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§1. Introduction.

(1.1) I am most grateful to the association for this opportunity to address

you again. This is the second time I have spoken to the AGM. The last time

it had to do with politics. Once is enough for a mathematician to talk about
politics to a mathematical audience, so I take it that you are prepared to

hear mathematics this time.

My topic is a to the power b, or ab. A1l of you know something about

it; perhaps some of you know all about it. Certainly, many of you once knew
more than you now recall. I would like to remind you of it, because it plays
a central role in mathematics. That is not to say that the full story of ab

belongs in the syllabus for secondary schools:

(1.2) The two most famous unsolved problems in mathematics are about ab. The
first is whether "Fermat's Last Theorem" is true, and the second is whether the
Riemann Hypothesis is true. The Fermat problem, which has stood for 350 years,
involves only positive integral powers of positive integers. It is to decide
whether or not the equation

n
Myt = 2"

has a solution in positive integers x,y,z,n, with n>2. The Riemann problem
which has stood for 100 years, involves complex powers of positive real numbers,

and I will state it at the end.

§2. Theme.

{2.1) The story of powers begins with positive integral powers. As soon

as we understand how to multiply two complex numbers we may define inductively

n+i n
al=a, a2= aa, a%= aa?2,...,a =aa , ...

For example,

(2+31)5 = 122 - 597i.
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This operation satisfies the three laws of exponents:

an+m - anam’
(an)m - anm’
(ab)" = a"b"

§3. Development.

(3.1) We define the zeroth power a® and negative integral powers a "
(n=1,2,3,...) in such a way that the Taws of exponents continue to hold. Thus,

in order to ensure that

we must define

a" = Lin=1,2,3,....a 4 0).
a

Naturally, there is a problem if a=0. There is no way to define 0" so that

the laws of exponents hold. (Try it!}
As an example of a negative integral power,

-5 1

(2+37) —_—
(2+3i)°

1
122-5971

122+5971
(122)2+(597)2

__d22 597
371293 ~ 371293 -

We used the first law of exponents to define a ", Fortunately, the

other two laws of exponents continue to hold for arbitrary integral powers.
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(3.2) We define rational powers of nonzero complex numbers on the same

principle, of preserving the laws of exponents. In order to ensure that

(a%)m _ a(%)m

3

we must define

n
am {a # 0, n and m integral, m> 0)

as an m-th root of the n-th power of a, or what is (fortunately) the same

thing, the n-th power of an m-th root of a.

Again, there is a problem. There are m(compiex) m-th roots of each

n
non-zero number, so aM has more than one value. If m and n have no common
n

—_ 1
factors, then aM has exactly m values. For instance 42 has the values 2 and

2
-2, and 273 has the values
L 943,
>
In general, we work out these powers by using De Moivre's formula:
n n
{r (cose + 1sirle)} = r {cosneg + isinng).

2
3. Let

Take, for example (2 + 3i)
w = r{(cose + isine)
be a third root of 2+3i. Then
r3(cos3e + isin39) = 2 + 3i,

r3 = 22132 = /13 = 3.606,

r = 1.533,

cos 38 77606 0.555,

sin3 e 0.832,
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36 = 0.982 + 2nm, (n=0,1,-1,2,-2,...)

6 = 0.327 + 22"’, (n = 0,1,2)

coso + isine = 0.947 + 0.0.3211,

or =0.752 + 0.6601,

or -0.195 - 0.98114,
w = 1.452 + 0.4927, -1.1563 + 1.0121,-0.299 - 1.5041 .

2
The three values of (2+3i)3 are now obtained by squaring the three

values of w to get
1.866 + 1.4291, 0.305 - 2.334i, -2.173 - 0.899i.

The three laws of exponents hold for rational powers, if they are

interpreted as equations between the sets of values. For instance,

i
2

okn

1
26 = 232

is true if we interpret it to mean that the six values of the Teft-hand side

1
are obtained by multiplying in turn the three values of 23 by the two values

of 22.

