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Abstract

An optical trap, also known as an optical tweezer, is a scientific instrument that

uses a highly focused laser beam to trap and manipulate microscopic particles, such

as cells or individual molecules, in three dimensions and has many applications in var-

ious fields of science, including biology, physics, and chemistry. The optical trap works

by transferring the momentum of photons to the trapped particles, creating a force that

can hold the particle in place. Ashkin developed a model to predict the forces in an op-

tical trap in the Mie regime, i.e. for particles larger than the wavelength of the laser. His

model is based on geometrical ray optics, whereby the rays from the microscope objec-

tive trace straight lines to a single focal point. These rays are refracted by the trapped

particle and resultant change in direction of the ray imparts a force due to the conser-

vation of momentum. The model takes no account of the effects of wave optics, which

are highly pronounced in the focal region of a lens. The model cannot, therefore, ac-

count for the transfer orbital angular momentum from a Laguerre-Gaussian laser in a

so-called optical spanner, or the effects of wavefront aberration caused by an imper-

fect microscope objective. In this thesis, we seek to bridge the gap between wave op-

tics and Ashkin’s model using the concept of the Eikonal function, which traces the flux

lines through the focus. We call these flux lines non-linear rays, and these are used to

replace the rays in Ashkin’s model. This augmented model can account for the spin of

a particle in an optical spanner and for the deleterious effect of aberration. In the jour-

ney towards this final result several significant contributions are made. These include

the extension of Ashkin’s model to account for absorption within the particle; we see a

natural consequence for this is the emergence of a rotational force. Another important

contribution are a set of algorithms to sample the three-dimensional diffraction in the

focal region of a lens and to trace the flux lines with high accuracy.
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Chapter 1

Introduction

1.1 Optical Trapping

Light, as an electromagnetic wave, can have not only thermal effects but also me-
chanical effects. James Clerk Maxwell developed the theoretical basis for the phe-
nomenon of radiation pressure [1, 2]. He proposed that when electromagnetic radi-
ation, which carries momentum, is incident on a surface, the transfer of momentum
must be conserved because the radiation is either re�ected or absorbed. As a result of
this transfer of momentum, a "pressure" is exerted on the surface in the direction of the
incident radiation. The concept of radiation pressure was demonstrated in Nichols's
experimental setup using a radiometer in 1901 [3]. However, the radiation pressure
of ordinary light sources was too small, and the lack of controllability hindered fur-
ther research. The invention of lasers in 1960 by Maiman greatly increased the power
and controllability of light, making them suitable for a wide range of applications [4].
In 1970, Ashkin and his collaborators successfully used the radiation pressure of two
laser beams transmitted relatively to each other to realize the trapping and captur-
ing of latex particles [5]. Then in 1975, Ashkin and Dziedzic [6]. used a laser beam to
achieve optical levitation and manipulation of charged or neutral droplets with diame-
ters between 1 � m and 40 � m. In 1986, Ashkin et al successfully used a single laser beam
with a highly uneven intensity distribution [7], which was focused by a microscope ob-
jective lens to achieve stable capture of tiny glass spheres. The capture mechanism
of the focused laser beam on tiny particles stems from the balance of the two radia-
tion forces generated when the laser beam interacts with the particles. After the laser
beam is focused by an objective lens with a large numerical aperture, a micron-scale
spot can be obtained, which can form a very high intensity. When this high-intensity
and high-gradient beam interacts with particles of matching size, it can generate a so-
called gradient force of pico-newton magnitude to trap high-refractive index particles
at the maximum light intensity. On the other hand, due to re�ection and absorption,
scattering forces are also induced, which are usually along the propagation direction of
the beam, similar to the Kepler light pressure. When the gradient force overcomes the
scattering force, optical tweezers can achieve three-dimensional capture of particles.
The theory of optical tweezers technology, in the Mie scattering regime, for particles
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1.2. RAYS AND WAVES

larger than the wavelength of the light such as biological cells for example, mainly in-
volves using geometrical ray optics [7] and is based on the simple idea that when the
rays of light propagating towards the focal point of the lens, are incident on the par-
ticle, they are refracted. The change in direction of these rays results in a transfer of
momentum, which in turn leads to trapping forces. This simple theory, however, fails
to account for any of the wave optical effects of light. Once simple example is that the
orbital angular momentum that is carried by a TEM 01 laser spatial mode (described
using the Laguerre-Gaussian), and which is known to experimentally impart a spin on
a trapped particle cannot be accounted for using the current model. Another example
is the effect of lens aberration on an optical trap; aberrations are most accurtely de-
scribed in terms of wave optics. The goal of this thesis is to bridge the gap between the
current theory for predicting the forces on an optically trapped particle, and the effects
governed by wave optics.

1.2 Rays and Waves

Ray optics is a branch of optics that deals with the behavior of light as it travels
in a straight line through various media, without considering the wave nature of light.
Ray optics is also called geometric optics [8, 9] because it uses geometrical principles
to explain the behavior of light. The basic assumption of ray optics is that light travels
in a straight line until it encounters a boundary between two media, at which point
it is either re�ected, refracted, or absorbed. In ray optics, light is treated as a collec-
tion of rays represented by arrows that indicate the direction of propagation of light.
Ray optics explains many phenomena such as re�ection, refraction, image formation
by mirrors and lenses, and the behavior of optical �bers. The laws of re�ection and
refraction, also known as Snell's laws [8], are the basic principles of geometrical ray op-
tics. These laws state that the angle of incidence is equal to the angle of re�ection for
a re�ected ray, and that the ratio of the sine of the angle of incidence to the sine of the
angle of refraction is constant for a refracted ray. Geometrical ray optics is widely used
in many practical applications, including designing lenses, mirrors, and other optical
components. It is also used in the study of image formation by optical systems, such
as cameras and telescopes. For example, in a camera, the lens focuses light rays onto a
�lm or digital sensor to form an image. In a telescope, a curved mirror or lens collects
and focuses light from distant objects to produce an image.

Wave optics, on the other hand, is a branch of optics that deals with the wave na-
ture of light [10]. Wave optics explains the behavior of light using the principles of wave
propagation, interference, and diffraction. Unlike ray optics, wave optics takes into ac-
count the fact that light travels as a wave and can exhibit wave-like phenomena such
as interference and diffraction [11, 12]. Wave optics explains many phenomena such
as the interference and the diffraction of light. In wave optics, light is treated as a wave
that travels through space and interacts with other waves to produce interference pat-
terns. One of the most important concepts in wave optics is the wave equation, which
describes the behavior of waves. The wave equation can be used to solve various prob-
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1.3. OBJECTIVE OF THIS THESIS

lems in wave optics, including the propagation of light waves, the interference of light
waves, and the diffraction of light waves. Another important concept in wave optics is
the principle of superposition, which states that when two or more waves meet, their
amplitudes add together. This principle is essential in understanding the interference
of light waves, which is responsible for the formation of interference patterns in many
optical systems. The two branches of optics, ray optics, and wave optics, are comple-
mentary to each other. Ray optics provides a simple and intuitive way to understand
the behavior of light in many situations, while wave optics provides a more complete
and accurate description of light, especially in situations where wave-like phenomena
are signi�cant. One area where the wave nature of light must be considered is at the
focal point of a lens, precisely the location of an optical trap. Focused light does not in
reality form a single in�nitely narrow point through which all of the geometrical rays
intersect. Instead the light forms a broad diffraction spot (or donut amplitude with
spiral phase for the case of a Laguerre-Gaussian beam) at this point. The diffraction
pattern is seen to change the shape non-linearly and rapidly as the wave�eld approach
the focal region of the lens and geomtrical rays cannot account for this effect.

