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Abstract

The increased availability and use of sensor data in environmental monitoring has led to

a vastly increased demand for tools that can process, analyze and report on important

environmental events in real or near-real time. These data have special characteristics,

being high dimensional, recorded in space and time, and with potential missing values

/ sparsity issues. This thesis concerns itself with the building of statistical and machine

learning methods for data of this type. Statistical methods can play an important role

in inferring valuable features of the latent data-generating processes of the sensor data,

while properly taking into account the uncertainty. Machine learning methods can play a

significant role by offering an automatic framework to unearth complex patterns underly-

ing the data, being scalable and dealing with challenges such as sparsity in an innovative

way.

This dissertation contributes to our understanding of how to monitor the environment,

focusing on Dublin Bay as a proof of concept. It examines sea-level rise, water turbidity,

and how to manage large environmental datasets that change over time and space with

missing values. Firstly, it updates us on Dublin’s sea level record to produce a processed

data product from 1938 to 2016. It utilizes a new statistical approach to make better

estimates of average sea levels and finds that sea levels have been rising more quickly in

recent times. Then it investigates how human activities, such as dredging and dumping,

affect water turbidity in Dublin Bay. It employs a new statistical model called VARICH to

model the variability in water turbidity over two years and at different locations, finding

that weather conditions like wind speed significantly impact most locations. Meanwhile,

dredging operations show lower impacts, and dumping operations have a significant im-

pact only at greater water depths. Lastly, the dissertation addresses the challenge of

missing values in large-scale environmental datasets by proposing two innovative models

for multivariate spatio-temporal forecasting that offer competitive performance without

the need for imputation. These models are a transformer-based model, SERT, and a

simpler, interpretable model, SST-ANN.

Altogether, the chapters of this dissertation provide new insights into environmental

trends and offer novel methods for analysing environmental data. This is all taking

place against the backdrop of significant global issues such as climate change, loss of
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biodiversity, and increasing pollution. This thesis stands as an example of how data

analysis is advancing in the field of environmental monitoring.
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1
Introduction

1.1 Motivation

My thesis focuses on developing analytical approaches for analysing multidimensional data

relevant to the study of coastal transformation, with a particular emphasis on Dublin Bay

as a proof of concept. Accordingly, I will discuss the challenges I encountered in analysing

environmental data pertaining to coastal transformation and the strategies I employed to

address them.

Coastal regions worldwide represent a dynamic interface where the land meets the

sea, providing diverse ecosystems and vital resources, as well as offering habitation and

recreational space for a significant portion of the global population. Nonetheless, these

vital zones are presently undergoing unprecedented transformation due to various human

and natural influences [12]. Factors such as sea level rise, alterations in water turbidity,

and shifts in other water quality variables have a consequential impact on the structure

and function of coastal environments [94].

The study of sea level rise is indispensable in understanding coastal transformation, as

this natural phenomenon exacerbates coastal erosion, inundation, and saltwater intrusion

[96]. These effects often lead to the displacement of human populations and detrimental

impacts on biodiversity, thereby having significant socio-economic and ecological implica-

tions [95]. Current evidence suggests that human-induced climate change is accelerating

the rate of sea-level rise, making this area of study ever more crucial [119].

Water turbidity, often influenced by land-based activities such as deforestation and

urbanisation, is another critical factor in coastal transformation. Higher turbidity can

lead to significant alterations in light penetration, impeding photosynthetic processes

and altering species composition in aquatic ecosystems [34]. Further, turbidity can also

influence the nature of sediment deposition, thereby affecting the morphodynamics of

coastal systems [131].

Moreover, changes in other water quality variables, such as temperature, pH, dissolved

1



1.2. INTRODUCTION TO THE PREDICT PROJECT

oxygen, and nutrient concentrations, can impact the biological and physical processes in

coastal areas. Such alterations can lead to coral bleaching, harmful algal blooms, and

shifts in species distribution, which can have extensive ecological and economic implica-

tions [44].

Thus the study of coastal transformation is critical for establishing effective adap-

tive and mitigation strategies, providing the capacity to predict, respond to, and manage

these changes. A comprehensive understanding of the complex interaction of human and

natural influences on coastal transformation offers a foundation for sustainable coastal

management practices and policies [126]. By studying the factors driving coastal trans-

formation, including sea level rise, changes in water turbidity, and shifts in other water

quality variables, we can better understand and predict future changes, mitigate adverse

impacts, and exploit potential opportunities. As coastal areas continue to be hotspots for

population and economic growth, ensuring their resilience becomes increasingly urgent

[94]. With the continued advancement in scientific research and understanding of these

areas, we are better equipped to face the challenges and opportunities that the future

may bring to our coastal regions.

1.2 Introduction to the Predict Project

My PhD was completed as part of the “Predict” project (https://www.dcu.ie/predict)

which integrates multidisciplinary geoscientific data to monitor and predict coastal change,

with a proof of concept in Dublin Bay. The primary objective of the project is to coor-

dinate a comprehensive program of coastal ocean observations. The goal is to integrate

these datasets to generate models that can be used to predict environmental change.

These models will contribute to future planning in a diversity of areas such as coastal

mapping, flooding prediction, marine habitats and fisheries, climate change, environmen-

tal protection and policy. The project aims to provide an experimental proof-of-concept

in Dublin Bay that can be extrapolated to a range of environments.

My main role in the project was to analyse in-situ data and build statistical and ma-

chine learning models to predict the coastal change and understand its potential drivers.

In this chapter, I will introduce the data I worked with and the statistical and machine

learning concepts that I used to analyse the data. The details of my data analyses and my

developed methods are explained in Chapters 2-4. I undertook a three-stage approach to

analysing the data collected and generated through the Predict project. In the first stage

I analysed sea level data from tide gauges situated around the Dublin coastline. In the

second stage I analysed data from buoys recording turbidity measurements in the bay. In

the third stage, I analysed various environmental variables’ data using advanced machine

learning techniques. Below, I will provide an overview of the topics covered in the thesis

2
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1.2. INTRODUCTION TO THE PREDICT PROJECT

and their importance.

1.2.1 Sea Level Analysis

Sea level measurement is a critical aspect of oceanographic studies, climate change re-

search, coastal engineering, and navigational safety. Changes in sea level can lead to

coastal erosion, increased flooding, and the loss of habitat for plants, fish, and birds.

Monitoring and understanding sea level changes can help in the development of mitiga-

tion strategies, adaptation policies, and the effective management of coastal resources.

Traditionally, one of the most widely used tools for this purpose is the tide gauge. A

tide gauge, shown in Figure 1.1, constituting an integral element of contemporary water

level monitoring stations, is equipped with sensors designed to perpetually measure the

elevation of the surrounding water level.

Figure 1.1: A Coastal Tidal Gauge Station Equipped with Solar-Powered Telemetry -
Instrumented to collect high-precision tidal data, this station provides vital information
for monitoring sea-level changes and coastal management.

Tide gauge data serves as a significant measure of the development and effects of

global climate change, encompassing an array of local and regional events associated

with decadal climate fluctuations, tides, storm surges, tsunamis, swells, and other coastal

activities. These data are employed to confirm ocean models and to identify inaccuracies

and deviations in satellite altimetry. The historical records of tide gauge data enable

scientists to calculate the global rise in sea levels since the industrial revolution, acting

3



1.2. INTRODUCTION TO THE PREDICT PROJECT

as a robust sign of both the course and the consequences of human-induced climate

change [3]. The importance of this information is manifest in various coastal operations

such as ensuring safe navigation, endorsing solid engineering practices, and contributing

to habitat maintenance and conservation [4]. However, it is important to note that tide

gauges are prone to malfunctioning, which could result in erroneous measurements. Hence,

it is important to conduct data quality checks before using the collected data for further

analyses.

In Chapter 2, I explain my work on collating sea level tide gauge data, conducting data

quality checks using data visualisations and statistical models, correcting for measurement

errors in the data, and finally analysing the patterns of sea level data fluctuations and

estimating the rate of sea level rise in Dublin Bay.

1.2.2 Turbidity Analysis

Turbidity refers to the cloudiness or haziness of a fluid caused by large numbers of in-

dividual particles that are generally invisible to the naked eye. This physical property,

typical in liquids such as water, is an important parameter for environmental science.

The phenomenon of turbidity is primarily attributed to suspended solids, colloidal

particles, and dissolved colored material that scatter and absorb light rather than trans-

mitting it. These materials can include silt, clay, microorganisms, organic and inorganic

matter, and other microscopic substances [34].

Measurement of turbidity is conducted through several standardized methods that

commonly involve the use of a nephelometer or turbidimeter. A nephelometer measures

the intensity of scattered light at a specific angle to the incident light beam, while a

turbidimeter measures the attenuation of a light beam passed through the liquid. The re-

sults are typically expressed in nephelometric turbidity units (NTU) or formazin turbidity

units (FTU) [80].

Turbidity is critical to study for various reasons. In environmental contexts, it provides

insight into the concentration of particulate matter in natural waters, which can have

implications for aquatic life and ecosystem health. Elevated turbidity levels can hinder

the growth of aquatic plants by reducing sunlight penetration and can affect the gill

function in fish and other aquatic organisms. In water treatment and supply, turbidity is

used as an indicator of the effectiveness of filtration processes, with higher turbidity often

indicating the presence of pathogens or contaminants [120].

Turbidity is a complex field with important real-world applications. It’s crucial to

have precise and consistent ways to measure it in order to protect the environment and

public health. Keeping turbidity in check is key to preserving the equilibrium of water-

based habitats and ensuring the safety of our water resources. Thus, persistent study and

4
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observation of turbidity are imperative for managing these varied and critical issues.

Chapter 3 delves into my work on analysing turbidity level data collected by multiple

buoys in Dublin Bay. It explains the statistical models I developed to estimate the effects

of dredging and dumping operations, wind speed, and the interaction between turbidity

levels at different locations in the bay.

1.2.3 Environmental Data Analysis

Environmental variables such as salinity, water temperature, dissolved oxygen, precipita-

tion, and wind speed are fundamental components that shape the dynamics and health

of both aquatic and terrestrial ecosystems. Collectively, these factors play a critical role

in regulating biological processes, chemical reactions, and physical properties of the envi-

ronment.

• Salinity: The concentration of dissolved salts in water, often measured in parts per

thousand (ppt), is a critical water quality indicator [88]. It affects the distribution

of aquatic organisms and plays a key role in the functioning of coastal and marine

ecosystems [116].

• Water Temperature: A vital physical property, water temperature influences

metabolic rates of organisms, solubility of gases (including oxygen), and water den-

sity. Changes in water temperature can have far-reaching impacts on biological

activities and ecosystem structure [16].

• Dissolved Oxygen: The concentration of oxygen dissolved in water is essential

for the respiration of most aquatic organisms. Variations in dissolved oxygen levels

can cause stress or mortality in fish and other aerobic organisms and can influence

nutrient cycles [101].

• Precipitation: As a primary source of freshwater, precipitation affects soil mois-

ture, groundwater recharge, and river flow. It impacts the distribution of biomes

and influences patterns of plant growth and animal behavior [138].

• Wind Speed: Wind plays a multifaceted role in environmental processes. It influ-

ences weather patterns, water currents, and wave actions. Wind speed affects the

rate of evaporation, heat transfer, and the dispersal of pollutants and seeds [53, 6].

These environmental variables interact in complex ways to influence ecosystem pro-

cesses and functions. For example, water temperature and salinity can affect dissolved

oxygen levels, which in turn influence the biological activity within a water body. Simi-

larly, wind speed can impact both evaporation rates and precipitation patterns, thereby

affecting water availability and quality.
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1.2. INTRODUCTION TO THE PREDICT PROJECT

Understanding these environmental variables and their interactions is paramount in

the context of climate change, natural resource management, conservation, and public

health. They provide vital information for modeling and predicting ecological responses

to changes in environmental conditions, assisting in the planning and implementation

of mitigation and adaptation strategies. The cumulative study of these variables facil-

itates informed decision-making that contributes to sustainable development and envi-

ronmental stewardship. Whether in the context of agriculture, urban planning, fisheries

management, or water resource management, a comprehensive understanding of these

environmental factors is instrumental in shaping a resilient and sustainable future.

In the Predict Project, we collected data on the aforementioned environmental vari-

ables through environmental monitoring buoys placed in Dublin Bay. Figure 1.2 shows

an image of one of the buoys being prepared for deployment in the water.

Figure 1.2: Dublin Bay data buoy.

In Chapter 4, I will introduce the details of environmental buoy dataset, which collects

data on many variables, including those previously mentioned. I will also detail the

methodology I used to analyse the data. Specifically, this chapter will delve into the

machine learning approach I developed for efficient predictive modeling, even when faced

with significant gaps in the sensor data.
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1.3. RELEVANT STATISTICAL AND MACHINE LEARNING METHODS

1.3 Relevant Statistical and Machine Learning Methods

Throughout this thesis, I employ an array of statistical and machine learning methods,

with the overarching goal of augmenting and enhancing the existing methodologies. Below

I provide a succinct exposition of each method, together with its fundamental character-

istics. In the later chapters I provide more complete descriptions including algebraic

descriptions of the fitted models.

1.3.1 Statistical Methods

The use of statistical methods in the study of coastal transformation and environmental

monitoring has been a cornerstone of research in these fields [89]. Regression analysis,

time series analysis, spatial statistics, and multivariate analysis are among the most widely

used statistical techniques in this area (for example see [139, 55]).

Regression and time series models allow researchers to understand and forecast the

dynamic behavior of coastal systems [8]. Such models identify relationships between

dependent and independent variables, and help to understand trends and cycles in data

collected over time.

Spatial statistic models enable researchers to study and interpret spatial patterns and

variations in coastal transformation phenomena, including sea-level rise and water tur-

bidity changes. Multivariate analysis helps to understand the complex interrelationships

among different environmental variables affecting coastal systems [123].

Linear Regression Analysis

In the initial stages of my research, I employed multiple linear regression modelling [7]

to analyse in-situ measurements of sea level (Chapter 2). The multiple linear regression

model facilitates the modeling of the relationship between a response variable and multiple

predictors. The rationale behind adopting this model is to rectify the bias in mean sea

level measurements by utilising low water and lunar activities as predictors within a

specific timeframe, while leveraging the relationship established during another period of

time, in which the mean sea level measurements were deemed unbiased. Moreover, after

correcting for bias in the sea level measurements, I employed a multiple linear regression

to estimate the rate of sea level rise in Dublin Bay.

Change-point Regression Analysis

The change-point regression model [25] characterises a time series by dividing it into

segments with linear behavior and determines the points at which shifts in data trends

transpire. Within the change-point model, estimates are derived for the change point(s),
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representing the timing(s) of these shifts. The motivation behind employing this model

is to identify the timeframe in which a decline in the congruity between the sea level

measurements at Dublin port and those from neighboring locations occurs, potentially

attributable to sensor malfunctioning that introduces bias into the measurement process.

Autoregression Analysis

Autoregression (AR) is a statistical model extensively used in time series analysis where

a variable is predicted using its own past values [107]. An important extension to the

AR model is the Autoregressive Conditional Heteroskedasticity (ARCH) framework, in-

troduced by [49], to model and forecast volatility in financial returns. The ARCH model

assumes that the variance of the current error term or the current volatility is a function

of the actual sizes of the error terms in previous periods. It effectively addresses the

common stylised fact of heteroskedasticity in many real-world time series data.

Vector Autoregression (VAR) is an extension of the AR model utilised predominantly

in econometrics for forecasting multivariate time series data [86]. The underlying premise

of VAR is the principle that each variable in the system is a noisy linear function of the past

lags of itself and the past lags of the other variables in the system [115]. This multifaceted

approach enables the VAR model to encapsulate the dynamic interrelationships among

the variables, thus providing a comprehensive tool for multivariate time series analysis.

