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Abstract

Hoeffding’s inequality can be used in conjunction with the declared parameters
of a traffic source, such as its peak rate, to obtain confidence intervals for
measurements of the traffic’s effective bandwidth. We describe a variety of
interval-estimation procedures based on this idea, designed to provide differing
degrees of robustness against non-stationarity. We also discuss how to compute
confidence intervals for the effective bandwidth of an aggregate of traffic sources.

EFFECTIVE BANDWIDTH; CONFIDENCE INTERVALS; HOEFFDINGS IN-

EQUALITY; LARGE DEVIATIONS

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60G35
SECONDARY 60G50;93E10

1. Introduction

The notion of effective bandwidth has become widely accepted as a measure of the
resource requirements of bursty traffic in queuing networks. Intuitively, the effective

bandwidth of a traffic source at a given network resource determines the quantity of
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resource capacity which must be reserved for it in order to achieve a specified rate
of data-loss. This quantity depends on the statistical properties of the traffic source,
on the properties of other traffic which may be sharing the resource in question, and
on the nature of the resource itself (for example, buffered or unbuffered). It has been
realised, through the work of a number of authors, that the complex relationships
between these different factors can be unravelled using a family of large deviation
limit results for the data-loss probability. These results lead to the effective bandwidth
function, as defined by F. Kelly [14].

The effective bandwidth o of a stationary stochastic traffic source is given by
1 sX(t)
o(s,t) = —tlogIEe ,
s

where X (t) is a random variable representing the amount of data generated by the
source during intervals of length ¢. The parameter s in this definition is an inverse
space scale, that is, 1/s may be measured in units of bits, bytes, or cells. To illustrate
the significance of this function, imagine a buffered resource which is shared by L
stationary, independent, and statistically identical traffic sources. If the resource has
a capacity of Lc units of data per unit time, and a buffer to hold Lb units of data,
then the steady-state rate of data-loss Ry satisfies

.1 .
ngr(lx) —logR;, = igg ;gg (ta(s,t) —tc— b).

Here o is the effective bandwidth function of each identical source. Results of this
type, and generalisations to the case of non-identical sources, have been proved
by A. Simonian and J. Guibert [18], D. D. Bottvich and N. G. Duffield [1], and
C. Courcoubetis and R. Weber [4]. More details on the origin of effective bandwidth
and its uses can be found in [14].

Given a stochastic model of a traffic source, the associated effective bandwidth
function can be calculated more-or-less easily from the model’s parameters (see [14] for
a number of examples and references to the literature). For many purposes, however,
it may be more practical to determine effective bandwidths directly from traffic
measurements, thereby eliminating the need to fit a stochastic model to recorded data.

N. Duffield et al. have presented arguments for this approach in [6]. Measurements
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of effective bandwidth may be useful both for off-line characterisation of traffic and
for real-time control of multiplexing systems. An analysis of recorded traffic traces in
terms of their measured effective bandwidths has been carried out by R. Gibbens in [9],
while algorithms for connection admission control in connection-oriented networks,
based on measurements of effective bandwidth, have been proposed by G. de Veciana
et al. [7] and J. T. Lewis et al. [16]. A measurement-based approach to admission
control and resource pricing, which is motivated by effective bandwidths but does not

measure them directly, is described in [10] and [3].

In this paper we address the extent of sampling error in measured values of effective
bandwidth. Sampling error is not a critical issue in off-line traffic characterisation, but
assumes greater importance when measurements are used for the purpose of dynamic
resource allocation. For example, M. Grossglauser and D. Tse [11] have studied
the impact of sampling error on a resource operating with a measurement-based
admission control system. In this setting, under-estimation of resource requirement
causes the admission control to accept too many new connections, leading to violation
of the data-loss target, while over-estimation leads to a reduction in both data-loss
and utilisation. Grossglauser and Tse observe that the negative effects on data-
loss of under-estimation exceed the positive effects of over-estimation, so that on
the average the effect of sampling error is to increase the data-loss rate. The use
of a certainty-equivalent point-estimate of resource requirement can therefore be
expected to yield an average rate of data-loss somewhat in excess of the desired
target. [11] describes an extreme case (not based on effective bandwidths), in which
a simple system using point-estimates misses its performance target by two orders of
magnitude. An important consideration is the fact that the large deviation results
in which the effective bandwidth function has its origins are intended to control the
frequencies of extremely rare events, whose probabilities may be of the order of 107 or
less. At this level of liklihood even small sampling errors can have a significant impact;
the 1 — 1079 quantile for an estimator of effective bandwidth may be considerably

larger than its mean.

