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ABSTRACT

RUDDY, J. D., A. J. SHIELD, N. MANIAR, M. D. WILLIAMS, S. DUHIG, R. G. TIMMINS, J. HICKEY, M. N. BOURNE, and D. A. OPAR.
Predictive Modeling of Hamstring Strain Injuries in Elite Australian Footballers. Med. Sci. Sports Exerc., Vol. 50, No. 5, pp. 906-914, 2018.
Purpose: Three of the most commonly identified hamstring strain injury (HSI) risk factors are age, previous HSI, and low levels of
eccentric hamstring strength. However, no study has investigated the ability of these risk factors to predict the incidence of HSI in elite

Australian footballers. Accordingly, the purpose of this prospective cohort study was to investigate the predictive ability of HSI risk factors

using machine learning techniques. Methods: Eccentric hamstring strength, demographic and injury history data were collected at the start
of preseason for 186 and 176 elite Australian footballers in 2013 and 2015, respectively. Any prospectively occurring HSI were reported to

the research team. Using various machine learning techniques, predictive models were built for 2013 and 2015 within-year HSI prediction
and between-year HSI prediction (2013 to 2015). The calculated probabilities of HSI were compared with the injury outcomes and area

under the curve (AUC) was determined and used to assess the predictive performance of each model. Results: The minimum, maximum,
and median AUC values for the 2013 models were 0.26, 0.91, and 0.58, respectively. For the 2015 models, the minimum, maximum and
median AUC values were, correspondingly, 0.24, 0.92, and 0.57. For the between-year predictive models the minimum, maximum, and
median AUC values were 0.37, 0.73, and 0.52, respectively. Conclusions: Although some iterations of the models achieved near perfect
prediction, the large ranges in AUC highlight the fragility of the data. The 2013 models performed slightly better than the 2015 models. The
predictive performance of between-year HSI models was poor however. In conclusion, risk factor data cannot be used to identify athletes at an
increased risk of HSI with any consistency. Key Words: INJURY PREDICTION, MACHINE LEARNING, ECCENTRIC HAMSTRING

STRENGTH, HAMSTRING INJURY RISK

amstring strain injuries (HSI) are the most common

injury in elite Australian football (1) and can have

significant physical (2—4) and financial conse-
quences for an athlete and their sporting organization (5). As
such, risk factors for HSI have received much attention (6—12).
The most common risk factors identified in Australian foot-
ballers are a history of HSI and increasing age (9). More
recently, work has focused on factors that can be targeted
through intervention to potentially reduce the risk of HSI.
Previous work reported that elite Australia footballers with
levels of eccentric hamstring strength (assessed during the
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Nordic hamstring exercise) below 256 N at the start of
preseason were 2.7 times more likely to sustain a HSI that
season (10). However, this cutoff was determined retro-
spectively from the data it was applied to, and although de-
ductive methodologies such as this are able to establish a
link between a factor such as eccentric hamstring strength
and injury risk, they cannot be used to predict injury (13).
Recent commentary has highlighted the need to estimate the
predictive ability of risk factors by applying a predetermined
cutoff to different samples (13). Injuries, such as HSI,
however, are typically the result of the interactions between
multiple factors, and univariate cutoff values are likely to
display poor predictive capacity (14,15).

Although multivariate relationships between HSI risk
factors have been examined previously, these investigations
typically use a linear approach to identifying the interactions
between these variables (15,16). These interactions, how-
ever, are more likely to be nonlinear (14-16). It has been
suggested that moving away from the identification of uni-
variate risk factor cutoffs and instead toward injury pattern
recognition will improve the ability to predict and ultimately
prevent injury (14). Supervised learning techniques, which
are a type of machine learning, have been proposed as
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appropriate methodologies to account for the complex,
nonlinear interactions between risk factors and to recognize
patterns that lead to injury (14). Supervised learning is the
process by which a data set with a known outcome variable
(i.e., injured or uninjured), referred to as training data, is used
to identify patterns and predict the unknown outcome vari-
able of an independent data set, referred to as testing data
(17). No study has developed supervised learning models,
using data from multiple teams measured across multiple
seasons, to predict the occurrence of HSI. Studies identifying
risk factors and their associated cutoffs can provide important
information regarding the etiology of injuries (18). Research
of this nature can ultimately help to inform injury prevention
practices and guide risk mitigation strategies (19). However,
investigations using supervised learning techniques are
needed to determine the predictive ability of previously
reported HSI risk factors such as eccentric hamstring strength,
age, and previous HSI.

