
H-SPACE AND LOOP SPACE STRUCTURES FOR INTERMEDIATE
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MARK WALSH AND DAVID J. WRAITH

Abstract. For dimensions n ≥ 3 and k ∈ {2, · · · , n} , we show that the space of metrics of
k -positive Ricci curvature on the sphere Sn has the structure of an H -space with a homotopy
commutative, homotopy associative product operation. We further show, using the theory of
operads and results of Boardman, Vogt and May that the path component of this space
containing the round metric is weakly homotopy equivalent to an n -fold loop space.

1. Introduction

There has been a great deal of interest in recent years about the topology of the space of
Riemannian metrics sastisfying given curvature conditions on a given manifold. (As a starting
point for this topic, see [30].) Interest has been mainly directed towards studying the homotopy
and (co)homology groups of these spaces of metrics, with many results demonstrating that
these algebraic invariants are often non-trivial. There are, of course, other aspects of topology
which are not captured by computing homotopy and homology. In this paper, we focus on the
existence of H -space structures and loop space structures in certain spaces of metrics.

Recall (see for example [21, page 224]) that a topological space X is said to be an H -
space if it has a ‘multiplication’ map m : X ×X → X , with an identity element e ∈ X such
that m◦ι1 ' m◦ι2 ' idX , where ι1 : X → X×X is the map ι1(x) = (x, e), and ι2(x) = (e, x).
We will say that an H -space is (homotopy) associative if m(m × idX) ' m(idX × m), and
(homotopy) commutative if m ' m ◦ S, where S is the ‘swapping’ map S : X × X → X
given by S(x1, x2) = (x2, x1).

Recall also that X is said to be a loop space (see [21, page 216]) if there exists a based
topological space (Y, y0) for which X = ΩY, where ΩY is the set of loops in Y based at
y0 , equipped with the compact-open topology. In this paper we will be particularly interested
in iterated loop spaces, i.e. ΩnY = Ω(Ω(· · · (ΩY ) · · · ). Note that a loop space is always an
H -space, as a multiplication map can be constructed by concatenating loops. On the other
hand, the question of whether an H -space is a loop space is highly non-trivial in general. We
will return to this point later.

The motivation behind the results in this paper was the work of the first author in
[32]. This paper studied the space of positive scalar curvature metrics on the sphere Sn , and
demonstrated the existence of an H -space structure on this space of metrics whenever n ≥ 3.
It was also shown that the path-component of the round metric admits an n-fold loop space
structure. The current paper arose from exploring the extent to which these positive scalar
curvature results continue to hold for stronger curvature conditions.

Before going any further, we must mention the fact that [32] is not the only paper in
the literature which studies H -space or loop space structures for positive scalar curvature
metrics. In [7], Ebert and Randall-Williams prove something stronger than the main result
in [32], namely that a certain union of path components in the space of metrics of positive
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scalar curvature on Sn (containing the path component of the round metric) is homotopy
equivalent to an infinite loop space (at least when n ≥ 6). The methods used here are heavily
homotopy theoretic and very different to those used in [32]. As the authors of [7] point out, it
is difficult to compare these constructions and it is unclear as to whether or not the structures
built in [7] extend those of [32]. More recently still, in [8], G. Frenck has demonstrated that
for any compact spin manifold of dimension at least six, the resulting space of positive scalar
curvature metrics admits a homotopy-commutative, homotopy-associative H-space structure.

Although the classical scalar, Ricci, and sectional curvatures have always been of central
importance in Riemannian geometry, there is currently an increasing interest in more subtle
notions of curvature. For example, there is the notion of p-curvature, which interpolates
between positive scalar (when p = 0) and positive sectional curvature (when p = n − 2),
(see for example [19], [2]). Then there is the notion of k -positive curvature (also known in the
literature as the kth -intermediate Ricci curvature or kth -Ricci curvature), see for example [15],
[28], [29], [36], [33], [14], [11], [12], [13] [23], [24]. We take special note of the paper [18], which
concerns the topology of the space of metrics satisfying so-called ‘surgery stable’ curvature
conditions, building on ideas developed in [17]. This includes positive scalar curvature, as
well as a number of other conditions. To the best of the authors’ knowledge, this paper is
the first to study spaces of metrics satisfying non-classical curvature conditions. For example,
Corollaries D and E of that paper are results about the homotopy type of the space of metrics
with positive p-curvature in the case p = 1.

In this paper we will focus on a curvature condition introduced by Wolfson in [34]:

Definition 1.1. We say that an n-dimensional Riemannian manifold has k -positive Ricci
curvature if the sum of the k smallest eigenvalues of the Ricci tensor is positive at all points.
We will write this as Rick > 0.

Notice that n-positive Ricci curvature is just positive scalar curvature, and 1-positive
Ricci curvature is the same as positive Ricci curvature. Thus the k -positive Ricci curvatures
provide a very natural family of curvatures intermediate between positive scalar and positive
Ricci curvature. We will denote by RRick>0(M) the space of all k -positive Ricci metrics on
M (equipped with the smooth topology).

The main results established in this paper are as follows:

Theorem A. When n ≥ 3 and 2 ≤ k ≤ n, RRick>0(Sn) has the structure of an H -space
with a homotopy commutative, homotopy associative product.

Corollary B. When n ≥ 3 and 2 ≤ k ≤ n, the fundamental group of RRick>0(Sn), with
basepoint the standard round metric, is abelian.

Theorem C. When n ≥ 3 and 2 ≤ k ≤ n, the path component of RRick>0(Sn) containing
the round metric is weakly homotopy equivalent to an n-fold loop space.

A key feature of k -positive Ricci curvature is that under a certain codimension condition,
it can be preserved by performing surgeries. The result here is as follows.

Theorem 1.2 ([34],[17]). Let Mn be a closed Riemannian manifold with k -positive Ricci
curvature, 2 ≤ k ≤ n. Then any manifold obtained from M by performing surgeries in
codimension q with q ≥ max{n+ 2−k, 3} also admits a metric of k -positive Ricci curvature.
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In particular if M1 and M2 are manifolds of dimension n ≥ 3 which admit metrics of 2-
positive Ricci curvature, then the connected sum M1]M2 also admits a metric of 2-positive
Ricci curvature.

It is the fact that k -positive Ricci curvature, 2 ≤ k ≤ n , is preseved under connected
sums which is crucial for the results in this paper. Naively, one might consider two k -positive
Ricci metrics on Sn . We can join these by a connected sum within Rick > 0, to give a new
metric on a sphere. (For technical reasons, it turns out to be better to perform connected sums
between each of the spheres and a round sphere of fixed radius, a so-called ‘docking station’.)
The problem with this construction is that the original metrics were metrics on a standard
smooth sphere, and to exhibit a well-defined H -space multiplication, our final metric must
also be a metric on the standard sphere. Thus we must find a diffeomorphism between the
standard sphere and the connected sum arrangement we construct, with which to pull back
the metric. Of course such diffeomorphisms exist in abundance, but in order to have a well-
defined multiplication, we must show that such a diffeomorphism can be chosen in a standard
way, depending smoothly on the individual metrics involved. (We call this the ‘connected sum
contraction procedure’.)

In Section 2, starting from a result about deforming positive Ricci curvature metrics [35],
we deduce a local rounding result for k -positive Ricci curvature, 1 ≤ k ≤ n . This is useful
for the constructing and manipulating the connected sum constructions mentioned above: in
practice it means that we only have to deal with warped product metrics. It also means that
for H -space considerations everything can be controlled in terms of a single parameter R
arising from each metric, (and for loop space considerations two parameters R and ε).

Given that working with metrics which are locally round is convenient, in Section 3 we
prove that a certain space of such metrics on the sphere has an H -space structure. This space
has the same homotopy type as the full space of k -positive Ricci metrics, and so this is enough
to prove Theorem A: it is an easy exercise (see for example [21, page 251]) to show that if X is
an H -space and X ' Y, then Y is also an H -space. The existence of the homotopy identity
turns out to be particularly delicate, and for this we develop a ‘warped product deformation
procedure’, which turns out to be equally useful in our loop space considerations.

On a more technical level, since we are concerned with defining smooth operations on
spaces of metrics, we have to work to remove all choices from our constructions so that the
operations are unambiguously defined, and can be seen to vary smoothly with the input
metrics. For this reason we take a different approach to that of Wolfson when constructing
connected sums: it turns out to be convenient to construct the main building block for the tube
in a single piece. (The Wolfson approach is based on the classic Gromov-Lawson construction
[10].) On the other hand, this requires some smoothing at the ends. Indeed the ‘warped product
deformation procedure’ mentioned above also requires a smoothing argument. We therefore
have to take speical care of how we smooth: in part to remove choices, and in part to make
sure that the smoothings themselves vary smoothly with the input metrics.

The final section of the paper, Section 4, is dedicated to proving Theorem C. Our ap-
proach here mimics that of [32] for positive scalar curvature. The key to establishing (iterated)
loop space structure is provided by loop space recognition results due to Boardman and Vogt
[1], and May [22]. These results rely on the concept of an operad, and in particular operad
actions on topological spaces. This is explained briefly in Section 4, but see [32] and the ref-
erences therein for a more detailed exposition. In short, to establish Theorem C, it suffices
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to exhibit an action of a certain operad on the space of k -positive Ricci metrics on Sn . The
construction we perform here relies heavily on the techniques developed in Section 3.

In conclusion, one might speculate about the existence of H -space or loop space struc-
tures for other spaces of metrics. In particular, since the ability to do connected sums within
k -positive Ricci curvature for 2 ≤ k ≤ n is a crucial feature behind the results in this paper,
it is natural to ask whether similar arguments can be made for other curvature conditions
which allow connected sums. We conclude, however, with the following question:

Question 1.3. Does the space of Ricci positive metrics on Sn admit an H -space or (iterated)
loop space structure?

It should be noted that the techniques used in this paper appear to offer no insight into this
question.

2. Spaces of k -positive Ricci metrics

Suppose that Mn is a closed manifold which supports a metric with Rick > 0 for some
k ∈ {1, · · · , n} . Our aim in this section is to define and analyse certain spaces of metrics
on M . Recall that RRick>0(M) denotes the space of all k -positive Ricci metrics on M . Now
choose a basepoint x0 ∈ M , and for reasons that will become clear later, we will fix a basis
{e1, ..., en} for the tangent space Tx0M . We will denote by RRick>0

rd (M) the space of k -positive
Ricci metrics on M for which the restriction to some neighbourhood of x0 is round. Define
RRick>0
rd,1 (M) to be the subspace of RRick>0

rd for which the round neighbourhood contains a
distance sphere about the basepoint x0 on which the induced metric has radius 1. If M
actually supports a Ricci positive metric (i.e. a 1-positive Ricci metric) then we will simply
write RRic>0(M), RRic>0

rd (M) and RRic>0
rd,1 (M) respectively for these spaces of metrics. Notice

that for any metric in RRick>0
rd,1 , we can, and will, assume that removing the open ball about x0

bounded by the unit (intrinsic) radius distance sphere leaves a concave boundary. In summary,
we have specified spaces which include as follows:

RRick>0
rd,1 (M) ⊂ RRick>0

rd (M) ⊂ RRick>0(M).

x0 x0

1

Figure 1. Sample elements of RRic>0
rd (M) (left) and RRic>0

rd,1 (M) (right)

Our starting point for the analysis of these spaces of metrics is a result of the second
author [35], which generalizes to arbitrary submanifolds in a Ricci positive setting a result for
curves in negative Ricci curvature due to Gao [9].
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Theorem 2.1. ([35]) Let X be a manifold and Y a compact submanifold with dimY <
dimX . Let g1 be a Ricci positive metric on X and g0 a Ricci positive metric defined in an
open neighbourhood of Y . If the 1-jets of g0 and g1 are equal at every point in Y , then there
exists a Ricci positive metric ḡ on X and numbers ε, ε′ with 0 < ε′ < ε, such that ḡ|X\Nε(Y )

agrees with g1 and ḡ|Nε′ (Y ) agrees with g0 . (Here, the ε and ε′ -neighbourhoods are defined
with respect to the metric g1 .)

The case we are interested in is the situation where Y is a point, so we are redefining
the metric in an ε-neighbourhood of the point. It is straightforward to check that the proof
of Theorem 2.1 continues to hold in this special case.

We remark that one might alternatively approach some of the results in this section,
and also certain constructions in later sections, using ideas from [18]. We note, for example,
the analogy between Theorem 3.5 in that paper, and Corollary 2.9 in the current paper.

We will need to use a few of the background details (in the special case Y = {x0} ⊂M )
behind the proof of Theorem 2.1. Let us assume that g1 is a given Ricci positive metric on
M , and that g0 is a round metric of some radius defined in a neighbourhood of a basepoint
x0 ∈ M , and that the 1-jets of g0 and g1 agree at x0 . We introduce a cut-off function
f : R→ R , which can be any smooth function satisfying:

f(r) =

{
1 r ≤ 1
0 r ≥ 2

with 0 ≤ f ≤ 1 and f ′ ≤ 0. Suppose that the round metric g0 is defined on M in Bε(x0), a
g1 -ball about x0 of radius ε . We define the following function on this ball:

ψ(x) = f(|x|λ/
√
λ),

where |x| denotes the g1 -distance of x from x0 , and λ ∈ (0, 1) is a constant to be determined.
We then define the following metric in Bε(x0):

ḡ(x) = ψ(x)g0(x) + (1− ψ(x))g1(x).

We note that ḡ is smooth metric as a consequence of the fact that the functions f and in
turn ψ are smooth. We also observe that

ḡ =

{
g1 if |x| ≥ (2

√
λ)

1
λ ,

g0 if |x| < (
√
λ)

1
λ .

That this transition from g0 to g1 can take place within Bε(x0) follows from the fact that

(2.1) lim
λ→0+

(2
√
λ)1/λ = 0,

so given any ε > 0 we simply have to choose λ sufficiently small so that (2
√
λ)1/λ < ε.

Of course we wish to alter the metric g1 on M by replacing it by ḡ on Bε(x0). However
we need this change to preserve the positive Ricci curvature condition. The key result here is
[35, Lemma 1.9], which adapted to our situation yields:

Lemma 2.2. [35, Lemma 1.9] Let u1, u2 be g1 -unit tangent vectors at x ∈ Bε(x0). Then
setting s = ψ(x) we have

Ricḡ(u1, u2) = sRicg0(u1, u2) + (1− s) Ricg1(u1, u2) + A(u1, u2)

where
|A(u1, u2)| ≤ cλ1/2|x|λ
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and c depends on the dimension, the choice of f and the metrics g0 and g1 .