In my research, I integrated the structure of the ARCH model with that of the VAR

model to effectively model spatiotemporal time series of turbidity. The primary objective

was to estimate the impacts of dredging and dumping operations, along with the influence

of wind speed, on turbidity levels.

Bayesian Framework

Where statistical models are employed in this thesis, they are fitted using a Bayesian infer-

ence framework. The Bayesian approach stands as a cornerstone in statistical modeling,

primarily due to its holistic methodology of incorporating prior knowledge and updating

it with observed data. Mathematically, Bayes’ theorem can be expressed as:

P (θ|Y ) =
P (θ) × P (Y |θ)

P (Y )

where θ are parameters and Y are data, either of which could be discrete or continu-

ous. Since this thesis primarily focuses on continuous parameters and data, the following

definitions pertain to that scenario:

• P (θ|Y ) is the posterior density of the parameters given the data (our updated belief

after observing data).

8



1.3. RELEVANT STATISTICAL AND MACHINE LEARNING METHODS

• P (Y |θ) is the likelihood function (proportional to the probability density function

of observing data Y conditioned on parameters θ).

• P (θ) is the prior probability density function (reflects our initial belief about θ

before observing data).

• P (Y ) is the marginal likelihood, defined as P (Y ) =
∫
P (θ)P (Y | θ)dθ (probability

of observing data Y marginalised over the prior distribution of θ).

The final term, P (Y ), can usually be ignored as a proportionality constant because it

does not depend on θ through marginalisation. As a result, we can write:

p(θ | y) ∝ p(θ)p(y | θ).

In the Predict project’s context, the Bayesian approach was vital. The prior knowl-

edge, potentially based on historical data or expert opinions, was updated using fresh

in-situ data. For example, in Chapter 3, I explain how we used the prior knowledge about

the range of turbidity values to infer the missing observations in the turbidity time series.

Inference using MCMC In the Bayesian framework, a major challenge is computing

the posterior distribution, particularly in complex models. This difficulty arises because

the denominator P (Y ) in Bayes’ theorem involves an integral over the entire parameter

space, which is often analytically intractable due to the model’s complexity. To address

this, Markov Chain Monte Carlo (MCMC) methods, such as the Metropolis-Hastings

algorithm, are commonly used. These methods are advantageous as they do not require

the calculation of the normalizing constant in the posterior distribution. Instead, they

operate by ensuring the posterior can be evaluated up to a constant of proportionality.

MCMC works by constructing a Markov chain with a stationary distribution that

matches the target posterior distribution. After a warm-up period, and conditional on

some assumptions [21, Chapter 1], we can obtain a series of samples that are from the

true posterior distribution. By using these samples, we can infer properties about the

distribution, such as its mean, variance, or other moments [67].

A common MCMC method is the Metropolis-Hastings algorithm, which is popular for

its ability to approximate the posterior distribution by generating a sequence of sample

values from a probability density function for which direct sampling is difficult. How-

ever, Metropolis-Hastings has some limitations such as the struggle with sampling from

correlated parameters [108]. More advanced MCMC techniques like Gibbs sampling and

Hamiltonian Monte Carlo (HMC) address some of the limitations of the basic Metropolis-

Hastings.
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Gibbs Sampling is particularly useful in scenarios where sampling from the full joint

distribution is challenging, but sampling from conditional distributions is feasible. It

works by sequentially sampling each variable in the distribution while holding all other

variables fixed [58]. This method is highly efficient in high-dimensional spaces where

the conditional distributions are easier to handle. HMC, on the other hand, introduces

concepts from physics to improve the sampling efficiency. It utilizes the Hamiltonian dy-

namics to propose new states in the Markov chain, which allows it to move through the

parameter space more efficiently than traditional random-walk strategies. By incorporat-

ing information about the gradient of the log-posterior, HMC can take larger steps in the

parameter space and explore it more thoroughly, making it particularly effective for com-

plex models with high-dimensional parameters [13]. This leads to faster convergence and

better exploration of the posterior distribution, especially in cases where other MCMC

methods struggle.

In my work, I relied on two packages in the R programming language, namely: JAGS

[102], which uses Gibbs sampling, and Stan [26], which uses HMC, to conduct MCMC

and infer the parameters of my models. This enabled me to fit a wider range of sta-

tistical models to the data, with relatively less time spent tuning algorithms to ensure

computational feasibility.

Convergence Assessment in MCMC Methods Assessing convergence in MCMC

is crucial to ensure the reliability of the posterior distribution estimates. Convergence

diagnostics involve checking whether the Markov chain has reached its stationary dis-

tribution. Common strategies include analyzing multiple chains with different starting

points and monitoring within- and between-chain variances, seeking well-mixed chains as

evidence of convergence. The Gelman-Rubin diagnostic, also known as the R̂ value, is a

popular method for this purpose. It compares the variance between multiple chains to the

variance within each chain for an estimand θ. Specifically, R̂ is calculated as

√
V̂
W , where

V̂ is the marginal posterior variance of the estimand, given by V̂ = N−1
N W + B

N , with W

being the within-chain variance and B representing the between-chain variance. Here, B

is calculated as N
M−1

∑M
m=1(θ̄m − θ̄)2, and W as 1

M(N−1)

∑M
m=1

∑N
n=1(θnm − θ̄m)2, where

θnm is the nth draw from the mth chain, θ̄m is the mean of the mth chain, θ̄ is the mean

of the means of the chains, M is the number of chains, and N is the number of draws per

chain [59, p. 282-285].

An important concern regarding the quality of MCMC samples is the impact of serial

correlation, which can lead to an overestimation of the sample size and, consequently,

the precision of estimates. To address this, the concept of effective sample size (ESS) is

used, which adjusts the number of drawn samples by accounting for correlation. ESS is

estimated as ESS = MN
1+2

∑T
t=1 ρ̂t

, where ρt is the autocorrelation at lag t. To calculate ρt, we
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first compute the total variance using the variance estimate from the marginal posterior

variance (V̂ ). Then, for each lag t, we compute the variogram Vt using the formula

Vt = 1
M(N−t)

∑M
m=1

∑N
n=t+1(θnm − θn−t,j)

2, and estimate ρt as ρ̂t = 1 − Vt/2V̂ . The sum

of autocorrelations is then computed, summing from lag 0 until the sum of estimates for

two successive lags becomes negative. This sum is used in the ESS formula, providing a

more accurate measure of the number of independent draws from the posterior. In general,

lower R̂ values (close to 1) and higher ESS values are good indications of convergence and

efficiency of MCMC methods. For many purposes, R̂ values below 1.1 and ESS of 100 are

considered sufficient [59, p. 286-288].

1.3.2 Machine Learning Methods

Despite the usefulness of statistical approaches, they have certain limitations. They often

assume linear relationships and stationary processes, which might not be representative of

complex and dynamic coastal systems. Furthermore, developing statistical models, which

involves carefully thinking about the data generating processes, can be very challenging,

especially when dealing with problems that include multi-scale and non-linear interactions.

These interactions are often intrinsic to the functioning and response of these systems.

On the other hand, machine learning (ML) models can aid in deciphering the complex

patterns underlying the data automatically. Recent advancements in computational power

and data availability have facilitated the use of ML methods in coastal transformation

and environmental monitoring research. ML techniques such as decision trees, random

forests, neural networks, and deep learning algorithms have been employed to handle

high-dimensional, non-linear, and complex datasets [41].

These methods have shown potential in predicting coastal transformation phenomena

[61]. For instance, deep learning models have been used to analyse satellite imagery for

the detection and prediction of coastlines and shorelines which are subject to changes due

to factors such as sea level rise [32]. Deep learning models have demonstrated significant

potential in predicting sea-level rise and analysing its impacts [50].

ML methods are known to be adept at handling complex and non-linear relationships.

However, they are often seen as ‘black boxes’ due to their lack of transparency and

interpretability. The accuracy of ML models depends largely on the quality and quantity

of the input data, making them prone to issues like overfitting and biases in the presence

of noisy data.

Artificial Neural Networks

Artificial Neural Networks (ANNs) constitute a category of machine learning models

inspired by biological neural networks and are particularly effective in addressing non-
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linear and complex problems [112]. ANNs employ interconnected layers of nodes, or

“neurons”, that process and transmit information, much like neurons in a biological brain.

Each neuron in the network takes a set of inputs, applies a weighted function to these

inputs, and produces an output. ANNs can be expressed mathematically as a series of

functions, typically linear combinations followed by non-linear activations. In its simplest

form, the output of a neuron y can be described as a function f of the weighted sum of

its inputs x, plus a bias b. Mathematically, this is often represented as:

y = f

(∑
i

(wi · xi) + b

)
Here, wi represents the weights, which determine the strength and sign of the input,

and b is the bias term. The function f is a non-linear activation function like the sig-

moid, hyperbolic tangent, or ReLU function, which introduces non-linear properties to

the model.

In a multi-layered ANN, the output of one layer of neurons becomes the input for the

next, allowing the network to learn complex patterns:

y = fn(...f2(f1(X ·W1 + b1) ·W2 + b2)... ·Wn + bn)

Here, X is the input vector, W1,W2, ...,Wn are the weight matrices for each layer,

b1,b2, ...,bn are the biases, and f1, f2, ..., fn are the activation functions for each layer

respectively.

Through a process called “training”, ANNs adjust their weights and biases to minimize

the difference between the actual output and the desired output for a set of training data.

This process typically involves a method known as backpropagation [110], combined with

an optimization algorithm like gradient descent [109]. The network learns by iteratively

updating its weights to reduce the error, improving its predictions over time.

ANNs in general, and deep learning models in particular, have demonstrated superior

capabilities in diverse fields such as image and speech recognition and natural language

processing [81]. However, despite their strengths, ANNs can sometimes suffer from issues

such as overfitting and lack of interpretability. My research made use of an ANN to

learn from a large dataset of multivariate time series to do spatiotemporal forecasting

and extended it to provide interpretable insights into the importance of the predictors

(Chapter 4).

Transformers

The transformer is a type of deep learning model, which is composed of artificial neural

networks with many layers of processing units, designed to learn representations of data
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with multiple levels of abstraction. Introduced in the paper “Attention is All You Need”

by [128] in 2017, this architecture revolutionized the field of Natural Language Processing

(NLP) by utilizing a novel “multi-head self-attention” mechanism. This mechanism allows

the model to capture dependencies between words in a sentence without being restricted

by their positional distance, a substantial advantage over previous models that relied on

recurrence and convolutions.

The core of the transformer consists of multi-head self-attention mechanisms and

feed-forward networks. These components work together to enable the model to process

different parts of an input sequence simultaneously, which not only improves efficiency

but also effectively handles long-range dependencies in sequences. Because of this par-

allelization capability, transformers have laid the groundwork for state-of-the-art models

like GPT-3 from OpenAI and BERT from Google [22, 38]. These models excel in var-

ious NLP tasks such as translation, question-answering, summarization, and language

generation, showcasing remarkable advancements in the field.

Transformers are composed of two main parts: an encoder and a decoder. The encoder

is used to process the input sequence, while the decoder is employed in generating an out-

put sequence, making the transformer architecture particularly well-suited for sequence-

to-sequence tasks like machine translation. However, in certain applications such as time

series prediction or text classification, only the encoder part may be utilized.

The self-attention mechanism is a defining feature of the transformer, as it enables

each item in the input sequence to weigh the relevance of other parts of the sequence

dynamically. This characteristic allows the transformer to focus on different elements of

the input, ensuring that the model captures dependencies no matter how far apart they

are in the sequence.

In addition to its applications in NLP, the transformer structure has been adapted

for use in other domains, such as spatiotemporal forecasting [64]. By leveraging the

transformer’s architecture, new deep learning models can be developed to forecast complex

patterns over both space and time, underscoring the transformer’s versatility and power

in handling a wide array of sequence-based problems.

Application of Transformers to Time Series Data

One of the traditional challenges with time series data is the capture of long-term depen-

dencies. While recurrent neural networks (RNNs) and their variants, like long short-term

memory networks (LSTMs), have been used for this purpose, they often face challenges

in capturing very long-term dependencies [113, 104].

Transformers, with their self-attention mechanism, overcome this challenge. They can

give varying attention scores to different time points in the past, making them adept at

13



1.3. RELEVANT STATISTICAL AND MACHINE LEARNING METHODS

understanding both recent and older historical data’s relevance in predicting future oc-

currences. It is important to note, however, that this capability incurs a computational

cost. The self-attention mechanism in transformers has a time and space complexity that

is quadratic in the length of the input sequence [77]. Additionally, unlike RNNs, trans-

formers are limited by the fixed length of their input sequence. They can learn long-range

dependencies within this sequence, but their capability to do so is bounded by this length.

This limitation can be mitigated by increasing the length of the sequence, though this

comes at the cost of increased computational demand. Despite these, the computations

can be efficiently parallelized on modern GPUs. This is a significant advantage over

recurrent methods, which typically require sequential processing.

For environmental time series data, as in the Predict project, transformers’ capabilities

are invaluable. Environmental factors often have intricate relationships that play out over

varying time scales. For instance, a sudden change in one factor might influence another

factor hours or even days later. Transformers can capture these relationships efficiently.

The Predict project dealt with multivariate environmental time series data, where

multiple environmental factors are monitored over time. Transformers are particularly

well-suited for this kind of data. Given their architecture, transformers can not only

capture temporal relationships (how one factor evolves over time) but also cross-sectional

relationships (how different factors influence each other at a given time). This dual

capability ensures that predictions made are based on a holistic understanding of the en-

vironment, accounting for the interplay of various factors. In the project, this would mean

that while predicting coastal changes, the transformer model would consider the combined

influence of factors like sea level, turbidity, temperature, and others, understanding how

a change in one might ripple through and influence others.

1.3.3 Summary

In summary, both statistical and machine learning methods have significant roles in study-

ing coastal transformation and environmental monitoring. While statistical methods pro-

vide robustness and interpretability, ML methods offer flexibility and adaptability in han-

dling complex, large high-dimensional data. Therefore, the choice between these methods

should be guided by the specific objectives of the research, the nature of the dataset, and

the resources available. An integrative approach, utilizing both statistical and machine

learning methods, can potentially offer the most comprehensive understanding of coastal

transformations. Such an approach can take advantage of the interpretability and robust-

ness of statistical models while harnessing the power of machine learning to handle high

dimensional data and complex relationships. Thus, employing a combination of these

techniques may result in more effective monitoring and prediction of coastal transforma-
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tions, helping to inform more sustainable management practices and policy decisions in

the face of changing climate and human impacts.

1.4 Contributions of this thesis

This thesis makes contributions to the fields of environmental data analysis, statistical

modelling, and spatio-temporal forecasting, particularly concerning the marine environ-

ment of Dublin Bay, Ireland. The thesis’s contributions are articulated through three

published/submitted papers, each of which introduces new models, methods, or applica-

tions.

The first significant contribution of this thesis involves the comprehensive processing

and analysis of tide gauge data for Dublin Port. This includes the collation of data

from multiple sources, rigorous quality checks, and bias detection and correction via

change point and multiple linear regression models. Through this rigorous methodology,

an accurate estimation of the rate of sea level rise in Dublin Bay is achieved, which

represents a critical contribution to our understanding of local sea level changes under

climate change scenarios.

The second contribution lies in the statistical analysis and understanding of another

critical environmental variable, turbidity in Dublin Bay. Here, this thesis introduces

innovative statistical models, namely Vector Auto-Regressive Conditional Heteroskedas-

ticity (VARCH) and Vector Auto-Regressive Integrated Conditional Heteroskedasticity

(VARICH). These models present a novel way to measure the effects of multiple time

series on each other while taking into account known volatility changes in the time series.