Therefore, the aim of the current study was to investigate
whether supervised learning techniques could be used to pre-
dict the occurrence of HSI, using risk factor and demographic
data measured across multiple seasons as predictor variables.

METHODS

Study design. Data for this prospective cohort study
were collected during the 2013 and 2015 Australian Football
League (AFL) seasons. The 2013 study period was conducted
from November 2012 to September 2013, and the 2015 study
period was conducted from November 2014 to September
2015. The authors would like to note that data collected during
the 2013 study period has been previously published (10).
Demographic and lower-limb injury history data for each
athlete were provided to the research team at the beginning
of the 2013 and 2015 study periods. Eccentric hamstring
strength was assessed at start of preseason training for 2013
(November 2012) and 2015 (November 2014). Throughout
the study periods, any prospectively occurring HSI were
reported to the research team. This study was approved by the
Queensland University of Technology Human Research
Ethics Committee (approval number: 1100001116).

Participants. Seven teams (39% of the total competi-
tion) competing in the AFL participated in at least one of the
study periods. Three of these teams participated in both the
2013 and 2015 study periods. Four teams only participated
in either the 2013 or 2015 study period. Each athlete was
provided with a plain language statement outlining the study
and provided informed written consent. In total, 186 and 176
elite Australian footballers agreed to participate in the 2013
and 2015 study periods, respectively. Although data for 210
athletes were previously reported (10), eccentric hamstring
strength was only assessed at the start of preseason for 186
athletes during the 2013 study period. Due to deidentification
of the data, it was not possible to determine which athletes
provided data for both study periods.

Demographic and injury history data. Demographic
data for each athlete were provided to the research team at
the beginning of each study period. This included age (yr),
stature (cm), mass (kg), and primary playing position (for-
ward, back, midfield, or ruck (11)). The medical staff for
each of the participating teams also completed a question-
naire detailing the lower limb injury history of each athlete
prior to the 2013 and 2015 seasons. This included history
of HSI within the preceding 12 months and history of an-
terior cruciate ligament (ACL) injury at any stage during the
athlete’s career.

Eccentric hamstring strength assessment. The
assessment of eccentric knee flexor strength during the
Nordic hamstring exercise has been previously reported
(10,20,21). The participants knelt on a padded board with
their ankles secured superior to the lateral malleolus by ankle
straps. These straps were attached to custom-made uniaxial
load cells (Delphi Force Measurement, Gold Coast, Australia)
with wireless data acquisition capabilities (Mantracourt,
Devon, United Kingdom). After a warm-up set of three
submaximal repetitions, participants were asked to perform
three maximal repetitions of the Nordic hamstring exercise.
The participants were instructed to lean forwards as slowly as
possible whilst maximally resisting this movement with both
limbs, keeping the trunk and hips neutral throughout. The
athletes were encouraged to perform maximally on every
repetition. The assessment took place within a week of each
individual athlete’s return to preseason training for the 2013
and 2015 seasons. Data were transferred to a computer at a
100-Hz through a wireless USB base station (Mantracourt,
Devon, United Kingdom). The peak forces (measured in N)
from each limb and repetition were averaged to determine
athletes’ eccentric hamstring strength. The absolute difference
in the average force (N) between limbs was determined to be
the between-limb imbalance.

Reporting of prospective HSI. A prospectively oc-
curring HSI was defined as acute pain in the posterior thigh
that resulted in disruption of the hamstring fibers, as con-
firmed by magnetic resonance imagining (MRI) (10). For
all injuries that fulfilled these criteria, the relevant team
doctor or physiotherapist completed a standard injury re-
port form which detailed the limb that was injured, the lo-
cation of the injury (i.e., proximal muscle-tendon junction,
mid muscle belly etc.), mechanism of injury (i.e., high-
speed running, jumping, and so on), severity of the injury
determined from MRI, and the number of days taken to
return to full training (10).