Thus we see that for λ sufficiently small, the metric ḡ has positive Ricci curvature, agrees
with g1 near the boundary of Bε(x0) (and hence fits smoothly into (M \ Bε(x0), g1)) and is
round near x0 . We conclude that for the metric g1 we can construct a metric in RRic>0

rd (M)
by the above procedure. Furthermore, by performing a suitable global rescale if necessary, we
can ensure the resulting metric actually lies in RRic>0

rd,1 (M). Notice that in the statement of

Theorem 2.1 we can take ε = (2
√
λ)1/λ and ε′ = (

√
λ)1/λ, for λ sufficiently small depending

on the metrics g0, g1 .
It follows easily from Lemma 2.2 that we can widen the setting from positive Ricci

curvature to k -positive Ricci curvature:

Proposition 2.3. Let Mn be a manifold equipped with a k -positive Ricci metric g1, where
1 ≤ k ≤ n. Then given any point x0 ∈ M, there are constants R > 0, ε, ε′ with 0 < ε′ < ε,
and a k -positive Ricci metric ḡ on M such that ḡ is round of radius R in the ball B(x0, ε

′),
and agrees with g1 in the complement of B(x0, ε). Moreover, if g1 is round of some radius ρ
in a neighbourhood of x0 , then we can take R = ρ. More generally, we can arrange for the
value of R to depend smoothly on the metric, and ε, ε′ to depend continuously on the metric.

Proof. We begin by investigating the extent to which we can impose a round metric onto
a neighbourhood of x0 ∈ M. We will do this by defining a local diffeomorphism between a
neighbourhood of x0 and a neighbourhood (say of the north pole) in a standard sphere, and
then using this diffeomorphism to pull-back the round metric onto M .

We construct the diffeomorphism by introducing normal coordinate systems locally
around x0 in M and around the north pole in the sphere. To do this in M , we consider
the ordered basis {e1, ..., en} for Tx0M . Applying the Gram-Schmidt orthonormalization al-
gorithm to this basis yields an ordered orthonormal basis {v1, ..., vn} in a way which depends
smoothly on the metric g1 . This then generates a normal coordinate system in a neighbour-
hood of x0 .

To do the same thing on the sphere Sn , we begin by fixing once and for all an orthonormal
basis {w1, ..., wn} for the tangent space at the north pole on the unit radius sphere. However
we still have to fix the radius of the round metric we wish to use in our construction. Consider
the g1 -unit vector u := e1/|e1|. We set the radius R for the round sphere to be

R = R(g1) =

√
n− 1

Ricg1(u, u)
.

It is clear that this depends smoothly on the metric, as claimed. This choice of R also has the
effect that should g1 be round of radius ρ near x0 , the metric g0 will agree with this, i.e. we
will have R = ρ. Rescaling {w1, ..., wn} by a factor of 1/R then yields an orthonormal basis
for the round metric of radius R . Finally, we use this basis to generate a normal coordinate
system on the sphere.

The extent to which any normal coordinate system can be defined will be limited by the
injectivity radius at the central point. In the case of a round sphere of radius R , the injectivity
radius at any point is πR . For g1 on M we set

ε0 := min{1, πR(g1), injg1(x0)}.

Notice that ε0 depends continuously on the metric.
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Given this ε0 > 0, we can now construct a diffeomorphism between the ε0 -balls about
x0 ∈ M and about the north pole in Sn simply by identifying points with the same normal
coordinates. We then pull back the round metric of radius R to M along this diffeomorphism,
and call the resulting locally defined metric g0. Notice that the 1-jets of g0 and g1 agree at
x0 , by virtue of the nature of normal coordinate systems.

It is an elementary consequence of the Ricci curvature formula in Lemma 2.2 that since
g0 is round and g1 has k -positive Ricci curvature, then provided λ is chosen small enough,
the metric ḡ will also have k -positive Ricci curvature. We therefore conclude that there exists
λ0 maximal in (0, 1] such that ḡ has k -positive Ricci curvature for all λ ∈ (0, λ0). Set

λ := min
{λ0

4
,
1

4
ε2λ00

}
,

so λ varies continuously with the metric. We can then set

ε := (2
√
λ)1/λ, and ε′ := (

√
λ)1/λ.

Thus ε and ε′ also depend continuously on the metric. Notice that by our choice of λ we
automatically have ε ≤ ε0. By the construction in [35] outlined above, the metric ḡ will then
have all the desired properties: it will have k -positive Ricci curvature, be round of radius R
in an ε′ -ball around x0 , and will agree with the ambient metric g1 towards the boundary of
the ε-ball. �

Corollary 2.4. Given a compact family K ⊂ RRick>0(M), the association of a metric in
RRick>0
rd (M) as in Proposition 2.3 can be achieved in such a way that the parameters ε, ε′ can

be chosen uniformly for the entire family.

Proof. Begin by replacing the definition of ε0 in the proof of Proposition 2.3 with the value

ε0 := min{1, inf
g∈K

πR(g), inf
g∈K

inj(g)},

Then define
λ0 := inf

g∈K
λ0(g),

where λ0(g) is the value of λ0 (as defined in the proof of Proposition 2.3) for the specific
metric g . Note that by the compactness of K , all the infima above are positive. Now define
λ , and in turn ε, ε′ in terms of the above ε0, λ0, as in the proof of the Proposition. �

We now consider the effect of moving the basepoint x0 along a smooth path in M :

Lemma 2.5. Given a k -positive Ricci metric g on M and a smooth path γ(t) in M , t ∈
[0, 1], there are parameters 0 < ε′ < ε < 1, a smooth function R : [0, 1]→ R+ , and a smooth
path of metrics g(t) ∈ RRick>0(M), all dependent on g and γ , with the following property.
For each t ∈ [0, 1] the metric g(t) is round of radius R(t) in an ε′ -neighbourhood of the point
γ(t), and agrees with g in the complement of the corresponding ε-ball. (Here, the ball radius
is measured with respect to g .)

Proof. Given the g -unit vector u := γ′(0)/|γ′(0)| at γ(0) ∈ M, consider the vector field
u(t) along γ created by parallel translating u. Using this in the rounding construction of
Proposition 2.3 we then obtain the function

R(t) =

√
n− 1

Ricg(u(t), u(t))
,
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which clearly varies smoothly with t . The fact that the image of γ is a compact subset of M
allows us to choose ε, ε′ uniformly for the whole path, as in Corollary 2.4. Then the rounding
process about each γ(t) with these parameters and R(t) as above results in the desired smooth
path of k -positive Ricci metrics. �

Our next target is to show the inclusions: RRick>0
rd,1 (M) ⊂ RRick>0

rd (M) ⊂ RRick>0(M),
are weak homotopy equivalences for any 1 ≤ k ≤ n. We do this by observing the respective
relative homotopy groups all vanish. We begin with

Proposition 2.6. Let x0 ∈ M represent a basepoint and let K ⊂ RRick>0(M) denote a
compact family of metrics. Then there is a homotopy of maps, ηs : K → RRick>0(M), s ∈
[0, 1], which satisfies the following conditions:

(i) The map η0 is the original inclusion map.
(ii) The image of the map η = η1 lies in RRick>0

rd (M).

(iii) For all s ∈ [0, 1], ηs(K ∩RRick>0
rd (M)) ⊂ RRick>0

rd (M).

(iv) For all s ∈ [0, 1], ηs restricts as the identity map on K ∩RRick>0
rd,1 (M).

Proof. We compose the inclusion map with the rounding map resulting from the construction
in Proposition 2.3, after observing that by Corollary 2.4 we can make uniform choices of ε, ε′

for all metrics in K . With these choices fixed, we obtain the desired smooth map:

η : K → RRick>0
rd (M),

which immediately satisfies property (ii) above.
Before establishing the required homotopy ηs, s ∈ [0, 1], we will demonstrate that η sat-

isfies property (iv). Recall that if the metric g1 in Proposition 2.3 is round in a neighbourhood
of x0 with curvature 1/R2 , then the same will be true for the rounded metric ḡ. Moreover, if
the starting metric is round throughout the whole ε-ball, then the metric deformation proce-
dure will have precisely no effect. For any metric in K ∩RRick>0

rd,1 (M), the ε-ball in which the
metric deformation takes place lies within the distance sphere about x0 with intrinsic radius
1. (The intrinsic radius of an ε-distance sphere in a sphere of radius R is R sin(ε/R), and it
is easily checked that this is strictly less than one since 0 < ε ≤ 1.) Thus, the map η satisfies
property (iv).

The homotopy ηs for s ∈ I is provided by the rounding construction in Proposition 2.3
where the cut-off function f(r) (defined after Theorem 2.1) is replaced by s · f(r). It is easy
to see that the resulting metrics vary smoothly with s , and interpolate between the inclusion
map and η . Since the choice of cut-off function influences all subsequent choices, it is possible
that a given choice of λ, ε and ε′ which work in the case s = 1 might not be suitable for
other values of s . However, since the values of s belong to a compact interval, it is clear that
we can make uniform choices for λ, ε, ε′ which work for all metrics in K and all s ∈ [0, 1]. By
the rounding comments in the paragraph above, we immediately see that conditions (iii) and
(iv) are satisfied. �

Theorem 2.7. If Mn supports a metric of k -positive Ricci curvature for some 1 ≤ k ≤ n,
then the inclusion maps

RRick>0
rd,1 (M) ↪→ RRick>0

rd (M) ↪→ RRick>0(M)

are weak homotopy equivalences. In particular, if M admits a Ricci positive metric then we
have weak homotopy equivalences RRic>0

rd,1 (M) ↪→ RRic>0
rd (M) ↪→ RRic>0(M).
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Proof. The statement of the Theorem is equivalent to the statement that the following homo-
topy groups vanish for all i :

πi(RRick>0(M),RRick>0
rd (M)) and πi(RRick>0

rd (M),RRick>0
rd,1 (M)).

Let us consider the first family of homotopy groups. We set any metric g̃ ∈ RRick>0
rd,1 (M) ⊂

RRick>0
rd (M) as basepoint. For any i , an element of this group takes the form of a continuous

map
α : Di → RRick>0(M), such that α|∂Di : Si−1 → RRick>0

rd (M).

We let some p ∈ Si−1 lying the pre-image of g̃ act as our basepoint for Di .
The map α determines a compact family of k -positive Ricci metrics. Setting K = Im α

in Proposition 2.6, we see that α is homotopic via the composition ηs ◦ α to a map

ᾱ := η ◦ α : Di → RRick>0
rd (M).

Since each map in the homotopy fixes elements of K∩RRick>0
rd,1 (M), this is a homotopy through

based maps. Moreover, by property (iii) of Proposition 2.6, we know that at each stage in the
homotopy, elements of K ∩RRick>0

rd (M) are mapped into RRick>0
rd (M). Thus, we have a null-

homotopy and α represents the the zero class in πi(RRick>0(M),RRick>0
rd (M)).

We now consider the second set of homotopy groups. Setting g̃ as before we now let α
denote a continuous map

α : Di → RRick>0
rd (M), such that α|∂Di : Si−1 → RRick>0

rd,1 (M).

Once again p ∈ Si−1 in the pre-image of g̃ denotes the basepoint for Di . In order to estab-
lish that α is null-homotopic, we will apply a progressive global scaling factor to the space
RRick>0
rd (M). This takes the form of a homotopy

H(β) : RRick>0
rd (M)× [0, 1]→ RRick>0

rd (M)

given by H(β)(g, t) = (1+tβ)2g for some constant β > 0. Clearly, for each t , H(β)(−, t) maps
RRick>0
rd,1 (M) to itself. We then precompose this with α to obtain a homotopy H(β) ◦α . Since

the image of α is compact, there is some value of β for which the image of the composition
H(β)(−, 1) ◦ α is a subset of RRick>0

rd,1 (M) as required. The problem with this approach,
however, is that H moves the basepoint metric. Nevertheless, H provides a canonical path
of metrics between the original basepoint g̃ and the shifted basepoint (1 + β)2g̃, namely
(1 + tβ)2g̃ for t ∈ [0, 1]. Using this path we can replace H by a based homotopy in the usual
manner (see for example [16, page 345]). In this way we obtain a based homotopy between α

and a map into RRick>0
rd,1 (M), showing that α is null-homotopic. As α is an arbitrary element

in this homotopy group, we see that the homotopy group itself must vanish. The Proposition
follows. �

Let M̄ denote Mn \ Dn , and by RRick>0(M̄)∗ we will denote the space of k -positive
Ricci metrics on M̄ such that the boundary is concave, the boundary metric is round with
(intrinsic) radius 1, and a neighbourhood of the boundary is round of radius greater than 1.
Given any metric in RRick>0

rd,1 (M), removing the interior of the round disc about x0 which

is bounded by the sphere with intrinsic radius 1 results in an element of RRick>0(M̄)∗ . The
following result is then trivial, with the maps being provided by removing, respectively gluing
in round discs of the appropriate curvature:

Lemma 2.8. There is a homeomorphism RRick>0
rd,1 (M) ∼= RRick>0(M̄)∗.
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Corollary 2.9. If Mn supports a metric of k -positive Ricci curvature for some 1 ≤ k ≤ n,
then there are homotopy equivalences:

RRick>0(M) ' RRick>0
rd (M) ' RRick>0

rd,1 (M) ' RRick>0(M̄)∗.

In particular, if M admits a Ricci positive metric then the spaces RRic>0(M), RRic>0
rd,1 (M),

RRic>0
rd,1 (M) and RRic>0(M̄)∗ are all homotopy equivalent.

Proof. By Lemma 2.8 it suffices to show that RRick>0 ' RRick>0
rd ' RRick>0

rd,1 . Theorem 2.7
establishes this for weak homotopy equivalence. In order to strengthen this to a genuine homo-
topy equivalence, we observe that the space of all Riemannian metrics on a compact manifold
is a metrizable space, and hence so are RRick>0(M) and RRick>0

rd,1 (M). For more details see, for
example, [27, 1.38(c) and 1.46]. Having established metrizability, the existence of the desired
homotopy equivalence now follows directly from [25, Theorem 15]. �

3. H -space structures

In this section we will prove Theorem A. We will show that the space RRick>0
rd,1 (Sn) has

an H -space structure when n ≥ 3 and k ≥ 2. The fact that this space is homotopy equivalent
to RRick>0(Sn) means that by choosing any homotopy equivalence maps, we can pull back
the H -space structure from RRick>0

rd,1 (Sn) to RRick>0(Sn), proving Theorem A. In order that

RRick>0
rd,1 (Sn) be unambiguously defined, let us fix the basepoint x0 of Sn to be the north pole.

