76) and (77) hold.
Finally, we note that one of the principal tools for analysing
AIMD networks is the network simulator NS-2. For net-
works of low dimension, this tool is effective for examining
the behaviour of AIMD networks. However, for networks
with large number of sources this tool becomes increasingly
difficult to use due to excessive simulation times. In this
context, efficient methods to compute important network
properties are likely of great value to network designers.
The tools presented in this paper represent a first step
toward the development of such tools.
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