Modeling approaches. Two approaches were taken
when selecting variables to include as input data for the
predictive models. The first approach only included eccentric
hamstring strength, age and previous HSI as predictors for
future HSI. The second approach included eccentric hamstring
strength, age, previous HSI, between-limb imbalance, previ-
ous ACL injury, stature, mass, and primary playing position.
Both years (2013 and 2015) were first analyzed individually
to predict within-year HSI. The modeling approach taken for
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within-year HSI prediction can be found in Figure 1A.
Between-year HSI prediction was then explored by allocating
the 2013 data as training data and the 2015 data as testing
data (Fig. 1B). To account for any variance caused by random
sampling, data preprocessing and cross-validation, 10,000
iterations of each modeling approach were performed. All
analyses were performed using the R statistical programming
language (22).

Algorithms. Five different supervised learning techniques
were used to build predictive models (see Table, Supplemental
Digital Content 1, A brief description of each machine learning
algorithm and all relevant parameters, http://links.lww.com/
MSS/B163). These were:

Naive Bayes,

Logistic regression,
Random forest,

Support vector machine,
Neural network.

Explaining the mathematical functions of each of these
models is beyond the scope of this article. However, naive
Bayes and logistic regression algorithms were chosen for
their simple probabilistic classification, whereas random
forest, support vector machine, and neural network algo-
rithms were chosen for their ability to model complex,
nonlinear interactions amongst multiple predictor variables.

Data preprocessing. All continuous data (age, eccen-
tric hamstring strength, stature, and mass) were standardized
before building the predictive models. Standardization is

common practice when implementing supervised learning
techniques as some models may be sensitive to the vastly
different ranges and magnitudes of predictor variables (17).
This involves transforming the data so that the mean is equal
to zero and the SD is equal to one. Data were standardized
using the following equation:

where x equals the original value, x' equals the standardized
value, X equals the mean and s equals the SD.

The input data for within-year HSI prediction were stan-
dardized to the relevant year (i.e., 2013 or 2015). The
training data (2013) and the testing data (2015) for between-
year HSI prediction were standardized independently. An-
other challenge when using statistical learning techniques,
particularly to predict injury, is class imbalance (23). Al-
though HSI is the most common injury in elite Australian
football (1), uninjured athletes still outnumber athletes who
sustain a HSI. In cases of class imbalance, supervised
learning algorithms can achieve high accuracy by always
predicting the more frequently occurring class (24). How-
ever, this high accuracy is only reflective of the underlying
class distribution. Synthetic minority oversampling techniques
(SMOTE) were developed to address the problem of having
imbalanced classes (24). Synthetic minority oversampling
techniques is a combination of undersampling and synthetic
oversampling techniques (24). Undersampling is the process
by which observations from the overrepresented class are

Group 2: . Inputdata Group 2:
Group 1: i strengih, age, Group 1: Eccentric hamstring strength, age,
Eccentric hamstring strength, age & Goinnd or previous HS1, b limb aged (Group1or previous HSI, between-limb imbalance,
pravious HS1 ) Gmn’ 2 previous ACL injury, stalure, mass & previous HSI Group2) previous ACL injury, stature, mass &
P2 positio position
e /\
i data
npa Training data Testing data
/\ (2013 data) (2015 data)
Standardised Standardised ¢ *
training data testing data
Raadon sampding standardised standardised
[Tos) (30%) training data testing data
SMOTE Ho SMOTE
SMOTE Ho SMOTE
10-fold
Parameter tuning 10-fold
cross validation Parameter tuning crossvalidation
! , !
Finalmodel & testing data € testing data
Performance cutcomes
auc) Predictions (AUC)

FIGURE 1—The modelling approaches for (A) within-year HSI prediction (used to analyse 2013 data and 2015 data independently), and (B) between-
year HSI predictions (used to analyse 2013 data and 2015 data collectively). The performance outcome used was AUC. Ten thousand iterations of each

modeling approach were performed.
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randomly removed, whereas synthetic oversampling cre-
ates observations of the underrepresented class that have
similar features to already existing observations (24). In the
current study, the uninjured observations were randomly
undersampled by 50% and the injured observations were
synthetically oversampled by 100%. Predictive models were
built using SMOTE and no SMOTE to compare performance.