The Eikonal function [8] provides a link between wave and ray optics. The Eikonal
function describes the phase of a wavefront at each point in space and time and can be
used to determine the path of a light ray through an optical system as a line that trav-
els through paths of constant phase; these �ux lines govern the direction in which the
power of the wave�eld travels. This is done by calculating the gradient of the Eikonal
function, which gives the direction of the wavefront normal at each point. The direc-
tion of the wavefront normal is then the same as the direction of the light ray at that
point. In this way, the Eikonal function provides a way to relate wave optics and ray
optics. The Eikonal function is described in more detail in the section 2.5, where we
pay particular attention to the relationship between the phase distribution of the wave
optical description of light and the geometrical ray. Suf�ce it to say for now that when
the phase of the wavefront varies slowly the geometrical ray and the �ux line are one
and the same; however, when the phase changes radpidly such as in the focal regions
of a focussing Gaussian or Laguerre-Gaussian laser, the �ux line follows a very different
path to that of the geometrical ray. In Chapters 4 and 5 we develop a numerical metod
that can accurately and quickly trace these lines of �ux though a focussing laser and
then in Chapter 6 we proceed to replace the rays in Ashkins model with the �ux lines,
enabing concepts like lens aberration and orbital angular momentum to be accounted
for using Ahskins model.

1.3 Objective of this thesis

Here, we explicitly state the research question that this thesis seeks to address: Can
wave optical effects such as wavefront aberration or orbital angular momentum be
accounted for using Ashkin's ray-optics model to predict the forces on a particle in an
optical trap? In order to answer this we were required to ask further questions:

1. Can absorption be included in Ashkin's ray-optics model to predict the forces in

3



1.4. THESIS OUTLINE AND CONTRIBUTIONS

a trap and can this result in a rotational force? This is answered in Chapter 3.

2. Can the three-dimensional wave�eld be sampled quickly in three dimensions
in the focal region of a lens, and can different laser modes and aberrations be
included in this? This is answered in Chapter 3.

3. Can a method be developed that rapidly and accurately traces the �ux lines through
a focusing laser? This is answered in Chapter 4.

4. Can a computational method be developed to replace the rays with �ux lines in
Ashkin's model and can this account for the transfer orbital angular momentum
from Laguerre-Gaussian lasers? This is answered in Chapter 6.

1.4 Thesis outline and contributions

In this section we provide an overview of the break down of this thesis in the con-
text of the distinct contributions to the �eld of optics.

In Chapter 2 , we provide a review of the background material and fundamental equa-
tions that underpin the contributions in the chapters that follow. There are no new
contributions in this chapter. We review optical trapping in some detail including the
various experimental systems such as holographic optical trapping and mirror trap-
ping. We also provide a through description of the Eikonal function and its relationship
to ray optics and wave optical propagation. This description serves as an introduction
to the �ux-tracing method proposed in Chapter 5.

In Chapter 3 , we repeat the derivation of the forces of a single-beam gradient laser trap
on a dielectric sphere in the ray optics regime as �rst reported by Ashkin; in this case,
however, we investigate the impact of partial absorption of light by the sphere on these
trapping forces. Our model indicates that the effect of absorption is to reduce the axial
and transverse trapping forces as a function of absorption, as well as changing the axial
trap position. The trap stiffness is predicted to remain relatively unchanged even for
high levels of absorption. The model also predicts that a rotational force is imparted
on the sphere as a consequence of absorption. The model reduces exactly to Ashkin's
model for the case of zero absorption. This is the �rst time that Ashkins model has been
shown to predict a rotational force. The work in Chapter 3 has been prepared as a jour-
nal paper: Qin Yu, Bryan Hennelly, "A new Spin on Ashkin's Laser Trapping Force in
the Ray Optics Regime", To be submitted to Optics and Lasers in Engineering

In Chapter 4 , we present several contributions. Chapter 4 and 5 can be described as
a two part series to develop a method for non-linear ray tracing, or more accurately,
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1.4. THESIS OUTLINE AND CONTRIBUTIONS

to trace the lines of �ux through a focusing laser. Regardless, there are several distinct
contributions in Chapter 4 that are valuable to the optics community without any con-
sideration of the �ux.

1. We develop two novel algorithms for the calculation of the diffraction pattern at
the focal point of a lens over a 3D grid of sampling points. The �rst algorithm,
which relates to the case of the thin lens approximation, iteratively applies the
Angular Spectrum Method (ASM, described in Chapter 2) , where the lens func-
tion is �rst 'pre-aliased' [13, 14] in order improve the computational ef�ciency.
The second algorithm, which relates to the ideal lens involves the use of a single
discrete Fourier transform to 'propagate' from the front focal plane of the lens to
the back focal plane followed by an iterative application by the ASM.

2. We provide a careful derivation of the three-dimensional sampling requirements
for these three-dimensional �elds.

3. We extend these algorithms to include different laser spatial modes that are fo-
cused by the lens as well as different lens aberrations.

4. We provide for the �rst time a rigorous proof using fundamental sampling the-
ory, of the superposition-tile method introduced by Kanka [13] and further de-
veloped by Kelly, [14] which involves adapting the input to the ASM in order to in-
crease its computational ef�ciency. This involves breaking the input into smaller
'tiles', adding these together, and using the result as input to the ASM. We also ex-
amine the computational ef�ciency of the approach for the �rst time, which we
�nd is only improved if the ASM is to be applied iteratively over several distances
for the same input.

5. The Rayleigh-Sommerfeld aspheric thin lens function is introduced for the �rst
time, which was found to produce superior focusing when compared to spherical
and commercial aspheric lens functions.

6. The computational and memory load associated which each algorithm is quan-
ti�ed.

7. Chapter 4 is a useful reference for those who wish to simulate focused light over
three-dimensions with lenses that have numerical aperture Ç 0.6 and can there-
fore be modelled using the paraxial approximation. It is particularly useful for
those wishing to simulated focused laser beams by lenses with aberrations.

The work in Chapter 4 has been prepared for a submission to a journal with the follow-
ing title: Qin Yu, Bryan Hennelly, "Nonlinear Ray Tracing in Focused Fields, Part1:
Calculating 3D Complex Wave�elds", To be submitted to Applied Optics .

In Chapter 5 , we develop a novel algorithm to trace the �ux lines through a the focal
regions of a focussing laser. This builds on the contribution in Chapter 4 where we

5



1.4. THESIS OUTLINE AND CONTRIBUTIONS

developed a high-speed calculation of focused three-dimensional complex wave�elds
in the paraxial approximation for TEM 00 and TEM 01 laser modes and in the presence
of various lens aberrations. The algorithms developed in the Chapter4 are �rst used
to generate the three-dimensional grid of samples of the complex wave�eld in the fo-
cal region. In Chapter 5, we focus on tracing a �ux through this three-dimensional
volume by �rst calculating the derivative of the phase (normal to the direction of prop-
agation) throughout the three-dimensional volume, which is then used to direct a ray
as it 'propagates' in a straight line between two consecutive planes within the volume.
The origin of the ray can be chosen arbitrarily at any point and the ray can be then be
traced through the volume with appropriate interpolation. We derive an equation for
the error and demonstrate the conditions for which the algorithm will have high accu-
racy. Results are demonstrated for focused wave�elds in the presence of aberrations,
corresponding to the cases highlighted in the �rst paper. Some of the most interesting
results relate to focused Laguerre-Gaussian beams, for which the rays are found to spi-
ral at different rates of curvature, and for the cases of higher order aberrations such as
Trefoil and Quadrafoil. The work in Chapter 4 has been prepared for a submission to
a journal with the following title: Qin Yu, Bryan Hennelly, "Nonlinear Ray Tracing in
Focused, Part2: Tracing the �ux", To be submitted to Applied Optics .