The Bayesian modelling, combined with VAR and ARCH structures, makes the VARICH

model a flexible tool for modelling a wide array of real-world random processes where

spatial and temporal aspects play significant roles. The models also provide a means for

quantifying uncertainty in both fixed effects and posterior predictions of the time series,

even while imputing missing values. The main findings on the estimated effects of dredg-

ing and dumping operations on turbidity levels in Dublin Bay provide valuable insights

for environmental management and policy-making.

The third and final contribution of this thesis lies in the development of two novel

models for spatio-temporal forecasting: SERT and SST-ANN. SERT, based on the trans-

former paradigm, and SST-ANN, an ANN model combined with triplet encoding, provide

new tools for this complex task. Additionally, the thesis introduces the use of STraTS

[125], a model initially designed for clinical time series classification, and extends it for use

in spatio-temporal forecasting. All these methods are particularly advantageous because

they do not require data aggregation or missing value imputation, thus circumventing

problems introduced by such techniques. Evaluations of these models on simulated and
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real-world environmental datasets from Dublin Bay demonstrated their robust perfor-

mance, with SERT outperforming other models in 7-hour ahead forecasting for most vari-

ables. Furthermore, SST-ANN was used to interpret the model’s predictions, providing

an additional tool for understanding and leveraging spatio-temporal forecasts.

In conclusion, this thesis significantly advances our understanding of Dublin Bay’s

marine environment and provides new statistical and machine learning tools that can

be applied to similar spatio-temporal datasets. By doing so, it contributes to improving

our ability to respond to environmental changes and challenges in Dublin Bay and other

similar marine environments.
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2
A newly reconciled data set for identifying sea level

rise and variability in Dublin Bay

We provide an updated sea level dataset for Dublin for the period 1938–2016 at yearly

resolution. Using a newly collated sea level record for Dublin Port, as well as two nearby

tide gauges at Arklow and Howth Harbour, we perform data quality checks and calibration

of the Dublin Port record by adjusting the biased high water level measurements that affect

the overall calculation of mean sea level (MSL). To correct these MSL values, we use a

novel Bayesian linear regression that includes the mean low water values as a predictor

in the model. We validate the re-created MSL dataset and show its consistency with other

nearby tide gauge datasets. Using our new corrected dataset, we estimate a rate of sea level

rise of 1.1mmyr−1 during 1953–2016 (95% credible interval from 0.6 to 1.6mmyr−1),

and a rate of 7mmyr−1 during 1997–2016 (95% credible interval from 5 to 8.8mmyr−1).

The overall sea level rise is in line with expected trends, but large multidecadal variability

has led to higher rates of rise in recent years.
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2.1 Introduction

The global mean sea level (MSL) is rising due to anthropogenic climate change [40, 87],

which is defined as the alteration of the Earth’s climate system due to human activities.

Understanding regional sea level trends is crucial for local and regional adaptation and

the development of effective climate action plans. In Ireland, Dublin is the largest city,

with a population of approximately 1.42 million [31], and is situated at the mouth of the

river Liffey on the Irish Sea coast. Dublin also has the Republic of Ireland’s longest tide

gauge record (from 1938 onwards): the publicly available record for Dublin Port (also

called Dublin North Wall). Understanding changes in mean sea level in Dublin is key for

the protection of Ireland’s largest city and, from a national perspective, for understanding

long-term sea level rise (SLR) in Ireland [5].

The sea level around Ireland rose rapidly after the last glacial maximum 20 000 years

ago, cutting Ireland off as an island 16 000 years ago [48]. Regionally, sea levels in Ireland

had stabilised by the 20th century, after which sea levels began to rise again due to

anthropogenically induced warming [87]. The importance of climate warming and SLR in

Ireland has been emphasised by a number of authors: [39] discussed the risks of extreme

climatic events and the ways in which Ireland should be prepared for them, while [24]

state that satellite observations, which are associated with the open ocean rate, show sea

levels rising around Ireland at a rate of 2–3 mm yr−1, in line with global averages for the

early 21st century. However, the raw tide gauge record at Dublin Port shows a rate of

sea level rise of 0.3 mm yr−1 from 1938 to 2000 [5] – much lower than the global average.

A number of authors have investigated trends in the Dublin Port tide gauge data prior

to the year 2000 and have found similarly low rates of change. [27] investigated the Dublin

Port record using tide gauge measurements, and reported a rising trend of 0.6 mm yr−1

before 1961 and a falling trend of −0.3 mm yr−1 from then until 1980. [133, 134] estimated

trends of 0.17 mm yr−1 (± 0.35) from 1938 to 1988, and 0.23 mm yr−1 from 1938 to 1996.

In stark contrast to these low rates of SLR, the recently published climate change

action plan for 2019–2024 by Dublin City Council [36] reports an SLR of 6–7 mm yr−1

between the years 2000 and 2016. This rate is approximately double that of the global

mean sea level rise [93] and is particularly surprising given that the earlier rates of rise in

Dublin were much lower than the global mean sea level rise over similar periods [33].

The goal of this paper is to further investigate the sea level trend in Dublin Port

through careful assembly and quality control of the available data and by comparing those

data with sea level records collected from nearby tide gauges. We find that the datums of

Dublin’s available sea level measurements are not aligned with those of nearby tide gauges

and thus need further consideration. In addition, we find problems with the mean high

water measurements, which indicate a drift over time. We use a Bayesian multivariate
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linear regression to adjust for the drift and, after removing atmospheric factors, we find

that the sea level record, at least for the 21st century, matches other local tide gauges to

a far higher degree. This allows us to estimate more reliable measurements of sea level

rise for the urban area of Dublin Port.

The rest of this paper is organised as follows. Section 2 explains how the sea level

dataset for Dublin Port is reconciled from various sources. Section 3 discusses the quality

check and calibration procedures done on the reconciled dataset. Section 4 discusses SLR

rates at Dublin Port. Finally, some issues and suggestions pertaining to SLR analysis at

Dublin Port and the important findings of this study are discussed and summarised in

Section 5.

2.2 Data collation for Dublin Port

We compiled mean high and low water, mean tide level and, where available, mean sea

level for Dublin Port from 1938 to 2018 from the following sources:

(1) Annual high and low water from [133, 103] for the period 1938–2001 from annual

tabulations made by the Dublin Port Authority (hereafter the Port Authority annual

dataset). Mean tide level (MTL) was calculated by averaging the mean high and

low waters. Data from 1938 to 1977 are relative to Port Datum, which is 0.436 m

above the Ordnance Survey Datum Dublin (Poolbeg Datum), and data from 1978

are relative to the lowest astronomical tide (LAT) which is 20 cm above Poolbeg

Datum.

(2) Monthly values of mean high water (MHW) and mean low water (MLW) for the

period of 1987–2001 (hereafter the Port Authority monthly dataset), which were

digitised as part of this study. Quality control measures for the digitisation included

automatic comparison and checking of the calculated and recorded mean levels.

Comparison of the overlapping Port Authority datasets showed a mean difference

of ≤ 1 mm during the 15 overlapping years (1987–2001). Data are reported relative

to LAT.

(3) High-frequency (10 min) data supplied by the Permanent Service for Mean Sea Level

[103, 69] for the period 2002–2009. These data were provided to the PSMSL by the

harbourmaster in Dublin Port following a change in responsible authority in 2001

(hereafter the harbourmaster dataset). The data have a low vertical resolution of

0.1 m and are reported relative to LAT.

(4) High-frequency (5 min) data for the period 2007–2018 from the Irish National Tide

Gauge Network (NTGN), which is maintained by the Irish Marine Institute (here-
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Table 2.1: Details of the datasets collated to form a complete sea level record for Dublin
Port.

Dataset name Duration Sampling frequency Variables Datum Provider

Port Authority 1938–2001 Annual MLW-MTL-MHW LAT PSMSL

Port Authority 1987–2001 Monthly MLW-MTL-MHW LAT PSMSL

Harbourmaster 2002–2009 10min All calculable LAT PSMSL

NTGN 2007–2018 5min All calculable ODM and LAT Marine Institute

Greene 1968–2015 Twice daily MHW LAT This study

after the NTGN dataset) [72]. Data are available relative to Ordnance Datum Malin

(ODM) and LAT. All NTGN data are defined relative to ODM and LAT.

(5) High water levels for the period 1968–2015. These were digitised as part of an

unpublished MSc thesis of Alice Greene (hereafter the Greene dataset) and are

published here for the first time. The Greene dataset for the period 1968–1982 was

transcribed from photographs of tidal charts from which the high water values can

be read. During 1983–2003, the data were recorded in the format of hard-copy tidal

charts. The hard copies consisted of three large A3 books. The remaining data

from 2003–2013 from which high waters could be derived were in digital format.

With particular reference to the Greene dataset, prior to the availability of digital

data in 2003, the high water values for each day were extracted from the tidal charts.

This was completed by the generation of tables for each year, with two available cells for

each day. These values were read off and input into the designated cell. The data from

the period 1968–1976 were converted from feet and inches to metres. To locate the two

high tides, for each day, the highest value was extracted. The second high tide occurred

between 12 and 13 h before or after the highest value; therefore this value was extracted

using the time component of the dataset. In the case where the time window went into

the next calendar day, only a single high tide was recorded for that day. A summary of

the datasets is shown in Table 2.1.

Difficulties in merging the Dublin Port datasets arose from differing datum definitions.

For both Port Authority datasets, the tabulated annual and monthly data are relative to

the same datum. These data have the same source and therefore agreement is expected.

Three years of overlap exist between the harbourmaster dataset and the NTGN dataset

from 2007–2009. The harbourmaster dataset is relative to LAT datum; the NTGN data

are relative to ODM, with a value of 2.599 m between these datums. There is found to be a

systematic underestimation of 0.044 m in the MHW and MLW values in the harbourmaster

dataset, presumably due to its lower vertical resolution of 0.1 m, determined from the

overlap with the NTGN data.
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2.2. DATA COLLATION FOR DUBLIN PORT

Figure 2.1: Monthly MHW in Dublin from the Port Authority, Greene, harbourmaster
and NTGN datasets. A high level of agreement is found between the records, indicating
consistent datum definition, with only a small adjustment of 0.008 m to the Greene dataset
required for complete reconciliation.

While no overlaps exist between the harbourmaster dataset and the Port Author-

ity dataset, the Greene dataset overlaps the Port Authority, harbourmaster and NTGN

datasets. Figure 2.1 shows monthly MHW from the Port Authority, harbourmaster,

NTGN and Greene datasets, each expressed with respect to LAT (note that our monthly

data are limited to 1968 onward). There is a high level of agreement between the data,

indicative of consistent datums. We find a residual 0.008 m difference between the Greene

dataset and the other two datasets (Port Authority monthly dataset and the NTGN

dataset). We thus add 8 mm to the Greene dataset as the final datum adjustment.
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2.3. RECONCILIATION OF DUBLIN PORT AGAINST NEARBY TIDE GAUGES

Figure 2.2: Locations referred to in this study: Dublin Port, Howth Harbour, Arklow,
Brest and Newlyn.

2.3 Reconciliation of Dublin Port against nearby tide gauges

We now use our newly merged dataset (hereafter the merged Dublin Port dataset) in-

cluding monthly MLW, MTL, MSL and MHW measurements. In order to check the

reliability of the merged Dublin Port dataset, we compare with two different nearby tide

gauges (maximum distance 60 km) at Howth Harbour and Arklow, and two other tide

gauges at Newlyn in the UK and Brest in France. The Arklow and Howth Harbour

datasets are derived from bubbler gauges. The Newlyn and Brest data are gauges with

a long history of use in sea level studies [18, 136]. Figure 2.2 shows the locations of the

tide gauges. Table 2.2 provides the details of the datasets.

For the Arklow and Howth Harbour datasets, we first aggregate the values up to daily

and monthly level for MLW, MSL and MHW. During our pre-processing, we compared

MLW, MSL and MHW at Dublin Port with those at Arklow and Howth Harbour. We

noticed that the other sites exhibited low levels of agreement with Dublin Port after 2017,

so we restricted our analysis to use only data up to the end of 2016.

Figure 2.3 and Table 2.3 demonstrate that rates of SLR in MSL and MHW are sig-

nificantly higher in Dublin Port than in Arklow or Howth Harbour. A possible cause is
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Table 2.2: Details of the four datasets used for comparison with Dublin Port.

Dataset Duration Sampling frequency Provider

Arklow 2003–2018 15 min Office of Public Works
Howth Harbour 2007–2018 6 min Marine Institute
Brest 1938–2016 Annual PSMSL
Newlyn 1938–2016 Annual PSMSL

Figure 2.3: Comparison of MHW, MSL and MLW monthly values for Dublin Port against
those for Arklow (a, c, e) and Howth Harbour (b, d, f), with linear trends shown for
each. The MLW linear trends for Dublin Port and Arklow are in good agreement, as are
those for Dublin Port and Howth Harbour. However, this is not the case with the linear
trends for MSL and MHW when comparing Dublin Port to the two other locations.

the malfunction of the Dublin Port tide gauge in measuring the high water levels, due

to drift. A Druck pressure transducer was used at Dublin Port [92], and this has the

potential to exhibit drift proportional to the height of the water column. Accuracies of

pressure sensors are reported to be proportional to full water column depth. While drift

need not necessarily be proportional to full water column depth, this is a possibility that

is supported by further analysis (see next section). Table 2.4 provides the details of the

tide gauges installed at Dublin Port from 1938 to the present.

From Figure 2.3, we can see that the MLW values at Dublin port are highly similar

to those from nearby gauges, so we use these as a baseline to correct the MSL values. To

do this, we create a regression model that estimates MSL given MLW from older Dublin

Port measurements. We then use the predictions from this model to estimate MSL at

Dublin Port for the more recent period.
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Table 2.3: Differences between rates of SLR in MLW, MSL and MHW for Dublin Port
and those for Arklow or Howth Harbour. Large values with small standard errors indicate
a significantly higher rate at Dublin Port.

Locations MLW (mm yr−1) MSL (mm yr−1) MHW (mm yr−1)

Dublin Port – Arklow 0.6 (±2.8) 6.9 (±2.6) 14 (±2.7)
Dublin Port – Howth Harbour 1.5 (±4.0) 3.8 (±3.9) 5.8 (±4.2)

Table 2.4: Details of the tide gauges installed at Dublin Port.

Gauge type Start End Reference

Float gauge 1938 2001 Original chart supplied by Dublin
City Council indicates the float
gauge in operation.

Druck pressure transducer 2001 2016 This sensor began to malfunction in
2017 and was replaced in 2018.

OTT bubbler 2018 – New sensor installed in 2018. Data
not used in this study.

To find the period of time over which to train the regression, we use a change point

model [25] that takes the absolute difference between MSL values of Dublin Port and

Newlyn in the UK as the inputs. Details of the change point model are discussed in the

Appendix. The model suggests that there is a change point in the agreement between

Dublin and Newlyn in 1976. Furthermore, Figure 2.4 shows the comparison of MSL data

from Dublin Port (not yet corrected for the bias demonstrated in Figure 2.3) with that of

Newlyn and Brest in France. These two are selected due to the relative completeness and

integrity of their records and their proximity to Dublin. According to the figure, there is

strong agreement between stations for MSL in the period 1938–1976. After 1976, the level

of agreement deteriorates, which is consistent with the change point model result. Note

that this does not necessarily mean that the weaker agreement post-1976 is related to data

quality. However, based on these observations, we do not have any evidence supporting

the quality of data from 1976 onwards, and so we limited our modelling approach to data

from the preceding period.