Interval-estimates of bandwidth requirement are therefore desirable: if the target

data-loss rate is 1079, then a 1 — 1078 upper confidence limit for bandwidth require-
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ment can be used safely as a basis for resource allocation. Approximate confidence
intervals can be obtained from a Gaussian approximation in the usual manner, but
this approach does not seem appropriate here due to the very low liklihood levels
which are of interest. Instead we turn to concentration inequalities designed to provide
rigorous upper bounds on the probabilities of rare events. Hoeffding’s inequality is
particularly attractive for our problem: to use it we require only an upper bound
on the random variables of interest, and this can obtained directly, without further

measurement, if traffic sources declare a peak rate or other token bucket constraint.

Theorem 1 (W. Hoeffding [18]) Let Zi,...,Z, be independent bounded random

variables such that Zy, € [ag, by] with probability one. Then for any t > 0,

n n
1P(| 3N (2 —EZy)| > t) < exp(—2t2/ 3 (i - a,-)2).
k=1 k=1

A succint proof of theorem 1 is given in [5]. S. Floyd uses Hoeflding’s inequality in [8]
to obtain an upper bound on the effective bandwidth of an aggregate of traffic sources.
In section 2 we use it to compute confidence intervals for the effective bandwidth of a
single source, based on measurements of source activity. The confidence limits can be
chosen to converge almost surely to the true value of ¢ as the sample size increases,
assuming that the source is stationary. Alternatively they can be chosen to provide
robustness against violations of the stationarity hypothesis. Confidence intervals for

the effective bandwidth of aggregate traffic are obtained in section 3.

For our purposes, the use of Hoeffding’s inequality has two draw-backs. It re-
quires independent observations of source behaviour; and it becomes tight only at
large sample sizes. In practice measurements of the activity of a source made at
different times cannot be assumed completely independent, although they may be
approximately so if the elapsed time between measurements is large. Taking widely-
separated measurements will of course increase the time required to obtain a narrow
confidence interval. The numerical results in sections 2 and 3 show that the sample
size required to obtain a useful confidence interval may be very large, so that the

approach we describe here may not be practical for small data sets.
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2. Effective Bandwidth of a Single Source

Throughout this section we let X () be a random variable representing the amount
of work generated by a stationary stochastic traffic source during intervals of length
t. We assume that X (¢) takes values between 0 and some upper limit p(¢) > 0, with
probability one. When the peak rate P of the source is known we may take p(t) = Pt;
more generally, if the source is policed by a token bucket with bucket size b and token
fill rate ¢, then X () cannot exceed p(t) = ct+b. In the case of multiple token bucket
constraints, we set

p(t) = min(c;t + by),

where (b;,¢;), i = 1,2,..., are the token bucket parameters.

Our aim is to estimate the value of the effective bandwidth function

1
o(s,t) = o log [Ee*X ()

for given s and ¢, from independent observations X (¢,1),...,X (¢,n) of X(¢). Thus
each X(t,k), k =1,...,n, is assumed to have the same distribution as X (¢). Given
g > 0 we construct a 1 — e~ ? confidence interval for o(s,t) as follows. Let ¢ be the
value of the moment generating function of X () at s, and let ¢(n) be the weighted

average

bm) = 3wk, m)er ¥R,

k=1
where the weights w(k,n) satisfy 0 < w(k,n) < 1 for each k¥ and w(l,n) + ... +

w(n,n) = 1. ¢(n) is then an unbiased estimate of ¢. Define

e(n) = [ng’(“ -1 Zwi(@] ,

k=1

and let a(n), B(n) be given by

a(n) = —log([6(n) — (] V1),
B(n) := élog(qﬁ(n) +5(n)) A @

Proposition 1 a(n) < o(s,t) < B(n) with probability at least 1 — e~ 1.
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Proof. Since o(s,t) takes values between 0 and p(t)/t we have

P(o(s,t) < aln) or B(n) <o(s,t)) =P(|p(n) - 9| > £(n)).

