
Adaptive Scheduling Across a Distributed
Computation Platform

Andrew Page, Thomas Keane and Thomas J. Naughton
Department of Computer Science,

National University of Ireland,
Maynooth, Ireland.

Email: andrew.j.page@may.ie, tkeane@cs.may.ie, tom.naughton@may.ie

Abstract— A programmable Java distributed system, which
adapts to available resources, has been developed to minimise the
overall processing time of computationally intensive problems.
The system exploits the free resources of a heterogeneous set of
computers linked together by a network, communicating using
SUN Microsystems’ Remote Method Invocation and Java sockets.
It uses a multi-tiered distributed system model, which in principal
allows for a system of unbounded size. The system consists of
an n-ary tree of nodes where the internal nodes perform the
scheduling and the leaves do the processing. The scheduler nodes
communicate in a peer-to-peer manner and the processing nodes
operate in a strictly client-server manner with their respective
scheduler. The independent schedulers on each tier of the tree
dynamically allocate resources between problems based on the
constantly changing characteristics of the underlying network.
The system has been evaluated over a network of 86 PCs
with a bioinformatics application and the travelling salesman
optimisation problem.

I. INTRODUCTION

The computational demands of modern scientific research
have been the driving force behind distributed computing [13],
providing large computational resources cost effectively. Cur-
rently there are a few notable distributed computing plat-
forms such as SETI@home [3], United Devices [30], and
distributed.net [http://www.distributed.net], which have been
built to try and satisfy the worlds increasing need for computa-
tional power, without the traditional high costs associated with
dedicated parallel hardware and clusters. They work on the
principle of a user donating their machine’s spare clock cycles
to the system across an intranet or the Internet, so that its free
resources can help to process computationally large problems.
The widespread success of the Internet has meant that these
distributed systems have been able to harness large amounts
of computational resources from donors’ machines, which
would otherwise have not been utilised to their full potential.
These systems are generally referred to as Internet computing
systems, where their resources are massively distributed across
the Internet, and the problems they attempt are generally
trivially parallelisable.

There are however problems with existing distributed sys-
tems which can be addressed through the use of Java. Many
systems [2], [3], [21], [29], [30] are based on languages that
are not platform independent, such as C and Fortran, resulting
in the requirement to have multiple versions of the software,
thus incurring higher maintenance and development costs. Java

is a platform independent language, which allows byte-code
to be generated which will run on a large variety of different
platforms. The performance of Java is also comparable to
languages which use machine native code [8]. Many existing
systems are limited to trivially parallelisable problems, and are
hard coded to perform only a single task [3], [21], [26]. Java
allows new classes to be loaded or updated whilst a program
is running, allowing for a programmable system to be easily
created.

Security must be considered in distributed systems due to
the use of insecure networks, such as the Internet, because
donors put their machines under the control of others. Security
is essential to protect the integrity of the results obtained from
distributed systems. Many existing systems use languages that
make the implementation of security difficult whereas Java has
multiple security orientated API’s at its core, such as the Java
Cryptographic Architecture, available for the programmer to
implement a secure system without the need to understand the
underlying workings of the cryptography. Digitally signed JAR
files, security policies, and program execution in a sandbox
promote confidence in any programs running, protect results
from interference, and protect the donor’s machine from
harmful damage.

Another problem with many existing distributed systems [2],
[3], [21], [30] is that they are not extensible enough, and have
fundamental limits on their scalability. They use models such
as the single-tier client server model [11], which fundamen-
tally limits the size of the system. In practice this model has
served SETI@home very well, with up to four million client
machines as part of the system [3]. But since there is only
one server (single machine or cluster) for all of the clients
there is thus a finite limit on the number of clients the system
can handle at any one time, with this limit depending on the
network resources and computational resources at the server. A
common solution is to increase the bandwidth of the server’s
Internet connection and to upgrade the power of the server,
but this can be expensive. Another solution, and one adopted
by SETI@home, is to parallelise the computation at such a
coarse level that clients (relatively) infrequently return to the
server for more data units. This tactic, however, is only suitable
for particular problems and might not be applied successfully
to the arbitrary problems of a general-purpose programmable
system.

The most commonly used communication technologies for
parallel computing, such as PVM and MPI, make the task
of using more complex and unbounded models harder to
implement due to the requirement for more low-level develop-
ment. Java however allows for the development of distributed
systems at a high level, through the use of RMI and Java
sockets, allowing for the creation of more extensible systems
without a corresponding increased in the complexity of the
users task.