For a positive (real) base a and a rational exponent b, exactly one

b

of the values of a~ is positive. The laws of exponents hold, as ordinary

numerical equations, for positive bases and rational exponents, if we interpret

ab as the positive power. For clarity, we denote the positive value of ab

b

by a”~ in the remainder of this discussion.

b* for all positive bases

(3.3) The next step is to define the positive power a
a and all real exponents b. We do this by insisting that it be an increasing

function of b for a> 1 and a decreasing function of b for 0<a<1. Thus, for
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instance, 2™ is larger than the numbers
P odpe g, oibeRr, .
and smaller than the numbers

PRt S v 1 LI 10

940y

It is not altogether obvious that this definition actually defines one definite

number ab* for each a>0 and each b, but it is true. Moreover, ab* is a
continuous function of a and b. For a>1, the graph y==ab* looks like this:
/
Yy

,_,-—————"”'/‘ ]

> b
and for a<1, it looks like this :
A
¥y
LL\xxﬁ‘\Hﬁﬁ‘*hh__
> b

By the way, 1b* is defined as 1 for all b.

b«

For b>1, the graph y=a~" Tooks Tlike this:



(1.1)

a
For D<b<1, it looks 1ike this =
(1.1}
=
a
For b<0Q, it looks_1ike this:
AN
y
(1.1)
=
a

(3.4) In practice, we work out ab* by using logarithms.

For positive a and x, we define logax by the formula

1 *
a ' 09aX X,

i.e. 1ogax is the power to which we must raise the base a to get x. Another
way of putting it is that

109a ay* =y,



for all real y.

For example,

log,27 = 3,
1og5/§ =1,
Tog,} = -1.

The three laws of exponents yield three laws of logarithms:

1ogabc = 1ogab + 1ogac,
]ogabc* = ¢ log,b,
log.b
= _ 8
fogeb = Togyc ’

which hold for all positive a,b,c.

The third law shows that if logs to some particular base a are known,
then logs to any other base c can be found. Two particular bases are popular.
Base 10 Togarithms are extensively tabulated, and base e logarithms are easy

to work out. The number e = 2.718... is chosen to make

d 21

X 10gex = 5
(For other bases a,

d _ B

dx 1992% = X

for a constant g # 1; in fact, 8 = 1ogae.)

As a result,

n n+l ,
A ogx = LN
dx : X

so the Taylor series of 10gex about 1 is
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(x-1) - (xél)2 . (x§1)3 _ (x;l)“ .

This series may be used to work out many significant figures of 1ogex quickly,

if x is close to 1, say

x-1] < 5 -
If x is not close to 1, then we have to take the square root enough times to
get it close, then work out the Togarithm, and then multiply it by 2 as many

times as we took the sgquare root.

To work out square roots, we may use the standard algorithm, based on
the formula

(10a+b)2 = 100a? + 20ab + b2.

To work out positive powers of positive numbers, we use the formula

ab* - 1Oblogloa*

or the formula

ab* - eb1ogea*

depending on whether we are using tables or not.

(3.5) Modern scientific calculators give ab* at the touch of a key, so this
is how people usually work it out. If you are building a calculator, or are
out in a field somewhere, or if you need more significant figures than tables
or calculator will give, then you have to fall back on fundamentals, and use
series.

(3.6) As an example, let us work out by hand a few figures of H/?;- We use

pV2* = /2 log Ik

To work out ]ogen, we start by taking sguare roots.
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1.772454

3.14'15'92'7 35440

20 340 L x4
x7 x7 1 89 11';?0
+49 +49 24 29 141776
= e R 35448
70 84 0

3548 T608 70 <5
7ﬁ§6 14 17 76 1772300
1 ~T 90 9400 +25
7ﬁ§1 1 77 2425 1772425

1376975 next is 4, by inspection.

So /1 = 1.772454.

Continuing in the same manner,

v1.772864 = 1.331335,
/1.331335 = 1.153834,
v1.153834 = 1.074167,
S0
-
nte = 1.074167,
re* 0.074167)2 . (0.074167)3
log ¢ = 0.074167 - {0 )= 4 (0. I
e 2 3
= 0.074167 - 0.002750 + 0.000136 - 0.000008
= 0.071545
1ogen = 16x0.071545 = 1.14472
/?'1ogen = 1.47421 x 1.14472 = 1.61887.
To work out e]‘61887*, we use the power series
Xk x2 | x3 . xt
e = 1+ x (S SR

For rapid results, we want small x, sO we use

1.61887 \128 7
—T78 *

2
o1-61887% (90.012547*) _

We have
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2
e0-012647% _ q . g.0126a7 + {001Z6AT)°

1 + 0.012647 + 0.000080

1.012727,

and squaring seven times gives

7

172 = o1-61887x _ g 019727)2 = 5.047.

54, Climax.

(4.1) The formula
ab* - eb]ogea* (a>0, b>0)
provides the key to extending the definition of ab to all complex a and b

{except a=0).

First, we have to define e”* and Togew for arbitrary complex z and

arbitrary nonzero complex w.

(4.2) We may define e* by the series

1 z2  z6
Pt et

or, equivalently, by setting
ex+iy excosy + iexsiny

for all real x and y. Of course, e’ is no longer positive, in general.