Set Zy := w(k,n)e’X®R) for k = 1, ..., n, so that ¢(n) = Z; + ... + Z,. By

assumption the Zj’s are independent random variables satisfying
w(k,n) < Zy < w(k,n)e’P® k=1, ..., n.

Hoeffding’s inequality therefore yields

IP<| zn: Zy, — EZ| > e(n))

k=1

exp<—252(n)/ Zn:wQ(k,n)(eSp(t) — 1)2),
k=1

P(lo(n) - 9| > ()

IN

and, inserting e(n), the right-hand side is just e~ 9.

If the error term £(n) tends to zero as n becomes large then so does the difference
between the upper and lower estimates 8(n) and a(n). Since ¢(n) > 1 almost surely
we have for (n) < 1,

B(n) —a(n) = l10g<1-|-¢(2ﬂ>

st n) —e(n)

1 2e(n)
< o log (1 + m) a.s.

Using the inequality log(1 + z) < =z,

B(n) — afn) < —220)

s m a.s.,

which is of order £(n) as €(n) — 0. The size of the error depends on the choice of the

weights w(k,n), the optimal choice being w(k,n) = 1/n for each k. In this case

g(n) = (eP® — 1)\/%

2(e’?™® —1),/g
st[v2n — (es?() — 1),/q]

and

Bn) —a(n) <

for n > (e*P() —1)2¢/2.
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Figure 1. Estimated 1 — 107° confidence intervals for the effective bandwidth of traffic

from a simple stochastic source. The central line is the source’s true effective

bandwidth.

Figure 1 illustrates the type of results which can be obtained using this scheme of
equal weight for every measurement. Shown in the figure is a 1 — 10~° confidence
interval plotted against sample size, made using traffic from a two-state Markovian
source. In its ‘on’ state this source transmits at a constant rate of 1 unit of work
(‘cell’) per unit time (‘slot’), and in its ‘off” state transmits nothing. Sojourn times
in both states are geometrically distributed, with a mean on-time of 5.333 slots and a
mean off-time of 16 slots. The effective bandwidth estimates in the figure are for the
values s = 0.0184 per cell and ¢t = 20 slots; also shown is the true effective bandwidth
of the source, for these values of s and ¢t. The measurements of source activity used
to compute the estimates were taken from back-to-back blocks of length 20 slots
in a single long traffic sample. They cannot therefore be considered independent
observations, and the effect of this is to introduce a small amount of bias into the
estimates. Except possibly at the very largest sample sizes, this bias is more than

offset by the conservative nature of the bounds.

Although the choice of equal weight for each observation of X (¢) minimises the
value of €(n), it may not be appropriate in situations where the effective bandwidth

of a source is to be monitored continously over time. This choice is not robust against
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possible deviations from stationarity. We would like to be able to fix a timescale over
which the estimated value of o(s,t) will track any changes in the true value: this
can be achieved, for example, by using the weights w(k,n) to implement an auto-
regressive filter. Each measurement X (¢, k) of X (¢) comes from a block of length ¢;
let 7, > t be the time between the end of the kth block and the end of its successor.

To obtain a first-order autoregressive filter we set w(1,1) := 1 and, for n > 2,

w(l,n) = AT

wlkyn) = (L—y=t)yitt e p>,

where v € (0,1). Just after the end of the nth block our estimate ¢(n) of the moment

generating function of X (t) is

n
¢(n) — 7T1+...+Tn_1eSX(t,1) + Z(l _ ,ka—l),ka+---+Tn—lesx(tyk)_
k=2

Thus ¢(1) = e*X®&D and for n > 2,
$(n) = (1 —y™=1)e X 4 ym=1g(n —1).
Setting a =1 — y™-1,

¢(n) = p(n — 1) + a(e”* ™ — ¢(n - 1)),

which is a special case of the constant gain stochastic approximation applied in control
and communication problems. Here a is typically a negative integer power of 2, so
that the computation of the product on the right-hand side reduces to bit-shifting.
If the sequence X (t,1), X(t,2), ... is i.i.d. then ¢(1), ¢#(2), ... is a homogeneous
Markov process with limit distribution concentrated around IEesX (1) for ‘small’ a
[17, 12, 15].