In Chapter 6 , we augment the extended Ashkin model developed in Chapter 3 to be
used with the �ux lines in a focusing laser. The core idea is to augment the classical
ray-optics approach to calculate the forces acting on the sphere developed by Ashkin
(and further developed by us in Chapter 3), such that non-linear rays can replace linear
rays in the calculation. Perhaps the greatest advantage of such an approach would be
be the capacity to model the orbital angular momentum imparted on the sphere using
a Laguerre-Gaussian spatial mode laser. The �ux model discussed in Chapter 5 is used
to de�ne the non-linear rays that intersect with the surface of the sphere and for each
one of these rays, the scattering force, gradient force, and torque can be derived using
the Equations de�ned in Chapter 3. Integration of these forces reveals the total three-
dimensional force acting on the sphere as well as total rotational forces which can be
decomposed into a 'vertical torque' and 'horizontal torque.' As well as investigating
the single beam dielectric trap in the model of Ashkin, we additionally investigated the
dual beam trap for all cases, which has the bene�t of enhanced trapping forces.
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Chapter 2

Background

2.1 Introduction

The aim of this chapter is to introduce and review the background theory and ex-
perimental procedures that underpin the contributions that are presented in all of the
remaining chapters. In the main, this introductory chapter is broken into two large
sections, which relate to the two main concepts that are used at the heart of thesis. The
�rst is the background for optical trapping provided in Section 2.2 and the second is
the background theory for the �ux provided in Section2.5, which relates to the Eikonal
function.

The background section on optical trapping begins with the seminal work by Ashkin
and provides a brief overview of the concept and principles that underpin optical trap-
ping. The ray optics description that was proposed by Ashkin is reviewed brie�y; only
the �nal equations for the scattering and gradient forces are provided here, since this
will be presented in much more detail in Chapter 3 wit ha full derivation of these forces.
For completeness these forces are also provided for the case of Rayleigh scattering
where the articles are of size less tan the wavelength of the light. This is only covered
brie�y since the thesis focuses on Mie scattering. The fascinating topic of holographic
tweezers is also reviewed, which enables traps to me moved dynamically using a spa-
tial light modulator, which can also generate multiple dynamic traps. When the SLM
displays a spiral phase, Laguerre-Gaussian modes can be generated which carry Or-
bital Angular Momentum, which can be transferred to the trapped particle causing it to
spin. Ashkin's model for predicting the forces on an optical trap cannot account for the
transfer of OAM to the particle and it precisely this gap in the theory that we attempt
to �ll in Chapter 6 of this thesis, which builds on the methods developed in Chapter 3-
5. Single beam traps require very high numerical aperture microscope objectives. The
review of optical trapping also includes the topic of dual beam traps, which require
two opposing single beam traps and have signi�cantly stronger trapping forces than
single beam traps. Mirror traps use an SLM and a mirror near the image plane of the
MO to produce the opposing traps and can move therefore can produce dynamic and
stiff traps using low numerical aperture and low magni�cation objectives which have
wide �elds of view. Dual beam traps form an important part of our discussion later in
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2.2. OPTICAL TRAPPING

Chapter 6.

The second of the two large sections in this chapter relates to the �ux, i.e. the move-
ment of power within the three dimensional diffraction patterns as it moves through
space. We hope to replace the use of 'rays' in Ashkin's model with the �ux lines or
'non-linear rays'. This section begins with an overview of how the Angular Spectrum,
an important concept in optical propagation, can be physically interpreted in terms of
plane waves that span all of space that are uniquely de�ned by a wavevector propa-
gating at some angle through space. This leads to a discussion of the Eikonal and the
local wavevector, which naturally precipitates a discussion of the ray and the local spa-
tial frequency. This forms a basis for a computational method to trace the �ux lines,
described in detail in Section 5.2. Included in this background is the de�nition of the
Fourier transform, which is the basis of the Angular Spectrum, and its disceret counter-
part, the discrete Fourier transform, which forms the basis for numerical propagation
algorithms that appear in Chapters 4-6. Also included in this background chapter are
brief discussion on phase unwrapping and aberration theory.

2.2 Optical Trapping

2.2.1 Background theory for optical trapping

In 1969, Ashkin observed that a focused laser could push particles with a size of
several microns. He realized that transparent colloidal particles (diameter 0.6 ¡ 2.5� m)
suspended in water aligned along the optical axis with a focused argon ion laser, could
be pushed away from the focus and that particles approaching the beam were also un-
expectedly drawn into the beam and pushed away. After repeated experiments with
bubbles and droplets, Ashkin determined that the light beam had lateral attraction to
particles with a higher refractive index than the surrounding medium but had lateral
thrust to particles with a lower refractive index than the surrounding medium. In 1970,
Ashkin et al [5]. �rst proposed the concept of manipulating tiny particles using opti-
cal pressure but it was not until 1986 that Ashkin and Dziedzic demonstrated the �rst
stable optical trap [7]. This marked the birth of optical tweezers, whose of�cial name
is a single-beam optical gradient force trap. Ashkin won the Nobel Prize in Physics for
this technology, which has stimulated more and more research interests internation-
ally and promoted the emergence of new photo-silver technology and its innovative
applications. As an example of the importance of optical trapping, one of the authors
of the seminal 1986 paper, Steven Chu, would go on to use optical tweezing in his work
on cooling and trapping neutral atoms [15], which would later earn Chu the 1997 Nobel
Prize in Physics.

2.2.2 Basic Principles of Optical Trapping

The basic principle of Optical Trapping is to use a high numerical aperture objec-
tive lens to focus the laser beam and create an optical potential well (Optical Trap) to
con�ne microscopic particles at the focal spot [7, 16, 17]. This is achieved by using
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2.2.2. BASIC PRINCIPLES OF OPTICAL TRAPPING

a focused laser beam that interacts with the particles, leading to two types of forces:
scattering force and gradient force. The scattering force arises from photons pushing
the object along the direction of beam propagation, while the gradient force is a direc-
tional force derived from the interaction between �uctuating dipoles in the object and
the focused light �eld. The gradient force is proportional to the polarizability of the
object and the gradient of the light �eld.

Figure 2.1: Illustration of optical trapping whereby some of the momentum of the light
can be transferred to a particle via refraction. This can lead to pushing the particle
away from the focus or pulling it towards, depending on angles of incidence and re-
fraction; these angles are highly dependent on the ratio of the refractive index of the
particle and the surrounding medium. In the Figure both cases are shown and in each
case two rays A, and B, are shown to be refracted within the sphere. The different angles
that these particles leave the sphere with respect to their original angles results in the
transfer of momentum. The resultant forces Fa and Fb either push or pull the particle.

In optical trapping, the axial gradient force must be strong enough to overcome
the scattering force that pushes particles away from the focal area, in order to achieve
stable three-dimensional capture. This is why high numerical aperture objectives are
used to focus the laser beam in the classical optical trap, as they provide steep light
intensity gradients near the focal point, resulting in strong gradient forces that can
overcome the scattering force. The use of holographic optical tweezers [18–20] and
related technologies has further expanded the capabilities of optical trapping, enabling
the manipulation of multiple particles in three dimensions. Holographic tweezers are
introduced in Section 2.2.5. In order to remove confusion it is important to de�ne the
terms 'scattering force' and 'gradient force' clearly.

• The Scattering Force, Fs imparted by a ray acts in the same direction as the inci-
dent ray. It will have a component in all three dimensions.

• The Gradient Force, Fg imparted by a ray acts perpendicularly to the direction
of the incident ray. It will also have a component in all three dimensions.

When the (axial) z-components of all the individual ray scattering and gradient forces
added together equals zero, an optical trap is formed in the axial direction. The force
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2.2.3. THE RAY OPTICS DESCRIPTION

will rises with displacement from the trapping position. Similarly when the lateral x
and y-components of all the the individual ray scattering and gradient forces added
together equals zero, an optical trap is formed in the lateral direction direction.

2.2.3 The Ray Optics Description

Ray optics, also known as geometric optics, [8, 9] is a branch of optics that studies
the behavior of light as it travels in a straight line (or ray) through transparent materi-
als, such as lenses, mirrors, and prisms. It is based on the assumption that light travels
in straight lines and interacts with these materials through re�ection and refraction.
In ray optics, light is represented as a ray, which is an imaginary straight line that rep-
resents the path of the light. The path of the ray can be determined using the laws of
re�ection and refraction. The law of re�ection states that the angle of incidence of a ray
of light is equal to the angle of re�ection, while the law of refraction (Snell's law) states
that the ratio of the sine of the angle of incidence to the sine of the angle of refraction
is constant for a given pair of media.