Recall from the Introduction that the surgery result of Wolfson implies that connected
sums are possible within Rick > 0 for any 2 ≤ k ≤ n. The H -space operation we will define
below will be a special, modified version of the Wolfson construction. This is analogous to the
approach taken by the first author in [32]. The following technical lemma will be crucial to
defining this special connected sum operation.

Lemma 3.1 (Tube Lemma). Given n ≥ 3, R > 0 and ε ∈ (0, R), set τR,ε = R cos−1(ε/R).
Then there exist constants ρR,ε ∈ (0, R), `R,ε > 0, κR,ε := 1

2
+ π

4 cos−1(ε/R)
, and a smooth warped

product metric gR,ε on [τR,ε, `R,ε]× Sn−1 , all depending smoothly on R and ε, such that

(i) for r ∈ [τR,ε, κR,ετR,ε], gR,ε = dr2 +R cos2(r/R)ds2
n−1 ;

(ii) for r ∈ [`R,ε − 1, `R,ε], gR,ε = dr2 + ρ2
R,εds

2
n−1 ;

(iii) Ric2(gR,ε) > 0.

Notice that the definition of κR,ε ensures that τR,ε < κR,ετR,ε < Rπ/2. In particular
this means that cos(κR,ετR,ε/R) > 0. Let us denote the Riemannian manifold ([τR,ε, `R,ε] ×
Sn−1, gR,ε) by TR,ε . A key point here is that for r close to τR,ε , TR,ε looks like a radius R
round metric, and the r = τR,ε boundary is a round sphere with intrinsic radius ε. In the
current section, we will only need to consider R > 1 and ε = 1. For simplicity we will denote
the resulting ‘tube’ by TR , and drop the ε subscripts from the related quantities.

Before proceeding with the proof it is worth recalling a well known calculation for the
Ricci curvature of a rotationally symmetric metric dt2 +f(t)2ds2

n−1, where f : [0, L]→ (0,∞)
is a smooth function, (see page 69 of [26]). Let ∂t, e1, · · · , en−1 be an orthonormal frame with
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∂t tangent to the interval [0, L], and each ei tangent to the sphere Sn−1. We have:

Ric(∂t) = −(n− 1)
f ′′

f
,

Ric(ei) = (n− 2)
1− f ′2

f 2
− f ′′

f
, when i = 1, · · · , n− 1.

(3.1)

Thus,

Ric2 = min

{
(n− 2)

1− f ′2

f 2
− nf

′′

f
, 2(n− 2)

1− f ′2

f 2
− 2

f ′′

f

}
.

We will be interested in the case when n ≥ 3. Furthermore, we will insist that the function f
satisfy the condition that 0 ≤ |f ′| ≤ 1. Thus the inequality

1− f ′2

f 2
≥ 0

always holds, and where f ′′ < 0 it is clear that Ric2 > 0. If f ′′ ≥ 0, it is evident that the
2-Ricci curvature takes the form:

Ric2 = (n− 2)
1− f ′2

f 2
− nf

′′

f
.

A simple calculation then shows that in order to obtain 2-positive Ricci curvature, it suffices
to specify f such that:

(3.2) f ′′ <
1− f ′2

n̄f
,

where n̄ = n
n−2
∈ (1, 3], since n ≥ 3.

Returning to Lemma 3.1, we will need to make some further preparations before pre-
senting the proof. This will consist of a collection of smaller technical results. The first of these
leads to the existence of a C1 -tube which approximates the desired tube TR . This approxi-
mating tube then has to be smoothed: we do this in stages. Firstly we show how to smooth
from C1 to C2 , then from C2 to C∞ . Finally we combine these results to obtain a C1 to C∞

smoothing which depends only on the parameter R .
The next result is a variant of [6, Lemma 3.3]. The result in [6] deals with positive scalar

curvature, and we have adapted the idea to apply to Rick > 0.

Lemma 3.2. Given a > 0, b > 0 and −1 < c < 0, there exists a solution h(t) to the initial
value problem

h′′ =
1− h′2

ah
,

h(t0) = b,

h′(t0) = c,

for t ∈ [t0, T ], some T > t0 with h(T ) > 0, h′(T ) = 0.

We remark that setting a > 3 in the above lemma will give a function h(t) which
automatically satisfies the Ric2 > 0 inequality (3.2).
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Proof. By the classical Picard-Lindelöf Theorem, there exists a solution to the initial value
problem at least in some interval t ∈ (t0−ε, t0 +ε). Observe that if the solution h(t) is defined
for some t1 > t0, then h(t1) > 0, as we must have h(t) > 0 for all t ∈ [t0, t1] in order for the
ODE to be defined.

Set

C(t) =
h−1/a(t)√
1− h′2(t)

.

By differentiating C(t), we see that C(t) is constant if h(t) satisfies the above ODE. Moreover,
we claim that throughout its domain of definition,

h(t) ≥ C(t0)−a.

To see this, we observe that for any t at which h(t) is defined,

h−1/a(t)√
1− h′2(t)

= C(t) = C(t0)

with the second equality following from the fact that C is a constant function. We then see
that h′(t) ∈ (−1, 1) for all t for which the solution is defined, and rearranging we obtain

h−1/a(t) = C(t0)
√

1− h′2(t1) ≤ C(t0).

The claim now follows immediately.
From the above analysis we see that the only way that the solution can fail to exist for

all t > t0 is if there exists t1 ∈ (t0,∞) such that

lim
t→t−1

h(t) =∞.

(We can rule −∞ as a limit since h(t) is bounded below.) In this case, by the intermediate
value theorem, since h′(t0) < 0, there exists T ∈ (t0, t1) with h′(T ) = 0.

On the other hand, if the solution exists for all t > t0 and we always have h′(t) < 0,
then it follows that

h′′(t) ≥ 1− h′2(t0)

ah(t0)
.

(To see this, note that since h′ ∈ (−1, 1) we have h′′ > 0, and thus h′2 is decreasing. By
assumption h is also decreasing, hence the inequality.) Integrating we see that

h′(t) ≥ 1− c2

ab
(t− t0) + c,

and so h′(t) hits zero at some finite time after t0 . This contradicts the assumption that
h′(t) < 0. We conclude that h′ must change sign, establishing the existence of a T > t0 with
the desired properties. �

Lemma 3.3 (C1 to C2 smoothing). Consider a function g(t) which is smooth for all t except
at the point t = t0 where it is C1 . Suppose further that g′′(t) remains bounded as t → t±0 .
Given ν > 0, there exists δ0 ∈ (0, 1] depending continuously on ν , g and its first and second
derivatives near t = t0 , such that for all δ ∈ (0, δ0), there is a function g̃(t) which agrees with
g(t) outside a δ -neighbourhood of t = t0 , and has the following properties.

(1) It is piecewise smooth with precisely two non-smooth points at t = t0 ± δ, at which it
is C2 .

(2) It has a C2 -continuous dependence on δ .
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(3) It is C1 ν -close to g .
(4) For t ∈ (t0 − δ, t0 + δ), g̃′′ interpolates between g′′(t0 − δ) and g′′(t0 + δ).

Proof. Consider initially any small δ > 0. Over the interval (t0 − δ, t0 + δ) we define g̃ to be
a quintic polynomial. The coefficients of this polynomial are completely determined by the
values taken by g and its first and second derivatives at t = t0 − δ and t = t0 + δ, so as
to create a C2 -function. The precise formula for this polynomial is displayed explicitly in [4,
proof of Theorem 2]. Moreover, it is also shown there that as δ → 0, g̃ converges to g in
the C1 -norm, and for δ sufficiently small, the second derivative of g̃ interpolates between its
values at t0 ± δ. One then sees from the analysis in [4] that what it means to be ‘sufficiently
small’ in this context depends continuously on ν and on the C2 -behaviour of g either side of
t = t0 . �

At several points in the sequel we will need to consider a smooth ‘step’ function. Let us
fix such a function once and for all: let φ : [0, 1]→ [0, 1] be any choice of smooth function such
that for some small ε > 0, φ(t) = 0 for t ∈ [0, ε], φ(t) = 1 for t ∈ [1 − ε, 1] and 0 ≤ φ′ < 2
throughout.

Lemma 3.4 (C2 to C∞ smoothing). Suppose that f(t) and g(t) are real-valued, real analytic
functions in a neighbourhood of t = t0 . If

h(t) =

{
f(t) if t ≤ t0
g(t) if t ≥ t0

is a C2 -function, then given any ε > 0 there is a smooth function h̃, depending smoothly on
ε, which agrees with h outside an ε-neighbourhood of t = t0 , and for which |h̃− h|C2 → 0 as
ε→ 0.

Proof. Let ψ(t) : [−1, 1]→ [0, 1] be defined by ψ(t) := φ((t+1)/2). Then set ψε(t) := ψ(t/ε).
Thus ψε is a smooth step function defined for t ∈ [−ε, ε]. We set

h̃ =

{ (
1− ψε(t− t0)

)
f(t) + ψε(t− t0)g(t) for t ∈ [t0 − ε, t0 + ε]

h(t) otherwise.
.

Clearly h̃ is smooth. We must consider h̃− h. To this end, note that if M1 and M2 are such
that |ψ′| ≤ M1 and |ψ′′| ≤ M2, then we have |ψ′ε| ≤ ε−1M1 and |ψ′′ε | ≤ ε−2M2. Also, since
h is C2 at t = t0 we have f(t0) = g(t0), f ′(t0) = g′(t0) and f ′′(t0) = g′′(t0). It then follows
from the real analyticity assumption that g(t)− f(t) = O(t3). Now

h̃(t)− h(t) =

{
ψε(t)(g(t)− f(t)) for t ≤ t0
(1− ψε(t))(f(t)− g(t)) for t ≥ t0.

Thus on an ε-neighbourhood of t0 we have

|h̃− h|C0 = O(ε3);

|h̃′ − h′|C0 = O(ε−1.ε3 + ε2) = O(ε2);

|h̃′′ − h′′|C0 = O(ε−2.ε3 + ε−1.ε2 + ε) = O(ε).

Therefore |h̃− h|C2 → 0 as ε→ 0. �
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Corollary 3.5 (Main smoothing). Let f be a function which is real analytic except possibly
at t = t0 , where it is (at least) C1 . If f is precisely C1 at t = t0, assume that f ′′ is
bounded as t → t±0 . Suppose further that for t > t0 and for t < t0 , f satisfies the Ric2 > 0
inequality (3.2). Then there exists α0 ∈ (0, 1], depending continuously on f and its first and
second derivatives near t0 , such that for all α ∈ (0, α0), f can be smoothed over an interval

(t0−α, t0 +α) to give a function f̃ which satisfies the Ric2 > 0 inequality. Moreover, if f is

actually smooth at t = t0, |f̃ − f |C2 → 0 as α→ 0.

Proof. First we consider smoothing f from C1 to C2 using Lemma 3.3. Denote the result of
this smoothing by f̄ . For ν > 0, Lemma 3.3 guarantees us a δ0 > 0 such that for any δ ∈ (0, δ0)
we have |f̄ − f |C1 < ν , together with the property that over the interval (t0 − δ, t0 + δ), f̄ ′′

interpolates between f ′′(t0 ± δ). Thus if ν is chosen sufficiently small, it follows that f̄ will
satisfy the Ric2 > 0 inequality. Denote by ν0 > 0 the supremum within the set (0, 1] of those
ν with this property. Now set δ0 to be the constant produced by Lemma 3.3 corresponding
to ν = ν0/2. As both the C2 smoothing and the Ric2 > 0 inequality have a C2 dependence
on the original function near t = t0 , we see that ν0 , and therefore δ0 , vary continuously as f
varies in a C2 -continuous fashion.

Next, we smooth f̄ from a C2 to a C∞ -function f̃ using Lemma 3.4. Clearly, since
f is real analytic, by construction f̄ is also real analytic, so Lemma 3.4 applies. Given that
f̄ satisfies the Ric2 > 0 inequality, there exists ε1 maximal in (0, 1] such that if a smooth

function θ satisfies |f̃ − θ|C2 < ε1 on the interval [t0 − 1, t0 + 1], then θ must also satisfy the
Ric2 > 0 inequality.

Set the value of α0 in the statement of Corollary 3.5 to be δ0 . For any α ∈ (0, α0), set
δ = α/2, and ε = min{ε1, α/4}.

In the C1 -to-C2 smoothing, our choice of δ0 and δ guarantee that the resulting C2

function f̄ satisfies the Ric2 > 0 inequality, and is smooth away from t = t0 ± α/2. The C2 -
to-C∞ smoothing then smooths each of these non-smooth points over an interval of length
ε, hence the whole deformation takes places over the interval (t0 − α/2− ε, t0 + α/2 + ε). As

ε ≤ α/4, this interval is contained in (t0 − α, t0 + α) as required. As ε ≤ ε1, the function f̃
also satisfies the Ric2 > 0 inequality.

The final task is to show that if f is actually smooth at t = t0, |f̃ −f |C2 → 0 as α→ 0.
It follows from Lemma 3.3 in this case that as δ → 0, |f̄ − f |C2 → 0. From Lemma 3.4 it

follows that |f̃ − f̄ |C2 → 0 as ε → 0. Given that α controls the size of both δ and ε (as
indicated above), the claim now follows immediately from the triangle inequality. �

Proof of Lemma 3.1. Let

ζR,ε :=
3π
4

+ 1
2

cos−1(ε/R)
π
2

+ cos−1(ε/R)
.