Many systems have been developed to attempt to address the
limitations of previous distributed systems. The Berkeley Open
Infrastructure Networking Computing (BOINC) [2] system is
a programmable successor to SETI@home, and attempts to
make a more generalisable system. Although it is programm-
able, only trivially parallelisable problems are considered. Also
BOINC only considers problems which will be appealing
enough to get large numbers of users across the Internet to
donate their free resources to the project. Its extensibility
is also limited because it retains a client-server architecture,
and implements a one-step processing stage. If a computation
requires further processing of intermediate results, separate
dedicated machines must be used. United Devices [30] provide
their programmable distributed system on a commercial basis,
with appealing Internet computing projects primarily being
used to promote their commercial distributed system software.
Their system is also limited by the use of platform dependent
native byte-code, and their use of the client-server model limits
the extensibility of their system. The programmable distributed
systems from Krieger and Vriend [21], and Silvestre et al. [26]
have similar aims to ours, but suffer from the same scalability
problems as outlined for previous client-server systems. In
addition, the native code used in their system leads to platform-
dependence and serious security concerns, both of which are
alleviated in our system through the use of Java.

A common limitation with the generalisable systems we
reviewed [1], [2], [5], [21], [22], [29], [30] is the fact that it is
not possible to run any computation on any client. If the correct
client (i.e. operating system and architecture) is not available
for a particular computation, then the computation will never
get run on these systems. Almost every operating system and
hardware architecture supports a JVM, from desktop PCs to
mobile phones, and it is totally platform independent.

A number of other distributed systems implemented in Java
exist [1], [22], [26], [28]. Work by Ai-Jaroodi et al. [1],
using Java to create a distributed system, is similar in many
respects to the system described in this paper, although they
rely on a distributed shared memory model, which causes
significant overheads in terms of synchronisation, and con-
sistency of data. Our use of RMI and Java sockets reduces the
overheads incurred, and allows for a more scalable system.
Silvestre et al. [26] have created a distributed system in
Java to process a bioinformatics problem, but their system
is not programmable. Surdeanu and Moldovan [28] created a
distributed JVM, providing a platform for sequential multi-
threaded programs to be processed by multiple processors.
Their focus is on speeding up existing programs, rather than

using computational resources efficiently.
Our aim is to design a programmable distributed computing

platform that is unrestricted in terms of the type or structure of
computations that can be performed. A scheduler, which can
adapt to the ever changing resources available to the system in
a heterogeneous computing environment, is required to allow
multiple different problems to be processed simultaneously.
We retain aspects of the client-server model, but introduce
peer-to-peer communication within a tree of scheduling nodes
that serves to overcome the scalability and extensibility limi-
tations of employing a single server. Java is used to ensure
platform independence for both scheduler nodes and pro-
cessing nodes. We have applied our distributed computing
platform to problems from the field of bioinformatics. The
software we have developed is open source and available under
the GNU GPL license free of charge, and is not limited to
trivially parallelisible problems, due to its ability to handle
message passing between different parts of computations and
the implementation of a pipeline processor.

The rest of the paper is organised as follows. In Sect. II, we
introduce the multi-tiered model. In Sect. III, the designs of the
main components of the system are presented. Implementation
and performance evaluation are discussed in Sect. IV, and we
conclude in Sect. V.

II. OVERVIEW OF THE SYSTEM

The foundations for the multi-tiered distributed computation
system were laid in the Java Distributed Computation Library
(JDCL) [15] and its extensions [20], which provided MIMD
capabilities through emulated pipeline processors. The JDCL
provided a simple client-server based development platform
for developers who wished to quickly implement a distributed
computation system. It arose out of the need for a platform-
independent distributed system that was simple to create,
adapted to system changes, and was simple to deploy. Systems
such as SETI@home did not address these issues very well
and were designed to be platform dependant and for a single
purpose only. The JDCL does, however, suffer from similar
scalability problems to those of SETI@home in that it has
one server (single machine or cluster). The design of the
current multi-tiered system aims to address this fundamental
limitation. An adaptive scheduler has also been developed to
attempt to minimise the overall computation time of problems
processed by the system, whilst also matching problems to
donor machines, and allowing the user to prioritise problems.

A. Multi-tiered Model

The multi-tiered distributed computing system was created
with the intention of utilising the maximum computational
resources of the machines under its control, while not placing
any limitations on the maximum size of the system. The
client-server model alone was not sufficient, so a hybrid
model was created that combines the advantages of peer-
to-peer and client-server architectures within the one model.
The system consists of an n-ary tree of nodes where the
internal nodes perform the scheduling and the leaf nodes

do the processing, as shown in Fig. 1. The scheduler nodes
communicate in a peer-to-peer fashion, which permits top-
down reconfigurability, extensibility, and tree balancing. The
processing nodes operate in a strictly client-server fashion
with their respective scheduler, which promotes donors’ trust
in the system (anonymity and security) and admits a simple
and robust design, through the use of Java RMI and the Java
Cryptography Architecture API’s.