Figure 2.2: Propagation of ray focused by a lens. (a) geometrical interpretation where
the rays travel in straight lines. This differs from wave optical description of light prop-
agation which models the light as bending towards the focus (b)

Ray optics is used to predict the path of light through optical systems. For example,
it can be used to determine the focal length of a lens, the magni�cation of an image,
and the size and position of an image formed by a lens or mirror. Ray optics is also
used in the design and optimization of optical systems in �elds such as ophthalmol-
ogy, microscopy, and telescope design. However, it is important to note that ray optics
is an approximation of the behavior of light and only works in situations where the
size of the optical elements is much larger than the wavelength of light. For smaller
optical elements or in situations where diffraction plays a signi�cant role, wave optics
must be used instead. An illustration of the differences between ray optics and wave
optics is shown in Fig. 2.2 (a). In the geometrical interpretation of a lens, the rays are
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2.2.3. THE RAY OPTICS DESCRIPTION

Figure 2.3: Rayleigh scattering and Mie scattering

seen to propagate as straight lines all converging at the focal spot. This model is used
by Ashkin to derive the forces acting on larger (Mie Scattering) particles, described in
detailed in Chapter 3. Ashkin's method [21] is based on tracing the straight line rays
from the lens to the focus and using their angle of incidence on the particle to de�ne
the forces imparted by the rays on the trapped particle. In Chapter 6 we try to augment
this description using a nonlinear ray model that is based on the bending of light as
predicted by wave optics as illustrated in Fig. 2.2 (b). The angles of incidence of these
rays on the particle are radically different and the resultant forces are also different.

For the case of Mie Scattering, [22] where the radius of the trapped particle is large
(r È 5¸ ), the light beam can be regarded as a combination of many rays, each with a
certain momentum, which are separately connected to the captured object. Re�ec-
tion and refraction occur due to interactions, and the change in momentum during
these processes can be analyzed to obtain the magnitude of the optical trapping force.
This model is called the Geometric Optics Model. Figure 2.1 illustrates the geometric
model of optical trapping. A converging laser beam acts on a transparent dielectric
sphere, and depending on the relationship between the position of the ball and the fo-
cus position, different refraction processes may occur. Refraction of light means that
the momentum it carries changes, and according to the law of conservation of momen-
tum, the ball will receive a momentum of equal magnitude but opposite direction. The
refractive index of the dielectric sphere is greater than that of the surrounding medium,
the propagation of the rays is shown in Figure 2.1. A detailed review of Ashkin's ray-
optics model [21] that he used to predict the forces acting on a trapped particle is pro-
vided in Chapter 3, which is followed by an extension of his work that accounts for
particles that absorb light. For now we simply provide his result for the scattering and
gradient forces.

Fs Æ
n1P

c

·
1¡ Rcos(¼Å 2µ) ¡

1X

nÆ0
T 2Rn cos(2(µ ¡ r ) Å n(¼¡ 2r ))

¸
(2.1)

Fg Æ
n1P

c

·
0¡ Rsin(¼Å 2µ) ¡

1X

nÆ0
T 2Rn sin(2(µ ¡ r ) Å n(¼¡ 2r ))

¸
(2.2)

where µ and r are the angles of incidence and refraction, R and T are the re�ection and
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2.2.4. THE RAYLEIGH SCATTERING DESCRIPTION

transmission coef�cient of the sphere, P is the input power, n1 is the refractive index
of the surrounding medium of the particle. R and T , the re�ection and transmission
coef�cients are de�ned by the Fresnel equations:

Rs Æ
n1 cosµ1 ¡ n2 cosµ2

n1 cosµ1 Å n2 cosµ2

Rp Æ
n2 cosµ1 ¡ n2 cosµ1

n1 cosµ2 Å n2 cosµ1

Ts Æ
2n1 cosµ1

n1 cosµ1 Å n2 cosµ2

Tp Æ
2n1 cosµ1

n1 cosµ2 Å n2 cosµ1

(2.3)

where Rs and Rp are the re�ection coef�cients for s-polarized and p-polarized light, Ts

and Tp are the transmission coef�cients, and µ1 and µ2 are the angles of incidence and
refraction, respectively. It is clear that the scattering and gradient forces are depen-
dent on the angle of incidence µ between the ray and the surface normal. This angle,
together with the refractive index of the sphere and the surrounding medium deter-
mines the refraction angle of the ray. It is this process of refraction that governs how
much momentum is transferred to the particle and by consequence, how much force
will act on it. Snell's law describes the relationship between the angle of incidence and
the angle of refraction:

n1 sin µ1 Æn2 sin µ2 (2.4)

Figure 2.4: Illustration of refraction, which is the basis for the transfer of momentum
that occurs in an optical trap.

2.2.4 The Rayleigh scattering description

When the particle size is much smaller than the laser wavelength, it is called a
Rayleigh particle. Rayleigh particles satisfy the Rayleigh scattering theory, and they
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2.2.5. HOLOGRAPHIC OPTICAL TWEEZERS

can be approximated as point dipoles [23]. Under the approximation of radiation the-
ory, the scattering force and the gradient force can be calculated using the following
formulas respectively. The scattering power and light intensity are proportional to the
particle size. It can be represented as [24],

Fs Æ
I0n

c

128¼5a6

3¸ 4

µ
m 2 ¡ 1

m 2 Å 2

¶2

(2.5)

Among them, I0 is the light intensity incident on the particle, a is the radius of the par-
ticle, c is the speed of light in vacuum, n is the refractive index of the medium around
the particle, ¸ is the wavelength of light, and m is the ratio of the refractive index of
the particle to the surrounding medium. The gradient force is proportional to the light
intensity gradient which can be expressed as follows:

Fg Æ
2¼na 3

c

µ
m 2 ¡ 1

m 2 Å 2

¶2

r I0 (2.6)

As for the case of the ray-optics description, when the gradient force and the scatter-
ing force are balanced, stable capture can be achieved. Rayleigh particles satisfy the
Rayleigh scattering theory, and they can be calculated as point dipoles. The scatter-
ing force is caused by the absorption and re-radiation of light between dipoles, while
the gradient force is caused by the time averaged interaction between the dipole and
the light �elds. The Rayleigh scattering description of optical trapping is not discussed
any further in this thesis, and is included here only for the sake of completeness. All
of the particles that will be investigated in this thesis have a large radius relative to the
wavelength of the light.

2.2.5 Holographic Optical Tweezers

Holographic optical tweezers (HOTs) [19,20] are a type of optical trapping technol-
ogy that uses a computer-generated hologram to create multiple optical traps in three-
dimensional space. This technique was �rst developed in the late 1990s by a group led
by Eric Dufresne and David Grier. The basic principle of HOTs is to use a spatial light
modulator (SLM) to modulate the phase and amplitude of a laser beam. The SLM acts
as a programmable diffraction grating, allowing the creation of complex holographic
patterns that can be used to create multiple optical traps. By controlling the holo-
gram displayed on the SLM, it is possible to create an arbitrary number of optical traps
in three dimensions. HOTs have several advantages over traditional optical tweezers.
Firstly, they can create many traps at once, allowing for the simultaneous manipulation
of multiple particles. Secondly, the traps can be moved and repositioned by changing
the hologram displayed on the SLM, which allows for precise control over the position
and orientation of the trapped particles. Finally, HOTs can be used to create more com-
plex trapping geometries, such as arrays of traps, toroidal traps, and more. There have
been many applications of HOTs in the �elds of physics, biology, and materials science.
For example, HOTs have been used to study the behavior of microorganisms [25–27],

13



2.2.5. HOLOGRAPHIC OPTICAL TWEEZERS

Figure 2.5: Holographic optical tweezers. A spatial light modulator (SLM) can be used
to generate multiple dynamic traps in the 3D volume around the focus of the laser.