It is easily checked that κR,ετR,ε < κR,ετR,εζR,ε < Rπ/2.
We begin by constructing the main part of the tube, which will run from r = κR,ετR,εζR,ε

to r = `R,ε− 3
2
. To do this we use Lemma 3.2 with t0 = κR,ετR,εζR,ε, b = R cos(κR,ετR,εζR,ε/R),

c = − sin(κR,ετR,εζR,ε/R), and a = 4, to produce a function h(r). Given the constant T
produced by Lemma 3.2 in this case, we set `R,ε = T + 3

2
, and ρR,ε = h(T ). The corresponding

smooth warped product metric dr2 + h2(r)ds2
n−1 will have Ric2 > 0, and give a C1 join at

r = κR,ετR,εζR,ε and r = `R,ε− 3
2

with the Ric2 > 0 warped product metrics specified in points
(i) and (ii) of Lemma 3.2.
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Our next task is to smooth the metric at these two non-smooth points. To do this we use
Corollary 3.5. First note that by the Cauchy-Kovalevskaya Theorem, the function h is real-
analytic, hence the Corollary applies here. Notice also that our C1 -warped product scaling
function depends smoothly on R and ε , in the sense that the two C1 -points vary smoothly
with these parameters, and at any point in the interior of a C∞ region, the output values
vary smoothly as the function varies with R, ε . Thus for each of the two non-smooth points
we obtain constants α1(R, ε), α2(R, ε) corresponding to α0 in the smoothing Corollary, which
depend continuously on R, ε . Set

α0(R, ε) = min
{
α1(R, ε), α2(R, ε),

κR,ετR,ε(ζR,ε − 1)

100
,
`R,ε − 3

2
− κR,ετR,εζR,ε
100

,
1

100

}
,

so α0(R, ε) also varies continuously with R and ε . Note that the last three entries in the above
minimum expression are included to keep the smoothing localized around the non-smooth
points. In particular, the metric will still take the form dr2 + ρ2

Rds
2
n−1 for r ∈ [`R,ε − 1, `R,ε] ,

and dr2 +R2 cos2(r/R) for r ∈ [τR,ε, κR,ετR,ε] .
Now choose any smooth function α(R, ε) with 0 < α(R, ε) < α0(R, ε) for all R > 0

and ε ∈ (0, R). We will choose to smooth each C1 -point of our scaling function according to
the smoothing Corollary with α = α(R, ε) for each of the non-smooth points. This preserves
the Ric2 > 0 condition, and the resulting tube TR,ε and its associated parameters all depend
smoothly on R and ε . �

We will need one further result before we can discuss H -space structures on RRick>0
rd,1 (Sn).

This, together with the tubes TR = TR,1 (with R > 1), will enable us to define a notion of
multiplication. First, a preliminary lemma.

Lemma 3.6 (Stretching lemma). Given a warped product metric dt2 + f 2(t)ds2
n−1 on [a, b]×

Sn−1, there exists N > 0 (depending on f ) such that the metric dt2 + f 2(t/N)ds2
n−1 on

[aN, bN ]× Sn−1 has Ric2 > 0.

Proof. For any t0 ∈ [a, b] , we can clearly arrange for the metric dt2 + f 2(t/N)ds2
n−1 to be C2 -

arbitrarily close in a neighbourhood of t = t0N to the metric dt2 + f 2(t0)ds2
n−1 by choosing

N sufficiently large. As the latter metric has Ric2 > 0, the result follows. �

The following result is now immediate:

Corollary 3.7. Given c1, c2 > 0, there exists λ0 = λ0(c1, c2) minimal in [1,∞) such that for
all λ > λ0 , the metric

(3.3) dt2 +
((

(1− φ(t/λ)
)
c1 + φ(t/λ)c2

)2

ds2
n−1

on [0, λ]× Sn−1 has Ric2 > 0.

Definition 3.8. Fix a smooth function λ∞ : R+ × R+ → (1,∞) with the property that
λ∞(c1, c2) > λ0(c1, c2) for all c1, c2 > 0. Given any c1, c2 > 0, the ‘connecting piece’ C(c1, c2)
is the product manifold [0, λ∞]× Sn−1 equipped with the metric (3.3) with λ = λ∞ .

Remark 3.9. Notice that C(c1, c2) varies smoothly with c1, c2. In the special case c1 = c2 = c
we have C(c, c) = ([0, 1]×Sn−1, dt2 + c2ds2

n−1). Below we will need to consider the connecting
piece in the situation where c1 = ρR = ρR,1 and c2 = ρ100 = ρ100,1, where ρR,1 and ρ100,1 are
as in Lemma 3.1.
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In order to define the H -space multiplication on RRick>0
rd,1 (Sn), we will not glue two

metrics directly via a connected sum, but via an intermediate space, or ‘docking station’.
The concept of a docking station originated in work of the first author ([32]; see also [3]),
based on a suggestion by Boris Botvinnik. In our case the docking station will be modelled
on a round sphere of radius 100, Sn(100), which has three distinguished points. The first of
these is the north pole x0, which is the basepoint. The other two points, z1 and z2, will be
diametrically opposed points on the equator. Consider the open balls about z1, z2 of radius
100 sin−1(1/100). The boundary of these balls is a sphere with intrinsic radius 1. Remove these
balls from Sn(100) to leave a manifold with two boundary components. Notice that this space
is still based at the north pole x0. This will be our docking station.

Definition 3.10. For any n ≥ 3 and 2 ≤ k ≤ n, we define a map

σ : RRick>0
rd,1 (Sn)×RRick>0

rd,1 (Sn)→ RRick>0
rd,1 (Sn)

as follows. Consider metrics h1, h2 ∈ RRick>0
rd,1 (Sn). Suppose that in a neighbourhood of the

basepoint the metrics h1 and h2 are round with radius R1 respectively R2. For each metric
we remove an open ball about the basepoint so as to leave a round concave boundary with
intrinsic radius 1. Attach tubes TR1 , TR2 to these punctured spheres in the obvious way,
and then attach the connecting pieces C(ρR1 , ρ100) and C(ρR2 , ρ100) to the free ends of the
respective tubes. Next, glue a copy of T100 to the free end of each connecting piece, and
finally, for i = 1, 2, glue the resulting arrangement for hi to the boundary sphere of the
docking station corresponding to zi . Denote the closed Riemannian manifold thus produced
by σ̂(h1, h2). To aid the reader, the Riemannian manifold σ̂(h1, h2) is depicted in Fig. 2. Now
h1 and h2 are metrics defined on a ‘standard’ copy of the sphere Sn , and in order to have a
well-defined product σ(h1, h2), we must identify σ̂(h1, h2) with a metric on the standard Sn .
Moreover we must do this in a prescribed way which varies smoothly with h1, h2 . Below we
describe a connected sum contraction procedure which provides a means of doing this. The
final metric we obtain will be our ‘product’ σ(h1, h2).

h1 h2

σ̂(h1, h2)

Figure 2. The metrics h1, h2 ∈ RRick>0
rd,1 (Sn) (top), and the ‘product’ manifold

σ̂(h1, h2) (bottom)

Connected sum contraction. Given metrics h1, h2 ∈ RRick>0
rd,1 (Sn), assume that in a neigh-

bourhood of the basepoints these metrics restrict to round metrics of radii R1, R2 respectively,
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and we denote the round discs about the basepoints for which the boundary is a sphere of
intrinsic radius εi ∈ (0, Ri) by D1,ε1 , D2,ε2 . Form the Riemannian manifold

(3.4) (Sn \D1,ε1 , h1) ∪ TR1,ε1 ∪ C(ρR1,ε1
, ρR2,ε2

) ∪ TR2,ε2 ∪ (Sn \D2,ε2 , h2).

Here, and in what follows, we will also use the symbols hi to denote metrics restricted to discs
within Sn .

Our aim is to introduce parametrizations into the discs

(Sn \D1,ε1 , h1) ∪ TR1,ε1 ∪ C(ρR1,ε1 , ρR2,ε2) ∪ TR2,ε2 ,

and D2,ε2 , and then use these parametrizations to define a diffeomorphism from the latter disc
to former, which we use to pull back the metric. We can then replace the metric h2|D2,ε2

in
the second sphere with the pull-back metric, and provided the pull-back and original metrics
agree near the boundary of this disc, the resulting metric will be smooth. In this way we can
identify the metric on (3.4) with a metric on the second sphere in a natural way. We will also
ensure that the diffeomorphism we use depends smoothly on the parameters Ri and εi. In
what follows, we will label the spheres S1 and S2 to remove any ambiguity.

We begin by temporarily equipping the sphere S1 with the round metric of radius R1 .
This allows us to introduce a distance parameter r from the point diametrically opposite the
basepoint. Let us fix this parametrization, and impose it now on the Riemannian manifold
(S1, h1). Of course, this parametrization agrees (up to a shift) with the parametrization used in
a neighbourhood of the basepoint in previous constructions. In particular this parametrization
naturally extends throughout (S1\D1,ε1 , h1)∪TR1,ε1∪C(ρR1,ε1 , ρR2,ε2)∪TR2,ε2∪(S2\D2,ε2 , R

2
2ds

2
n)

and, moreover, agrees up to a shift with the parametrization on S2 (or rather on S2 \D2,ε2 )
which results from measuring distance from the basepoint of S2 with respect to R2

2ds
2
n.

With respect to the distance parameter from the basepoint on (S2, R
2
2ds

2
n), let δ2(R2, ε2)

denote the parameter value at the boundary of D2 . Similarly, let δ1 denote the value of r at
the boundary of (S1 \ D1,ε1 , h1) ∪ TR1,ε1 ∪ C(ρR1,ε1 , ρR2,ε2) ∪ TR2,ε2 . Finally, let dR1,ε1 be the
value of r at the boundary of (S1 \D1,ε1 , h1).

The diffeomorphism we wish to define will be rotationally symmetric (with respect
to standard metrics), and will thus be determined by a choice of diffeomorphism ∆ =
∆(R1, ε1, R2, ε2) : [0, δ2]→ [0, δ1]. In order for the pull-back metric to agree with the original
near the boundary we will need ∆ to satisfy ∆′(t) = 1 for t close to δ2, and in order for it to
be smooth at the centre point we will also need ∆ to be odd at t = 0. We will also arrange
that (S1 \D1,ε1 , h1) undergoes compression by a uniform factor during this process.

Lemma 3.11. For any δ1, δ2 > 0 and a ∈ (0,min{δ1, δ2}), there is an orientation preserving
diffeomorphism ∆a = ∆a(δ1, δ2) with ∆a : [0, δ2] → [0, δ1], ∆′a(t) = 1 for t ∈ [δ2 − a/2, δ2],
and ∆′a(t) constant for t ∈ [0, δ2 − a] (ensuring that ∆a is odd at t = 0). Moreover, ∆a

depends smoothly on the parameters δ1, δ2 and a.

Proof. We begin by constructing a function Φa(t) : [0, δ2] → [0, δ1] depending smoothly on
δ1, δ2, a, with Φa(0) = δ1, Φa(δ2) = 0, Φ′a < 0, Φ′a = −1 for t ∈ [0, a/2], and Φ′a = c, some
c ∈ (−∞, 0], for t ∈ [a, δ2] . Having established the existence of Φa, we set ∆a(t) := Φa(δ2−t).
It is easily checked that ∆a then satisfies the required properties.

Recall the bump function φ : [0, 1] → [0, 1] defined before Lemma 3.4. Extend this in
the obvious way (i.e. with constant value 1 for t ≥ 1 and 0 for t ≤ 0) to a function φ̄ : R→ R.
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For c ∈ (−∞, 0] and t ∈ R+ we set

(3.5) Θa(t) := δ1 +

∫ t

0

(−1)
[
1− φ̄

(u− a/2
a/2

)]
+cφ̄

(u− a/2
a/2

)
du.

It is clear that Θa depends smoothly on δ1, a and c . Moreover we have Θa(0) = δ1, Θ′a(t) =
−1 for t ∈ [0, a/2], Θ′a(t) = c for t ≥ a, and Θ′a < 0 for all t when c < 0. Now for c = 0
we clearly have Θa(δ2) > 0, and for c sufficiently large and negative we will have Θa(δ2) < 0.
Therefore by the intermediate value theorem there exists a (unique) value of c for which
Θa(δ2) = 0. Set Φa to be the restriction of Θa for this particular value of c with domain
[0, δ2] and target [0, δ1]. �

For our purposes δ1, δ2 will depend smoothly on Ri, εi , as indicated previously. For
technical reasons later on, we will need ∆′a(t) to be constant for t ∈ [0,∆−1

a (dR1,ε1
)]. As ∆′a is

constant by construction for t ∈ [0, δ2 − a], we then need to arrange for a < δ2 −∆−1
a (dR1,ε1

).
The point of this is to ensure that the map ∆ we will construct compresses (S1 \D1,ε1 , h1) by
a uniform factor. (We will need to undo this effect at some point, and the uniformity makes
the process straightforward.)

Corollary 3.12. There exists a0 = a0(R1, ε1, R2, ε2) > 0 depending continuously on Ri, εi ,
such that for all a ∈ (0, a0) we have a < δ2 −∆−1

a (dR1,ε1
).

Proof. It is easily checked that as a→ 0, the diffeomorphism ∆a converges pointwise to the
diffeomorphism ∆0(t) := tδ1/δ2. Since ∆−1

0 (dR1,ε1
) = dR1,ε1

δ2/δ1 , by choosing a sufficiently

small we can ensure that δ2 − ∆−1
a (dR1,ε1

) is arbitrarily close to δ2(1 − dR1,ε1
/δ1) > 0. Thus

the inequality a < δ2−∆−1
a (dR1,ε1

) will hold for all a sufficiently small. Set a0 to be the least
upper bound of the set of a ∈ (0,min{δ1, δ2}) such that this inequality holds. It is clear that
a0 depends at least continuously on R1, ε1, δ1 and δ2. But the δi depend smoothly on Ri

and εi , hence a0 = a0(R1, ε1, R2, ε2) as claimed. �

Let us choose and fix any smooth function a(R1, ε1, R2, ε2) such that

0 < a(R1, ε1, , R2, ε2) < a0(R1, ε1, R2, ε2)

for all Ri > 0, εi ∈ (0, Ri).

Definition 3.13. Let ∆ = ∆(R1, ε1, R2, ε2) be given by ∆ = ∆a(R1,ε1,R2,ε2). Denote by ∆̄ the
rotationally symmetric diffeomorphism determined by ∆.

Thus ∆̄ maps D2,ε2 ⊂ S2 onto the disc comprising the connected sum arrangement
involving S1 . Pulling back the metric via ∆̄ then, in effect, contracts the connected sum onto
D2,ε2 . We will refer to ∆̄ as the contracting map, (even though, technically speaking, it is ∆̄−1

that is actually a contracting map).
Note that for the remainder of this section, unless stated otherwise, it should be assumed

that a disc Dn removed from a sphere Sn is a disc centred on the basepoint within a constant
curvature region for which the boundary sphere has intrinsic radius 1.