We define 1ogew by saying that z is a value of logew (denoted by

Z e 1ogew) if

It turns out that e”™ takes every nonzero complex value, and is a

periodic function, with pure imaginary period 2ni:

- Z4Z2Tix T
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It follows that Iogew is defined for all nonzero w, has infinitely many
values, and the various values differ by whole multiples of 2ri. There is

an equation

lTog W = 1oge|w| + iargw

(between multiple-valued functions, argw

or relations as they are known

nowadays), where log_|w|[ is the real
logarithm of the absolute value of w, and arg w is the argument of w. To see
this, Tlet

z = x+iy

be a value of log w, let |w| = p, and let 6 be a value of arg w. Then

w = p(cose + ising),
Z%
e = W,
x* - .
e” (cosy + isiny) = p(cose + isins)
X*
€ = P
X = 1ogep ,» {the real value)
cosy = co0s8, siny = sine,
Yy = 8 + 2nw, for some integer n.

Thus x = 1oge|w[ and y e arg w.

(4.2} Now we may define ab for a # 0 and all b by the formula

ab _ eb]ogea*’
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i.e. z is a value of ab if and only if z = ebw* for some value w of logea.

(4.3) As an example, we work out the values of

(203 o (141100, (2431)x

We have
log (2+31) = log,|2+3i] + iarg (2+31)
= 1oge/T§ + iarctan%-+ 2nri
= 1.28247 + 0.982791 + 2nwi,
(1+i)log(2+31)

= (0.29968 - 2n=) + (2.26527 + 2nm)i,

(2+3i)+
029968k o -2e\n 226527

1.3494(0.001867)"(cos 2.26527 + i sin 2.26527)

(0.001867)"(0.863 + 1.0371),

where n = 0,1,-1,2,-2,3, ...

A1l these values happen to share the same argument. This deces not

occur in general.

§5. Recapitulation.

(5.1) If b is an integer, then ab is still singlevalued. For if w; and w,

are two values of 1ogea, then they differ by 2mni, for some integer m, hence

since
2mbmi
e T

Moreover, the value of ab is the old one, obtained by multiplying a by itself
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b times.

(5.2) If b is a rational number %3 in which n>0 and m and n have no common
factors, then ab has precisely n values, for much the same reason. If c is

one value, then the others are

ce ' , r=1,2,....n-1.

These values are the n-th roots of a" (or,equivalently,the m-th powers of the

n-th roots of a), as before.

(5.3) If a and b are positive, then the old positive power ¢=aP* is one of the

values of ab. The others are

c e2“bm1*, m=1,-1,2,-2,3,-3,...

Unless b is rational, these numbers are all distinct, and lie on the circle
with centre O and radius c¢. In fact, every point of this circle is the Timit
of a seguence of these values of ab. This is not to say that every point of

the circle is a value of a. Most such points are not.

(5.4) If a is not positive or b is not rational, then the new concept of ab
is the only one available. This inciudes the case of irrational real powers

of negative real numbers, such as

You may enjoy working out the various values of these powers to, say,
two decimal places, with the aid of a pocket calculator. It is also interesting
to plot the corresponding points on the Argand diagram. If a # 0 and b is
not rational, then there are three possible geometric patterns for the values

of the power ab. The general form is
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asn{cos(y-rna) + 1sin (y-rné)}.

If g # 1 and 6 # 0, then the values are a sequence of sporadic points on an

exponential spiral

If g =1, then the points are dense on a circle. If § =0, they are all on

a straight ray from the origin.

(5.5) As a last example, take i'. The values of 1ogei are

(2n+5)ni, n integral.

Thus the values of i1 are

e-(Zn +%)II*,

and are all positive real numbers.

§6. Coda.

{(6.1) The Riemann zeta function is defined for complex numbers s with positive
real part by

z(s) = E%T +3 -5 E JO ——Jﬁj%IT dt.

n=1 /% (n+t)

s+l e(s+1)1oge(n+t)* is the value obtained by taking the real value

Here, (n+t}
of 1oge(n+t). For Res>1 there are two other expressions for z{(s), a sum

and a product:

A
; ns

3

[
—
(74
e
Ll
ne-18

n

1
c(s) = i —Tt
pprime{]——‘}
pS

From these formulae you may find it possible to believe that z{s) carries a

lot of information about the factorization of whole numbers. In Fact. i+
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turns out that the Tocation of the zeros of z(s) (i.e. those numbers z
such that z(z) = 0) is of great importance for number theory. The Riemann

Hypothesis is that all the zeros of z{s) in the half-plane

N
Res =0 Resi=1 Res > 1

Res> 0 1lie on the line Res =i. The problem is to decide if this is true

or not.