One of the challenges of HOTs is the need for precise calibration of the optical system,
including the SLM and the objective lens. This calibration is necessary to ensure that
the holographic traps are accurately positioned and have the correct intensity. In addi-
tion, the high intensity of the laser beam can cause heating and damage to the trapped
particles, which can limit the use of HOTs for certain applications. Nevertheless, holo-
graphic optical tweezers are a powerful tool for the manipulation and study of particles
in three dimensions. With their ability to create multiple, complex traps, they have the
potential to revolutionize many areas of research and technology.

A HOT set up is illustrated in Fig. 2.5 The SLM is imaged to the back aperture of
the microscope objective, such that the relationship between the plane of the SLM and
the focal plane of the MO is a Fourier transform (discussed in Section 2.4.2 below). An
SLM is an electronic device that can be used to modify the properties of a beam of light,
such as its intensity, phase, or polarization, in a spatially dependent manner [28]. In
other words, it can manipulate the light in different parts of the beam differently. The
SLM typically consists of an array of small pixels as illustrated in Fig. 2.5, which can be
controlled independently and at high frame rate to create a pattern that modulates the
light passing through the device. This pattern can be used to produce complex optical
functions. There are different types of SLMs, including liquid crystal displays (LCDs)
and a variant known as Liquid Crystal on Silcon (LCOS) [29], microelectromechanical
systems (MEMS) [30], and digital micromirror devices (DMDs) [31]. Each type has its
own advantages and limitations, and is suited for different applications but LCOS is the
preferred technology for holographic tweezers.

In order to imparts a physical translation of the optical trap by amount ¢ x and ¢ y

in the lateral dimensions, a pattern must be displayed on the SLM that imparts the
followin linear phase shift/delay:

Á(np x ,mp y) Æ
2¼

¸
(np x¢ x Å mp y¢ y) (2.7)
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where Á is the phase delay, n and m are the indices of the pixel array over the two
dimensions and ¸ is the wavelength of the light. To further impart a movement of the
trap in the axial direction by an amount ¢ z, this phase delay must have the following
form:

Á(np x ,mp y) Æ
2¼

¸ ¢ z
[(np x ¡ ¢ x )2 Å (mp y ¡ ¢ y)2] (2.8)

To generate multiple traps at arbitrary different positions denoted by index i , the pat-
tern is calculated by adding the complex distribution for each individual trap and tak-
ing the phase of the result:

Á(np x ,mp y) Æ\

"
X

i
exp

£
Ái (np x ,mp y)

¤
#

(2.9)

In addition, the phase relating to the aberration on the MO can also be removed by
including its conjugate of the pattern that is displayed on the SLM. This phase term
would be de�ned using the Zernike polynomials described below and would simply be
added to the phase patterns described above.

2.2.6 Optical Spanners and Laguerre-Gaussian Beams

An optical spanner [19, 32–34] is a tool that uses light to apply torque to small ob-
jects, such as particles, cells, and biological molecules. It is a type of optical trapping
technique that is similar to optical tweezers, but instead of trapping particles in a static
position, an optical spanner applies a rotational force to the trapped particle, causing it
to spin, via the transfer of orbital angular momentum (OAM) to the particle. An optical
spanner typically uses a laser beam with a speci�c intensity distribution and polariza-
tion, known as a Laguerre-Gaussian (LG) beam, to apply torque to the trapped particle.
The LG beam creates a structured optical �eld that exerts the rotational force on the
particle, causing it to spin. By controlling the parameters of the LG beam, such as its
beam waist and phase structure, one can control the speed and direction of the parti-
cle's rotation. To create an optical spanner, we simply display the phase patterns asso-
ciated with a Laguerre-Gaussian distribution on an SLM. The complex amplitude dis-
tribution of the Laguerre-Gaussian mode is uniquely de�ned by the beam waist width
w (0) and the Rayleigh range, zR, as well as integers l (the azimuthal index) and p (the
number of radial nodes) as follows: [8]
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Figure 2.6: Amplitude (left) and phase (right) of LG01, LG02, LG11 and LG12

where the 1/ e width of the Gaussian term is given by:

w (z) Æw (0)

vu
u
t z2 Å z2

R

z2
R

(2.11)

The argument of the last exponential term in Equation 2.10 is the Guoy phase. The
term L jl j

p is the associated Laguerre-Gaussian polynomial obtained from Laguerre poly-
nomials:

L jl j
p [a] Æ(¡ 1)jl j d jl j

da jl j
LpÅjl j [a] (2.12)

We note that for l Æp Æ0 and for the case of negligible beam expansion zR ! 1 the
above expressions reduces to the form of the Gaussian mode de�ned in Equation 2.11
where w (0) Æ2

p
2¾. The amplitude and phase distributions associated with several

different L-G modes are shown in Fig. 2.6.

Optical spanners have a wide range of applications in �elds such as biophysics,
materials science, and cell biology, where they can be used to study the mechanical
properties of small objects and to manipulate biological structures. For example, op-
tical spanners have been used to study the mechanical properties of individual cells
and to investigate the rotation of cilia and �agella in biological organisms. A nice re-
view of the applications of optical spanners can be found in Refs 22,35. Overall, optical
spanners provide a non-invasive way to apply rotational forces to small objects, and
they are a powerful tool for investigating the mechanical properties of biological and
materials systems. It should also be mentioned that the use of light beams carrying
orbital angular momentum can also enable free-space information transfer with high
bandwidth and security [36] but this is outside the scope of optical trapping, which is
covered in this thesis. Optical spanners are of particular interest in this thesis and we
attempt to model the spinning forces associated with these spanners using Ashkin's
ray-optics model.
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2.3 Dual Beam and Mirror Traps

A dual-beam optical trap, [16, 22] which is is illustrated in Fig. 2.7 also known as
a two-beam optical trap or counter-propagating optical trap, is a type of optical trap
used to manipulate microscopic objects. The trap consists of two opposing laser beams,
each focused by a microscope objective lens. The laser beams are typically of equal in-
tensity and frequency, and they propagate in opposite directions, intersecting at the
focal point between the two objective lenses. The light exerts a force on a microscopic
object in the focal point of the trap, and the opposing beams generate a stable trap
that can hold the object in place. Like the single beam optical trap, the dual-beam op-
tical trap can be used to manipulate microscopic objects in various ways, including
trapping, positioning, and rotating.

Figure 2.7: Illustration of dual beam laser trap. Two opposing single beam traps are
strengthened due to the cancellation of their respective scattering forces.

Dual-beam optical traps offer several advantages over single-beam optical traps
for manipulating microscopic objects. Firstly, they have improved trapping stability
and can generate a more stable trap than single-beam traps, which helps to hold the
trapped object more securely in place. This is because the opposing beams effectively
cancel each others' scattering forces. The result is that dual-beam optical traps can
generate a stronger trapping force than single-beam traps, which allows for the trap-
ping and manipulation of larger or heavier particles. An additional bene�t of dual-
beam optical traps is that they offer more precise control over the position and move-
ment of the trapped object than single-beam traps. This is because the two beams can
be independently adjusted to control the direction and strength of the trapping force,
allowing for more precise positioning and manipulation of the object. There is also
the advantage of reduced heating effects due to the lower intensity of the laser beam,
which can cause thermal damage to the trapped object. Overall, dual-beam optical
traps offer several advantages over single-beam traps for manipulating microscopic
objects, including improved trapping stability, enhanced trapping strength, improved
manipulation precision, and reduced heating effects. These advantages make dual-
beam traps a useful tool for a wide range of applications in science and engineering,
including in biological research to study the mechanical properties of cells and to ma-
nipulate microorganisms and other biological samples [37, 38]. They have also been
used in materials science and nanotechnology to manipulate and assemble nanopar-
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ticles and other microscale structures [39].
One of the the most famous examples of multiple beam traps is the application to

capture and cool single atoms together [15], which won the 1997 Nobel Prize in Physics
for Chu, who was also one of the co-authors of Ashkins seminal paper in 1986 [7].