Remark 3.14. In order to complete Definition 3.10 we have to specify the metric σ(h1, h2). We
obtain σ(h1, h2) from σ̂(h1, h2) by applying the connected sum contraction procedure twice,
once for each of the metrics h1 and h2 . In each case, the sphere S2 in the connected sum
contraction should be taken to be the docking station sphere (Sn, 1002ds2

n). The disc D2 will
then be centred on the point z1 for attaching h1, and on z2 for connecting h2 . Thus the
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points z1, z2 should temporarily be considered the basepoints of the respective discs D2 for
the purposes of the above construction. Also, notice that the locations of the connected sum
operations in Definition 3.10 are far-removed from the actual basepoint x0 (in the docking
station), and this ensures that the resulting metric still belongs to RRick>0

rd,1 (Sn).

Remark 3.15. When we prove the existence of a homotopy identity element below, two further
observations about the connected sum contraction procedure will be relevant. Firstly, in the
special case of Lemma 3.11 where δ1 = δ2 , for all a ∈ (0, δ1) the relevant value of c is −1,
and the resulting diffeomorphism ∆ : [0, δ1] → [0, δ1] is simply the identity map. Secondly,
we can apply the contraction idea to contract any rotationally symmetric disc onto another,
provided the given metrics agree near the boundaries of the respective discs. Thus given a
smoothly varying family of such discs described by a parameter s , with metrics fixed in a
neighbourhood of the boundary, and with the disc radius given by a function δ1(s), we can
use the corresponding family of diffeomorphisms ∆(s) to pull back to D2 .

Proposition 3.16. The binary operation σ is homotopy commutative.

Proof. Consider arbitrary metrics h1, h1 ∈ RRick>0
rd,1 (Sn). We need to show that σ(h1, h2) '

σ(h2, h1). To achieve this, simply rotate Sn about its north-south axis so as to swap the posi-
tions of z1 and z2 . This clearly carries the metric σ(h1, h2) smoothly to the metric σ(h2, h1)
as required. �

Proposition 3.17. The round metric 1002ds2
n is a homotopy identity element for the binary

operation σ.

The proof of this proposition comes down to showing that for an arbitrary h ∈ RRick>0
rd,1 (Sn)

we can construct a Ric2 > 0 isotopy which moves this metric to the metric σ̂(h, g100) in a
way which fixes all of h outside the standard round region; see Fig. 3 for a depiction of these
metrics. Such an isotopy is easily shown to give rise to the desired homotopy equivalence.
Before continuing with a proof of this Proposition, we first make a construction which will be
crucial.

σ(h, g100)h

Figure 3. The arbitrary metric h ∈ RRick>0
rd,1 (Sn) and the metric σ̂(h, g100)

Warped product deformation procedure. The aim is to provide a method for smoothly
deforming a disc equipped with a warped product metric dt2 + µ2(t)ds2

n−1 into a round disc,
preserving the Ric2 > 0 condition. To this end, we consider a smooth, positive function µ(t),
t ∈ [t0, L] for some 0 ≤ t0 < L , which satisfies the Ric2 > 0 inequality (3.2) for all t (with
the derivatives understood in a one-sided sense at the end of the domain interval). We will
also assume that µ′ ∈ (−1, 1). Here we view t = t0 as corresponding to the boundary of the
disc, and t = L as the centre. In order for the proposed deformation to end with a round disc,
it is neccessary for dt2 + µ2(t)ds2

n−1 to be round near the disc boundary.
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We will construct a smooth one-parameter family of smooth functions γs(t) based on
the function µ . Here s ∈ [τ0, L0] for some t0 < τ0 < L0 ≤ L, and the domain of γs(t) is
[t0, L(s)] where L(s) ∈ [s,∞) varies smoothly with s . The idea is that the resulting warped
products ([t0, L(s)] × Sn−1, dt2 + γ2

s (t)ds
2
n−1) interpolate smoothly between the original disc

and a round disc. Moreover, we will arrange for this one-parameter family of metrics to be
constant with respect to s near the disc boundary.

We proceed as follows. We first construct a C1 -approximation γ̄s to the desired function
γs . We then apply earlier smoothing results to smooth γ̄s to γs over an interval, and in a
manner, which depends only on s and the original function µ(t).

We begin by setting

γ̄s(t) =

µ(t) if t ≤ s

µ(s)√
1−µ′2(s)

cos
(√

1−µ′2(s)

µ(s)
(t− s) + sin−1(−µ′(s))

)
if t ≥ s.

It is easily checked that γs is a piecewise smooth function, which is C1 at t = s, its only
non-smooth point. We will set the upper domain parameter for γs , L(s), to be equal to the
smallest value of t ≥ s for which the above cosine expression has a zero. This clearly varies
smoothly with s .

It is automatic that for t ∈ [t0, s) and for t ∈ (s, L(s)], γ̄s satisfies the Ric2 > 0
inequality (3.2): in the former case this is an assumption on µ , and in the later this is immediate
since the second derivative of the cosine function is negative.

By Corollary 3.5, for each s there exists a number α0(s), maximal in the interval
(0,min{(τ0 − t0)/2, (L(s) − s)/2}], such that for any α ∈ (0, α0(s)), the function γ̄s can
be smoothed over the interval t ∈ (s−α, s+α) in such a way that the resulting function still
satisfies the Ric2 > 0 inequality (3.2). Moreover α0(s) varies continuously with s . (Note that
the value of α0 is chosen so that t0 < s − α < s + α < L(s) for all s ∈ [τ0, L0].) As [τ0, L0]
is compact, mins∈[τ0,L0] α0(s) exists. If we set α = 1

2
minα0(s), then the smoothing can be

performed over the interval t ∈ (s − α, s + α) for every s ∈ [τ0, L0]. Let γs(t) be the family
of functions resulting from this smoothing over intervals of length 2α. This family is clearly
smoothly dependent on s .

In the proof of Proposition 3.17, and again in Section 4, we will apply this construction
to the situation where the function µ is a warped product scaling function which depends
smoothly on the parameters R, ε , as will t0 and τ0 . It follows easily that the corresponding
number α will vary continuously with respect to R, ε . Let us denote this αR,ε . We can therefore
choose a smooth function α(R, ε) with 0 < α(R, ε) < αR,ε for R > 0, ε ∈ (0, R), and using
this function to dictate the smoothing, we obtain a family of smooth functions γs = γs,R,ε
which satisfy the inequality (3.2) and vary smoothly with respect to s, R and ε .

Observation 3.18. For any s ∈ [τ0, L0], the corresponding warped product metric dt2 +
γ2
s (t)ds

2
n−1 is round for t ∈ [s + α(R, ε), L(s)]. Consequently, this round region contains a

distance sphere about the end-point with intrinsic radius ε′ := γs(s + α(R, ε)), and the de-
pendence of ε′ on R, ε, s is smooth.

Using the above construction we can prove the following.

Lemma 3.19. For given R > 0 and ε ∈ (0, R), let τR,ε and κR,ε be as in Lemma 3.1. Consider
a function µ(t), t ∈ [τR,ε, L], which satisfies the inequality (3.2) as in the construction above.
If for t ∈ [τR,ε, κR,ετR,ε] we have µ(t) = R cos(t/R), then there exists a one-parameter family
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of smooth curves γs(t) for s ∈ [τR,ε, L0], some given L0 ∈ (κR,ετR,ε, L], which satisfy (3.2),
depend smoothly on s, R and ε, and such that for s suitably close to τR,ε we have γs(t) =
R cos(t/R), (so γs is independent of s).

Proof. This largely follows from the above construction by setting t0 = τR,ε and τ0 = κR,ετR,ε,
which yields a family of functions γs wth s ≥ κR,ετR,ε. The task is therefore to extend this
family to s ∈ [τR,ε, κR,ετR,ε] in such a way that close to the left-hand end of this interval,
γs(t) = R cos(t/R). To aid the reader we provide a depiction in Fig. 4 below.

γs

µ

t

Figure 4. The effect of the warped product deformation procedure (dashed curves)

We can certainly define γ(s) in exactly the same way when s ∈ [τR,ε, κR,ετR,ε] , provided
we are prepared to ignore the fact that the left-hand end of the γ̄s -to-γs smoothing interval
will lie below t = τR,ε for s close to τR,ε. Notice that the function γ̄s(t) is equal to R cos(t/R)
for t ∈ [τR,ε, Rπ/2]. However, for consistency we have to apply our smoothing procedure (as
in Corollary 3.5) to this already smooth curve. This modifies the curve in a non-trivial way,
and thus for s close to τR,ε our task is to systematically undo this modification.

We approach this task mindful of the last claim in Corollary 3.5: that if f is smooth,
as α → 0, |f̃ − f |C2 → 0. Thus if α is chosen sufficiently small, the smooth homotopy

(1− φ(x))f̃(t) + φ(x)f between f̃ and f satisfies the inequality (3.2) for all x ∈ [0, 1].
Turning our attention back to the curves γs(t), given the fixed form of µ(t) for t ∈

[τR,ε, κR,ετR,ε] , we can assume without loss of generality that the function α(R, ε) (as in the
above construction) has been chosen small enough so that the s-indexed homotopy

(1− θ(s))R cos(t/R) + θ(s)γs(t)

where

θ(s) := φ
(s− τR,ε(κR,ε + 1)/2

τR,ε(κR,ε − 1)/2

)
,

for s ∈ [τR,ε(κR,ε + 1)/2, κR,ετR,ε] and t ∈ [τR,ε, πR/2], satisfies (3.2) for all s and t . By
construction, this homotopy smoothly ‘unwrinkles’ γs to the desired cosine function as s
approaches τR,ε. Moreover it is easily checked that τR,ε(κR,ε+1)/2−α(R, ε) > τR,ε , and hence
the smoothing interval for γ̄s is always contained in (τR,ε, L(s)) for all s ∈ [τR,ε(κR,ε+1)/2, L0].
The claim about the smooth dependence of γs on R and ε is clear. �

Remark 3.20. In the proof of Proposition 3.17 below, and again in Section 4, we will use
the warped product deformation procedure on a function µ(t) which takes the form µ(t) =
100 cos

(
(t−L+ 50π)/100

)
for t ∈ [L−50π−1, L]. (Note that L > 50π+ 1.) In this situation

we will set L0 = L − 50π. Exactly the same argument as employed in the proof of Lemma
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3.19 shows that there exists a constant c , which here is independent of all other parameters,
such that provided α(R, ε) < c for R > 0, ε ∈ (0, R), (which without loss of generality we will
assume), then there is an analogous homotopy between γs and µ for s ∈ [L−50π−1, L−50π]
say, satisfying (3.2) at each stage. In other words, we can - and will - assume that γs agrees
with µ (and is therefore independent of s) for s suitably close to L− 50π .

Proof of Proposition 3.17. As this argument is quite long, for the convenience of the reader
we will break it into a number of steps. The general strategy throughout is to give a smooth
deformation of Riemannian manifolds, starting with σ̂(h, e), and ending with (Sn, h). This
will give a path in RRick>0

rd,1 (Sn) provided that at each stage in the process we have a smoothly
varying diffeomorphism from Sn with which to pull back the metric. Note that throughout
this argument we will assume R > 1 and ε = 1, so ε will be omitted from the notation.

Let us assume that h is round with radius R in a neighbourhood of the basepoint.
The following terminology will be useful. There is an isometric inclusion of (Sn \Dn, h)

into σ̂(h, e). We will refer to the image of this inclusion as the ‘h-part’ of σ̂(h, e). Likewise,
there is an isometric inclusion of

(Sn \Dn, h) ∪ TR ∪ C(ρR, ρ100) ∪ T100

into σ̂(h, e), and we will refer to the image of this as the ‘extended h-part’. Similarly for the
(extended) e-part of σ̂(h, e). Given a diffeomorphism Sn → σ̂(h, e), we will use the same
terms for the corresponding parts of Sn equipped the pull-back metric, as no confusion will
arise. We will also use this terminology in analogous situations where the meaning is clear.

Step 1. We begin by considering σ̂(h, e). Introduce a parameter t locally into the manifold,
so that half the docking station and the extended e-part of the manifold can be described as
having a warped product metric dt2 + µ2(t)ds2

n−1 for some function µ(t), with t ∈ [0, L] for
some L . We will assume that the basepoint in the docking station has t-parameter 0, and
that the ‘e-end’ of the manifold corresponds to t = L.

Denote the connected-sum contraction diffeomorphisms (as in Definition 3.13) used to
form σ(h, e) from σ̂(h, e) by ∆̄h and ∆̄e (so ∆̄h = ∆̄(R, 100) and ∆̄e = ∆̄(100, 100)). We can
extend this pair of diffeomorphisms trivially over the body of the docking station in σ̂(h, e) to
obtain a global diffeomorphism Sn → σ̂(h, e), with σ(h, e) being the pull-back of the metric
on σ̂(h, e) via this map.

Next, use Lemma 3.19 and Remark 3.20 to smoothly deform the extended e-part of
σ̂(h, e) back to the docking station. For this we need to set R = 100 and ε = 1, so that the
t-value at the boundary of the docking station in this arrangement is τ100 . We also need to
set L0 = L− 50π.

At each stage in this contraction (parametrized by s ∈ [τ100, L0]) we have a quantity
δ1(s) as in Lemma 3.11, which measures the distance along the warped product manifold from
the docking station boundary sphere to the endpoint of the e-disc, and this varies smoothly
with s . For each value of s there is a corresponding diffeomorphism ∆̄s (as in Definition 3.13).
Pulling the metric back via this map, and contracting the extended h-part of σ̂(h, e) back by
∆̄h , then produces a smooth path of metrics in RRick>0

rd,1 (Sn) starting with σ(h, e). This path
ends with a metric we will denote σ(h, ·). By Remark 3.15 this metric agrees with the round
metric of radius 100 outside the image of ∆̄−1

h , and is thus the pull-back of the natural metric
on the manifold

σ̂(h, ·) := (Sn \Dn, h) ∪ TR ∪ C(ρR, ρ100) ∪ T100 ∪ (Sn \Dn, 1002ds2
n)
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via the trivial extension of ∆̄h over the docking station sphere.
We have now, in effect, smoothly eliminated the extended e-part of the metric from

both σ̂(h, e) and σ(h, e). Notice that in doing so, we have not moved the basepoint, nor made
any metric change near the basepoint. In particular, we still have a distance sphere about the
basepoint with an intrinsic round metric of radius one.

Our task is now to smoothly modify the metric σ(h, ·) back to the original (Sn, h). In
order to do this, we need pay special attention to the basepoint x0 , and the next step is carried
out for precisely this reason.