We correct the bias in the MSL values at Dublin Port using a Bayesian multivariate

linear regression. Our model consists of an intercept, a term to account for a linear effect

of MLW, a harmonic function with a period of 18.6 years to model the lunar nodal cycle,

and a period of 4.4 years to account for the 8.85-year cycle of lunar perigee [65, 135]. The

two latter terms will primarily contribute to the astronomical tidal component of MLW.
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2.3. RECONCILIATION OF DUBLIN PORT AGAINST NEARBY TIDE GAUGES

Figure 2.4: Yearly MSL values for Dublin Port, Newlyn and Brest. The green area shows
our chosen time period, during which there is good agreement between Dublin Port and
the other sites.

The model formulation is as follows:

(MSL)t ∼ Normal
(
µt, σ

2
)

µt = β0 + β1(MLW)t + β2 cos (ω1t) + β3 sin (ω1t)

+ β4 cos (ω2t) + β5 sin (ω2t)

with ω1 =
2π

18.61
, ω2 =

2π

4.4
,

where (MSL)t is the MSL in year t, µt is the mean, σ2 is the residual variance, β0 is the

intercept, β1 is the MLW coefficient, β2 and β3 are the amplitudes of the cosine and sine

functions of the 18.6-year lunar nodal modulation respectively, and β4 and β5 are the

amplitudes of the cosine and sine functions of the 4.4-year modulation respectively.

We fitted the model using the JAGS software [102] and R [105], and used three Markov

chain Monte Carlo chains (2000 iterations per chain with 1000 as burn-in, and a thinning

value of 1). Convergence was assessed using the R-hat diagnostic [20, 60]. All R-hat

values associated with β and σ were close to 1, so the model was assumed to be sampling

from the posterior distribution. The minimum ESS across all the parameters was 790.

The new estimated MSL and the original values, together with the yearly MSL values of

25
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Figure 2.5: The uncorrected and corrected yearly MSL values of Dublin Port, with yearly
MSL values of Arklow and Howth Harbour for comparison. The newly corrected Dublin
Port MSL values lie much closer to the neighbouring tide gauges. The faded lines in the
background show posterior samples of MSL from the model and an indication of model
uncertainty.

Arklow and Howth Harbour, are shown in Figure 2.5. This figure demonstrates that the

newly modelled Dublin Port yearly MSL data (posterior predictive mean from the model)

are changed only slightly between 1938 and 2001. After 2001, we can see a clear gap

between the old (red) and new (blue) versions, with the new corrected data exhibiting

superior agreement with the Arklow and Howth Harbour records. We note again here

that these adjacent records were not used in the creation of the new Dublin Port data so

are an independent validation of our approach. The larger adjustment in Figure 2.5 after

2001 seems to support the discrepancies shown in Figure 2.3 for the higher water levels

and provides further justification for our change point calibration approach.

2.4 Rates of sea level rise at Dublin Port and nearby gauges

We now use the corrected data from Dublin Port to calculate rates of sea level rise. We use

the yearly MSL data from Brest and Newlyn for comparison. The MSL data from Brest

is missing between 1944 and 1952, so we decided to limit our SLR rate estimations to

1953–2016, during which the data for all three sites were complete. We initially removed

the inverse barometer and wind effects on sea level at each site by regressing MSL on
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Figure 2.6: New yearly MSL values of Dublin Port and yearly MSL values of Brest and
Newlyn, with atmospheric effects removed, between 1953 and 2016.

the mentioned variables and using the residuals for subsequent steps, as suggested in [52]

and [42](we omitted this step in the previous section due to a lack of atmospheric data

during 1938–1948). While it’s possible to directly include these variables in the models for

estimating SLR rates, we opted for a more common approach in oceanography literature,

knowing that the results would not significantly differ. Atmospheric data are accessed via

the RNCEP package [78] in the R programming language, which accesses the National

Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research

(NCAR) and Department of Energy Reanalysis I and II datasets [74, 75]. Figure 2.6

shows the atmospherically corrected MSL data from Dublin Port, Brest and Newlyn

superimposed for comparison.

To calculate the rates of SLR, as before, we use a Bayesian multivariate linear regres-

sion, including an intercept and a linear trend. The model is fitted in JAGS with the

same settings and convergence requirements as previously described. We write the model

as

(MSL)t ∼ Normal
(
µt, σ

′2
t + σ2

)
µt = β0 + β1t,

where (MSL)t is the MSL at time t, µt is the mean, σ′2
t is the posterior predictive variance

at time t extracted from the posterior distribution of the calibration model to account

for the uncertainty in modelling the MSL introduced in the previous section, σ2 is the

residual variance, β0 is the intercept and β1 is the rate in mm yr−1. We use the same

approach (but without the fixed measurement error) for estimating the rates of rise at
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Table 2.5: Estimated rates of SLR (mm yr−1) at Dublin Port, Newlyn and Brest, with
95 % credible intervals for the time periods of interest.

Location 1953–2016 1975–1985 1986–1996 1997–2016
Dublin Port 1.1 (0.6, 1.6) −2.9 (−9, 2.9) −8.6 (−13.4, −3.7) 7 (5.0, 8.8)
Newlyn 1.3 (1.0, 1.6) 3.9 (0.7, 6.9) 1.6 (−3.4, 6.8) 3.1 (0.7, 5.5)
Brest 0.9 (0.6, 1.2) 2.5 (0.0, 5.0) 3.1 (−0.2, 6.4) 2.3 (0.3, 4.3)

Brest and Newlyn.

The estimated rates with their associated 95 % posterior credible intervals are given in

Table 2.5, which shows that, between 1953 and 2016, the rate of SLR at Dublin Port has a

mean estimate of 1.1 mm yr−1, consistent with the estimated rate of 0.9 mm yr−1 at Brest

and that of 1.3 mm yr−1 at Newlyn. However in more recent years, specifically between

1997 and 2016, Dublin Port has experienced a greater SLR of 7 mm yr−1, larger than the

SLRs of 2.3 mm yr−1 at Brest and 3.1 mm yr−1 at Newlyn. Figure 2.6 also suggests that

sea level in Dublin Port has experienced larger decadal fluctuations and is not as secular

as the sea level at the two other locations.

2.5 Discussion and conclusions

Taken over the full time period of observations, 1953–2016, the estimated sea level rise of

1.1 mm yr−1 in Dublin is consistent with those in Brest and Newlyn, both of which are

located on the western European coastline. The rates of rise for earlier periods (i.e. pre-

1953) are less than 1.1 mm yr−1 [27, 133] and are consistent with the findings here, and

were lower because the decades of larger sea level rise and variability (1980s, 2000s) were

not included in the trend estimation. Elsewhere in Ireland, [98] investigated tide gauge

records in Malin Head (1958–1998) and Belfast harbour (1918–2002), where they reported

substantial annual variation for both sites, with overall negative trends of −0.2 mm yr−1

for Belfast and −0.16 mm yr−1 for Malin Head. Both Belfast and Malin Head, located in

the north of the country, are in regions experiencing uplift due to glacial isostatic adjust-

ment (GIA). This process involves the Earth’s surface slowly rebounding or adjusting in

response to changes in the weight of ice sheets and glaciers that cover it, which in turn

reduces the relative sea level rise in these areas. However, Dublin is situated in a region

where glacial isostatic uplift is neutral. Therefore, the long-term effects of post-glacial

land motion should be negligible there. As a result, greater consistency between local sea

level rise rates and the global average is expected [17].

More surprising is the large decadal variability revealed. This study has found a rate

of sea level rise for Dublin of −2.9 mm yr−1 for the period 1975–1985, followed by another

negative sea level trend in the next decade (−8.6 mm yr−1 during 1986–1996) and a rise
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of 7 mm yr−1 for the period 1997–2016. Similar patterns of decadal variability in sea level

to those in Dublin were also noted in Belfast by [97] and are linked to decadal variation of

the North Atlantic Oscillation. This would seem a likely explanation for similar patterns

in Dublin. However, a full investigation of the causes of decadal variability in Dublin sea

level remains to be performed.

Comparisons of the MLW, MSL and MHW recordings at Dublin Port suggest a pos-

sible issue with the observation of high water levels. Our model recreated the MSL and

showed that there is good agreement between the observed MSL and the modelled MSL

for the period 1938–2001. However, after 2001 there is considerable divergence. Our

analysis shows that the modelled MSL is more consistent with the data collected by the

nearby tide gauges and also at the farther sites in Newlyn and Brest. This suggests that

the malfunction probably started during or after the year 2002. We would consider the

Howth Harbour sea level record, alongside the modelled MSL data created in our study,

as the more reliable dataset for a future analysis of sea level in Dublin Bay compared to

the data collected at Dublin Port.

Dublin City Council have recently increased the coastal defences in Dublin, allowing

for between 40 and 65 cm of mean sea level rise [100]. Projections of sea level rise for

Dublin, based on UKCP18 [54], depend heavily on greenhouse gas emissions trajectories.

By 2100, the Dublin mean sea level is projected to rise by 0.6 m at the 50th percentile

(1.0 m at the 95th percentile) under an RCP8.5 scenario and by 0.3 m at the 50th percentile

level (0.6 m at the 95th percentile level) under an RCP2.6 scenario. These projections do

not simulate the decadal scale variability reported here, similar to many other decadal

climate phenomena. Understanding the origin and duration of the decadal fluctuations

of mean sea level in Dublin is crucial for the preparation and defence of Ireland’s capital

city in the coming decades.

To sum up, we have collated multiple sources of tide gauge data for Dublin Port,

and subsequently corrected them for bias in the MHW level. We have then shown that

these corrected MSL measurements agree with both Howth Harbour and Arklow to a far

higher degree than the raw data. A longer-term comparison with Brest and Newlyn also

indicates overall agreement. There remains a difference during the 1970s and the 1980s,

where a large cyclic disparity in Dublin contrasts with the other two records. Our final

adjusted dataset estimated the rate of SLR at Dublin Port to be 1.1 mm yr−1 between

1953 and 2016, and 7 mm yr−1 between 1997 and 2016.
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Appendix

To identify the period of data to use in calibrating the Dublin Port MSL and MLW values

(see Figure 2.4), we use a linear regression change point model [25]. The model we use

can be formulated as follows:

yt ∼ N
(
µt, σ

2
t

)
,

µt = αJ(t),

σ2
t = ηJ(t),

J(t) = 1 + u (t− tc) ,

where yt is the absolute difference between the measured mean sea levels at Dublin Port

and Newlyn in year t (t = 1, 2, . . ., T ). We assume yt to be normally distributed with

mean µt and variance σ2
t . The mean and variance are set to α1 and η1 respectively, if

t < tc; and α2 for the mean and η2 for the variance otherwise, and tc is the time of the

change point. The function u(t) is the unit step function. We used the following prior

distributions:

α1 ∼ Normal(0, 1),

α2 ∼ Normal(0, 1, )

η1 ∼ Uniform(0, 1),

η2 ∼ Uniform(0, 1),

tc ∼ Uniform (1938, 2016),

which are considered to be uninformative, knowing that the range of the data is between 0

and 0.12. Figure 2.7 shows the absolute difference between the MSLs of Dublin Port and

Newlyn. The vertical red line indicates the posterior mean of the change-point estimate

tc.
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Figure 2.7: The absolute difference in MSL between Dublin Port and Newlyn from 1938
to 2016. The mean posterior estimated change-point time given by the model is indicated
by the vertical red line at the year 1976.
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3
Vector Time Series Modelling of Turbidity in Dublin

Bay

Turbidity is commonly monitored as an important water quality index. Human activities,

such as dredging and dumping operations, can disrupt turbidity levels and should be mon-

itored and analyzed for possible effects. In this paper, we model the variations of turbidity

in Dublin Bay over space and time to investigate the effects of dumping and dredging

while controlling for the effect of wind speed as a common atmospheric effect. We develop

a Vector Auto-Regressive Integrated Conditional Heteroskedasticity (VARICH) approach

to modelling the dynamical behaviour of turbidity over different locations and at differ-

ent water depths. We use daily values of turbidity during the years 2017-2018 to fit the

model. We show that the results of our fitted model are in line with the observed data and

that the uncertainties, measured through Bayesian credible intervals, are well calibrated.

Furthermore, we show that, overall, the daily effects of dredging and dumping on turbidity

are negligible when compared to the effects of wind speed.
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3.1 Introduction

Studying the variables affecting turbidity is of importance in maintaining coastal ecosys-

tem health. Turbidity is an index for water clarity which measures how suspended solids

in water hinder the transmission of light [35]. There are many sources of suspended solids

including: phytoplankton; particles from coastal erosion; re-suspended bed sediments;

organic detritus from streams; and excessive algae growth [19]. Variability in water tur-

bidity influences the transportation dynamics and distribution of nutrients, contaminants,

and biological production [124, 79, 43, 56, 57]. Water turbidity is an important habitat

factor in many estuarine systems, and changes in it can have a significant impact on

management decisions such as the dredging of ports and canals [14].

Our goal in this paper is to evaluate the variations of turbidity in Dublin Bay explained

by dredging and dumping operations when controlling for the effect of wind speed, which

is an important atmospheric contributor. Dublin has a long history of difficult access for

ships to the port area due to sandbanks at the mouth of the port [47]. To solve this

problem regular dredging operations have been carried over decades to remove unwanted

waste as well as dangerous accumulations of sediments from areas that ships use when

entering the port. The excavated materials from the dredging operations are dumped at

a more remote location in the bay.

There are relatively few studies focusing on water turbidity in Dublin bay. In one

example, [19] used frequentist statistical tests to show that turbidity can be strongly in-

fluenced by vessel activity in Dublin bay using data collected from a single location. By

contrast, we take a broader approach and look at multiple measuring sites simultaneously

corresponding to both the sites where sediment is dumped and dredged, whilst considering

issues of turbidity down the water column. We develop a Vector Auto Regressive Inte-

grated Conditional Heteroskedasticity (VARICH) model to control for the spatio-temporal

structure using turbidity data measured by five buoys installed at different locations in

the bay.

We fit and compare four different models using the turbidity data. The data has many

missing values and big gaps for some periods. To fit the models we follow a Bayesian

framework to appropriately handle the missingness and infer the parameters of the mod-

els using Hamiltonian Monte Carlo (HMC). The purpose of our study is to estimate the

effect of covariates on turbidity rather than provide forecasts. The models we fit combine

the well-studied approaches Auto Regressive Conditional Heteroskedasticity (ARCH) and

Vector Autoregression (VAR). When combined they form a Vector ARCH (or VARCH)

model, which we adapt into an integrated model which we name VARICH. A full dis-

cussion of these approaches is given below. We show that ARCH-type models perform

better for modelling turbidity compared to VAR models that do not account for the het-
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eroscedasticity, and in particular our extended model has the best performance of all. We

also show that the daily effects of dredging and dumping on turbidity are negligible in

comparison to that of wind speed.

We organise our paper as follows. In Section 3.2, we describe the data we use in our

study. In Section 3.3, we give a brief introduction to spatiotemporal modelling. In Section

3.4, we explain our modelling framework. In Section 3.5, we discuss our findings including

plots of the model outputs. We summarise the paper in Section 3.6 by considering the

strengths and weaknesses of our approach and potential areas for future research.

3.2 Data description

Water turbidity levels are measured in Nephelometric Turbidity Units (NTU) which cal-

culate the amount of light reflected through a set of suspended particles. Our dataset

contains measurements of water turbidity in NTU at five different locations, four of which

take measurements at a single depth and are located throughout the channel from the

River Liffey towards Dublin Bay where dredging takes place. The fifth buoy takes mea-

surements at three different levels of the water column and is located approximately 10

kilometres away from Dublin port at the location where the sediments are dumped. Figure

3.1 shows the locations of the buoys in the bay.