Scheduling node
Processing node
Remote interface

Fig. 1. Example topology of multi-tiered distributed computing system.

The potential size of the distributed system, in width and
depth, is unlimited in principle due to the ability of the system
to dynamically add another scheduling node, tier of scheduling
nodes, or processing node. Also, since the scheduling nodes
are distributed, the potential for bottlenecks is reduced, thus
improving the performance of the system. The distributed
nature of the scheduling nodes means that if one (other than
the root) were to fail, the rest of the system could always
compensate for the loss of that branch. By having multiple
scheduling nodes it means that the distributed system is a
MIMD architecture. Although not an increase in capability,
going from a pure MISD client-server framework to a MIMD
framework does increase the sophistication of the algorithms
that can be distributed over the system, and therefore runs the
risk of increasing the user’s task in programming a distributed
computation. We have attempted to structure the programmers’
interface as much as possible in this regard, to find a balance
between expressiveness and simplicity. For example, the pro-
grammer is required only to extend two classes to fully specify
a multi-tiered distributed computation, as explained later in
Sect. III.

III. DESIGN

There are three distinct parts to the system. These are
the client (processing node), the server (scheduling node),
and the remote interface. The user is required to extend two
classes to create a problem to run on the system, with the
use of Java enabling high level abstract design compared to
other more low level technologies such as C and Fortran [8].

The DataManager class (in the scheduler) specifies how
the problem is to be partitioned into units of work and the
intermediate results put together, facilitating the computation
of more generalisable problems, rather than being limited
to trivially parallelisable problems [2], [3], [21], [26], [30].
The Algorithm class (in the client) specifies the actual
computation. Figure 2 depicts how a problem is treated within
the system.

Additional Classes

Problem

Problem Data

DataManager

Algorithm

DataManager DataManager …..

Queue Scheduler

Communications Logs Security

Server

Cache

Client

Problem Processor

Security

Communications

Results

Remote Interface

Communications

Security

Actions

Results

Results

User

Results

Fig. 2. How a problem is treated within the system.

The users of the system do not need any knowledge of the
topology or workings of the system in order to submit prob-
lems and get their processed results back. They just provide a
DataManager, an Algorithm, additional required classes,
data to be processed (if required), and an integer priority
weighting, to create a self contained Problem object, which
then gets propagated to all servers in the system. A Problem
object provides a predefined interface to the functionality that
the user has provided in their DataManager. They can also
associate minimum CPU and memory limits, to enable the
scheduler to match problems to client machines with sufficient
free resources (see Sect. III-E.2).

Communication within the system is based on a combi-
nation of Java RMI [27] and ordinary Java sockets. RMI is
a built-in facility in Java that allows one to interact with
objects that are actually running in Java Virtual Machines
(JVM’s) on remote hosts on a network, and avoids the need for
the designer to worry about low level communication issues.
By also using Java sockets for the transmission of problem
data files, large amounts of data can be streamed directly
from the hard disk without bringing the large files completely
into memory, thus reducing the memory requirement, and
improving the scalability and performance of the system.

A. Client

The main purpose of the client (processing node) software
is to continually request and process data units from its server
(one of the scheduling nodes). All communication is initiated
by the client, providing anonymity and improved security.
Once the client is started, the client attempts to connect to the
server, and requests a data unit to process. Once it has received
the data unit, it checks if it already has the required algorithm

in its Algorithm cache, and downloads it from the server
if necessary. The client then breaks its connection with the
server and will not contact it again until the unit is processed,
the maximum processing time is exceeded for the unit and it
needs to request an extension, or an exception occurs. Hence
the server is always kept informed as to the status of the unit
being processed by the client. If an extension request is not
received by the server, it is assumed that the client has been
terminated (donor has switched off his/her machine) and the
server redistributes the data unit to another subordinate node.
Finally, if at any time the client cannot contact the server,
it will go into a ‘sleep mode’ and attempt to connect to the
server periodically.

B. Remote Interface

The remote interface is a stand-alone application that com-
municates over TCP/IP, and allows the administrator to fully
control all of the problems and scheduling nodes in the system.
We use Java RMI communications technology for message
passing between the remote interface and the server and Java
Sockets for large data files, which can write data directly to
disk. Problem objects can be added, removed, configured,
and their current state viewed. The remote interface can
connect and disconnect from servers, to allow them to be
updated, queried, paused, and shutdown without affecting the
distributed system. The remote interface also allows the owner
of a particular problem to view its current state and download
the results and log files, which are compressed into a single
archive using Java’s in built GZip API to reduce the bandwidth
required.