Assume that observations of X (t) are made periodically, so that 7, = 7 > ¢ for
each k. After the nth observation the error term &(n) in the upper and lower bounds

of proposition 1 is given by

1— ’YT + 27(2n—1)7—)

2(p) = (e52® _ 1)24
22 = (et - 12 (AR
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Figure 2. Estimated 1—107° confidence intervals for traffic from a simple stochastic source,
made using a first-order autoregressive filter. The central line is the source’s true
effective bandwidth.

and as n — 00, e(n) converges to the non-zero value

1
— 1 (o _qy [4(L1=TY?
oo i= lim e(n) = (7 — 1) Q(IW :

Thus a large value for v™ (closer to one) results in a smaller confidence interval in
the limit n — oo, but one which takes longer to converge, and longer to respond
to any changes in the pattern of traffic from the source. The minimal value of "
required to achieve a confidence interval of given size can be determined from the
above equations. By varying both v and 7 the size of the limiting confidence interval
and the rate of convergence can be controlled independently to some extent, but
always subject to the constraint 7 > t. Note that if

g(e’?® —1)? -2
(e 17 72

then 5, < 1, and the error between the upper and lower effective bandwidth estimates
B(n) and a(n) satisfies

lim B(n) — a(n) < ——22

Jim st — ) a.s.

Applying the auto-regressive estimation procedure to a sample of Markovian traffic

produces results such as those in figure 2. This plot was made using the same traffic
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source as that used to make figure 1. The period 7 between measurements was
set equal to t = 20 slots, and the value of v was 0.999; with these parameters a
reasonably narrow final confidence interval is achieved but the rate of convergence is
slow compared to that in figure 1.

This estimation scheme suffers from a remaining defect, namely that the presence
of periodicities in the traffic may lead to bias in the estimate ¢(n) of the moment
generating function. To avoid this, it is neccessary to choose the observations ran-
domly, rather than periodically, from the available data. Let us suppose that the
inter-block time 73, is equal to ¢t + ry, where r1,72,... are independent exponentially
distributed random variables with mean 1/A (this type of procedure was suggested by
R. Gibbens in [9]). The bounds of proposition 1 continue to hold (with probability at
least 1 — e~ ?), but the error term £(n) is now a random variable because it depends
on the inter-block times through the weighting function w(-, n).

The sum of squared weights w?(1,n) + ...+ w?(n,n) satisfies

n n
Zw2(k,n) _ 72T1+---+2Tn—1 + Z(l _ 7Tk_1)27zrk+"'+27"—1
k=1 k=2

n—1
727‘,.-1 Z w2(k,n _ 1) + (1 _ ,yTn—l)Q_
k=1

Therefore the sequence {e2(n) : n > 1} evolves through the stochastic recursive

equations
2 _ 9 ospt 2 - 2
2m) = L -3 w(kn)
k=1
(1) = ap_162(n—1) +by_1,

where {(an,by) : n > 1} is the i.i.d. sequence given by
ap = 727"7 b, 1= %(esp(t) _ 1)2(1 _ ,an)Z_

Recursive systems of this kind have been studied by W. Vervaat [19] and A. Brandt
[2], who show that if

2) —oco<Elogla| <0 and  H(log|hi)* < oo,
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or if IP(a; = 0) > 0, then there is a unique stationary process {S(n) : n € Z}
satisfying equations (1), given by

S(n) = an_k_lan_k S Gp_1 nezxZ
k=0

(here we assume that {a,} and {b,} have been extended to become integer-indexed
sequences). If {S’(n) : n € Z} is any other solution of (1) then |S'(n) — S(n)| tends
to zero almost surely in n, and the distribution of S’(n) converges to that of S(0).
Conditions (2) are easily verified for the particular case at hand, and we conclude
that e(n) converges almost surely to €0, := /S(0). If y, and p; denote, respectively,

the expected values of a; and b;:

)\7215
= E = —
Ha a1 )\—210g’7’
q 2/\’)’t /\’)’2t
= TEb; = 2(eP® _1)2 (1 =
Ho ! 2(6 ) A—10g7+)\—210g7 ’

the IEe(n) and IEe, satisfy

1—pp)?
Ee(n) < /IEe2(n) = { wp
1- Ha

and

Eemgﬂmz(&);.

1—p,
As ~! increases from zero to one, the right-hand side of this last inequality decreases
from (e*P(Y) —1)4/q/2 to zero. Thus the limiting value of the error term can again be

made as small as desired, at the cost of slower convergence.