Cross-validation and parameter tuning. Supervised
learning algorithms have a number of parameters (see Table,
Supplemental Digital Content 1, A brief description of each
machine learning algorithm and all relevant parameters,
http://links.lww.com/MSS/B163) which can be tuned to de-
termine how an algorithm interacts with the training data (25).
The aim of supervised learning is to select the parameters that
optimise an algorithm’s ability to perform on the testing data
(25). The most common method of finding the optimal pa-
rameter combination is by performing a grid search that
considers all parameter combinations (25). One potential is-
sue with this method however, is overfitting, which occurs
when the parameters selected are too closely fit to the train-
ing data from which they were derived (26). This reduces
generalisability and the ability of an algorithm to perform on
the testing data (26). A solution to overfitting is cross-
validation (25). Tenfold cross-validation splits the training
data into 10 equal subsets. One of the subsets is withheld,
and the remaining nine subsets are used to perform a grid
search for the optimal parameter combination. The selected
parameters are then validated using the withheld subset.
This process is repeated tenfold, with each subset being
withheld once as the validation subset. The parameter com-
bination that performs the best across each fold is then se-
lected for the final model. Tenfold cross validation was used
in the current study to select the optimal parameter combi-
nation for each algorithm.

Performance outcomes. Accuracy can be a poor in-
dicator of performance when attempting to predict injury
incidence (24). Cohen’s kappa coefficient is an alternative to
accuracy that accounts for the base rate of expected accuracy
due to random chance. However, both accuracy and kappa
are calculated based on the number of correct and incorrect
binary classifications and do not take into account the esti-
mated probability of an observation belonging to one class
or the other. For example, if athlete A has a 49% probability
of HSI and athlete B has 1% probability of HSI, both these
athletes are predicted to remain uninjured. Accuracy and
kappa do account for the fact that athlete A was 48% more
likely to sustain an HSI than athlete B. Area under the curve
(AUC) of a receiver operator characteristic curve measures
the probability that a positive case will be ranked higher than
a negative case. An AUC of 0.5 indicates prediction no
better than random chance, with a value of 1.0 indicating
perfect prediction (13). In the current study, predicted injury
probabilities were used to construct a receiver operator
characteristic curve, and AUC was used to measure the
likelihood that the observations with a higher probability of
injury were actually the injured observations. As AUC is

calculated using predicted injury probabilities and not the
number of correct and incorrect binary classifications, it can
be a more sensitive measure of performance than accuracy
or kappa (27). Accordingly, the AUC of each algorithm was
calculated and was used to compare predictive performance
as well as to select the optimal parameter combination for
each model.

RESULTS
Cohort and Prospective Injury Details

2013. One-hundred eighty-six athletes (age, 23.2 £ 3.6 yr;
stature, 188.0 + 7.1 cm; mass, 87.6 + 7.5 kg) participated in
the 2013 study period. Of these, 27 sustained a prospective
HSI (age, 23.8 + 3.6 yr; stature, 185.3 + 6.3 cm; mass, 84.4 =
5.6 kg) and 159 did not (age, 23.1 £ 3.6 yr; stature, 188.4 =
7.2 cm; mass, 88.1 = 7.7 kg). High-speed running was the
most common mechanism of injury (59%), and biceps
femoris long head was the most commonly injured muscle
(78%). Five injuries occurred during the preseason period,
and 22 occurred during the in-season period. The average
eccentric hamstring strength and between-limb imbalance of
the injured athletes was 260 + 79 N and 45 + 46 N respec-
tively. For the uninjured athletes, the average eccentric
hamstring strength and between-limb imbalance was 301 +
84 N and 49 + 56 N, respectively.