C. Server

The server (scheduling node) is the engine of the entire dis-
tributed system, controlling subordinate servers (subordinate
scheduling nodes) and clients (processing nodes) and is largely
described in [20]. We have modified this system in order to
allow it to be a multi-tiered distributed system. A server can
be added to the distributed system while the system is running,
and likewise can be removed from the system without affecting
the stability of the system or causing running problems to
become corrupted (the root server begin the exception). A new
server contacts the server above it and synchronises itself with
the rest of the system. If a server is removed, or fails, the rest
of the system compensates for this loss. The lost problems are
reallocated by the server, above the failing one, to others at the
same level as the failing one. This resilience to failure ensures
the system can perform in unpredictable operating conditions.

Units of work which are handed out by a Scheduler con-
tained within the Server, to subordinate nodes, are cached
on the hard disk using a DiskHashTable we developed.
The built-in hash table in Java stores everything in memory,
reducing scalability. The availability of cheap large hard disk
storage space allows for a much more scalable server and
system as a whole, by only storing the units being used in
memory.

D. Scheduler

There is a scheduler in each scheduling node (server). In
the multi-tiered distributed system the scheduler was created
to allow a limitless number (memory limits aside) of large
scale distributed computations to run in parallel on the system
and to allow the system to adapt to the changing conditions of
the network and computational resources available. Significant
optimisations have been achieved by using adaptive scheduling
in distributed systems [23], compared to static non-adaptive
scheduling algorithms. The information used by the scheduler
to adapt its internal scheduling mechanism is collected pas-
sively, so the scheduler can only gather information when a
client presents it. This is opposed to other systems which adapt
by proactively sensing system conditions [5], [7], [18], [32] or
by running platform dependant third party programs [5], [32]
which cause additional overheads to be incurred.

When a scheduler receives a new Problem object, it adds
it to the end of its queue of processing problems. Subordinate
nodes request units of work from the scheduler (via the server),
which are generated by instances of the user-defined Data-
Manager [20] encapsulated within the Problem objects in
the queue. Subordinate clients and servers both receive the
same units when they request more work, although the client
processes the unit of work while the server breaks it up further
into more subunits, creating a new Problem object for each
subunit. The problem is recursively divided (see Sect. III-
E.3) into Problem objects in this manner by instances of
the DataManager. Processed results are sent back to the
DataManager in the server above, and combined in a similar
manner. When a Problem is finished processing it is removed
from the queue of current Problems. At the root, the final
results and log files are written to files and compressed for
collection by the user through the remote interface.

If the processed results of a unit sent by a server are not
returned within a specific period, the unit is said to expire and
the server resends it to the next requesting server/client. Each
unit also contains its own timer so that if the unit is close to
expiring the client, or server, requests an extension from the
server above.

E. Scheduling Algorithm

A scheduler has been designed which aims to adapt to the
changing resources available to a distributed system and to
minimise the processing time of computations. The scheduler
takes into account user specified priorities for each problem,
attempts to efficiently allocate and manage the available sys-
tem processing power offered by the set of donor machines,
and dynamically alters the granularity of data units distributed.

The efficient allocation of system processing power is
loosely based on the ‘matchmaking’ feature in Condor [24]
(see Sect. III-E.2). The dynamic adaptation of the granularity
of data units that are issued by the individual problems was
inspired by the dynamic window size of the TCP protocol [25]
(see Sect. III-E.3). The overall scheduling strategy is brought
together in the user-defined fair matchmaking scheduling

mechanism drawing from research in [4], [16], [18], [19], [24]
(see Sect. III-E.1).

1) User-defined Fair Matchmaking Scheduler: Each
scheduling node in the system has its own scheduler, which is
independent of all other schedulers. Therefore, each sub-tree
in the system has the potential for self-optimisation and has
the potential to adapt to the constantly changing conditions
of its own resources. The scheduler decides dynamically
how the resources of the system are to be divided among
the problems in its queue, employing strategies based on a
user-defined fair matchmaking scheduling mechanism [4],
[16], [18], [19], [24]. The user sets an integer weighting Pi

for each problem i ∈ {1, 2, . . . , N} in the system. The value

P̃x = Px

(

N
∑

i=1

Pi

)−1

denotes the normalized weighting for

problem x over all N problems in the system.
As processed data units are returned to the scheduler for

problem x, the time taken (in seconds) to process the unit τ is
noted and incorporated into the typical unit processing time tx

for that problem. Rather than a simple average, tx is calculated
from tx = t′

x
+L (τ − t′

x
), where t′

x
is the previous value of tx.