Figure 2.8: Set up for the dual beam mirror trap whereby a single beam is incident
on an SLM, which produced two independent beams, which come to focus a slightly
different distances. A mirror re�ects one of these back such that both beams focus
to the same point and are counter propagating. These set-up have sometimes been
named macro-tweezers owing to the wide �eld of view that is afforded by the lower
numerical aperture objective that can be used to achieve trapping.

While the use of an SLM to control the trap position is dif�cult for the case of a dual
beam trap (since this would require two independent and synchronously controlled
SLMs), a more recent evolution of the dual-beam approach has been proposed that
uses only a single MO. The so called mirror trap, [40–42] is a variation of the optical
tweezers technology that uses an SLM pattern to split a laser beam into two trapping
beams. The basic setup of such a trap is illustrated in Fig. 2.8 and consists of a laser
beam that is expanded onto an SLM; a pattern is displayed on the SLM to split the
single laser beam into two beams with controlled phase and intensity pro�les. One
of these beams is unchanged with respect to the original laser, while the second is ex-
panded slightly such that it will come to focus several hundred micrometres after the
�rst. A mirror is placed behind the sample plane, which re�ects the second beam back
towards the sample. Both beams will come to focus at the same point in space but both
are counterpropagating, which creates the effect of the dual-beam trap but only using
a single MO. By carefully controlling the phase and intensity of the two beams, a stable
trap can be created that holds the sample in place. One of the main advantages of us-
ing an SLM, is that dymaic holographic tweezers can be generated as described above.
By manipulating the phase and intensity pro�les of the two beams, it is possible to
create a wide range of trapping patterns, including multiple traps, optical spanners,
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and more complex 3D trapping patterns. This makes it possible to manipulate more
complex structures or to perform more precise manipulations of smaller structures.
Another advantage of using an SLM-based mirror optical trap is the ability to dynami-
cally adjust the trap con�guration. By changing the phase and intensity pro�les of the
beams using the SLM, the trap can be repositioned or modi�ed as needed, allowing
for more precise control over the sample. Dual traps and mirror traps are of particular
interest in Chapter 6, where we apply our newly proposed �ux-model to predict the
forces acting on the trapped particle.

2.3.1 Applications of laser trapping

Optical trapping, of one variant or another, has a wide range of applications in
�elds such as biophysics, cell biology, materials science, and optics, due to its ability
to trap and manipulate objects with high precision and without causing any damage.
Although we do not research any speci�c applications of optical trapping in this thesis,
it is important to provide an overview of the potential applications as an overarching
justi�cation for the work in this thesis. We have attempted to review the applications
under a number of classi�cation in an effort to simplify the discussion. In some cases
there is overlap in the citations.

• Force measurement : This is perhaps the most obvious application. Optical tweez-
ers can measure the force exerted by a single molecule, allowing researchers to
study the mechanical properties of biological molecules such as DNA and pro-
teins. For example, optical tweezers have been used to study the elasticity of sin-
gle DNA molecules and the mechanical properties of proteins such as myosin,
kinesin, and dynein [22,43,44].

• Microrheology : Optical tweezers can be used to measure the viscoelastic proper-
ties of materials, such as biological �uids and gels, at the microscale. By measur-
ing the motion of a trapped particle in response to an external force, researchers
can determine the material's viscoelastic moduli. Optical tweezers have been
used to study the viscoelastic properties of biological materials such as cytoskele-
tons and extracellular matrices [45,46]

• Cell manipulation : Optical tweezers can be used to manipulate living cells and
study their behavior. Researchers can use optical tweezers to hold and move
cells, measure their mechanical properties, and study their response to external
stimuli. Optical tweezers have been used to study cell division, migration, and
signaling [37,47,48].

• Single-molecule manipulation, in particular for studying DNA and proteins
This is arguably the most important application and likely the most cited. Opti-
cal tweezers can be used to manipulate individual molecules and study their in-
teractions. By attaching a single molecule to a trapped particle, researchers can
measure the molecule's mechanical properties and study its interactions with
other molecules. Optical tweezers have been used to study the interactions of
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DNA-binding proteins, RNA polymerases, and ribosomes with DNA and RNA
molecules [44,49–52].

• Optogenetics : Optogenetics is a technique that uses light to control the activity
of cells genetically modi�ed to express light-sensitive proteins. Optical tweezers
can be used to stimulate or inhibit the activity of individual cells by manipulating
the position. Optical tweezers have been used to control the activity of neurons,
muscle cells, and other cells expressing light-sensitive proteins [53].

• Cell sorting : Optical tweezers can be used to sort cells based on their physical
properties, such as size, shape, and mechanical properties. By trapping cells in a
laser beam and moving them to different locations, researchers can separate cells
based on their properties. Optical tweezers have been used to sort cells based
on their mechanical properties, such as stiffness, which can be an indicator of
disease or other cellular abnormalities [54,55].

• Biological imaging Optical tweezers can be used to manipulate cells and other
biological samples during imaging experiments. By holding cells in place or
moving them to different locations, researchers can image speci�c regions of
cells or study the dynamics of cellular processes. Optical tweezers have been
used in combination with �uorescence microscopy, confocal microscopy, and
super-resolution microscopy to image cells and cellular components [7,56].

• Optical stretching : Optical stretching is a technique that uses optical tweezers
to stretch cells and measure their mechanical properties. By trapping a cell with
two laser beams and moving them apart, researchers can stretch the cell and
measure its response to the applied force. Optical stretching has been used to
measure the stiffness of cells and study the effects of drugs and other compounds
on cell mechanics [57].

• Neuroscience : Optical tweezers have been used in neuroscience to study the me-
chanical properties of neurons, the mechanics of neuronal growth and differen-
tiation, and to measure the force exerted by neuronal growth cones [58,59].

• Chemical and material science : Optical tweezers have been used in chemical
and material science to study the properties of polymers, colloids, and other soft
materials [60].

• Cooling atoms The cooling of atoms using optical traps is an important area of
research in physics and related �elds, because it allows researchers to study the
behavior of atoms at very low temperatures, where quantum mechanical effects
become more pronounced. Cooling is achieved using very strong optical traps
which prevent motion and thereby cool. Laser-cooled atoms can be used for
a wide range of applications, such as high-precision measurements, quantum
computing, and the study of fundamental physics [15].

Overall, optical trapping is a versatile and powerful technique that has a wide
range of applications in many different �elds. Its ability to trap and manipulate
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small objects with high precision and without causing any damage has made it
an important tool for a variety of scienti�c and technological applications.

2.4 Background theory for optical/numerical

propagation

Numerical propagation plays an important role in this thesis, particularly in Chap-
ters 4 and 5. Here we review some of the most important concepts that are particularly
relevant in those chapters. These concepts will be expanded upon further in Chapters
4 and 5.

2.4.1 The wave nature of light

We begin with a brief description of the wave nature of light. In 1801, Thomas
Young performed the classical double-slit experiment. It could be observed from his
experiment that bright and dark fringes will appear after monochromatic light passes
through the double slits, revealing the interference phenomenon, and also suggesting
that the light can be described as a wave. Then, in 1861, James Clerk Maxwell described
light as an electromagnetic wave, [10] and in 1873, he proposed the very well-known
Maxwell's Equations to explain the behaviors and the relationship of electric �eld and
magnetic �eld [2]. Based on the description of the Maxwell's Equation, if ~E is denoted
as the vector of the electric �eld of light at the time t , it must satisfy the wave equation
given by:

r 2~E ¡
1

c2

@2~E

@t 2 Æ0 (2.13)

where the r 2 denotes the Laplacian operator and c is the light speed in the vacuum.
For linear polarized light (which means that the orientations of electric �eld vector
and magnetic �eld vector are unchanged and perpendicular to each other, and both
vectors are perpendicular to the light propagation direction z; and the polarization
direction of a linear polarized light is equal to the orientation of electric �eld vector),
then Equation 2.13 can be modi�ed for the harmonic and linear polarized wave in the
electric �eld:

@2~E

@z2 ¡
1

c2

@2~E

@t 2 Æ0 (2.14)

The propagating electric �eld vector ~E at the time t at the position with the spatial
vector ~r Æ(x, y,z) can be written as a complex function as follows:

E(x, y,z; t ) ÆAexp
h

j (~k~r ¡ wt )
i

(2.15)

where A is the amplitude of wave, j is the unit imaginary number equal to
p

¡ 1, j~k j is the
wavenumber equal to 2¼

¸ (¸ is the light wavelength), and ~k~r ¡ wt is the phase of wave.
The leads to the Helmholtz equation, which is a special case of the wave equation in
which the time dependence of the wave is assumed to be sinusoidal and the speed of
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propagation is equal to a constant, which is related to the frequency of the wave.

r 2E(~r , t ) Å k2E(~r , t ) Æ0 (2.16)

The Helmholtz Equation is the fundamental equation for the propagation of mononchro-
matic light in free space and is the basis for the propagation of the Angular Spectrum,
a very useful description of propagation, which is discussed below. The Angular Spec-
trum is used in Chapters 4, 5, and 6 as we attempt to trace the lines of �ux in a focusing
laser and to use these lines to predict the forces on an optically trapped particle. Before
discussing the Angular Spectrum of a wave�eld, we must �rst introduce the Fourier
transform.