2015. During the 2015 study period, 176 athletes partic-
ipated (age, 25.0 + 3.4 yr; stature, 187.6 £ 7.5 cm; mass, 87.0 +
8.6 kg). Twenty-six athletes sustained a HSI (age, 25.2 +
3.4 yr; stature, 187.8 + 7.3 cm; mass, 87.1 £ 8.3 kg) and 150
did not (age, 25.1 £ 3.5 yr; stature, 187.7 £ 7.8 cm; mass,
87.0 + 8.9 kg). The most common mechanism of HSI was
high-speed running (50%), and the most commonly injured
muscle was biceps femoris (92%). Nine injuries occurred
during the preseason period, and 17 occurred during the in-
season period. The average eccentric hamstring strength and
between-limb imbalance of the injured athletes was 341 +
80 N and 30 £21 N, respectively. For the uninjured athletes,
the average eccentric hamstring strength and between-limb
imbalance was 341 + 78 N and 34 + 30 N, respectively.

Within-Year Predictive Performance

2013. The median AUC for all 2013 within-year predic-
tive models was 0.58. There were no large differences be-
tween the predictive performance of models built using all
variables as predictors (median AUC of 0.57) and models
built using only the three variables as predictors (median
AUC 0f 0.59). Using SMOTE and no SMOTE input data did
not improve predictive performance, with both sets of models
resulting in a median AUC of 0.58 and 0.59, respectively. For
all 2013 within-year predictive models, AUC ranged from
0.26 to 0.91. Naive Bayes was the best-performing algorithm,
with a median AUC of 0.60. The performance of each indi-
vidual algorithm for 2013 within-year predictive models
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built using three variables, and all variables can be found in
Figures 2A and B, respectively.

2015. For all 2015 within-year predictive models, the
median AUC was 0.57. Similar to 2013, there was no dif-
ference in the predictive performance of models built using
all variables as predictors and only the three variables as
predictors, with both sets of models resulting in a median
AUC of 0.57. The case was the same for models using
SMOTE and no SMOTE input data (median AUC of 0.57).
The range in AUC for the 2015 models was slightly larger
than the 2013 models (0.24 to 0.92). The equal best-
performing algorithms were random forest and support vec-
tor machine, with a median AUC of 0.58. The performance of
each individual algorithm for 2015 within-year predictive
models built using three variables and all variables can be
found in Figures 3A and B, respectively.

Between-Year Predictive Performance

The performance of the between-year predictive models
was poorer than the within-year predictive models, with a
median AUC of 0.52. The median AUC was 0.52 and 0.53
for models built using all variables and three variables, re-
spectively. Similar to the within-year predictive models,

A

107
084

0.84

061 _

0.5

using SMOTE input data did not significantly improve
performance, with these models resulting a median AUC of
0.53 compared with a median AUC of 0.52 for models built
using no SMOTE input data. There was little variation in
AUC for the independent algorithms as each iteration was
performed using the same training and testing data. Across
all the between-year predictive models, AUC ranged from
0.37 to 0.73. Naive Bayes was the best-performing algorithm,
with a median AUC of 0.54. The performance of each indi-
vidual algorithm for between-year predictive models built
using three variables and all variables can be found in Table 1.

DISCUSSION

The aim of the current study was to investigate whether
the application of various supervised learning techniques,
using risk factor and demographic data collected over two
seasons, could be used to predict the occurrence of HSI. The
main finding of this study was that eccentric hamstring
strength, age, and previous HSI data cannot be used to
identify athletes at an increased risk of HSI with any consis-
tency. Although some iterations of the within-year predictive
models achieved near perfect performance (maximum AUC

|
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FIGURE 2—The individual performance of 2013 within-year HSI prediction models built using (A) eccentric hamstring strength, age and previous
HSI as input data, and (B) eccentric hamstring strength, age, previous HSI, between-limb imbalance, previous anterior cruciate ligament injury,
stature, mass and primary playing position as input data. The solid horizontal line indicates the expected performance due to random chance and the

dotted horizontal line represents the median AUC of all models.
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FIGURE 3—The individual performance of 2015 within-year HSI prediction models built using (A) eccentric hamstring strength, age and previous
HSI as input data, and (B) eccentric hamstring strength, age, previous HSI, between-limb imbalance, previous anterior cruciate ligament injury,
stature, mass, and primary playing position as input data. The solid horizontal line indicates the expected performance due to random chance and the

dotted horizontal line represents the median AUC of all models.