The learning rate L ∈ [0, 1] defines the influence of previous
values, with the influence of older values tending towards
zero over time. This technique is borrowed from machine
learning [4], and allows scheduling nodes to continuously
adapt to the constantly changing conditions encountered by

the system. The value t̃x = tx

(

N
∑

i=1

ti

)−1

is the normalized

typical processing time for the data units of problem x.
The scheduler tries to fairly allocate the parallel computation
time resources by adopting its own internal weighting Fx

proportional to Px and inversely proportional to tx, given
by Fx = cP̃x/t̃x, c ∈ R, for each problem x.It is this
weighting Fx that ultimately defines the priority conferred on
each problem x in the system in order to fairly allocate the
parallel computation time.

2) Allocation and Management of Processing Power: As
the title to this section suggests, there are two main aims
here. Firstly the system attempts to balance the computational
requirements of the problems in the system with the capacity
of the individual donor machines. The second aim is to
efficiently allocate and manage the total amount of available
system processing power between the set of problems in the
system. There are two different sets of inputs to the scheduling
algorithm. The first type of input occurs when a client makes
a request for a data unit (supplying its CPU speed and amount
of memory available on the donor machine). The other type
of input occurs when a client returns a set of results. In this
case the input consists of the problem ID and how long the
unit took to complete.

If a client is making a request for a data unit, then the
scheduler algorithm goes through its queue of problems and
queries each problem to see if the donor machine meets its
minimum requirements. When a suitable problem is found that
is ready to issue a data unit,such a data unit is returned to the
client. If no suitable problem is found in the queue, then the

client is sent a message to sleep and retry later.
If the input consists of a results set, then the scheduler

records how long the unit took to be processed. After every
result is received, the scheduler calculates what we call a
“servicing value” (defined below) for each problem and resorts
the queue of problems by their servicing value in descending
order. The servicing value, Si ∈ [−1, 1], is a ratio of how much
system processing time each problem has received compared
to the priority of the problem. A servicing value Si < 0 means
that problem i is over-serviced, Si > 0 means that problem
i is under-serviced, and Si = 0 means problem i is currently
being serviced appropriately.

The servicing value for each problem i is given by

Si =

Pi

N
P

j=1

Pj

 −

Fi×Ui

N
P

j=1

(Fj×Uj)

 , i ∈

{1, 2, . . . , N},
N
∑

i=1

Si = 0,

where Ui is the number of units handed out so far for
problem i, and where all other variables were explained in
Sect. III-E.1. Problems that have received the least processing
time relative to their priority will be promoted to the top of
the queue and will be allocated more system time.

3) Recursively Splitting up a Problem: Any problem that
is run on our distributed system must be parallelised by the
user. The user specifies how the problem can be partitioned
into units of work in the DataManager they provide. For ex-
ample, this could be pairs of indices specifying subsequences
of a genome to be analysed. They specify what the smallest
possible unit of work can be for the problem, also called
granularity, allowing the scheduler to create units of work
which are multiples of this atomic grain size. This partitioning
happens at each tier in the system, with the problem being
broken up into smaller parts at each tier. A carefully chosen
granularity can give significant performance increases [10].

Given a problem, the maximum speedup achievable is
limited by the number of atomic units that the problem can
be broken into, and the number of clients in the system.
Techniques borrowed from machine learning [4] allow us to
dynamically adjust the partitioning of data units according to
the ever-changing computational resources at the disposal of
the system.

Even though users specify the minimum requirements
(memory, processor speed) for their problem when they enter
their problem into the system, it is not possible to have a priori
knowledge of the capacity of the network and the power of the
donor machines. Therefore the appropriate granularity of the
parallel computation will have to be ascertained dynamically.
With too fine a parallelism, clients will return results after a
very short processing time and might overload the network.
Too coarse a parallelism might result in some processors being
left idle and could cause large amounts of processing time to
be wasted if a donor machine is unexpectedly switched off.
After every x units are received by a problem (default value for
x is 50), our system tries to modify the problem’s granularity
so that the average time a to process a unit will approach some

target t. If a is not sufficiently close to t, then an attempt is
made to alter the granularity for subsequent units. The fraction
of a (represented by d) by which the granularity needs to be
altered is calculated from

d =

{ t − a

a
, |(t−a

a
)×100| > v

0, otherwise

where t is the target time, a = 1
x

N
∑

i=1

Ui is the average pro-

cessing time of the previous x unit times Ui, N is the number
of problems in the scheduler, and v is the percentage variance
threshold below which the processing times are allowed to
fluctuate. The default values for v and t are 15% and one hour,
respectively. A positive value for d indicates that the problem’s
granularity should be increased and a negative value means
that the problem’s granularity should be decreased. The value
of d is sent to the user’s DataManager and it is up to this
code to take the appropriate actions to alter the granularity of
subsequent units. Choosing lower (respectively, higher) values
for x and v will allow the system to adapt more (respectively,
less) quickly to changes in the network, but will cause it to be
more (respectively, less) likely to overreact in the presence of
transient fluctuations in network capacity and client processor
power.