3. Effective Bandwidth of Aggregate Traffic

We now assume that we are given separate data for each of several independent
traffic sources which share a link, our task being to estimate the effective bandwidth
of the aggregate link traffic. Let X;(¢) be a random variable representing the quantity
of work generated by source I = 1,..., L during an interval of length ¢, and let p;(t)

be a known upper bound for X;(t), obtained in the same manner as p(t) in section
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2. We assume that {X;(t),  =1,...,L}, are independent random variables, so that
the effective bandwidth o(s,t) of the sum X;(t) + ...+ X (t) satisfies

L
O'(S,t) = ZO’[(S,t),
=1

where

1
o1(s,t) == v log IEe*Xt(t)

is the effective bandwidth of source I.
Let ¢; be the value of the moment generating function of X;(¢t) at s. Given ny
independent observations X;(t,1),...,X;(¢,n;) of X;(t), and a weighting function

w(-,my), we form the estimate

n

di(m) == sz(k,nl)esxz(t,k)‘

k=1
As before, ¢;(n;) is an unbiased estimate of ¢ so long as the weights w(-,n;) are
chosen appropriately. Let ¢ > 0 be given, and let q1,...,qr be positive numbers
satisfying

et 4. 4eT =71,

For each [ define

2

ei(ny) = l%(espt(t) _ 1)2 Zt w2(k, nl)]
k=1

From the results of the last section we know that a;(n;)

and G;(n;), defined by

ai(ny)

Bi(m)

1

o 10g<[¢z(nz) —ea(m)]v 1),

1 n(t)
p 10g<[¢l(nl) + El(nl)]) N=
bracket the value of o;(s,t) with probability at least 1 — e~ %.

Proposition 2 Set

a = og(n)+...+ar(ng),
B = Bi(ni)+...+Br(nL).

Then a < o(s,t) < B holds with probability ot least 1 — e 1.
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Proof. o(s,t) < a or o(s,t) > 8 holds only if g;(s,t) < a;(ng) or a;(s,t) > Bi(n)

for some [. Therefore

P(o(s,t) < aor a(s,t) > )
L

< Y P(ails,t) < culm) or ai(s, 1) > cu(m))
=1

L
E e =e71.
=1

IN

As an illustration let us take e = e~ /L for each | and compare proposition 2

with the results of section 2. The error terms are given by

=

_|a+logL

ei(ng) 2

mni 2
(eP (D) — 1)2 sz(k,m) .
k=1

Note that the upper estimate 3;(n;) of the effective bandwidth of source I satisfies

e1(m)

i) < == oglgu(m) + ex(m)] < = log i) + steu(ni)’

and hence

ei(ng)

é1(m) '

B=Biln) + ...+ u(ns) < ;zljlog@(m) np >

For large L the sum of the error terms on the right-hand side of this inequality grows
proportionately with L+/log L. For comparison, if the aggregate traffic were treated
as a single traffic stream, the results of the previous section would yield an error term
proportional to e*P() with p(t) = py (¢)+. ..+ pr(t). Thus the estimation error would
grow approximately exponentially in the number of sources.

Figures 3 and 4 depict results obtained by applying this procedure to an aggregate
of 100 Markovian sources of the type described in section 2. The weighting function
w(k,n) = 1/n was used to make the estimates in figure 3, while those of figure 4 were
made using an auto-regressive filter. The results are seen to be qualitively very similar
to the corresponding single source results, indicating little or no loss of precision due

to aggregation.
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Figure 3. Estimated 1—107° confidence intervals for the effective bandwidth of an aggregate

of 100 sources.

Other choices for the coefficients ¢; are also possible; for example, we may wish
to choose smaller ¢; where n; is small, or where p;(t) is large. Using the weighting

function w(k,n;) = 1/ny, k =1,... ,ny, the error g(n;) is given by

ei(m) = (@) — 1), /51
l

This can be made independent of [ by choosing choosing

- cny
U= (eom® —1)2

where ¢ satisfies
L
(3) Zexp(—cm/(es”’(t) —-1) =e"
=1
Then
ei(m) = /¢/2

foreach !l =1,..., L. Thus the error terms are equalised by allowing more latitude to
sources with higher peak rates, or from which fewer observations have been obtained.

The transcendental equation (3) must however be solved numerically.
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Figure 4. Estimated 1—107° confidence intervals for the effective bandwidth of an aggregate

of 100 sources, made using a first-order autoregressive filter.
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