Turbidity measurements are recorded every 15 minutes by the buoys, but for our

analysis we aggregated the raw data into daily averages. This allowed us to focus on

the impact of dredging whilst removed short term fluctuations (e.g. that of tides) or

the instantaneous impact of vessels arriving or leaving from the port. The aggregation

resulted in a total of 488 daily observations per buoy from 31/08/2017 to 31/12/2018.

However there are some periods with missing data which seems to be due to equipment

failure (e.g. discharged batteries) and gives rise to data gaps when working with our sensor

data. A plot of the raw data with missing values is provided in Figure 3.2. Additionally,

we use wind speed data measured at Dublin Airport, provided by [91] for the same period

as turbidity data, to control for its effect on turbidity.

3.3 Spatio-temporal models

There are two common approaches to modelling the spatiotemporal structure of data (see

e.g. [132], for a review). One approach involves building a full covariance matrix for each

point in space-time and using a multivariate distribution to account for the data generat-

ing process. A second approach is to use a multivariate time series model to account for

the evolution of a spatial process. The first approach requires matrix operations to be run

on a large covariance matrix, and so the second is a useful simplification and commonly
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Figure 3.1: Buoys measuring turbidity in Dublin Bay. We use the same numbering scheme
when referring to each site throughout the paper. Buoys 4 to 7 are potential dredging
sites, whilst the sediment is dumped at the dumpsite.

used in the applied literature [111]. We similarly found the second approach more suitable

for our study in terms of computational efficiency and interpretability due to our data

being time rich and space poor. Thus we focus on separable space-time models.

As mentioned above, spatio-temporal models are a class that are used to model the evo-

lution of a spatial process. Such processes can be continuous in time, but here we focus on

cases where time is discrete and the process is given by {Yt(s) : s ∈ Ds; t = 0, 1, . . .}. The

joint distribution is commonly decomposed using a Markov assumption to give an auto-

regressive likelihood of the form p (Yt(s)|Yt−1(s), . . . , Y0(s)) = p (Yt(s)|Yt−1(s)). When the

model error is assumed additive (and commonly Gaussian) the model can be written as:

Yt = ΦYt−1 + ϵt
�� ��3.1

where Yt is a vector of the process values at time t, Φ is the autoregressive coefficient

matrix, and ϵt is a vector of spatially white noise processes. Typically the noise processes

are assumed to be independent in time [132] and the autoregressive coefficient matrix is

assumed to be stationary. Such models are known as Vector Autoregressive (VAR) models,

originally introduced by [115] and widely used in macroeconomics, causal inference, and

forecasting [76, 9, 111]. One limitation of VAR models is their inability to model the
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3.3. SPATIO-TEMPORAL MODELS

Figure 3.2: Daily measurements of turbidity (NTU) at Tolka, Eastlink, Poolbeg, North-
bank, and various depths of the dumpsite, alongside wind speed (knots) measurements,
from August 31, 2017, to December 31, 2018. The highlighted regions indicate the periods
during which dredging and dumping operations occurred.
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heteroscedasticity of the data. To overcome this limitation, it is possible to relax the

independence assumption on the noise processes and model their temporal dependence.

A very well known approach to model temporal dependence of the noise process is the

autoregressive conditional heteroskedasticity (ARCH) model [49] in which the variance of

the process is defined as follows:

σ2
t = α0 +

p∑
i=1

αiϵ
2
t−i

�� ��3.2

where σt
2 represent the vector of a diagonal covariance matrix applied to ϵt, α0, and αi

are the parameters of the model, and ϵt−i are the lagged residuals. The ARCH model is

further generalised as the GARCH model [15] which is widely used in finance to model

the volatility of financial time series [15]. Furthermore, they have been extended to

multivariate time series by considering the covariance matrix of the noise processes and

have been used to model non-stationary heteroscedastic data in the spatiotemporal setting

(see e.g. [70, 99]). In the next section we explain some variations of these models, including

the extended model (VARICH) that we use in our study to model turbidity in Dublin

bay and infer the effects of dumping, dredging and wind speed on turbidity levels.

3.4 Modelling procedure

In this section we describe the general modelling framework that we follow to build a

spatio-temporal model that describes the response of turbidity to a variety of environmen-

tal factors. We then provide specific variations on this template to create four different

models which we use for fitting on the data. We denote Yt as an S-vector of turbid-

ity measurements at time t where S is the number of locations (or equivalently buoys),

s = 1, 2, ..., S represent the locations and times t (t = 1, 2, ..., T ). We write the model

hierarchically as:

Yt = Mt + ϵt
�� ��3.3

ϵt = Φϵt−1 + ηt
�� ��3.4

ηt ∼ MVN (0,Σt)
�� ��3.5
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3.4. MODELLING PROCEDURE

Mt = A +
P∑

j=1

Xjt ◦ βj
�� ��3.6

where Σt is the variance-covariance matrix at time t. A is an intercept vector, Xjt is an

S-vector of covariate values associated with covariate j = 1, . . . , P , βj is an S-vector of

fixed effects associated with covariate j. We use ◦ to denote the Hadamard product.

The four different structures we consider for fitting the model involve specifying struc-

tures for the autoregressive coefficient matrix Φ and the covariance matrix Σt. We specify

prior distributions associated with these models in the section below following their defi-

nition.

Model 1 An ARCH structure with varying Σt = diag{σ2
t,1, ..., σ

2
t,s} and:

σ2
t,s = θ1,s + θ2,sη

2
t−1,s

�� ��3.7

with Φ = diag{ϕ1, ..., ϕs} being an S×S diagonal matrix of autocorrelation param-

eters.

Model 2 A VAR model with a fixed time-invariant covariance matrix given an inverse-

Wishart IW prior:

Σ ∼ IW−1(Ψ, ν)
�� ��3.8

with ν and Ψ as fixed hyper-parameters (we use ν = 14 and Ψ = I in our example),

and where now Φ is a full matrix:

Φ =


ϕ1,1 . . . ϕ1,s

...
. . .

...

ϕs,1 . . . ϕs,s

 .

Model 3 A VARCH model which has both the full Φ from model 2 and the time-varying

error covariance matrix of model 1.

Model 4 A VARICH integrated model that uses differencing to allow for a non-stationary

mean process and also uses the time-varying error covariance matrix:

Y ′
t = Yt −Mt

�� ��3.9

Ỹt = Y ′
t − Y ′

t−1

�� ��3.10
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3.4. MODELLING PROCEDURE

Ỹt = ΦỸt−1 + ηt
�� ��3.11

where Y ′
t represents the covariate-corrected data, Ỹt corresponds to first differences,

and everything else is similar to Model 3.

The posterior distribution for model 4 can be written out in full as follows:

p (A, β, θ,Φ | Y1:T ) ∝

(
T∏
t=3

p (Yt | Yt−1;A, β, θ,Φ)

)
× p(A)p(β)p(θ)p(Φ)

�� ��3.12

To complete the model we need to specify prior distributions for all parameters. We

aim to use informative priors for those where we have some degree of information, and

use weakly informative and non-informative priors for the remainder. In the below we

outline our prior specification for the most complex of the models we fit, model 4, though

identical priors were used in the simpler models which corresponds to setting some of the

parameter values to zero in a nested model structure.

Our covariates contained in Xj,t consist of values associated with dumping and dredg-

ing (binary yes/no knowing that the operations happened in the same day, dreding at the

dredging sites and dumping at the dumpsite), and wind speed (knots). It is helpful, for

prior specification, to consider the regression parameters β in terms of their individual

scalar components [βdredge/dump,s, βwind,s] at site s. The full set of priors we used for these

values is:

βdredge/dump,s ∼ N
(
0, 52

)
βwind,s ∼ N

(
0, 52

)
For the Φ matrix we focus most of the prior mass in the range (-1,1), including the

stationary region that is concentrated in this Euclidean space, though non-stationarity

can be found if the data are indicative of such phenomena. We thus use:

ϕij ∼ N
(
0, 0.52

)
For the remaining parameters we set:

As ∼ N(0, 52)

θ1,s ∼ TN0(0, 1)

θ2,s ∼ Beta(1, 5)
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where TNa refers to the truncated normal distribution with minimum value a. All these

are expected to be weakly informative, guiding the model towards sensible values whilst

letting the data provide the majority of the information . Turbidity in our dataset ranges

between 0-130 (NTU), and we use a log transformation to mitigate the skewness of the

data, so the prior values chosen for A, βdredge, βdump, are considered to be uninformative

with respect to this range. The same is true for βwind knowing that wind speed can reach

as high as 70 knots during storms.

As a final remark on priors we note that many of the turbidity values across sites are

missing. We assume that these values are missing at random (MAR; [84]) and impute

them as part of the model fitting step by treating them as parameters to be estimated.

When using the likelihood given above we found that we struggled to produce a posterior

with finite variance so we added the extra prior constraint ymissing ∼ TN5
−5(0, 3), a

truncated normal distribution between -5 and 5, which seemed to stabilise the missing

value estimates.

In summary, model 1 provides a baseline univariate autoregressive model with time

changing variance. A more basic constant variance model was also attempted but not

shown here due to poor performance. Model 2 tests whether a richer full rank vector mean

structure improves the fit at the expense of the changing variance. Model 3 combines both

the full vector autoregression with the time changing variance. Finally, model 4 introduces

a difference in the latent parameters to capture any potential non-stationarity in the mean.

This is because covariate effects may persist over time and contribute to non-stationarity

in the process. Below we fit each of these models to the data described in Section 3.2, and

use a combination of posterior predictive distributions, information criteria, and plots of

the posterior distributions of the parameters to determine the optimal models which we

use for interpreting our findings.

3.5 Results

In this section, we report the results of fitting the models described in Section 3.4 to the

turbidity data described in the previous section. We summarise the estimated effects of

dredging and dumping operations and account for the wind speed effect by including the

daily wind speed measured in knots. We compare the different models according to their

fit to the data, and interpret the best fitting model with a view to obtaining a better

understanding of turbidity behaviour in Dublin bay.

3.5.1 Model fitting and comparison

We fit the models using R [105] and the Stan modelling framework [117]. This ap-

proach uses Hamiltonian Monte Carlo to update all parameters simultaneously and aims
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to rapidly converge to the posterior distribution. Through repeated fitting of the models

we found that using 1000 iterations, with a warm-up period of 200 iterations, produced

acceptable results. We used a MacBook Air equipped with an M1 chip, an 8-core CPU,

8GB of RAM, and 256GB of SSD storage; the computation time was 12 minutes. The R̂

values were all close to the target value of 1, and the minimum ESS across all the model

parameters was 111, indicating sufficient mixing and convergence of the MCMC chains.

Details of the estimated parameters are provided in the Appendix A.

To compare between the models we use the Widely Applicable Information Criterion

(WAIC, [130]) and the Leave-One-Out Information Criterion (LOOIC, [129]) which pe-

nalise the likelihood of the model fit based on the complexity of the model. These two

information criteria have the added advantage of being easily implemented in R and pro-

viding an uncertainty estimate on the value itself. In addition, we also compared VARICH

to a frequentist VAR model, details of which are provided in Appendix B.

Figure 3.3 shows the estimated WAIC and LOOIC values for the four models. The

VARICH and VARCH models have the lowest WAIC and LOOIC values indicating better

fits. However whilst the mean value of LOOIC for the VARICH model is slightly lower

there is no clear difference between them. The VARICH model has no extra complexity

compared to VARCH, i.e. there are no extra parameters to estimate. Furthermore we

computed the posterior distribution of the spectral radius of Φ for both models, and

calculated the probability that these were greater than 1 to provide an estimate of the

proportion of samples that were outside the stationary region. VARICH gave 0 compared

to 0.035 for VARCH, which indicates that the VARICH model seems to have removed some

of the non-stationarity present in the VARCH formulation. We thus use the VARICH

model to create our further results.

To further assess the goodness of fit for the VARICH model, we have plotted the

model’s posterior predictions against the actual data values, as depicted in Figure 3.4.

The expected values of the fit and the observed values are shown with solid lines coloured

in red and blue respectively and the 95% credible intervals are shown with grey bands.

As mentioned in Section 3.2, the dataset has missing periods which are imputed for

each location by the model during the fitting process. The vector autoregressive part

of the VARICH model allows for drawing information for each site using the available

information from the other sites which specifically helps regulate the uncertainty for the

missing periods. As expected, the uncertainty during high volatility periods grows as

expected through the dynamic structure applied to the variance.

Figure 3.5 shows the posterior predictive distributions from the VARICH model against

the true values with vertical lines indicating the 80% uncertainty intervals. On average

the intervals cover 79% of the data. The figure shows that the model can successfully

retrieve the true values of the turbidity in the dataset with well-calibrated uncertainty
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Figure 3.3: WAIC and LOOIC values for the four fitted models with their associated
standard errors.

estimation at the dumpsite and the dredging sites respectively.

3.5.2 Effects of covariates on turbidity

To determine the degree to which dumping and dredging operations affect turbidity, we

evaluate the posterior distribution of the fixed effects β. Figure 3.6 shows the expected

value of the dumping and dredging effects respectively with their 95% credible intervals

for different locations. Most effects are observed to have an expected value close to zero

with less than %95 probability of deviating from zero.

Figure 3.7 shows the wind speed effects for the 7 buoys. These are measured in

log(NTU) per knot and these wind effects can be more clearly identified than the effects of

dredging and dumping. The values are reasonably consistent but with greater uncertainty

at the lower positions in the dumping buoy, and a far smaller effect at Eastlink, again

likely due to its position in the bay. By contrast, the Tolka buoy seems most influenced

by wind and is the site that is most far out to sea. The Tolka buoy is situated within

the confines of the estuary walls, adjacent to North Bull wall. This area of the estuary

is relatively shallow and at low tide is exposed to the wind. The positive effect of wind

can be explained by its ability to generate waves and surface currents in water bodies.

When these waves and currents are strong enough, they can stir up sediments lying

on the bottom, resuspending them into the water column. This process increases the

concentration of suspended particles, ultimately leading to higher turbidity.
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Figure 3.4: Posterior prediction from the VARICH model vs observed values of turbidity
over time for the 7 buoys as labelled. Note the differing vertical axis heights. The shaded
periods indicate 95% credible intervals.
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Figure 3.5: Fitted values from the VARICH model versus observed values of turbidity (log
scale) at different sites. The vertical bars indicate the 80% uncertainty intervals which
provide evidence of the coverage properties of the model.

3.5.3 Influence of the autoregressive component

As a final part of the analysis, we examine the autoregressive coefficients from the

VARICH model. Figure 3.8 shows the posterior coefficients of Φ where we have sepa-

rated out the diagonal values which indicate the influence of the time series on itself from

the off-diagonal elements which show the influence of one site on another. The numbering

of the sites is as shown in Figure 3.1.

Of the diagonal elements, the dumpsite (middle) seems to have the most dependence

after accounting for the integration component. The other sites have values close to zero

after accounting for uncertainty. Of the off-diagonal elements, some of these are well away

from zero and provide for interesting, if not entirely straightforward, interpretation. Φ42

is the largest, corresponding to the relationship between buoy 4 (Tolka) and dumpsite

(middle), which should perhaps be read in conjunction with their joint time series be-

haviour as shown in Figure 3.4. Many of the other off-diagonal elements show similar

clear non-zero effect sizes though they are considerably smaller than Φ42. These values

provide evidence of cross site learning in the time series model.
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Figure 3.6: Dumping and dredging effects (log(NTU)/day) at different locations with the
95% credible interval.