F. System Security

Security should be a very important aspect to any distributed
system. The essence of our system is that is takes an arbitrary
piece of code and sends it out to a client to be dynamically
loaded. This principle alone throws up many implications for
the security of the donor machine, and it is a major problem
with all existing distributed systems that do not use Java [1],
[2], [3], [7], [21], [29], [30]. The JVM allows us to include
a comprehensive security manager in the client software. The
downloaded code is restricted in the operations it can perform,
by a security policy, which is a standard feature of Java. If a
security exception is detected, the code is immediately stopped
and the server is notified of the breach in security. In the
same manner, any security exceptions on the server will result
in the user’s problem code being ejected from the system.
One other important security mechanism in our software is
that all of the system JAR files are digitally signed using
the “MD5withRSA” algorithm, which is included as standard
in Java. If our software is tampered with in any way, or an
unauthorised client is downloaded, it will not run.

IV. IMPLEMENTATION

The entire system was designed using objects at a high
level, thus, when it came to implementation, Java was chosen
because of its object orientated capabilities and also for
its platform-independence and ease of implementation. Java
programs are compiled to an architecture neutral byte-code
format, therefore a Java application can run on any system, as
long as that system implements the JVM [14].

The computational resources available for this system’s
deployment were based on machines with varying operat-
ing systems, such as Microsoft Windows 98/2000/NT, and
Linux distributions Redhat 7.2/Debian/Fedora Core 1/Man-
drake 9.2/Gentoo 1.4, and varying hardware architectures such
as those of Intel, SUN, and HP.

A. Applications

The multi-tiered distributed system has so far been used
to analyse tuberculosis and E-Coli genomes searching for
duplicated patterns, to break cryptographic schemes based
on the discrete logarithm problem, such as ElGamal [12],
using a distributed Pollard-Rho algorithm, and has been used
to model light propagation in tissue using the Monte Carlo
method. All of these problems are trivially parallelisable, so to
show the generalisability of the system, the travelling salesman
optimisation problem was also processed using the system.

B. Performance Evaluation

We carried out performance tests to evaluate the capabilities
of the multi-tiered distributed system. We set out to show
that adding more servers would increase the capacity of the
distributed system, and we also set out to show that the
scheduling algorithm would attempt to optimally balance the
computational resources at its disposal. The capacity of the
system is the maximum number of processing nodes in the
system, where the addition more of processing nodes would
reduce the performance of the system. These experiments were
carried out in a computer laboratory with a dedicated network
of 86 PCs. Each had a 600 MHz Pentium III processor with
128 MB of RAM and 20 GB of hard disk space and was
connected to a 10 Mb/s Ethernet LAN.

Figure 3 shows how balanced the scheduler is during oper-
ation. We recorded the sum of the absolute values of all of the

servicing values,
N
∑

i=1

|Si|, where N is the number of problems

in the system, every time a processed unit was returned to the
scheduler to demonstrate how balanced the set of problems
was at each point in time. A value of zero indicates a
balanced scheduler and is the optimal value, with higher values
indicating the degree to which the scheduler is unbalanced.
Initially five problems were added to the system, with two
additional problems being added on three separate occasions,
corresponding to the peaks in the graph. The problems used for
the test were instances of the travelling salesman optimisation
problem, and each problem had an equal priority of 1. The
scheduler quickly moves to try and reduce the imbalance in
the scheduler, thus tending towards a balanced system.

Figure 4 shows the speedup that was achieved. To show
how generalisable the system is, by allowing message passing
between intermediate results in the scheduling nodes, we again
used the travelling salesman optimisation problem. Based on
the speedup data, the average efficiency using 86 processors
is 95.6%. In Fig. 4 the speedup was calculated from the
equation S(n) = P1

Pn
, where Pn denotes the processing time

for n processors and P1 denotes the processing time for one

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

No. of Units Processed

Im
ba

la
nc

e
in

 th
e

se
rv

ic
in

g
va

lu
es

Fig. 3. Experimental results showing the scheduler dynamically balancing
the system as new jobs are added.

processor, with each point on the graph being the average of
a minimum of 5 runs of the experiment.