2.4.2 The Fourier transform in Optics

The Fourier transform [61] is a common and effective mathematical method, that
can convert a signal in the time/space domain into a signal in the frequency domain.
The Fourier transform has many applications in signal processing, including light wave-
�eld analysis and digital image processing, which are required in this thesis. In the
study of Fourier optics, [28] it is assumed that a light wave�eld is composed by the
superposition of a series of plane waves. This assumption is a little similar to the
Huygens-Fresnel principle, [8, 28] but the difference is that the Huygens-Fresnel prin-
ciple assumes that the light wavefront is made up of the superposition of a series of
spherical waves. We �rst de�ne a complex wave�eld function of light g(x, y) in the
space domain that contains an amplitude �eld A(x, y) and a phase �eld Á(x, y):

g(x, y) ÆA(x, y)exp( j Á(x, y)) (2.17)

The 2D Fourier transform of g(x, y) is written as follows:

G(kx ,k y) Æ
Ï 1

¡1
g(x, y)exp[¡ j 2¼(xkx Å yky)]dxdy (2.18)

where G(kx ,k y) is the spectrum in the spatial frequency domain, and ( kx ,k y) is the
spatial frequency coordinate that is associated with the propagation direction of plane
wave exp[¡ j 2¼(xkx Å yky)] in the space domain. The wave�eld, g(x, y), could also be
recovered from its spectrum, G(kx ,k y), using the inverse Fourier transform:

g(x, y) Æ
Ï 1

¡1
G(x, y)exp[ j 2¼(xkx Å yky)]dkx dk y (2.19)

The frequency spectrum G(kx ,k y) can be considered as the weights for the different
plane waves exp[ j 2¼(xkx Å yky)]. Thereby, the light wave�eld g(x, y) is equivalent to
the superposition of these multiple plane waves multiplying their weights respectively.
In practical simulations, it is convenient to represent the signals using a discrete set
of numbers that can be stored in computer memory and subject to numerical com-
putation. The continuous 2D signal in x and y will be 'discretized' into a 2D array of
complex numbers by the process of sampling [61]. The resultant digital (complex) im-
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age is the starting point for many of the algorithms developed in Chapters 4-6 that use
numerical processing. One key element that is used is the Discrete Fourier Transform
(DFT). Assuming that the digital image consists of Nx £ Ny pixels (we use the term
pixels and sampling intervals interchangeably) in two dimensions, each pixel location
could be considered as a spatial coordinate, and the continuous Fourier transform pro-
vided in Equation 2.18 reduces to the DFT as follows:

G(m x¢ x ,m y¢ y) Æ

Nx
2 ¡ 1X

¡ Nx
2

Ny
2 ¡ 1X

¡
Ny
2

g(nx±x ,n y±y)exp[¡ j 2¼(
nxm x

Nx
Å

n ym y

Ny
)] (2.20)

Different from the notation used for the continuous variables x, y,kx ,k y in Equation 2.18,
the new notation in Equation 2.20 is obtained using the following substitutions:

x ) nx±x , nx 2 (¡ Nx /2, Nx /2 ¡ 1)
y ) n y±y , n y 2 (¡ Ny /2, Ny /2 ¡ 1)

kx ) m x¢ x , m x 2 (¡ Nx /2, Nx /2 ¡ 1)
k y ) m y¢ y , m y 2 (¡ Ny /2, Ny /2 ¡ 1)

where ±x , ±x are the sampling intervals used in the 2 dimensions of the spatial do-
main and are equal to the pixel width. ¢ x , ¢ y are the sampling intervals used in the 2
dimensions of the spatial frequency domain. Assuming the region in spatial domain
is limited by the

¡
Nx±x ,Ny±y

¢
, then the corresponding region in the spatial frequency

domain is
³

1
±x

, 1
±y

´
, and the sampling intervals ¢ x , ¢ y in the spatial frequency domain

are equal to
³

1
Nx ±x

, 1
Ny±y

´
. The sampling intervals ±x , ±x must be chosen to be suf�-

ciently small to satisfy the Nyquist condition and therefore to ensure that aliasing will
not occur and accurate interpolation of the continuous signal can be achieved from the
discrete samples. This is discussed further in Chapter 4 and in particular in Appendix
4.7.1.

Similarly, based on the inverse Fourier Transform Equation ( 2.19), the Inverse Dis-
crete Fourier transform (IDFT) can be achieved using the discrete samples using the
Nyquist-Shannon interpolation formula. This is converting a discrete spectrum into a
discrete image in a spatial domain could also be deduced:

g(nx±x ,n y±y) Æ

Nx
2 ¡ 1X

¡ Nx
2

Ny
2 ¡ 1X

¡
Ny
2

G(m x¢ x ,m y¢ y)exp[ j 2¼(
nxm x

Nx
Å

n ym y

Ny
)] (2.21)

DFT and IDFT could be calculated by a Fast Fourier Transform (FFT) algorithm
and an Inverse Fast Fourier Transform (IFFT) algorithm [61] to increase the calculation
speed greatly.
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2.5 Flux

2.5.1 Propagation of the Angular Spectrum

Propagation of the angular spectrum [62] is described as follows:

uz(xz, yz) ÆFT¡ 1 ©
FT

©
u0(x0, y0)

ª
Hz( fx , f y)

ª
(2.22)

where the transfer function Hz is de�ned as follows:

Hz( fx , f y) Æ

8
<

:

exp
³
j 2¼z

q
1

¸ 2 ¡ fx
2 ¡ f y

2
´
, for 1

¸ 2 ¸ fx
2 Å f y

2

exp
³
¡ 2¼z

q
fx

2 Å f y
2 ¡ 1

¸ 2

´
, for 1

¸ 2 · fx
2 Å f y

2
(2.23)

where u0(x0, y0) is the initial wave�eld de�ned in a planar coordinate system ( x0, y0);
uz(x0, y0) is the diffracted wave�eld in coordinate system ( xz, yz) following propaga-
tion a distance z. FT and FT¡ 1 are the operators for the Fourier transform as de�ned
in the previous section. In Equation 2.23, the transfer function, Hz has an in�nite sup-
port in ( fx , f y), which tends to zero at 1/ ¸ 2 Æfx

2Å f y
2. However, it should be noted that

the support of Hz that needs to be considered in the propagation of the angular spec-
trum de�ned in Equation 2.22 is typically limited by the support of the signal, which
we de�ne as ( ¢ fx ,¢ f y).