0f 0.92), others performed worse than random chance (mini-
mum AUC of 0.24).

The large discrepancy in AUC is indicative of the fragility
of the data. Although each iteration was performed using the
same data, small changes in the randomly sampled training
and testing data vastly influenced the performance of the
within-year predictive models. This not only demonstrates
the sensitivity of AUC to sampling but also suggests that
larger data sets are needed when investigating the predictive
ability of injury risk factors. Collecting more data will likely
result in an increase in the number of observed injuries and
consequently a more robust data set. This will in turn improve
the ability of supervised learning techniques to identify pat-
terns with more consistency, should such patterns exist. In
addition to within-year predictive performance, this study
also investigated the performance of between-year predictive
models. As the training data (2013 data) and testing data
(2015 data) were the same for every iteration, the resulting
AUC ranges were much smaller than within-year predictive
models, with any variability in AUC only caused by cross-
validation and SMOTE. Despite less discrepancy, the per-
formance of between-year predictive models was poor, with a
median AUC of 0.52.

The etiology of HSI is multifactorial, and injuries typically
occur as a result of the interactions between numerous

variables (28,29). The poor predictive performance displayed
by between-year predictive models may be due to differing
contributing factors between the 2013 and 2015 injuries,
specifically the role of eccentric hamstring strength. In 2013,
the injured athletes were, on average, 42 N weaker than the
uninjured athletes. In 2015, however, there was no difference
in the average eccentric hamstring strength between the
injured and uninjured athletes. Overall, the 2015 cohort was
stronger than the 2013 cohort. Despite this, the percentage
of players that sustained an HSI was identical in both seasons
(15%), which suggests that eccentric hamstring strength was
less of an influencing factor in the HSI that occurred in 2015,
as opposed to 2013. Previous work, which investigated ec-
centric hamstring strength and HSI risk, found that weaker
rugby union players were no more likely to sustain an HSI
than stronger players (20). The authors of this study (20)
suggest that the conflicting results with previously pub-
lished work (10) may be due to the rugby union players
investigated (20) being considerably stronger than the
previously investigated Australian footballers (10). It is
also suggested that athletes with high levels of eccentric
hamstring strength may not see any additional protective
benefit from further increases in strength (10,20). This
hypothesis aligns with the current findings that eccentric
hamstring strength may not play as large a role in HSI risk
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TABLE 1. Descriptive statistics summarising the individual performance of between-year HSI prediction models built using 2013 data for training and 2015 data for testing.

AUC
Group 17 Group 2°
Algorithm No SMOTE SMOTE No SMOTE SMOTE
Naive Bayes Minimum 0.49 0.41 0.47 0.42
Lower quartile 0.54 0.53 0.47 0.52
Median 0.54 0.55 0.47 0.55
Upper quartile 0.54 0.56 0.47 0.57
Maximum 0.54 0.65 0.57 0.65
Logistic regression Minimum 0.54 0.45 0.53 0.43
Lower quartile 0.54 0.48 0.53 0.50
Median 0.54 0.54 0.53 0.52
Upper quartile 0.54 0.54 0.53 0.54
Maximum 0.54 0.58 0.53 0.62
Random forest Minimum 0.48 0.42 0.45 0.41
Lower quartile 0.51 0.50 0.52 0.51
Median 0.51 0.52 0.53 0.53
Upper quartile 0.52 0.54 0.54 0.55
Maximum 0.54 0.65 0.57 0.65
Support vector machine Minimum 0.43 0.41 0.45 0.41
Lower quartile 0.49 0.51 0.48 0.50
Median 0.51 0.53 0.52 0.52
Upper quartile 0.52 0.55 0.52 0.55
Maximum 0.61 0.68 0.54 0.66
Neural network Minimum 0.44 0.37 0.45 0.40
Lower quartile 0.50 0.50 0.50 0.50
Median 0.51 0.52 0.50 0.52
Upper quartile 0.54 0.54 0.51 0.54
Maximum 0.65 0.65 0.57 0.73

Performance is measured as AUC.

aGroup 1; models built using eccentric hamstring strength, age and previous HSI as input data.
bGroup 2; models built using eccentric hamstring strength, age, previous HSI, between-limb imbalance, previous anterior cruciate ligament injury, stature, mass and primary playing

position as input data.