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

S
pe

ed
up

Numer of Processors

Linear speedup (theoretical upper bound)
Measured speedup

Fig. 4. Speedup achieved with a travelling salesman optimisation algorithm.

Since a server can handle in the order of thousands of
clients, and such a number of machines was not available to us,
we had to simulate congestion to demonstrate that the multi-
tiered distributed system can increase the number of clients
in a system compared to the traditional client-server topol-
ogy. This was achieved by using Shunra’s freeware Nimbus
bandwidth throttling software [http://www.shunra.com]. The
bandwidth of each server was constricted to only 14.4 kb/s,
and in addition, each unit returned from a server or client was
bloated with extra data to make the returned results larger. The
size of this bloated data was proportional to the size of the
unit. The problem posed to the distributed system was a pattern
matching exercise with the tuberculosis genome (four million

nucleotides in length) to find all duplicated strings within the
genome.

The problem was initially run with 1 server and n clients,
a one-tier traditional client-server model for several values of
n. Next we ran the problem using 5 servers, arranged as 1
server in the top tier and 4 servers in the next tier, with n
clients. Figure 5 shows the resulting plot for several values
of n. This plot shows that after a certain number of clients,
network congestion at the server causes the processing time to
actually increase (approximately 20 clients, with congestion,
in the case of traditional 1-server topology). As the number
of servers increases, this critical number can be increased.
Eventually, the multi-tiered system too reaches its capacity
but it can handle many more clients than the single server
system. The optimum was calculated assuming linear speedup
from the timing with one client.

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

Number of processors

P
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

1 server
5 servers
Optimal performance

Fig. 5. Processing time comparisons with 1- and 5-server distributed
computation systems, in the presence of simulated congestion.

V. CONCLUSION

We have examined a variety of other existing distributed
systems [1], [2], [3], [5], [7], [9], [15], [20], [21], [24], [26],
[28], [29], [30] and have produced a system that combines
the advantages offered by each of these existing systems and
overcomes many of the disadvantages of each system. Central
to our success was the use of Java to implement the distributed
system. Our distributed system is capable of being deployed
in a typical internet/intranet environment. Some of the features
of our system include a multi-problem adaptive scheduler
operating independently on multiple servers organised in a
hierarchical model, a remote server interface, remote updating
of client software, dynamic changing of data unit sizes, and
inbuilt compression of data. We also presented an adaptive
scheduler that attempts to minimise the processing time of
problems in the system, and balance the set of problems based
on user priority and problem complexity.

Future improvements to the system will allow for the
dynamic rebalancing of the topology of the system to improve

parallel efficiency, allow subordinate servers to take over
superior servers in the event of failure thus providing a more
robust system, and enhancement of the scheduling strategy to
include a neural network which employs online learning [6].
We will also incorporate support for SQL databases, to allow
more standardised and less complex message passing between
intermediate results generated by problems, as well as storage
of state information about problems to facilitate a more robust
system such as in [7], [9], [17], [31].

The software is freely available under an open source GNU
GPL licence from the system homepage located at
http://www.cs.may.ie/distributed/

VI. ACKNOWLEDGEMENT

Support is acknowledged from the Irish Research Council
for Science, Engineering, and Technology, funded by the
National Development Plan.

REFERENCES

[1] J. AiJaroodi, N. Mohamed, H. Jiang, and D. Swanson. Middleware
infrastructure for parallel and distributed programming models in het-
erogeneous systems. IEEE Transactions on Parallel and Distributed
Systems, 14(11):1100–1111, November 2003.

[2] D. Anderson. Public computing: Reconnecting people to science. In
Conference on Shared Knowledge and the Web, pages 17–19, Madrid,
Spain, November 2003.

[3] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
Massively distributed computing for SETI. Computing in Science &
Engineering, 3(1):78–83, Feb 2001.

[4] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning.
Artificial Intelligence Review, 11(1-5):11–73, 1997.

[5] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman,
S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen,
N. Spring, A. Su, and D. Zagorodnov. Adaptive computing on the grid
using AppLeS. IEEE Transactions on Parallel and Distributed Systems,
14(4):369–382, April 2003.

[6] J. P. Bigus and J. Bigus. Constructing Intelligent agents with Java.
Wiley Computer Publishing, New York,USA, 1998.

[7] K. Birman, R. van Renesse, and W. Vogels. Navigating in the storm:
using astrolabe for distributed self-configuration, monitoring and adap-
tation. In Autonomic Computing Workshop, pages 4–13, Seattle, WA,
USA, June 2003.

[8] J. M. Bull, L. A. Smith, L. Pottage, and R. Freeman. Benchmarking
java against c and fortran for scientific applications. In Java Grande,
pages 97–105. ACM Press, 2001.