Step 2. Bearing in mind that on (Sn, 1002ds2
n), a distance sphere with intrinsic radius 1

is the boundary of an embedded disc of radius 100 sin−1(1/100), we choose and fix a path
from the point z1 (about which the extended h-part is attached to the docking station - see
Definition 3.10) to the south pole (i.e. antipodal to the basepoint). We now smoothly deform
the manifold σ̂(h, ·) by sliding the point of attachment of the extended h-part along the path,
from its original position (determined by z1 ) to being centred over the south pole. We do
this by removing a disc of radius 100 sin−1(1/100) about each point of the path in turn, and
gluing in the extended h-part. We will assume that the path has been chosen so that every
point is at a distance greater than 200 sin−1(1/100) from the basepoint. This ensures that the
deformation does not interfere with the basepoint or its neighbourhood. Let us denote the final
Riemannian manifold by σ̂(h, ·)S. At each point in the deformation, there is a corresponding
diffeomorphism from the standard sphere, given by trivially extending the contraction map
for the extednded h-part located at the appropriate point. Pulling back the metric by this
corresponding family of diffeomorphisms then gives a smooth path in RRick>0

rd,1 (Sn), starting
with σ(h, ·) and ending with the extended h-part of the metric over the south pole. Let us
denote this final diffeomorphism by ∆̄S : Sn → σ̂(h, ·)S , and the resulting pull-back metric
on Sn by σ(h, ·)S.

We now need to smoothly deform σ(h, ·)S to (Sn, h). We will do this in two stages. Firstly
we will smoothly adjust the diffeomorphism ∆̄S, so that at the end of this deformation, the
pull-back metric restricted to the complement of some disc Dx0 is precisely (Sn \ Dn, h).
As a consequence of this ‘stretching’ of the h-part of metric, the pull-back of the metric on
TR∪C(ρR, ρ100)∪T100∪(Sn\Dn, 1002ds2

n) becomes squashed into Dx0 . Secondly, we smoothly
adjust the metric on Dx0 to give the round metric of radius R . Our approach here is essentially
the same as for deforming the extended e-part of the original arrangement back to the docking
station: we will work with σ̂(h, ·)S and deform this back to Sn , pulling-back the metric to
Sn throughout. However this time we will be reducing the docking station sphere back to the
h-sphere. This requires us to take special care of the basepoint and its neighbourhood. For
the moment however we will ignore this issue.

Step 3. As in the connected-sum contraction procedure, we will introduce a global parameter t
(ignoring the previous use of this symbol earlier in the proof) into the manifold σ̂(h, ·)S . Given
that h is round with radius R in a neighbourhood of its basepoint, we temporarily replace the
h-part of σ̂(h, ·)S by (Sn\Dn, R2ds2

n−1). With respect to this background metric, we introduce
t to measure distance from the south pole of this sphere. Suppose that t ∈ [0, L′] . ‘Replacing’
R2ds2

n−1 by the metric h , we continue to use the same parametrization throughout.
Similarly, we introduce a parameter u into the standard sphere Sn : we let u measure

distance from the south pole in (Sn, 1002ds2
n), so that the basepoint corresponds to u = 100π.

The diffeomorphism ∆̄S is determined by a diffeomorphism ∆S : [0, 100π] → [0, L′].
The value of t ∈ [0, L′] corresponding to the boundary where the h-part of σ̂(h, ·)S meets
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the tube TR is easily calculated to be tR := R(π − sin−1(1/R)). Under the diffeomorphism
∆̄−1
S , we see that (Sn \Dn, h) is uniformly compressed into the disc centred on the south pole

of the standard sphere corresponding to u ∈ [0,∆−1
S (tR)]. Our aim is to ‘uncompress’ this

by smoothly stretching the metric around the appropriate part of the standard sphere via a
one-parameter family of diffeomorphisms θ̄x : Sn → Sn , for x ∈ [0, 1].

Clearly, t = tR on (Sn, R2ds2
n) corresponds to u = 100tR/R when the underlying spaces

are identified. (So Dx0 will correspond to u ∈ [100tR/R, 100π] .) We therefore need to stretch
the u-interval [0,∆−1

S (tR)] within [0, 100π] by a progressive uniform factor, so that in the end,
the fully-stretched interval coincides with [0, 100tR/R]. We must then extend in some way so
that we have a smooth one-parameter family of diffeomorphisms θx : [0, 100π] → [0, 100π] ,
which then determines the diffeomorphisms θ̄x : Sn → Sn in the obvious way.

We define θx, x ∈ [0, 1], as follows. Set θ0(u) = u for all u ∈ [0, 100π]. We will define θ1

so as to linearly map [0,∆−1
S (tR)] onto [0, 100tR/R] . For u close to 100π we will also demand

that θ1 behaves linearly, and of course must satisfy θ1(100π) = 100π. We must therefore
fashion a transition between these two linear parts, in a manner which depends smoothly on
R . In order for the transition to be complete before u = 100π , let us choose the transition
interval to be 1

1002
(100π − 100tR/R) = 1

100
sin−1(1/R). Proceeding in a similar manner to the

proof of Lemma 3.11, we set

θ1(u) =

∫ u

0

[
1− φ̄

( y −∆−1
S (tR)

100−1 sin−1(1/R)

)]( 100tR

R∆−1
S (tR)

)
+ cφ̄

( y −∆−1
S (tR)

100−1 sin−1(1/R)

)
dy,

where c is the unique value which ensures that θ1(100π) = 100π. For x ∈ (0, 1), we need θx
to give a smooth homotopy between θ0 and θ1. We set

θx(u) = (1− φ(x))θ0 + φ(x)θ1.

Now form the composition Λx := ∆̄S ◦ θ̄−1
x : Sn → σ̂(h, ·)S. Pulling back the metric on

σ̂(h, ·)S via Λx then gives a one-parameter family of metrics in RRick>0
rd,1 (Sn), starting with

σ(h, ·)S and ending with a metric which agrees with h on the complement of Dx0 . Let us
denote this last metric by h′ .

Step 4. The final step (ignoring the basepoint issue) is to smoothly ‘unwrinkle’ the metric h′

in Dx0 , so we end up with the round metric of radius R is this disc. Of course (Dx0 , h
′) is

isometric to the complement of the h-part of σ̂(h, ·)S via the restriction of Λ1. The idea here
is essentially the same as for contracting the extended e-part of σ̂(h, e) as carried out in Step
1: we work with the Riemannian manifold σ̂(h, ·)S , and use the warped product deformation
procedure to contract the docking station part of the manifold back to the h-part, so we
end up with (Sn, h). In order to apply Lemma 3.19 and Remark 3.20, it will be convenient
to introduce a new parameter v into σ̂(h, ·)S , given by v = t − Rπ/2. The metric on the
complement of the h-part of σ̂(h, ·)S is then given by dv2 + µ̄2(v)ds2

n−1 for some function µ̄,
which satisfies µ̄(v) = R cos(v/R) for v ∈ [τR, κRτR]. We then apply Lemma 3.19 and Remark
3.20 to this metric, setting ε = 1, L = L′ −Rπ/2 and L0 = L′ −Rπ/2− 50π.

Of course, at each stage of this deformation, we need to exhibit a diffeomorphism of the
manifold with the standard sphere, so that when we pull the metric back to standard sphere
we obtain the desired path of metrics linking (Sn, h′) to (Sn, h). As in Step 1, these diffeo-
morphisms will be given by Definition 3.13 (extended by the identity over the complement),
with existence guaranteed by Lemma 3.11.
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In Λ1 we have an isometry between (Sn, h′) and σ̂(h, ·)S. The only thing preventing
us from immediately implementing the strategy from Step 1 is that restricted to Dx0 , Λ1

does not agree with the contraction diffeomorphism ∆̄(100, R). (Note that connected-sum
contraction map which pulls the complement of the h-part of σ̂(h, ·)S back to Dx0 is pre-
cisely ∆̄(100, R).) However we claim that there is a smooth homotopy of diffeomorphisms
from Λ1|Dx0 to ∆̄(100, R) (which can be trivially extended by the identity over the comple-
ment of Dx0 to give a homotopy of global diffeomorphisms Sn → σ̂(h, ·)S ). Performing this
homotopy before executing the warped product deformation procedure then allows us to apply
the arguments of Step 1 to deform (Sn, h′) into (Sn, h).

Thinking in terms of the t and u parameters, we note that each of these diffeomor-
phisms is determined by a diffeomorphism [100tR/R, 100π] → [tR, L

′], which we will denote
Γ1 respectively Γ2 . We have a homotopy

(1− φ(x))Γ1(u) + φ(x)Γ2(u)

for x ∈ [0, 1], and this is easily seen to be a homotopy through diffeomorphisms (since being
a diffeomorphism here is equivalent to the u-derivative being positive). This clearly induces
the desired homotopy, and thus establishes the claim.

At this point we have succeeded in deforming σ(h, e) to (Sn, h) through metrics of 2-
positive Ricci curvature. However, in Step 4 we neglected to consider the basepoint and its
neighbourhood, so we cannot guarantee that this last part of the path of metrics stays within
RRick>0
rd,1 (Sn). Our final step addresses this point.

Step 5. In the metric deformation of Step 4, it is clear that a neighbourhood of the basepoint
will be round at every stage, but it is not clear what the radius of these round discs might be,
nor if they will always contain a distance sphere with intrinsic radius one. To fix this problem,
we can simply scale. For a given metric h , or rather, for a given R > 1, there is clearly a
number β ≥ 1 such that scaling the path of metrics in Step 4 by β2 keeps the path within
RRick>0
rd,1 (Sn). For such a choice of β , we begin the final stage of the deformation by smoothly

scaling the metric h′ up to β2h′ , say via the path
(
1 + φ(x)(β2 − 1)

)
h′ for x ∈ [0, 1]. We

then follow this by the scaled path from β2h′ to β2h , and finally reverse the scaling to end
with the metric h . As indicated above, the choice of β will depend on R , but is otherwise
independent of the metric h . Provided we can make a choice of β smoothly dependent on R ,
the proof will be complete.

At each stage of the warped product deformation in Step 4 linking σ̂(h, ·)S to (Sn, h),
we have a manifold containing a warped product disc with metric dv2 + γ2

s (v)ds2
n−1. Here

v (defined in Step 4) belongs to an interval [0, L(s)], with s indexing the deformation. In
accordance with Lemma 3.19, s belongs to the interval [τR, L

′ − Rπ/2− 50π] . The centre of
this disc (i.e. a neigbourhood of the basepoint) is round of some radius depending smoothly on
s , and thus there is a number m(s) which is the maximal intrinsic radius of a distance sphere
within this round neighbourhood. By the compactness of the interval [τR, L

′ − Rπ/2 − 50π]
there is a positive minimum value of m(s). Call this M . Clearly M = M(R), with (at least)
a continuous dependence on R . Choose a smooth function β̄(R) with 0 < β̄(R) < M(R) for
all R > 1. Setting β(R) = 1/β̄(R) will then clearly suffice for our scaled deformation to stay
within the space RRick>0

rd,1 (Sn), as required. �

Proposition 3.21. The operation σ is homotopy associative.
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h1 h2 h3

h̄1

h̄2

h̄3 h̄1

h̄2

h̄3

σ̂(σ̂(h1, h2), h3) σ̂(h1, σ̂(h2, h3))

Figure 5. The metrics h1, h2, h3, σ̂(σ̂(h1, h2), h3) and σ̂(h1, σ̂(h2, h3))

Proof. Consider the product σ(σ(h1, h2), h3) for hi ∈ RRick>0
rd,1 (Sn). We must show that up

to homotopy, this is the same as σ(h1, σ(h2, h3)). Let σ̂(σ̂(h1, h2), h3) and σ̂(h1, σ̂(h2, h3))
denote the obvious connected sum arrangements corresponding to these triple products (see
Definition 3.10). These are depicted in Fig. 5 above.

We begin by noting that there are canonical paths of metrics through RRick>0
rd,1 (Sn) from

σ(h1, σ(h2, h3)) to σ(σ(h2, h3), h1), and from σ(σ(h2, h3), h1) to σ(σ(h3, h2), h1), given by ro-
tation (see Proposition 3.16). Thus it will suffice to show that up to homotopy, σ(σ(h1, h2), h3)
agrees with σ(σ(h3, h2), h1).

We define a smooth manifold D as follows. Take two copies Sa and Sb of the Riemannian
manifold (Sn, 1002ds2

n), and let Da (respectively Db ) denote the disc about the basepoint of
Sa (respectively Sb ) for which the boundary has intrinsic radius 1. Now form the connected
sum

(Sa \Da) ∪ T100 ∪ C(ρ100, ρ100) ∪ T100 ∪ (Sb \Db),

and let D denote the underlying smooth manifold (ignoring the metric). Notice that we can
view both σ̂(σ̂(h1, h2), h3), σ̂(σ̂(h3, h2), h1) as connected sums involving D , with D in effect
playing the role of a double docking station. We will declare the basepoint x0 of D to be a
point on the equator of the Sb sphere, (which is consistent with the basepoint locations on
σ̂(σ̂(h1, h2), h3) and σ̂(σ̂(h3, h2), h1)).

Equipping D with its natural metric gnat from the above connected sum arrangement,
we obtain via Lemma 3.11 a smooth map

∆̄D : Db → D \ (Sb \Db).

We can extend this by the identity on the complement of Db in Sb to obtain a diffeomorphism
∆̂D : Sb → D.

Now consider any metric gD ∈ RRick>0
rd,1 (D). Given three points z1, z2, z3 on D , suppose

that gD is round of some radius R̄i in a neighbourhood of zi , and is such that each round
neighbourhood contains a sphere about zi with intrinsic radius 1. Let Di denote the disc cen-
tred on zi bounded by this sphere, and suppose that the Di are disjoint from each other, and



H-SPACE AND LOOP SPACE STRUCTURES FOR INTERMEDIATE CURVATURES 27

from the corresponding disc D(x0) about the basepoint. Consider metrics hi ∈ RRick>0
rd,1 (Sn),

i = 1, 2, 3, locally round of radius Ri in a neighbourhood of the basepoint. Form the Rie-
mannian manifolds

(Sn \Dn, hi) ∪ TRi ∪ C(ρRi , ρR̄i).