SMOTE, synthetic minority oversampling techniques.

in a stronger cohort (2015) compared with a weaker co-
hort (2013).

The current study investigated whether the inclusion of data
that have not been directly linked to HSI risk in Australian
footballers, in addition to previously reported HSI risk factors,
improved predictive performance. The inclusion of between-
limb imbalance, previous ACL injury, stature, mass and
playing position, in addition to eccentric hamstring strength,
age, and previous HSI, did not improve predictive perfor-
mance (Figs. 2 and 3). In some cases, these data may have
confounded predictive performance, with the majority of the
2013 within-year predictive models performing better when
built using only previously reported HSI risk factors (Fig. 2).
The results of the current study are comparable to the findings
of prior work, which attempted to predict all injuries using
workload data from a single AFL team (30). This study ob-
served a mean AUC of 0.65 when predicting all noncontact
injuries. Hamstring-related injuries were predicted with a
mean AUC of 0.72; however, these injuries were not specif-
ically HSI (30). Earlier work has observed an association
between high-speed running distances and HSI risk (8,11);
however, it was concluded that these measures examined in
isolation are poor predictors of HSI and should be examined
in concert with other variables (11). The results of previous
work (8,11,30) suggest that the inclusion of workload data, in
addition to other HSI risk factors, may improve the ability to
predict HSI occurrence; however, this is yet to be examined.

Imbalanced classes have previously been highlighted as a
limitation of injury prediction research (30). This study
compared the performance of predictive models built using

SMOTE and no SMOTE. Using SMOTE to undersample
the uninjured observations and oversample the injured ob-
servation did not improve predictive performance for within-
year predictive models (Figs. 2 and 3) or between-year
predictive models (Table 1). These results are in contrast to
prior work, which observed increases in predictive perfor-
mance when SMOTE were used to build support vector
machine models (30). It is possible that SMOTE is only
beneficial when used to synthetically reproduce predictor
variables from a complex data set, such as workload derived
from global position systems data. In the current study,
the uninjured observations were randomly undersampled
by 50%, and the injured observations were synthetically
oversampled by 100%. However, these values were chosen
arbitrarily, and it is unknown whether a different percentage
of undersampling and oversampling would impact predic-
tive performance.

The current study has a number of limitations that may
have influenced predictive performance. The data used as
predictor variables in the current study were only collected
at the beginning of preseason training for each study pe-
riod. It is unknown whether more frequent measures of
variables, such as eccentric hamstring strength, would have
improved predictive performance. It is also unknown
whether the magnitude of change in eccentric hamstring
strength across a season may be a more sensitive measure
than absolute strength. Although eccentric hamstring strength,
age, and previous HSI are purported as HSI risk factors
(9,10,12,29,31), there are a number of other factors not in-
cluded in this study which have been linked to the risk of HSI.
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The inclusion of further HSI risk factors, such as workload
(8,11) and biceps femoris fascicle length (21), may improve
the ability to predict HSI.

Furthermore, there is a lack of literature regarding the

application of supervised learning techniques in injury pre-
diction research. The proportions of data used as training and
testing data, as well as the proportions of data undersampled
and oversampled, were chosen arbitrarily, and it is unknown
whether different proportions would have influenced predic-
tive performance. There are a number of different supervised
learning techniques, and although some of the techniques
applied in the current study have been applied in previous
work (30), it is unknown how different techniques would
have impacted predictive performance. Lastly, the current
findings relate to HSI that fulfilled the criteria of acute pain in
the posterior thigh that resulted in disruption of the hamstring
fibers, as confirmed by MRI (10). Cases that were MRI
negative but clinically positive were not included in this
study, and it is difficult to determine how the inclusion of
these injuries would have impacted the findings. In addition
to this, other injury types are certain to occur, and these
should be accounted for by including them as competing risks
in the modeling approach (32).

In conclusion, eccentric hamstring strength, age and previ-

ous HSI data cannot be used to identify Australian footballers
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