[9] G. Deen, T. Lehman, and J. Kaufman. The Almaden OptimalGrid
project. In Autonomic Computing Workshop, pages 14–21, Seattle, WA,
USA, June 2003.

[10] M. Drozdowski and P. Wolniewicz. Out-of-core divisible load pro-
cessing. IEEE Transactions on Parallel and Distributed Systems,
14(10):1048–1056, October 2003.

[11] H. Edelstein. Unraveling client/server architecture. DBMS, 7(5):34–41,
May 1994.

[12] T. Elgamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory,
31(4):469–472, July 1985.

[13] M. J. Fischer and M. Merritt. Appraising two decades of distributed
computing theory research. Distributed Computing, 16(2–3):239–247,
September 2003.

[14] D. Flanagan. Java in a Nutshell. O’Reilly and Associates, UK, 4th
edition, 2002.

[15] K. Fritsche, J. Power, and J. Waldron. A java distributed computation
library. In 2nd International Conference on Parallel and Distributed
Computing Applications and Technologies, pages 236–243, Taipei, Tai-
wan, July 2001.

[16] S. Hariri, H. Topcuoglu, and M. Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE
Transactions on Parallel and Distributed Systems, 13(3):260–274, March
2002.

[17] M. Jelasity, M. Preuß, and B. Paechter. A scaleable and robust
framework for distributed application. In Proceedings of the Congress on
Evolutionary Computation, pages 1540–1545, Honolulu, Hawaii, USA,
May 2002.

[18] C. Jin, D. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A.
Cottrell, J. C. Doyle, W. Feng, O. Martin, H. Newman, F. Paganini,
S. Ravot, and S. Singh. FAST TCP: From theory to experiments.
submitted to IEEE Communications magazine, April 2003.

[19] S. Kanhere, A. Parekh, and H. Sethu. Fair and efficient packet scheduling
using elastic round robin. IEEE Transactions on Parallel and Distributed
Systems, 13(3):324–326, March 2002.

[20] T. Keane, R. Allen, T. J. Naughton, J. McInerney, and J. Waldron.
Distributed Java platform with programmable MIMD capabilities. In
N. Guelfi, E. Astesiano, and G. Reggio, editors, Scientific Engineer-
ing for Distributed Java Applications, volume 2604, pages 122–131.
Springer Lecture Notes in Computer Science, February 2003.

[21] E. Krieger and G. Vriend. Models@Home: distributed computing in
bioinformatics using a screensaver based approach. Bioinformatics,
18(2):315–318, February 2002.

[22] M. Migliardi, V. Sunderam, A. Geist, and J. Dongarra. Dynamic
reconfiguration and virtual machine management in the Harness meta-
computing system. In Lecture Notes in Computer Science, volume 1505,
pages 127–134. Springer Verlag, 1998.

[23] F. Paganini, Z. Wang, J. C. Doyle, and S. H. Low. Congestion control for
high performance, stability and fairness in general networks. submitted
for publication, April 2003.

[24] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed
resource management for high throughput computing. In Proceedings
of the Seventh IEEE International Symposium on High Performance
Distributed Computing, Chicago, IL, USA, 1998.

[25] J. Semke, J. Mahdavi, and M. Mathis. Automatic tcp buffer tuning.
In Proceedings of ACM SIGCOMM ’98, pages 315–323. ACM Press,
1998.

[26] T. Silvestre, E. Nugues, G. Perrière, M. Gouy, and L. Duret. Phylojava
: a generic client-server tool for phylogenetic tree reconstruction -
application to grid computing. In M.-F. Sagot and H.-P. Lenhof,
editors, European Conference on Computational Biology, Paris, France,
September 2003.

[27] Sun Microsystems Inc. Java RMI - Distributed Computing for Java.
White paper.

[28] M. Surdeanu and D. Moldovan. Design and performance analysis of
a distributed java virtual machine. IEEE Transactions on Parallel and
Distributed Systems, 13(6):611–627, June 2002.

[29] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. In
F. Berman, A. Hey, and G. Fox, editors, Grid Computing: Making The
Global Infrastructure a Reality. John Wiley, 2003.

[30] United Devices. Grid MP Platform Architecture, 2003. White Paper.
[31] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust and

scalable technology for distributed monitoring, management and data
mining. ACM transactions on Computer Systems, 21(2):164–206, May
2003.

[32] R. Wolski, N. T. Spring, and J. Hayes. The network weather service: a
distributed resource performance forecasting service for metacomputing.
Future Generation Computer Systems, 15(5–6):757–768, 1999.