3.6 Conclusions

We have introduced a set of models for understanding the behaviour of turbidity in

Dublin bay. Both the VARCH and the VARICH models introduced in Section 3.4 allow

for measuring the effects of multivariate time series on each other, whilst taking account

of the known volatility changes in the time series. However, the VARICH model had

slightly better performance. The combination of Bayesian modelling, VAR and ARCH

structures makes the VARICH model a useful tool for flexible modelling of a wide range

of real world random processes in which spatial and temporal aspects are playing major

roles. Furthermore, the Bayesian approach allows for uncertainty quantification of both

the fixed effects and the posterior predictions of the time series, whilst simultaneously

imputing the missing values within the series.

Our main finding has been that the dumping and dredging operations have minimal

effect on the turbidity levels, which seem to be more affected by wind speed and previous

values of the series. We thus suggest that, at an aggregate daily level, there is minimal
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Figure 3.7: Effect of wind speed (log(NTU)/Knot) at different locations and depths with
the 95% credible interval.

effect of the operations on the turbidity levels in Dublin bay. The models we produced

seem to fit the data well and the results make physical sense according to the location of

the buoys in the bay. A longer time series and a more complete record would add further

weight to our conclusions.

Our model fitting technique of using HMC appeared to converge efficiently and quickly

on a standard laptop, taking around 12 minutes to reach R-hat values below the common

standard of 1.1 whilst requiring only 3 chains of 1000 posterior draws (with 200 removed

during the warm-up phase). However, for larger data sets it may be that users need to

increase the number of draws. For very large data sets the HMC technique may prove

infeasible and so other methods such as MultiBUGS [62] might be more appropriate.

Other computational difficulties may occur should the model structure be made more

complex. Interesting extensions of our approach might involve looking at time-varying

behaviour of the coefficients, or multiple lags or long memory of the multivariate time

series itself.
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Figure 3.8: Coefficients of the Φ matrix with their 95% credible interval. Diagonal values
are shown in the top panel (a) and off-diagonal values are shown in (b). The two subscripts
indicate the parent and child relationship respectively, so that Φ12 for example is the
degree to which buoy 2 influences the time series of buoy 1. The numbers of the buoys
follow the labelling defined in Figure 3.1.

Appendix A

Table 3.1: Summary statistics of estimated parameters, in-

cluding their mean, median, standard deviation, 5th per-

centile, 95th percentile, the R-hat statistic, and ESS.

variable mean median std q5 q95 R̂ ESS

a1 -0.15 -0.15 4.23 -6.99 7.08 1.01 912

a2 1.46 2.46 5.16 -8.05 8.78 1.01 270

a3 0.11 0.11 3.73 -6.05 6.30 1.00 1074

a4 -0.38 -0.48 3.44 -6.17 5.62 1.00 3104

a5 0.45 0.65 4.79 -7.76 8.13 1.00 1374

a6 -0.07 -0.15 3.53 -5.98 6.09 1.00 3009

a7 0.14 0.06 4.06 -6.57 7.04 1.00 1744

θ1,1 0.03 0.03 0.00 0.03 0.04 1.00 1889

θ1,2 0.05 0.05 0.01 0.04 0.05 1.01 1396

θ1,3 0.06 0.06 0.01 0.05 0.07 1.00 2324
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Table 3.1: Summary statistics of estimated parameters, in-

cluding their mean, median, standard deviation, 5th per-

centile, 95th percentile, the R-hat statistic, and ESS.

variable mean median std q5 q95 R̂ ESS

θ1,4 0.22 0.22 0.02 0.18 0.26 1.00 1882

θ1,5 0.14 0.14 0.02 0.12 0.17 1.00 1903

θ1,6 0.15 0.15 0.02 0.13 0.18 1.00 2089

θ1,7 0.11 0.11 0.01 0.10 0.13 1.00 2829

θ2,1 0.53 0.53 0.12 0.34 0.72 1.00 2116

θ2,2 0.66 0.67 0.09 0.51 0.81 1.00 1416

θ2,3 0.81 0.82 0.07 0.68 0.91 1.00 2456

θ2,4 0.41 0.41 0.09 0.26 0.57 1.00 1724

θ2,5 0.29 0.29 0.09 0.14 0.45 1.00 1887

θ2,6 0.36 0.36 0.09 0.21 0.53 1.00 2634

θ2,7 0.28 0.27 0.07 0.17 0.39 1.00 3362

ϕ1,1 0.02 0.01 0.02 0.00 0.05 1.00 2366

ϕ2,1 0.04 0.03 0.03 0.00 0.10 1.00 2258

ϕ3,1 0.03 0.02 0.03 0.00 0.09 1.00 1576

ϕ4,1 0.06 0.04 0.05 0.00 0.16 1.00 1807

ϕ5,1 0.06 0.04 0.05 0.00 0.15 1.00 1542

ϕ6,1 0.05 0.04 0.04 0.00 0.14 1.00 1973

ϕ7,1 0.04 0.03 0.03 0.00 0.10 1.00 1921

ϕ1,2 0.07 0.07 0.03 0.03 0.12 1.00 2178

ϕ2,2 0.25 0.25 0.08 0.11 0.38 1.03 166

ϕ3,2 0.07 0.07 0.03 0.01 0.12 1.03 111

ϕ4,2 0.35 0.35 0.06 0.26 0.45 1.00 1692

ϕ5,2 0.27 0.27 0.06 0.16 0.36 1.01 679

ϕ6,2 0.22 0.22 0.06 0.12 0.30 1.01 1003

ϕ7,2 0.06 0.05 0.03 0.01 0.11 1.00 1937

ϕ1,3 0.18 0.18 0.03 0.13 0.23 1.00 2533

ϕ2,3 0.08 0.08 0.04 0.02 0.14 1.01 2027

ϕ3,3 0.02 0.01 0.02 0.00 0.05 1.00 2029

ϕ4,3 0.04 0.04 0.04 0.00 0.11 1.00 1718

ϕ5,3 0.09 0.08 0.06 0.01 0.20 1.01 476

ϕ6,3 0.03 0.02 0.02 0.00 0.07 1.00 2042

ϕ7,3 0.03 0.02 0.02 0.00 0.08 1.00 2203

ϕ1,4 0.03 0.02 0.01 0.00 0.05 1.00 1554
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Table 3.1: Summary statistics of estimated parameters, in-

cluding their mean, median, standard deviation, 5th per-

centile, 95th percentile, the R-hat statistic, and ESS.

variable mean median std q5 q95 R̂ ESS

ϕ2,4 0.02 0.02 0.01 0.00 0.05 1.00 1332

ϕ3,4 0.01 0.01 0.01 0.00 0.03 1.00 1794

ϕ4,4 0.04 0.03 0.03 0.00 0.09 1.00 1305

ϕ5,4 0.05 0.04 0.03 0.00 0.11 1.02 284

ϕ6,4 0.03 0.02 0.02 0.00 0.07 1.00 2077

ϕ7,4 0.06 0.06 0.03 0.01 0.11 1.01 1025

ϕ1,5 0.03 0.03 0.02 0.00 0.07 1.00 1755

ϕ2,5 0.05 0.04 0.03 0.01 0.09 1.00 2014

ϕ3,5 0.04 0.03 0.02 0.00 0.08 1.00 2049

ϕ4,5 0.10 0.10 0.05 0.02 0.19 1.00 2076

ϕ5,5 0.06 0.05 0.04 0.01 0.14 1.00 1495

ϕ6,5 0.18 0.18 0.05 0.09 0.26 1.00 2257

ϕ7,5 0.02 0.02 0.02 0.00 0.06 1.00 1749

ϕ1,6 0.06 0.06 0.02 0.03 0.10 1.00 1888

ϕ2,6 0.04 0.04 0.02 0.01 0.08 1.00 1830

ϕ3,6 0.01 0.01 0.01 0.00 0.02 1.00 1940

ϕ4,6 0.12 0.12 0.06 0.03 0.21 1.00 1493

ϕ5,6 0.05 0.04 0.03 0.00 0.11 1.00 2063

ϕ6,6 0.02 0.02 0.02 0.00 0.06 1.00 2501

ϕ7,6 0.04 0.04 0.03 0.00 0.09 1.00 1774

ϕ1,7 0.02 0.02 0.01 0.00 0.05 1.00 1802

ϕ2,7 0.01 0.01 0.01 0.00 0.03 1.00 1829

ϕ3,7 0.01 0.00 0.01 0.00 0.02 1.00 1780

ϕ4,7 0.03 0.02 0.02 0.00 0.07 1.00 2184

ϕ5,7 0.05 0.04 0.04 0.00 0.12 1.00 1681

ϕ6,7 0.02 0.01 0.02 0.00 0.05 1.00 1921

ϕ7,7 0.02 0.01 0.02 0.00 0.05 1.00 1753

βwind,1 0.02 0.02 0.00 0.01 0.02 1.00 2471

βwind,2 0.00 0.00 0.00 -0.00 0.01 1.00 2439

βwind,3 0.00 0.00 0.00 -0.01 0.01 1.00 2293

βwind,4 0.04 0.04 0.01 0.03 0.05 1.00 2316

βwind,5 0.03 0.03 0.00 0.02 0.03 1.00 2068

βwind,6 0.02 0.02 0.00 0.01 0.03 1.00 2495
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Table 3.1: Summary statistics of estimated parameters, in-

cluding their mean, median, standard deviation, 5th per-

centile, 95th percentile, the R-hat statistic, and ESS.

variable mean median std q5 q95 R̂ ESS

βwind,7 -0.00 -0.00 0.00 -0.01 0.01 1.00 2638

βdredge/dump,1 -0.02 -0.02 0.05 -0.10 0.06 1.00 3097

βdredge/dump,2 -0.04 -0.04 0.05 -0.12 0.04 1.01 2898

βdredge/dump,3 -0.00 -0.00 0.06 -0.11 0.10 1.00 4022

βdredge/dump,4 -0.22 -0.22 0.13 -0.43 -0.01 1.00 2909

βdredge/dump,5 0.08 0.08 0.10 -0.09 0.24 1.00 2594

βdredge/dump,6 0.01 0.01 0.12 -0.18 0.21 1.00 3365

βdredge/dump,7 -0.03 -0.03 0.09 -0.18 0.11 1.00 2474
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Appendix B

To fit a frequentist VAR (Vector Autoregression) model to our data, we utilized the ‘vars‘

package in R. This package does not accommodate missing values in the data, and to

the best of our knowledge, there is no package that can naturally handle missing data

without resorting to imputation techniques. Therefore, we first addressed this issue by

imputing the missing values using the forward-fill method, whereby we carried the last

observed values forward to replace any missingness. After fitting the model, we calculated

the root mean squared error (RMSE) for one-step-ahead predictions. We then compared

these results with those obtained from the VARICH model, as detailed in Table 3.2.

Please note that calculating the WAIC and LOOIC criteria to compare the two models,

as was done in Figure 3.3, is not possible because these calculations require evaluating

the log-likelihood over the predictive posterior distribution, which is unavailable in the

frequentist paradigm. As presented in Table 3.2, the VARICH model’s RMSE values are

lower for all sites except Poolbeg, where both models performed the worst, possibly due

to the highest volatility among the sites.

Table 3.2: Comparison of RMSE values: VARICH (Bayesian) vs VAR (Frequentist).

Variable VARICH VAR

Buoy 1 Top 1.89 2.08
Buoy 1 Middle 5.14 8.31
Buoy 1 Bottom 5.69 6.65
Tolka 4.26 4.30
Northbank 2.40 2.45
Poolbeg 8.94 8.36
Eastlink 1.19 1.22
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4
SERT: A Transfomer Based Model for

Spatio-Temporal Sensor Data with Missing Values

for Environmental Monitoring

Environmental monitoring is crucial to our understanding of climate change, biodiver-

sity loss and pollution. The availability of large-scale spatio-temporal data from sources

such as sensors and satellites allows us to develop sophisticated models for forecasting

and understanding key drivers. However, the data collected from sensors often contain

missing values due to faulty equipment or maintenance issues. The missing values rarely

occur simultaneously leading to data that are multivariate misaligned sparse time series.

We propose two models that are capable of performing multivariate spatio-temporal fore-

casting while handling missing data naturally without the need for imputation. The first

model is a transformer-based model, which we name SERT (Spatio-temporal Encoder

Representations from Transformers). The second is a simpler model named SST-ANN

(Sparse Spatio-Temporal Artificial Neural Network) which is capable of providing inter-

pretable results. We conduct extensive experiments on two different datasets for multi-

variate spatio-temporal forecasting and show that our models have competitive or superior

performance to those at the state-of-the-art.
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4.1 Introduction

The importance of spatio-temporal forecasting has increased significantly in recent years

due to the availability of large-scale spatio-temporal data from various sources such as

sensors and satellites [66]. Spatio-temporal forecasting involves predicting how data vary

over space and time, which is critical for a wide range of applications such as water

quality forecasting [37]. A common approach to modelling spatio-temporal data is to use

a multivariate time series structure, where each time series is associated with a variable

at a specific location [132].

Spatio-temporal data often contain missing values which is a common problem in

environmental monitoring, and can be caused by sensor failure, malfunction or commu-

nication problems (for example see Figure 4.1). A common remedy for forecasting with

missing data is to impute the missing values using a variety of methods such as mean

substitution, interpolation, or advanced techniques like multiple imputation [127, 118].

However, these methods are not always effective as they may introduce biases or fail to

accurately capture the underlying patterns in the data. For instance, mean substitution

can oversimplify the data’s complexity, leading to a loss of variability and potentially

masking important signals. Advanced techniques like multiple imputation, while more

sophisticated, might not always be suitable for all types of data or missingness patterns.

They may lead to models that are overfitted to the imputed values.

We propose a new model that is capable of performing multivariate spatio-temporal

forecasting named SERT (Spatio-temporal Encoder Representations from Transformers).

Our model is an extension of the well-known transformer architecture that has shown

remarkable success in natural language processing and also image analysis [38, 45]. SERT

is designed to capture the complex joint temporal and spatial dependencies among the

input variables. An important feature of our proposed model which differentiates it from

the many other available methods is its ability to handle missing data more naturally

without requiring any missing value imputation.

In addition to the SERT model, we introduce an interpretable simplified version that

provides insights into the underlying factors that drive the predicted values, which can

assist in decision and policy-making. Our proposed simplified model is named SST-

ANN (Sparse Spatio-Temporal Artificial Neural Network) and removes the transformer

layers from the SERT structure. Despite being less accurate than SERT, it is capable

of providing insightful results with faster computation time while similarly being able to

handle missing values. Depending on the complexity of the problem, the required accuracy

and the available computational resources, the user can fit both SERT and SST-ANN,

using the former to provide more accurate forecasts and the latter to forecast and gain

insights about how the results were obtained.
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Figure 4.1: An example of our environmental monitoring dataset; a multivariate environ-
mental time-series with missing values.

To evaluate the performance of our proposed models, we conducted extensive experi-

ments on two different datasets for multivariate spatio-temporal forecasting. We fitted our

models to a simulated dataset to assess their ability to function under different levels of

sparsity. We also evaluated the performance of the models on a real-world dataset, includ-

ing missing values, of environmental variables in Dublin Bay for 7 hour ahead forecasting.

Our experimental results show that our models are competitive with state-of-the-art mod-

els for multivariate spatio-temporal forecasting.

Our paper is organized as follows. In Section 4.2, we provide a brief overview of

related work on models developed for analysing sequential data in general and spatio-

temporal forecasting applied to environmental monitoring in particular. In Section 4.3,

we describe the proposed SERT and SST-ANN models in detail. In Section 4.4, we present

the experimental results and analysis. Finally, in Section 4.5, we conclude the paper and

discuss future directions of research.
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4.2 Related Work

In this section we provide a brief overview of the recent developments in deep learning

models for sequential data analysis and spatio-temporal models for environmental mon-

itoring, and also methods for handling missing data and adding interpretability to deep

learning models applied to time series data.