By Lemma 3.11, the above manifolds come with contracting diffeomorphisms ∆̄i := ∆̄(Ri, R̄i)
from the disc Di in D to the corresponding connected sum. Pulling back the Riemannian
metric via ∆̄i for i = 1, 2, 3 then gives a new Riemannian metric on D . Subsequently pulling-
back by ∆̂D to S2 then gives a metric in RRick>0

rd,1 (Sn).
The upshot of the above is that any Riemannian connected sum arrangement of the type

described above gives a metric in RRick>0
rd,1 (Sn), in a fixed way which varies smoothly with the

‘input’ metrics h1, h2, h3 and gD .
Observe that if we apply the above double-contraction procedure to the connected sum

arrangement σ̂(σ̂(h1, h2), h3) or σ̂(σ̂(h3, h2), h1), then we obtain precisely σ(σ(h1, h2), h3) re-
spectively σ(σ(h3, h2), h1). (Note that in either connected sum arrangement, the metric re-
stricted to the ‘body’ of D is gnat .) It therefore suffices to find a smooth one-parameter family
of Rick > 0 connected-sum arrangements linking σ̂(σ̂(h1, h2), h3) with σ̂(σ̂(h3, h2), h1), which
is independent of the metrics h1, h2, h3.

We start with σ̂(σ̂(h1, h2), h3). Corresponding to each hi in this arrangement is a point
zi ∈ D , as above. Let us choose and fix two smooth paths in D : γ1(t) will be a path from z1

to z3 ; γ3(t) will be a path from z3 to z1. In both cases we will suppose that t ∈ [0, 1], and
we will assume that the closed disc of radius 200 sin−1(1/100) about γi(t) does not contain
the basepoint x0 , the point z2 , nor the point γj(t), for i 6= j . Roughy speaking, the idea is
to slide the disc

(Sn \Dn, hi) ∪ TRi ∪ C(ρRi , ρ100) ∪ T100

along the path γi , i = 1, 3, which will result in the desired swapping of the h1 and h3

arrangements. The separation of the paths from each other and the point z2 ensures that the
extended hi parts do not intersect during this sliding deformation. The distance of the paths
from x0 ensures that the metrics we construct will always pull back to RRick>0

rd,1 (Sn).
The difficulty with carrying out this sliding deformation is that the curvature of (D, gnat)

along the paths γi(t) will vary, and in particular there will be points along these paths which
will not have a locally round neighbourhood. As it stands, therefore, we cannot attach the
‘tubes’ corresponding to h1 and h3 at some points along γ1, γ3. To deal with this situation we
apply Lemma 2.5 with k = 2 to both paths γi(t) within (D, gnat). This results in a smooth
path of metrics g(t) in RRic2>0

rd,1 (D) which locally, in a neighbourhood of γi(t), is round of some

radius R̄i(t). There is no guarantee, however, that this round region will contain a distance
sphere about γi(t) with intrinsic radius 1. On the other hand, as this is a compact family of
metrics, the functions R̄i(t) are clearly bounded below away from zero. In particular, there is
a scaling factor β ≥ 1 such that the path β2g(t) does have the property that for each t , the
round neighbourhood in β2g(t) about the point γi(t) contains a distance sphere with intrinsic
radius 1. This allows us to attach the tube TβR̄i(t) about the point γi(t) for each t , and to
the narrow end of this tube we can attach (Sn \Dn, hi)∪TRi ∪C(ρRi , ρβR̄i(t)). Notice that we
can choose the value of β independent of h1, h2, h3 , as it only depends on the choice of paths
γi and the metric gnat .

To slide the metrics h1 and h3 as required while taking into account the necessary
scaling by β2 , we proceed as follows. The very first task is to smoothly scale the metric on
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D by a progressive scaling factor starting with 1 and ending with β2 . We could do this,
for example, using the bump function φ(x) for x ∈ [0, 1] and applying the scaling factor
β2(x) := 1 +φ(x)(β2− 1). When scaling D , for each x ∈ [0, 1] we replace the attaching tubes
for h1, h2, h3 in D by

(Sn \Dn, hj) ∪ TRj ∪ C(ρRj , ρ100β(x)) ∪ T100β(x),

for j = 1, 2, 3, which gives a smooth deformation. Having achieved an appropriate scaling
for D , we can now move the hi part of the arrangement, i = 1, 3, along the path γi(t),
as indicated in the above paragraph. After completing the path, we now simply reverse the
scaling of D , so the resulting Riemannian manifold is σ̂(σ̂(h3, h2), h1), as desired.

�

Proof of Theorem A. The proof now follows by combining Propositions 3.16, 3.17 and 3.21.
�

Proof of Corollary B. This is a basic fact about all H -spaces; see in particular Corollary 5.2
of [32]. �

4. Loop space structures

We turn our attention now to Theorem C. The proof strategy mirrors that of the second
main result in [32], adapted here for k -positive Ricci curvature. We will therefore be quite
terse in our exposition, referring the reader to [32] for relevant details.

In the previous section we demonstrated that up to homotopy, the space RRick>0(Sn),
or rather the homotopy equivalent space RRick>0

rd,1 (Sn), admits an H -space structure when
n ≥ 3 and k ≥ 2. The question of whether an H -space admits a loop space or iterated loop
space structure is an old one, and various recognition results for deciding when this happens
have been established by Stasheff, Boardman, Vogt, May and others. In particular, if we
can generalize the homotopy product to an action of a certain operad, we go a long way to
exhibiting iterated loop space structure. Just as in the previous section, our approach here is
to demonstrate the existence of an iterated loop space structure on RRick>0(Sn) by showing
that RRick>0

rd,1 (Sn) admits such a structure.

4.1. The operad of little discs and the bar construction. An operad P consists of a se-
quence of compactly generated Hausdorff topological spaces P(j), j ∈ {0, 1, 2, · · · } , together
with data consisting of various maps and labels which satisfy certain symmetry and compo-
sition conditions. The full definition is rather complicated and so we will not provide it here.
Instead we will briefly recall an important example: the operad of little discs. This example
(and others) is described in detail, along with a complete definition of the term operad (due
to P. May), in section 7 of [32].

The operad of little n-dimensional discs. Let Dn denote here the closed unit radius disc
in Rn. For n ≥ 1, p ∈ Dn and ε where 0 < ε ≤ 1− |p| , let D(p, ε) denote the closed round
disc of radius ε which is centred at p . For each integer j ≥ 0, we denote by D(j)n the set of
ordered j -tuples of closed round discs D(pi, εi), where i = 1, · · · j, which satisfy the following
condition:

◦
D(pi, εi) ∩

◦
D(pk, εk) = ∅ for all i 6= k.

In the case when j = 0, D(j)n is just a single point. There is an identity element in D(1),
namely the element for which the unique little disc is equal to the whole of Dn . To ease
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notation we will fix an n and simply write D(j) instead of D(j)n . There is an obvious action
of the permutation group Σj on D(j) which essentially permutes the labels of the little discs;
this is described in section 7 of [32]. Notice that for each little disc in an element of D(j), there
is a canonical homeomorphism which identifies it with the larger unit disc Dn , i.e. shrink Dn

and translate. This leads to the following “fitting” map:

γ : D(k)×D(j1)× · · · × D(jk) −→ D(j1 + · · ·+ jk)

(c, (dj1 , · · · , djk)) 7−→ c(dj1 , · · · , djk),

which replaces the rth little disc of c with the appropriately rescaled element djr for each
r ∈ {1, 2, · · · , k}.
Finally, we define

Dn =
⋃
j≥0

D(j),

which, along with the appropriate collection of fitting maps γ , is known as the operad of little
n-dimensional discs.

In section 7.6 of [32], we describe what it means for an operad, P , to act on a topological
space Z . We will not repeat the definition here, although we will construct an example of such
an action later. A space Z admitting an action of the operad P is called a P -space. We now
state a classic theorem, due to Boardman, Vogt and May, the so-called recognition principle
for iterated loop spaces.

Theorem 4.1 (Boardman and Vogt [1], May [22]). For any n ∈ N, a path connected Dn -
space, Z , is weakly homotopy equivalent to an n-fold loop space.

Remark 4.2. There is a version of this theorem for non-path connected spaces but it requires
another hypothesis, namely that π0(Z) forms a group under multiplication induced by the
operad action. We will say a few words about this at the end of the paper in Section 4.3.

The above theorem suggests a means for proving Theorem C: simply demonstrate an
action of Dn on RRick>0

rd,1 (Sn). Such an action restricts as a perfectly good operad action on
the path component containing the round metric, and Theorem 4.1 does the rest. Morally,
this is what we do, however there are some technical difficulties when it comes to constructing
such a Dn -action. Roughly speaking, certain commutativity requirements are impossible to
satisfy. To overcome this, we replace Dn with a more flexible related operad known as WDn .
This latter operad is obtained by by applying something called the bar construction (or W
construction) to Dn , a process which is explained in section 7.5 of [32], and of which we will
give a very brief description in a moment. Essentially, attempting to construct an action (of
Dn ) yields something which satisfies the commutativity relations only up to homotopy. This
discrepancy is absorbed into the construction of WDn , in order to make the resulting action
commute “on the nose.” Given that our entire goal is the study an object only up to homotopy,
it is not surprising that we can make such a replacement. This is confirmed by the following
theorem of Boardman and Vogt.

Theorem 4.3 ([1],Theorem 4.37). A topological space Z is a P -space, for some operad P ,
if and only it is a WP -space.

Thus, to prove Theorem C, it is enough to proceed as in [32] and demonstrate an action of
WDn on RRick>0

rd,1 (Sn).
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While sections 7.3 through 7.5 of [32] provide a detailed description of the bar construc-
tion, we will say a few words here about the operad WDn . As we are assuming that n is
fixed, let us simplify notation by writing D instead of Dn . The construction of WD consists
of two main steps. The first is the construction from D of an intermediary operad T D , the
so-called operad of trees for D . The second step realises WD as a quotient of T D by certain
relations. We now provide a brief outline of these steps.

The operad T D should be understood as follows. As for all operads, T D(0) is a single
point. Roughly speaking, an element of T D(j), for some j ∈ N, consists of a certain oriented
tree, T , with some associated data which we will deal with shortly. Edges of T which have
two adjacent vertices are called internal, while edges with only one adjacent vertex are called
external. Each vertex v in T has a set of incoming edges, denoted In(v), and exactly one
outgoing edge. Moreover, the set of external edges of T consists of two mutually disjoint
subsets: the set of inputs, In(T ), of all incoming edges of T which have no starting vertices,
and the set consisting of the single outgoing edge, or output, which has no end vertex. The
statement that T belongs to T D(j) means that T has j external input edges, i.e. |In(T )| = j .

The extra associated data that comes with the tree T is as follows. Firstly, there is
a labelling of the input edges via a function β , a bijection from the set of inputs In(T ) to
{1, 2, · · · , j} . Secondly, there is a map, α , which sends each vertex v of T to an element
c ∈ D(|In(v)|), so c has one (labelled) little disc for each (labelled) input edge of v . Finally,
there is a function ` which assigns to each edge e of T a real number `(e) (the so-called
length of the edge) satisfying:

(1) 0 ≤ `(e) ≤ 1.
(2) `(e) = 1 when e is an external edge (i.e. input or output) of T .

When the edge under discussion is clear from context, we will simply write ` for its length.
With all this in mind, an element of T D should be thought of as a quadruple (T, α, β, `). In
depicting such an element, we typically show trees with the edges directed from bottom to
top and with inputs ordered from left to right. In Fig. 6 below we present an example with
four input edges. The internal edge lengths arising from ` , along with the labellings on the
little discs and input edges are suppressed in the picture. The association between little disks
at a vertex and the input edges of the vertex should be clear from the picture however.

There are also certain associated composition (fitting) maps which we will not define
here except to say the following. An element c ∈ T D(k) can be composed with a string of
elements (c1, · · · , ck) ∈ T D(j1)× · · · × T D(jk) by laying the output edge of each ci directly
on top of the ith input edge of c . In each case, the edge resulting from this superposition is
given the length 1 (agreeing with the length of the superposed edges). Finally, the identity
element in T D(1) is the trivial tree consisting of a single edge (with length 1) and no vertices.

Having constructed T D , the operad WD is then obtained as a quotient of T D by
certain relations, namely (a), (b) and (c) of section 7.5 of [32]. We will not properly restate
these relations here, except to say the following.

(a) Identifies two edges seperated by a vertex decorated by the identity element in D with
a single edge. The length of the resulting edge is set to be `1 + `2 − `1`2 , where `1, `2

are the lengths of the original edges.
(b) Identifies trees up to certain label permutations on subtrees.
(c) Collapses edges of length zero by using the operad composition maps to combine the

operad elements associated to their vertices.
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Figure 6. An element of T D(4)

Thus,
WD := T D/Relations{(a), (b), (c)}.

4.2. Realizing the operad action. Given any tree of the type under discussion with vertices
decorated by little discs, our next task is to construct a metric in RRic2>0

rd,1 (Sn) which reflects
both the structure of the tree and the vertex details. Once we have constructed such metrics,
we will use them to produce an action of the operad WD on RRick>0

rd,1 (Sn). Theorem C then
follows from the existence of such an action.

Our approach to metric construction here mirrors that of the previous section. Given a
tree T , we will construct a Riemannian manifold σ̂(T ) as a connected sum of spheres. We
then use the connected sum contraction procedure to distill a metric σ(T ) ∈ RRic2>0

rd,1 (Sn) from
σ̂(T ). The various pieces of this connected sum will arise from the edges of the tree, with the
little discs at each vertex and the edge lengths feeding into the geometric structure.

We will begin by discussing the ‘basic unit’ of σ̂(T ), which corresdponds to an edge
of T . This will be a disc determined by three parameters: R, ε, `, (with R > 0, ε ∈ (0, R)
and ` ∈ [0, 1]). Here, R and ε determine the geometric boundary conditions of the disc: just
as in previous considerations, a neighbourhood of the boundary will be round of radius R ,
with the boundary itself being a round sphere of intrinsic radius ε . As indicated above, ` will
indicate the ‘length’ of the unit (i.e. the radius of the disc), however ` should be viewed as a
proportion, not an absolute length. With the dimension understood, let us denote this basic
unit B(R, ε, `). In the case where ` = 1, we simply write B(R, ε).

We begin by defining B(R, ε) as follows:

B(R, ε) := TR,ε ∪ C(ρR,ε, ρ100) ∪ (Sn \Dn, 1002ds2
n).

We will introduce a parameter t into this warped product manifold as before, with t measuring
distance from the boundary, and the boundary itself corresponding to t = τR,ε = R cos−1(ε/R).
The domain of t is [τR,ε, L] , for some L depending on R, ε.