2.5.2 Physical interpretation of the the angular spectrum

We de�ned the propagation of the angular spectrum in terms of the scalar wave-
�eld u0(x0, y0). Here, we review the physical interpretation of the angular spectrum
and optical propagation. This interpretation is based on the concept of the the sim-
ple plane wave propagating with wave vector ~k where ~k has magnitude 2 ¼/ ¸ and has
direction cosines ( ®,¯ ,° ), as illustrated in Fig 2.9. Such a plane wave has a complex
representation of the form

p(x, y,z; t ) Æexp
h

j (~k ¢~r ¡ 2¼°t )
i

(2.24)

where ~r Æxx̂ Å yŷ Å zẑ is a position vector (theˆsymbol signi�es a unit vector), while,
~k Æ2¼

¸

¡
®x̂ Å ¯ ŷ Å ° ẑ

¢
. Dropping the time dependence, the complex phase amplitude

of the plane wave across a constant z-plane is given by:

p(x, y,z) Æexp
h

j~k ¢~r
i

Æexp
·

j
2¼

¸
(®x Å ¯ y)

¸
exp

·
j
2¼

¸
° z

¸
(2.25)

where the direction cosines are interrelated through:

° Æ
q

1¡ ®2 ¡ ¯ 2 (2.26)
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Thus across the plane z Æ0, a complex-exponential function exp
£
j 2¼( fx x Å f y y)

¤
may

be regraded as representing a plane wave propagating with direction cosines

® Æ¸ fx ¯ Æ¸ f y ° Æ
q

1¡ (¸ fx )2 ¡ (¸ f y)2 (2.27)

In the Fourier decomposition of u0, the complex amplitude of the plane-wave compo-
nent with spatial frequencies ( fx , f y) can be rewritten in terms of the direction cosines
as follows:

U0

µ
®

¸
,
¯

¸

¶
Æ

Ï Å1

¡1
u0(x, y)exp

·
¡ j 2¼

µ
®

¸
x Å

¯

¸
y

¶¸
dxdy (2.28)

which is called the angular spectrum of the disturbance u0(x, y). Optical propagation
can be interpreted in terms of this angular spectrum by simply adding a delay (which is
a function of the plane wave direction) to each of these angular plane waves as follows:

Uz

µ
®

¸
,
¯

¸

¶
ÆU0

µ
®

¸
,
¯

¸

¶
exp

µ
j 2¼z°

¸

¶
(2.29)

Figure 2.9: Illustration of the wave vector ~k for a plane wave uniquely de�ned by the
angle cosines ®, ¯ , and ° .

2.5.3 The concept of a ray as a �ux trace

A key part of Chapter 5 and Chapter 6 is the concept of a ray in terms of wave optics.
The geometrical ray can be related to wave optics through a mathematical function
named the ikonal [8]. The Eikonal function describes a surface in space where the wave
has the same phase and can also be interpreted as the path that the ray takes through
space such that a constant phase is maintained along that path. The disturbance u(~r )
(that we have previously described with the notation uz(x, y)) can be rewritten as fol-
lows:

u(~r ) Æa(~r )exp
·
¡

j 2¼

¸
S(~r )

¸
(2.30)
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where a(~r ) is the real-valued amplitude and ¡ j 2¼/ ¸ S(~r ) is the phase of the wave; the
refractive index n of the medium is contained in the de�nition of S, which is called the
Eikonal function. Surfaces de�ned by S(~r ) Æconstant are called wavefronts of the dis-
turbance. The �ux (i.e. the direction of power �ow) and the direction of the wave vector
~k are both normal to these wavefronts at every point ~r in an isotropic medium. A ray,
therefore, is de�ned as a trajectory or a path through space that begins at any point on
the wavefront and moves through space with the wave, always remaining perpendic-
ular to the wavefront at every point on the trajectory. Thus a ray traces out the �ux in
an isotropic medium. If the disturbance u(~r ) is to represent an optical wave, it must
satisfy the scalar wave equation

r 2u ¡
n2

c2

@2u

@t 2 Æ0 (2.31)

where r 2 is the Laplacian operator, n represents the refractive index of the dielectric
medium within which light is propagation, and c represents the velocity of light in vac-
uum. Substituting u as de�ned in Equation 2.30 into the Helmholtz yields the following
equation that must be satis�ed by both a(~r ) and S(~r ):

µ
2¼

¸

¶2 £
n2 ¡ jr Sj2

¤
a År 2a

¡
µ

j 2¼

¸

¶
£
2r S¢ra Å ar 2S

¤
Æ0

(2.32)

Examining the real part only reveals the following relationship:

jr Sj2 Æn2 Å
µ

¸

2¼

¶2 r 2a

a
(2.33)

Setting ¸ ! 0, produces the so-called Eikonal equation, which is a fundamental equa-
tion in geometrical optics:

jr S(~r )j2 Æn2(~r ) (2.34)

This equation serves to de�ne the wavefront in terms of the Eikonal function, S. Once
the wavefronts are known, the trajectories de�ning rays can be determined.

2.5.4 Rays and local spatial frequency

It is also possible to approximately de�ne the ray trajectory in terms of the local
spatial frequency of the disturbance u, and in some cases, such as for a plane wave,
this de�nition is exact. Since each of the spatial frequency components of the an-
gular spectrum will have an in�nite support over ( x, y), it is not possible to directly
relate a speci�c point in a disturbance with a single spatial frequency for the general
case. However, if the disturbance is a wavefront described by slowly varying amplitude
and phase functions a(x, y) and Á(x, y), each point in the disturbance can be approx-
imately interpreted as being related to a single frequency. Goodman [62] reports that
this interpretation is accurate if Á(x, y) varies suf�ciently slowly such that its is well ap-
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proximated by only three terms of its Taylor series expansion about any point, i.e. a
constant term and two �rst-partial-derivative terms. We begin by rewriting the distur-
bance once again as follows:

uz(x, y) Æaz(x, y)exp
£
j Áz(x, y)

¤
(2.35)

For this discussion we assume that the amplitude distribution. The local spatial fre-
quency of uz is de�ned as a frequency pair ( f l x , f l y ) as follows:

f l X Æ
1

2¼

@

@x
Áz(x, y) f lY Æ

1

2¼

@

@y
Áz(x, y) (2.36)

In Section 2.5.2 we demonstrated that uz could be decomposed by means of a Fourier
transform into a collection of plane-wave components traveling in different directions,
each de�ned by unique wave vector with direction cosines ( ®,¯ ,° ) de�ned by Equa-
tion 2.26. The spatial frequencies de�ned through the Fourier decomposition exist
at all points in space and cannot be regarded as being localized; however, for slowly
varying disturbances, the de�nitions of the previously de�ned local spatial frequen-
cies (f l x , f l y ) can be invoked and these can be interpreted as de�ning the local direc-
tion cosines ( ®l , ¯ l ,° l ) of the wavefront through the relations:

®l Æ¸ f l x ¯ l Æ¸ f l y ° l Æ
q

1¡ (¸ f l x )2 ¡ ¸ f l y )2 (2.37)

These local direction cosines are the direction cosines of the ray through the ( x, y)
plane at each point. This de�nition of a ray, is consistent with the de�nition of a ray
that was given earlier in terms of the Eikonal function, and is the basis for the nonlin-
ear ray tracing method proposed in Chapter 5, and which is applied to predict trapping
forces in Chapter 6. We strongly encourage the reader to review this section on �ux be-
for proceeding to read Chapter 5.

2.6 Phase unwrapping

Phase unwrapping is a widely used technique in digital image processing and opti-
cal metrology. It is mentioned in the introduction chapter because we are required to
apply phase unwrapping when developing the method to trace the �ux lines in Chapter
5. Phase unwrapping is primarily used to remove phase discontinuities caused by mea-
surement errors or optical non-uniformities, thereby achieving more accurate phase
measurements and three-dimensional (3D) reconstruction of surfaces [63]. The pro-
cess of phase wrapping/unwrapping is illustrated in Fig. 2.10 taken from Ref 64. In
digital image processing, phase unwrapping works by detecting differences in phase
between adjacent pixels in an image and correcting the phase values in regions where
there are phase jumps. This process is typically performed in the complex plane, as
phase is a periodic value and the difference in phase between adjacent pixels may be
greater than one period. In optical metrology, phase unwrapping is commonly used
for 3D surface reconstruction and surface morphology analysis. For example, when us-
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