4.2.1 Deep Learning Models for Sequential Data

Recurrent Neural Networks (RNNs) have been one of the most popular deep learning

models for sequential data [82]. However, RNNs suffer from the vanishing gradient prob-

lem which makes them unable to learn long-term dependencies in the data. To address

this problem, Long Short-Term Memory (LSTM) networks [68] and Gated Recurrent Unit

(GRU) networks [29] were introduced. These models have been applied to various tasks

such as machine translation [11], speech recognition [63], and time series forecasting [83].

More recently a new type of deep learning model named transformers was introduced

[128]. Transformers are based on the self-attention mechanism which enables them to learn

the dependencies between the input and output sequences. Transformers are comprised

of an encoder and a decoder network. The encoder network is responsible for learning

the representation of the input sequence, while the decoder network is responsible for

generating the output sequence based on the learned representation. Models developed

on the transformer architecture include BERT [38], which uses only the encoder part, and

GPT [106] which uses only the decoder part. These models have been applied to various

tasks in natural language processing such as question answering [38], text classification

[121], and text summarization [85]. Overall, transformers have proven themselves to be

more effective than recurrent based models in many applications, especially in natural

language processing.

4.2.2 Deep Learning Models for Spatio-Temporal Data

The application of deep learning models for spatio-temporal forecasting is not new. For

example, [142] used an LSTM to forecast daily land surface temperature, [137] developed

a deep learning model that utilizes convolutional long short-term memory as the building

block for predicting sea surface temperature fields, and [90] introduced MCxM, a deep

learning approach specifically designed for emergency pollution forecasting. However, the

application of transformers to spatio-temporal forecasting is relatively new and challeng-

ing because transformers have been mainly developed in the field of natural language

processing (NLP). Nonetheless researchers were inspired by the success of transformers in

NLP and started adapting them to spatio-temporal forecasting which can be formulated

55



4.2. RELATED WORK

as a sequence-to-sequence problem, where the input is a sequence of historical observa-

tions of multiple variables at different locations, and the output is a sequence of future

predictions of the same variables at the same locations. A common approach for sequence-

to-sequence modeling is to use an encoder-decoder architecture, where an encoder network

maps the input sequence into a latent representation, and a decoder network generates the

output sequence from the latent representation [122]. [64] used this idea to develop a new

model called Spacetimeformer and applied it to traffic prediction and weather forecasting.

However, to the best of our knowledge, the application of transformers to environmental

monitoring is limited to the recent work by [140] who used a transformer-based model for

hourly PM2.5 forecasting in Los Angeles.

4.2.3 Addressing Missing Values in Modelling

As mentioned in the introduction, a major challenge in spatio-temporal forecasting in the

environmental monitoring context is dealing with missing values. A common approach

for dealing with the missing values is imputation [127] before conducting any analysis. In

time series modelling care needs to be taken to avoid introducing bias; last observation

carried forward is a common approach. An alternative used in the literature is that of a

Bayesian framework which enables defining a prior distribution over the missing values so

that they can be inferred with the other unobserved parameters when fitting the models.

For example, in Chapter3, we proposed a novel approach (called VARICH) for spatio-

temporal modelling of turbidity data with many missing values. However, this approach

is computationally expensive and requires a large number of samples from the posterior

distribution to obtain acceptable results and thus is not suitable for large spatio-temporal

datasets.

To address the missing data problem in time series, [71] proposed a novel approach

to encode multivariate time series using set functions and introduced a new model called

SeFT for classifying time series with irregularly sampled clinical data. More recently, [125]

proposed a new transformer based model called STraTS that represents each observation

as a triplet of the form (time, variable name, value). As opposed to SeFT, STraTS uses

a learnable positional encoding and a Continuous Value Embedding (CVE) scheme that

is a one-to-many feed-forward network. STraTS was developed to perform multivariate

time series forecasting during the pre-training phase and classification as the final task

on irregularly sampled clinical data. It has been shown to have higher accuracy than its

predecessor, the SeFT model, when applied to the classification of clinical time series.

Both SeFT and STraTS can handle missing values without requiring any imputation. To

the best of our knowledge, none of these novel methods have been applied to environmental

monitoring challenges; we adapt STraTS to a spatio-temporal setting.
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4.2.4 Interpretability of Deep Learning Models

Deep learning models are often considered as black-box models because they are hard to

interpret [23]. However, in many applications, it is important to understand the model’s

decision making process [46]. Some authors have proposed methods to help interpret the

results of deep learning models. For example, SeFT uses the attention mechanism in its

architecture and the authors of the work showed that the attention weights can be used

to gain insights into the importance of input data, including multiple variables. Similarly,

[28] used a transformer-based model to forecast floods and employed attention maps

extracted from the attention layers of the transformer model for interpretation. [125],

inspired by [30] and [141], took a different approach and proposed an interpretable version

of the STraTS model, called STraTS-I, which uses an almost identical structure to their

STraTS model but instead uses encoded inputs directly to the output layer as opposed to

STraTS that uses the contextualized inputs to the output layer. Their approach allows for

the calculation of a contribution score for each input observation towards the prediction,

achieved by multiplying the encoded input, attention weights, and output layer weights.

This modification aims to compensate accuracy for interpretability while both models

have similar computational complexity. We follow a similar simplification routine in the

creation of our SST-ANN approach explained in Section 4.3.3.

4.3 Proposed Methods

In this section we first define the problem followed by the details of the general model

architectures that we use to build SERT and SST-ANN to address the problem. We then

introduce a modification for encoding location information in the models’ input data.

Finally, we describe the masked loss function that we use for training the models.

4.3.1 Problem Definition

We have a dataset D = {(Tj , Yj ,Mj)}Jj=1 where Tj is a multivariate time series consisting

of triples (time, variable, value) written as {(tji , f
j
i , v

j
i ), i = 1, . . . , N}. Here, N can be

thought of as analogous to the maximum number of input tokens in NLP models, where

each token corresponds to a triplet in our context. Yj = {yj1, ..., y
j
k} is the output vector

including the values of k variables for a future time horizon for which we want the model

to forecast. Mj is a binary vector indicating whether each of the elements in Yj is observed

for sample j in the dataset. Mj is used in the loss function (see Section 4.3.5 for details)

for masking the unobserved values in the forecast window. The goal is to learn a model

G that maps Tj to Yj , i.e., G(Tj) = Yj , without imputing the missing values in D or

aligning the time series.
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A schematic of a sample from the dataset is shown in Figure 4.2. According to the

figure, it is evident that the original input data, delineated by blue dashed border lines

and in a wide format, is converted into a long format, indicated by Tj . This conversion is

followed by the removal of missing values. It is important to note that in this long format,

removing missing values is equivalent to ignoring or deleting individual missing cells in

the original wide dataset, rather than discarding entire rows due to a single missing value.

Consequently, SERT can be considered a model that operates effectively with long format

datasets, enabling training on all observed values. This approach avoids the loss of any

observations, which would otherwise be necessary with row removal or the imputation of

missing values in the wide format.

Figure 4.2: An example of a sample of a spatiotemporal dataset to be used for training
our proposed models where h is the desired forecast horizon.

4.3.2 SERT

We first describe the data encoding scheme and then the model architecture including

an encoder network and a linear layer. The schematic diagram of the model is shown in

Figure 4.3. We will slightly modify this structure to show an alternative approach for

encoding the location information in Section 4.3.4.

Figure 4.3: Schematic diagram of the SERT model.
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Data Encoding Scheme The input data to our model is a multivariate time series

dataset T that consists of N time series, each of which is associated with a time

series variable f which is a sequence of observation values v’s. Accordingly, an

individual data point i is represented as a triplet (ti, fi, vi) where ti is time, fi is

the variable name and vi is the measured value of the data point. To use the triplet

in the model, we encode each component into an embedding and then add the

embeddings together. Let efi ∈ Rd be the embedding of the variable name fi which

can be encoded similar to words using a lookup table, eti ∈ Rd be the embedding of

the time index t which can be encoded using a continuous value embedding (CVE)

scheme which is a one-to-many feed forward neural network [125] and evi ∈ Rd be the

embedding of the value vi which can also be encoded using the CVE. The embedding

of the triplet i is then defined as ei = efi + eti + evi . The size of the embedding vector

d is a hyperparameter of the model.

Encoder Network Similar to the well-known BERT model [38], the main component of

our model is the encoder part of the transformer model introduced by [128]. Since

transformers have become very common, we omit the details of the architecture

and refer the reader to [128] for the full description. Intuitively, we can think of

the encoder network as layers that take the triplet embeddings of the input data

and transform them into contextualized embeddings that capture the long-range

dependencies within a time series as well as cross dependencies between different

time series.

Linear Layer After obtaining the contextualised embeddings of the input data using

the encoder network, we then flatten the embeddings and apply a linear layer to

them to generate the predictions. The linear layer is a feed-forward network with a

single hidden layer and a ReLU activation function.

4.3.3 SST-ANN

The SST-ANN model is a simplified version of the SERT model that consists of only the

triplet encoding and a linear layer to the output with no transformer structure in between.

SST-ANN first encodes the input data using the triplet encoding scheme and then uses the

embeddings as the input to single layer feed forward network to generate the predictions.

Since there is no transformer structure in between, the SST-ANN model is much faster

than the SERT model and, using the embeddings and the weights of the linear layer, we

can compute a contribution score for each observation to the final prediction. This is

useful for interpretability and variable importance analysis. More formally the output of

the model can be expressed as follows:
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ŷk =
N∑
i=1

ci + b, with ci = W T
ik · ei,

�� ��4.1

where ŷk is the prediction of variable k, ci is the contribution of the triplet (ti, fi, vi) to

the prediction, N is the number of observations in the input sample, b is the bias term,

ei are the embeddings of the triplet and Wik is the vector of output weights associated

with the embedding ei and the target variable k.

Using the contribution scores, we can define a variable importance index. We first

calculate the average contribution value of all observations belonging to the same variable

as the average contribution of that variable. This calculation can be performed for a

single sample to gain insights into the importance of the predictor variable for a specific

target prediction, or for multiple samples used in multiple predictions to obtain an overall

understanding of the predictor variable’s importance in general. Next, we compute the

importance of each variable by normalizing the absolute value of the average contribution

values for the variables. More formally, we can express this as:

Ik =
|c̄k|∑K
k=1 |c̄k|

× 100
�� ��4.2

where Ik is the importance (in percentage) and c̄k is the average contribution value of the

variable k.

4.3.4 Location Encoding

We consider two different approaches to encode the location information in the input

data. The first approach is to encode the location information together with the variable

name fi in the triplet encoding scheme. For example, our naming scheme for the vari-

ables can be fi = {location}i · {variable}i where {location}i is the location of the time

series i and {variable}i is the variable name of the time series i (e.g. Tolka.Turbidity).

This approach uses the exact same architecture explained in Section 4.3.2. The second

approach is to encode the location information separately from the variable name. This

way the input time series are all assumed to arise from the same location and the location

embedding is concatenated to the contextualized embeddings before the linear layer is

used for prediction. In this approach, we need to structure the dataset such that all the

time series from the same location are grouped together. Formally, we can define the

grouped dataset as D′ = {(TL
j , Y

L
j ,ML

j )}J ′
j=1 where L ∈ S is the location and S is the set

of all locations. This approach needs a minimal modification to the previously described

architecture and its schematic diagram is shown in Figure 4.4.

The first approach is similar to how the Spacetimeformer model [64] encodes the
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Figure 4.4: Schematic diagram of the SERT model with a separated location embedding
layer.

location information while the second approach is similar to how the STraTS model [125]

encodes the non-temporal information (patient demographics in their work).

4.3.5 Masked Loss Function

We use a masked Mean Squared Error (MSE) loss function to train our models. Masking

in the loss function is used to handle the missing values in the output data. The masked

MSE loss function is defined as follows:

L =
1

J

J∑
j=1

K∑
k=1

mj
k

(
ŷj
k − yj

k

)2
,

�� ��4.3

where yj
k is the ground truth, ŷj

k is the predicted value, and mj
k is the mask value of the

target variable k in sample j.

4.4 Experiments

In this section, we will describe the experiments we conducted to evaluate the performance

of our proposed models. We evaluated our models using both a simulated dataset and a

real-world dataset. The primary objective of the simulation experiment is to investigate

how the models perform under different sparsity levels. The real-world experiment aimed

to serve as a proof of concept for the models’ ability to conduct spatiotemporal multi-step

ahead forecasting in real-world scenarios.

To assess the effectiveness of our models, we compared them with a baseline Naive

forecaster model, which simply uses the present time observation as the next time step

forecast. We also compare our models against the LSTM model and the STraTS model.

Since the Naive forecaster and LSTM model cannot handle missing values, we first im-
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puted these values using a forward filling method [127, p. 16].

4.4.1 Sparsity Analysis

We first simulated a dataset that consists of 16 time series each with 40,000 observations.

We denote Yt ∈ R16 as the vector of observations at time t generated from the following

process:

Yt = 2 + 0.4Yt−1 + Xt + st, st ∼ MVN(0,Σ)
�� ��4.4

where st is spatial random effect with mean zero and variance-covariance matrix Σ that

is generated with:

Σ = U · UT , U ∈ R16×16, Ui,j ∼ Uniform(−1, 1),
�� ��4.5

and Xt ∈ R16 is the vector of temporal effects generated as:

XT
t = [10 sin(p1t), cos(p2t), p3t,−p3t + 10 sin(p1t),

5 sin(p2t), 12 cos(p2t), 7 sin(p2t), 8 cos(p2t),

2 sin(p2t), 3 cos(p2t), 12 sin(p2t), 18 cos(p2t),

4 sin(p2t), 15 cos(p2t), 11 sin(p2t), 10 cos(p2t)]
�� ��4.6

where p1 = 0.005, p2 = 0.0005 and p3 = 0.002.

We use the first 37,000 time steps to train the models and the remaining 3,000 time

steps to evaluate the performance of them. We used the model structure shown in Figure

4.3 to train our proposed models. We trained all models for 1 step ahead forecasting

using the previous 10 time steps of observations. We consider five different sparsity

levels to fit the models. Accordingly, we remove n% of the observations randomly for

n = {0%, 20%, 40%.60%, 80%}. We use the root mean squared error (RMSE) as the

evaluation metric. The results are presented in Figure 4.5.

4.4.2 Real Dataset; Environmental Monitoring in Dublin bay, Ireland

The dataset includes hourly measurements from 2017-01-01 to 2021-12-31. An example

of the data is shown in Figure 4.1. The locations of the data are shown in Figure 4.6. We

use the data from the first four years to train the models and the last year to evaluate

their performance. We train the models using the previous 10 hours of observations as

the input and forecasting seven hours ahead. We use the same evaluation metric as in

the simulated dataset. We tried both location encoding approaches (explained in Section

62



4.4. EXPERIMENTS

Figure 4.5: a) Performance of all the models used on the simulated dataset. b) Comparison
of SST-ANN, STraTS, and SERT zoomed in.

4.3.4) with our proposed models on the real-world dataset and found that the second

approach, depicted in Figure 4.4, performed better and here we only report the results of

the superior approach. The results are presented in Table 4.1.

Table 4.1: RMSE of the models for 7 hour ahead forecasting of the 7 environmental
variables in Dublin bay.

Model Dissolved Oxygen Precipitation Salinity Temperature Turbidity Water Level Wind Speed

Naive 0.64 1.19 1.22 0.21 0.93 1.87 0.8

LSTM 0.65 0.89 0.8 0.41 0.81 0.5 0.82

STraTS 0.53 0.88 0.7 0.18 0.72 0.38 0.76

SERT (ours) 0.49 0.88 0.67 0.18 0.72 0.4 0.73

SST-ANN (ours) 0.51 0.88 0.73 0.45 0.88 0.63 0.79

Deep learning models have been developed utilizing Keras, with TensorFlow as the

underlying framework. We utilized the same computational resources (a single NVIDIA

P100 GPU) to train the models. Every model is trained using a batch size of 70, employing

the Adam optimizer, and training halts if the loss remains stagnant for two consecutive

epochs. The specifications and speed performance details of the models are reported in

the Table 4.2.