We will now explain how to modify B(R, ε) to take account of a value of ` 6= 1. For this
we recall Lemma 3.19. Taking µ(t) in this Lemma to be the warping function for the metric
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on B(R, ε), let γs be the function established by the Lemma, with s here belonging to the
interval [τR,ε, L − 50π]. Given ` ∈ [0, 1], define B(R, ε, `) to be the disc equipped with the
warped product metric

dt2 + γ2
χ(`)(t)ds

2
n−1,

where

χ(`) = τR,ε + `(L− 50π − τR,ε).
It is clear that when ` = 1, B(R, ε, `) = B(R, ε), and it follows from Lemma 3.19 that
when ` ≈ 0, B(R, ε, `) is a disc equipped with the round metric of radius R bounded by
the sphere of intrinsic radius ε . It follows that relation (c) above will be satisfied by this
construction. By Observation 3.18, the central neighbourhood of B(R, ε, `) corresponding to
t ∈ [χ(`)+α(R, ε), L(χ(`))] is round, with both the curvature and the radius of this neighbour-
hood varying smoothly with ` . (Recall that α(R, ε) arises due to smoothing considerations -
something we must also be mindful of here.)

We next address the role of little discs in our construction. Suppose an edge correspond-
ing to B(R, ε, `) ends with a vertex coloured by an element of D(j). This element consists
of the standard unit (n-dimensional) disc, containing a collection of j smaller discs. For
convenience we will refer to these as the ‘big disc’ and ‘little discs’ respectively.

We can identify the big disc and the round region of B(R, ε, `) (corresponding to t ∈
[χ(`) + α(R, ε), L(χ(`))]) in a standard way: we begin by stretching the big disc by a uniform
factor so as to have the same radius as the round region. Next we equip this scaled disc
with the metric dt2 + R′2 sin2(t/R′)ds2

n−1, where 1/R′2 is the curvature of the round region
in B(R, ε, `). This has no effect on distances of points from centre, but causes distortion in
directions orthogonal to the radii. We can now identify the two discs via a fixed isometry ι . We
will also need to ‘transfer’ the little discs to B(R, ε, `). Each little disc D(pi, ri) in the original
big disc is determined its centre point pi and its radius ri . Suppose that the stretching factor
for the big disc is λ > 0. Then the stretching effect on the point pi in the Euclidean setting
is to move it to the point λpi. It then follows (for example from the Toponogov Theorem)
that the collection of discs D(ι(λpi), λri) within the round region of B(R, ε, `) are disjoint,
and hence form an admissible family of little discs in the operad sense. In this way we can
map both the big disc and its little discs onto the round region of B(R, ε, `). Notice that the
geometry of each little disc is determined by a pair R′, ε′ , with R′ as above, and ε′ being the
intrinsic radius of the sphere bounding the little disc.

As noted previously, when ` = 0, B(R, ε, 0) is a round disc of radius R bounded
by the sphere of intrinsic radius ε . For convenience we will demand that the big disc in
B(R, ε, 0) agrees with B(R, ε, 0) itself. This forces us into a slight modification of the big disc
identification just introduced, since as it stands, the boundary of the big disc when ` = 0
corresponds to t = τR,ε + α(R, ε), and not to the desired t = τ(R, ε). Recall that by the
proof of Lemma 3.19, γs agrees with R cos(t/R) for τR,ε ≤ s ≤ τR,ε(κR,ε + 1)/2. Thus for s
in this range, the ‘smoothing buffer’ of length 2α(R, ε) is redundant. In our current context,
s = χ(`), and we deduce that B(R, ε, `) = B(R, ε, 0) for τR,ε ≤ χ(`) ≤ τR,ε(κR,ε + 1)/2. Thus
for ` such that χ(`) lies in this range, the round region contains the whole of B(R, ε, 0). We
should therefore expect the radius of the round region to vary discontinuously as ` → 0+.
On the other hand, we need the radius of the big disc to increase smoothly with ` when
χ(`) lies in this range, from corresponding to t ∈ [χ(`) + α(R, ε), L(χ(`))] when χ(`) =
τR,ε(κR,ε+1)/2, to t ∈ [χ(`), L(χ(`))] when χ(`) = τR,ε. To achieve this, we declare that when
χ(`) ∈ [τR,ε, τR,ε(κR,ε+1)/2], the big disc will correspond to t ∈ [χ(`)+ξR,ε(`)α(R, ε), L(χ(`))],
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where

ξR,ε(`) := φ
( χ(`)− τR,ε
τR,ε(κR,ε − 1)/2

)
.

When ` = 1, we will demand that the big disc in B(R, ε) = B(R, ε, 1) is the hemi-
spherical disc about the centre point corresponding to t ∈ [L − 50π, L] , (as opposed to
t ∈ [L−50π+α(R, ε), L]). The point is to render the big disc independent of R, ε when ` = 1.
In order to do this in a way which is smooth as ` → 1− , we simply employ the strategy in
the paragraph above, in conjunction with Remark 3.20. (In effect, we scale the α(R, ε)-term
defining the boundary of the big disc smoothly down to zero, as s increases over the range
[L− 50π − 1, L− 50π] .)

We are now in a position to discuss the construction of σ̂(T ). Given any vertex v in T ,
each edge which meets v is either incoming or outgoing, so we can decorate each edge with
an arrow. Overall, this produces a directed tree. As noted previously, to be consistent with
the figures, we will orient our trees so that the direction of each edge is upwards on the page.
Thus the set of external input edges In(T ) will be at the bottom of the tree, and the single
external output edge is at the top. Recall that all the external edges have length one.

We will construct σ̂(T ) systematically, edge-by-edge, starting at the top of the tree and
working downwards, considering all edges at a given ‘depth’ from the top, before moving onto
to edges one layer deeper.

To the top (output) edge we will associate the sphere with round metric of radius 100. If
the tree is the trivial tree, then we are done. If not, we consider the vextex at the (lower) end
of the output edge. We declare the big disc here to be the lower hemisphere, and associate
little discs within this big disc as described above. To each of these little discs we have a pair
of parameters R and ε : for this top vertex we clearly have R = 100. Taking into account
the lengths ` of the outgoing edges from this vertex, we form a connected sum with the
appropriate B(R, ε, `) for each little disc. Now continue in this way to the bottom of the tree.
Observe that in general, R and ε for each little disc will depend on the length of the previous
edge as well as the little disc itself. The result of this process is a Riemannian manifold σ̂(T )
with 2-positive Ricci curvature. If we declare the north pole of the initial sphere to be the
basepoint of the arrangement, then we will always have a hemisphere of (extrinsic) radius 100
about the basepoint irrespective of the tree.

To create the metric σ(T ) ∈ RRic2>0
rd,1 (Sn) from σ̂(T ), we simply apply the connected

sum contraction procedure. We do this systematically in the opposite direction: we start at
the bottom and work layer-by-layer up to the top. Notice that within a layer, the order in
which we perform the contractions is irrelevant. (We are contracting onto the little discs in the
layer immediately above, and by construction these are all disjoint.) Notice that the resulting
metric in RRic2>0

rd,1 (Sn) also has a hemisphere of radius 100 about the basepoint of Sn .
In describing this metric construction, there is one important detail we have so far

neglected to mention. In order to accommodate relation (a), we are forced to make a special
construction in the case that a vertex of our graph is decorated with an element of D(1), i.e.
a big disc containing a single little disc. If this little disc is equal to the big disc, relation (a)
requires that the (unique) incoming edge and the outgoing edge be identified, with the length
of the new edge being `1 + `2 − `1`2, where `1, `2 are the lengths of the original edges. We
must pay special attention to continuity here: suppose we have a smoothly expanding little
disc, with radius r → 1−. Relation (a) only applies when r = 1, but our metric constructions
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must vary smoothly with respect to r . In particular this includes the moment at which r hits
1 and the edges become identified. Our construction in this case is as follows.

Suppose we have an arrangement within our tree where we have a vertex with a single
incoming edge of length `1, an outgoing edge of length `2, and a single little disc of radius
r < 1. When we meet such an arrangment in the construction of σ̂(T ), we move some of the
outgoing length to the incoming edge when creating the manifold. Specifically, we represent
the incoming edge by

B
(
R, ε, (1− ψ(r))`1 + ψ(r)(`1 + `2 − `1`2)

)
and the outgoing edge by

B(R′, ε′, (1− ψ(r))`2),

where ψ : [0, 1] → [0, 1] is any choice of strictly increasing function with ψ(0) = 0 and
ψ(1) = 1, which can be extended with constant value 0 in the negative direction and constant
value 1 in the positive direction to give a smooth function on all of R . Notice that R′ here
depends on the disc associated to the incoming edge, and ε′ depends on both R′ and r .

Now consider what happens in the limit as r → 1− . Clearly, the length of the incoming
edge smoothly converges to `1 + `2− `1`2 , and the length of the outgoing edge to 0. Thus the
manifold corresponding to this tree arrangement smoothly deforms into that corresponding to
a single edge of length `1 + `2− `1`2 , meaning our construction of σ̂(T ) (and therefore σ(T ))
is consistent with with relation (a).

(By construction, the big disc at the end of length one edges is always a hemisphere. In
the case that the corresponding vertex is decorated by the identity little disc, we cannot apply
the Tube Lemma (Lemma 3.1) directly as we have R = ε . However this does not matter, since
by relation (a) and the construction above, we never need to add a tube in this situation.)

For completeness we should also mention relation (b). This is simply a tree re-labelling
relation, and has precisely no implications for our metric constructions. Thus we have, in
effect, constructed a well-defined map WDn → RRic2>0

rd,1 (Sn).
There are two further considerations we must address. Firstly, we need to show how

to realize the composition operation on trees metrically. We work intially with the manifolds
σ̂(T ). The procedure is as follows: suppose an incoming edge of a tree T1 is to be identified
with the outgoing edge of another tree T2 when the trees are composed. Both these edges
have length 1, and thus are represented in σ̂(Ti) by a connected sum with a radius 100 round
sphere. Assuming these trees are non-trivial, there will be further connected sums from the
northern hemisphere of the ‘incoming’ sphere in σ̂(T1), and from the southern hemisphere
of the ‘outgoing’ sphere in σ̂(T2). This means that we can remove the sourthern hemisphere
from the first of these spheres, and the northern hemisphere from the latter, and simply
glue the two resulting boundary components together. Notice that the resulting Riemannian
manifold agrees with σ̂(T1 ? T2), where ? denotes the composition operation. It is elementary
to observe that this association of Riemannian manifolds to trees is associative with resepect
to the composition of trees, as our joining of manifolds does not affect the geometry either
higher or lower in the construction.

Of course, we actually need to realize the composition operation on trees in the space
RRic2>0
rd,1 (Sn), and this requires repeated connected sum contractions as discussed above. As-

sociativity is automatic here, as a consequence of the order in which the contractions are
performed.
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(Note that the special arrangement considered above, involving two edges linked by the
identity little disc as vertex, cannot be created by joining two graphs.)

Our final task is to define an operad action: specifically the action of WDn on the space
RRick>0
rd,1 (Sn). (See [32, 7.6] for the precise definition of operad actions on topological spaces.)

Given a tree T with |In(T )| = j, we take a j -tuple (g1, · · · , gj) of metrics in RRick>0
rd,1 (Sn).

For each gi , we form the Riemannian manifold σ̂(gi, e) as defined in Section 3. The basepoint
of this manifold lies in the middle of a hemisphere of radius 100. We remove this hemisphere,
and also the southern (radius 100) hemisphere corresponding to the ith input edge of T . We
can now smoothly glue these two boundary components together. Repeating this procedure
for each i = 1, · · · , j creates a closed Riemannian manifold we will denote σ̂(T ; g1, · · · , gj).
Performing connected sum contractions from the bottom (i.e. starting with the gi ) to the top,
then yields a metric σ(T ; g1, · · · , gj) on Sn . This will be the metric which results from the
tree T acting on (g1, · · · , gj). It is easily checked that the collection (over j ) of the resulting
maps

WD(j)×RRick>0
rd,1 (Sn)j → RRick>0

rd,1 (Sn)

indeed form an operad action, and in particular satisfy the associativity requirement stated
in [32, 7.6(2)]. To aid the reader we provide in Fig. 7 a schematic depiction in the case when
j = 4.

T σ̂(T )

g1 g2 g3 g4

σ̂(T ; g1, g2, g3, g4)

Figure 7.
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In summary, we have now established the following analogue of Lemma 8.2 in [32].

Lemma 4.4. When n ≥ 3, k ≥ 2, the space RRick>0
rd,1 (Sn) is a WDn -space.

Proof of Theorem C. Simply combine Lemma 4.4 with Theorems 4.3 and 4.1. This shows
that the path component of RRick>0

rd,1 (Sn) containing the round metric is weakly homotopy

equivalent to an n-fold loop space. Now use the homotopy equivalence between RRick>0
rd,1 (Sn)

and RRick>0(Sn) to deduce the analogous conclusion for RRick>0(Sn). �

4.3. The Grouplike Condition. A natural question to ask is whether Theorem C can be
strengthened to hold for the entire space RRick>0(Sn), and not just the path component con-
taining the round metric. The recognition principle, Theorem 4.1 above, has a stronger form
which allows us to recognise when a Dn -space, Z , is a loop space when Z is not path con-
nected. To understand this we need a definition. Given an H -space, Z , with a multiplication
σ , we can induce a multiplication σ̄ on π0(Z) in the obvious way:

σ̄([x], [y]) = [σ(x, y)],

where x, y ∈ Z and [x], [y] ∈ π0(Z) denote their respective path components. That this is
well-defined is an easy exercise. The H -space Z is said to be grouplike if π0(Z) forms a group
under this multiplication. Note that a P -space, Z , (where P is an operad), is also an H -space
under the multiplication obtained by restricting the action to any element c ∈ P(2). In other
words, given such a c ∈ P(2) and x, y ∈ Z we define

σ(x, y) = c.(x, y),

where the latter is the operad action on the pair (x, y). Thus, we say that a a P -space Z is
grouplike if this multiplication induces a group multiplication on π0(Z). The stronger version
of Theorem 4.1 is as follows.

Theorem 4.5 (Boardman and Vogt [1], May [22]). For any n ∈ N, a grouplike Dn -space, Z ,
is weakly homotopy equivalent to an n-fold loop space.

In our case, the multiplication induced on π0(RRick>0
rd (Sn)) is exactly the same whether

we use the original H -space multiplication defined in Section 3 or the operad action above.
The question of whether this multiplication is grouplike is still open and, it seems, hard: the
significant challenge is satisfying the inverse axiom. This is discussed somewhat in [32, Sec 9]
with regard to the scalar curvature (k = n), and is related to the very difficult problem of
deciding whether concordant metrics of positive scalar curvature are isotopic.
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