Table 4.2: Computational specifications of the fitted models.

Model Specifications Sec/epoch

Naive — —

LSTM parameters = 139844 2

STraTS parameters = 183147, # of heads = 6, k = 6 230

SERT parameters = 137795, # of heads = 6, k = 6 40

SST-ANN parameters = 118983 9
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Figure 4.6: Buoys measuring various environmental variables in Dublin Bay. The 4
main environmental variables (Turbidity, Salinity, Dissolved Oxygen, Temperature) are
available at the number buoys. The weather measurements (Rainfall, Wind Speed) come
from Dublin Airport. The water level variable comes from Howth Harbour.

4.4.3 Interpretability of the SST-ANN Model

The results of the variable importance for the real-world dataset experiment are presented

in Figure 4.7. In this example, we only consider the contributions of water level, tem-

perature, wind speed and precipitation to predictions of turbidity, disolved oxygen and

salinity, since we know that the former variables could affect the latter variables but not

vice versa. However, one should take caution and not interpret these numbers as they

would in a causal model. Instead, the application of variable importance in SST-ANN

should be more closely compared to the concept of variable importance as used in a ran-

dom forest model (for example, see [10]). According to the results, temperature is the

most important variable in predicting the target variables. This can be explained by

understanding that temperature indeed has a significant causal effect on them [114, 2, 1].
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Figure 4.7: Variable importance of the selected variables in predicting the target variables.

4.5 Conclusion

In this paper, we proposed two novel models for spatio-temporal forecasting called SERT

and SST-ANN. SERT is a transformer based model while SST-ANN is a simple ANN

model combined with triplet encoding of the input data. Furthermore, we showed that

STraTS, a model originally developed for sparse and irregularly sampled clinical time

series classification, can be used for spatio-temporal forecasting, especially when missing

values are present in the data. The proposed approaches do not require aggregation or

missing value imputation techniques, and avoid the problems introduced by such methods.

We evaluated the performance of the proposed models on a simulated dataset with varying

levels of sparsity and showed that in general increasing sparsity has a negative effect in

the performance of all the models, but SERT followed by STraTS and SST-ANN are more

robust to the increase in sparsity. We also evaluated the performance of the proposed

models on a real-world dataset of environmental variables in Dublin Bay, Ireland. The

results indicate that SERT outperformed the other models in 7-hour ahead forecasting for

6 out of the 7 variables, with 3 of them being on par with STraTS while demonstrating

significantly faster performance. We then showed how SST-ANN can be used to interpret

the predictions of the model by calculating and using the contribution score of the input

data to develop an importance index using the average contribution scores.
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We introduced two different methods to encode the location information in our pro-

posed models, including encoding the time series variable name with the location name

simultaneously and encoding the location name separately. However, neither of these

methods takes into account the distance between the locations, which is a limitation of

our work. We believe future research should focus on incorporating this information into

the models, as it has the potential to improve forecasting performance and be utilized for

spatiotemporal interpolation tasks.
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5
Concluding Remarks

The concluding section revisits key points and outcomes from Chapters 2-4, and outlines

potential paths for future exploration.

5.1 Sea level rise in Dublin Bay

The sea level has long been a topic of concern due to its implications on coastal ecosystems,

urban areas, and global climate patterns. I presented an updated sea level dataset for

Dublin, covering the period from 1938 to 2016. By providing a more reliable record and

understanding the variations in sea level rise, my research aims to offer insights that could

be important for future urban planning and coastal defense measures in Dublin.

My main objective was to refine and update the sea level dataset for Dublin and

estimate the rate of sea level rise using a more reliable dataset. Specifically, I aimed to

rectify any inconsistencies in the Dublin Port sea level record by incorporating data from

other reliable sources and applying calibration techniques. My approach could be divided

into the following steps:

• Data Collection: I assembled comprehensive sea level records from five main

sources: Dublin Port, Arklow, and Howth Harbour, Brest and Newlyn tide gauges.

Having multiple sources of data is crucial for data quality checks and detecting

anomalous periods.

• Data Calibration: One major challenge identified was the biased high water mea-

surements, which skewed the mean sea level (MSL) calculations. To address this,

I employed a Bayesian linear regression model. This model is particularly effec-

tive because it provides a probabilistic approach, allowing for the inclusion of prior

knowledge and uncertainties in the data. Crucially, the Mean Low Water (MLW)

values were integrated as a predictor in the model. This helped reconstruct the

MSL and eliminate the bias introduced by the erroneous MHW values.
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• Validation: Post-calibration, it was essential to validate the new dataset. I com-

pared the re-created MSL dataset with other nearby tide gauge datasets to ensure

its consistency and accuracy. This step was vital to ensure the general applicability

and reliability of the dataset.

• Analysis: With the validated dataset in hand, I then delved into understanding

the rates of sea level rise. I mainly focused on the following periods: 1953-2016 and

1997-2016. My analysis revealed significant insights into the multidecadal variability

of sea level rise, particularly highlighting the increased rates in recent years.

In summary, I have provided a detailed framework for researchers studying sea level

rise. This framework guides the aggregation of tide gauge data from multiple sources and

recommends conducting data quality checks. These checks can be done by visualizing

sea level time series at different levels, from low waters to high waters, and by employing

statistical techniques such as change point modeling. I also addressed the removal of

bias in the data using regression and emphasized the importance of properly accounting

for uncertainty using a Bayesian framework. Furthermore, I highlighted the decadal

variability in sea level and its rate of rise, which is almost twice the global average. This

rate is alarming and has significant implications for policy makers.

5.2 Turbidity in Dublin Bay

Turbidity, a measure of water clarity, holds significance in preserving the health of coastal

ecosystems. Factors contributing to turbidity range from natural phenomena, such as

weather changes, to human-induced activities like dredging and dumping operations. Par-

ticularly in regions like Dublin Bay, these activities can have significant implications for

water quality. Hence, understanding and predicting turbidity patterns becomes indis-

pensable for effective coastal management and environmental conservation.

I focused on studying water turbidity levels in Dublin Bay, extracting measurements

from five different locations across a span of two years (2017-2018). These measurements

offer insights into how light is reflected through suspended particles in the water. Notably,

four of the locations focused on a singular depth, mapping the channel from the River

Liffey to Dublin Bay, a crucial passage for vessels and a prime site for dredging. The

fifth monitoring point, positioned around 10 kilometers from Dublin port, is of particular

interest as it is the designated site for sediment disposal and measures turbidity at three

different water column depths.

In my journey to decipher the intricate interactions of variables affecting turbid-

ity, I introduced the Vector Auto-Regressive Integrated Conditional Heteroskedasticity

(VARICH) model. This dynamic spatiotemporal model is tailored to describe turbid-
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ity’s response to a multitude of environmental factors, most notably human activities like

dredging and dumping.

The VARICH approach is able to measure the effects of multivariate time series on

each other, while also accounting for known volatility changes in the series. Through this

model, I aimed to offer a comprehensive, yet nuanced understanding of turbidity patterns,

especially in relation to human activities and their potential environmental ramifications.

I demonstrated that these activities have varying effects at different locations. While

controlling for wind speed as the primary natural factor, none of these human-induced

activities showed effects as pronounced as that of wind speed in Dublin Bay.

Upon fitting various models, including VAR, ARCH, VARCH, and VARICH, to the

data, I compared their performances. I found that accounting for heteroskedasticity is

crucial when modeling turbidity levels. Specifically, the VARICH model outperformed

the others. By leveraging a Bayesian framework and incorporating informative priors,

I demonstrated the model’s utility in handling incomplete time series data—a common

issue in environmental monitoring due to sensor failures.

My research endeavors to bridge the gap between data-driven analytics and environ-

mental conservation. By employing the VARICH model, I not only offer a specialised

analytical tool for understanding turbidity but also emphasise the importance of contin-

uous monitoring and data analysis in safeguarding our coastal ecosystems.

As coastal regions globally grapple with the challenges of balancing development

with conservation, my findings underscore the importance of informed decision-making.

Through rigorous data analysis and modeling, we can better anticipate environmental

impacts, ensuring that our coasts remain pristine for generations to come.

5.3 SERT

In the body of this thesis, a critical and often overlooked aspect of environmental sci-

ence has been brought to the forefront: the intricacies and challenges associated with

large-scale spatio-temporal data analysis. Traditional methodologies often fall short in

addressing the complexities presented by this data, particularly when faced with multi-

variate misaligned sparse time series — a common occurrence resulting from inevitable

issues such as equipment malfunctions or inconsistent data collection schedules.

I have developed two models, each embodying a nuanced approach to multivariate

spatio-temporal anlysis. These methodologies represent practical and impactful advances

in the realm of environmental monitoring. The models are crafted to handle missing data

adeptly, bypassing the need for traditional imputation techniques that often introduce

biases or noise.

SERT (Spatio-temporal Encoder Representations from Transformers): The
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development of the SERT model marks a significant milestone. By harnessing the power of

transformer architectures, known for their exceptional performance in language processing

tasks, I adapted and extended this technology to suit the demands of spatio-temporal data

analysis. This adaptation was not without its challenges, necessitating an in-depth ex-

ploration of both the transformer architecture and the specific demands of environmental

data.

The resulting model is a testament to the versatility of the transformer architecture,

demonstrating its applicability beyond its usual domains. SERT distinguishes itself by

seamlessly accommodating data irregularities and gaps, factors that traditionally intro-

duce challenges to the analysis.

SST-ANN (Sparse Spatio-Temporal Artificial Neural Network): Parallel to

the development of SERT, I recognized the necessity for a model that, while simpler, did

not compromise on the ability to handle the nuances of environmental data. The SST-

ANN model was conceptualized and brought to fruition with this need in mind. It stands

as a robust alternative to more complex models, requiring fewer computational resources

and offering greater ease of interpretation.

Despite its simplicity, the SST-ANN still performs well in managing sparse, multivari-

ate, and misaligned data. Its architecture, though less complex than SERT’s, has been

designed to tackle the specific challenges of environmental data. The model maintains its

efficiency without incurring significant performance costs, making it a practical choice for

real-world applications where resource constraints are a pressing concern.

The journey through the conceptualization, development, and optimization of these

models was exhaustive. I engaged with various data scenarios, simulating real-world en-

vironmental monitoring challenges to test the models’ robustness. Through this rigorous

evaluation process, both models demonstrated superior performance in handling missing

data and providing more accurate forecasts compared to existing methods not designed

for such data.

This thesis does not conclude with the development of these models but opens a gate-

way for future exploration and innovation. The adaptability of the SERT and SST-ANN

models offers numerous avenues for further research, from exploring different architectural

tweaks to adapting these models for other data-intensive fields.

Moreover, the implications of this work are far-reaching, extending beyond the aca-

demic sphere and poised to influence on-the-ground environmental monitoring practices.

By enhancing data accuracy and forecasting reliability, these models could serve as valu-

able tools for policymakers and environmental stakeholders, informing more effective and

timely decision-making processes.
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5.4 Future Research

The methodologies outlined in this thesis contribute to improving the depth and relia-

bility of environmental data analysis. However, achieving reliability requires more than

just enhancing computational models; it demands a careful approach to collecting and

managing fundamental data. As we explore areas marked by uncertainty, the importance

of our initial data integrity becomes crucial. Consequently, future research must prioritize

refining data collection and data management procedures. This represents a significant

step in uncovering the complex patterns and subtle dynamics inherent in environmental

phenomena.

This thesis presents my contributions to the field via the development of statistical and

machine learning models designed to analyze complex environmental data. These models

represent initial steps, providing a foundation for further research and enhancement. They

are intended to serve both as practical tools for current use and as guides for future studies,

inspiring researchers to explore new areas. Future research could take several directions,

a few of which I suggest below. These recommendations are not exhaustive but indicative

of the expansive horizon that awaits scholarly exploration and inquiry.

The sea level analysis presented in Chapter 2, is a multi-stage approach including

deterministic adjustments and model fittings which are performed sequentially. While this

approach has been beneficial for understanding various aspects of the data, it has inherent

limitations, particularly in the propagation of uncertainty. Each stage is treated somewhat

independently, with uncertainties not fully carried over to subsequent stages. This can

lead to underestimation of the overall uncertainty. An alternative and more holistic

approach is data fusion, which involves the joint modeling of multiple data sets, taking into

account various sources of uncertainty. This approach allows for a more comprehensive

understanding of the data by considering all sources of information and their uncertainties

in a unified model. One effective way to implement data fusion is through state space

models. These models, as part of the data fusion approach, provide a flexible framework

for accommodating various complexities of real-world data. They allow for the modeling

of dynamic systems and can incorporate changes and trends over time, making them

particularly suitable for time series analysis. By treating all data sources as part of a single

model, these models naturally propagate uncertainty through all stages of the analysis,

providing more accurate and reliable quantification of uncertainty (for example see [73]).

However, such an approach comes at the cost of increased computational complexity and

requires a more sophisticated modeling framework.

The VARICH model, as it stands, unveils several avenues for enhancement and re-

finement. A primary limitation in its current configuration is the oversight of spatial

relationships between data collection points. Our initial applications involved closely-
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knit sites, minimizing spatial discrepancies. However, as we broaden the scope to en-

compass more geographically dispersed locations, the model must adapt to acknowledge

the increased likelihood of interaction and dependency among adjacent sites compared

to those more distant. Integrating geographical data and the relative positioning of sites

could significantly augment the model’s precision. Moreover, the model’s rigidity in han-

dling exogenous variables could benefit from incorporating coefficients that adjust over

time. This added flexibility could enhance the model’s capability to accurately represent

non-linear anomalies and trends, providing a more realistic view of environmental dynam-

ics. Expanding the model’s dimensions represents another frontier, enabling it to include

different environmental variables and to recognize dependencies with greater historical

depth through higher autoregressive orders. This multidimensional approach, however,

comes at the cost of increased computational demands. To mitigate this, strategies aimed

at boosting computational efficiency must be employed. Implementing sparsity within

the autoregressive matrices or leveraging informative priors could be viable strategies.

Additionally, reparameterization of the model can facilitate the convergence processes of

algorithms like HMC, enhancing their speed and efficiency. Finally, a possible extension

of the VARICH model could involve its evolution into a model capable of working with

irregularly sampled time series data, possibly by transitioning from discrete to continu-

ous time model development. Modeling approaches such as the utilization of Gaussian

Processes (GPs) or P-splines could accommodate continuous time, but developing an ap-

proach that models the interaction of multivariate continuous time series could prove to

be more challenging and requires further research.

Further development of the SERT model might involve replacing the transformer

structure with a more efficient one, rather than entirely eliminating it as the SST-ANN

does. Convolutional layers could be a viable alternative. Like attention layers, these

seek to aggregate information; however, unlike attention layers, they do not attend to

every input token, thereby reducing computational demands. Moreover, enhancing SERT

to offer prediction with confidence intervals could present significant advantages. This

enhancement can be achieved through model-agnostic methods like conformal prediction

[51] or by modifying the model’s structure and loss function to predict data distribution

parameters rather than mere point predictions. Another potential refinement involves

incorporating a geographical information encoding scheme, facilitating spatiotemporal

interpolation. This could be accomplished by devising an efficient method for encoding

geographical coordinates (i.e., longitude and latitude), thereby equipping the model to

handle such data and rendering it particularly appropriate for point process data.
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Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. Matthews,

T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Z. (eds.). IPCC, 2021:
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