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Abstract
This paper investigates the application of the gain-scheduling approach to flight control tasks where the conditions
required by conventional techniques need not be satisfied.  The conditions required by conventional techniques are
progressively relaxed and the design of gain-scheduled controllers under a range of conditions is addressed.  In particular,
the paper considers gain-scheduled control design in situations where the vehicle is manoeuvring aggressively far from
equilibrium, the airspeed need not be slowly varying and/or scheduling on the instantaneous incidence angle is required.

Nomenclature
q body axis pitch rate (rad/s), α angle of incidence (rad),  V airspeed (m/s)
ηZ normal acceleration (m/s2),  Z  normal force (N),  M pitching moment (N)
m mass of the missile (204.02 kg),  Iyy pitching moment of inertia (247.437 kg m2) 
q dynamic pressure ( q =½ρV2, ρ is the air density),  S characteristic area (0.0409 m2)

c characteristic distance (0.228 m),  M  mach number, δ effective elevator deflection (rad)2

CL aerodynamic force coefficient,  CM aerodynamic moment coefficient, f denotes 180/π
π indexes equilibrium points of missile,  πo denotes a specific equilibrium point,  ρ denotes the scheduling variable
ρ0 0 0 0 0

, , ,δ α ηq Z and  are, respectively, the values of ρ, δ, q, α and ηZ at the equilibrium point πo

∆ (and sometimes δ) denotes a perturbation quantity (e.g. ∆q q q= − 0 )

^ denotes an estimated quantity, overstrike ⋅ denotes d/dt
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x, w, xi, wi, ω, z denote state-vectors, y a system output, r , u, ν system inputs

ε (with various subscripts) is used to denote residual terms

1. Introduction
Gain-scheduling control is widely employed in flight control applications, where high performance has to be achieved

over a broad operating envelope.  In the gain-scheduling design approach (see, for example, Refs 1 and 2), a non-linear
controller is constructed by continuously interpolating, in some manner, between the members of a family of linear
controllers.  Each linear controller is, typically, associated with a specific equilibrium operating point of the aircraft and is
designed to ensure that, locally to the equilibrium operating point, the performance requirements are met.  By employing
a series expansion linearisation which, locally to the equilibrium operating point, has similar dynamics to the aircraft,
linear techniques may be used to resolve this local design task.  Continuity is, therefore, maintained with established
linear design techniques for which a considerable body of experience has been accumulated.

Whilst the traditional gain-scheduling approach described above is extremely successful in most flight control
applications (Ref 3), conventional theoretical techniques for analysing the dynamics of  gain-scheduled systems are poorly
developed and provide little support for the gain-scheduling design approach (Ref 4).  Moreover, the trend is towards
aircraft and missile configurations where the conventional gain-scheduling conditions may not always be satisfied (see,
for example,  Refs 5 and 6).  Gain-scheduled controllers are traditionally designed on the basis of the dynamics relative to
a family of trim conditions assuming that the airspeed is slowly varying.  However, during aggressive manoeuvring the
vehicle may be far from equilibrium with rapidly varying airspeed (Ref 3 p523).   In addition, the requirement to operate
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at high angles of attack can necessitate scheduling on instantaneous incidence angle rather than, for example,
conventional flap scheduling on averaged incidence (Ref 3 p523).  There is, consequently, interest in the literature in
alternative nonlinear control design approaches such as dynamic inversion (see, for example, Refs 5 and 7).   However,
owing to the substantial body of experience which has been accumulated with gain-scheduling methods both with regard
to meeting performance requirements and also such practical issues as safety certification, there is a strong incentive to
retain the gain-scheduling approach.  The aim of this paper is, therefore, to investigate the application of the gain-
scheduling approach to flight control design tasks when the conditions required by conventional techniques need not be
satisfied.

The velocity-based analysis and design framework, recently proposed in Refs 4, 8 and 9, associates a linear system
with every operating point of a nonlinear system, not just the equilibrium operating points.  This approach thereby relaxes
the restriction to near equilibrium operation whilst maintaining the continuity with linear methods which is a principle
advantage of the conventional gain-scheduling approach.  Moreover, the velocity-based approach does not inherently
involve a slow variation requirement unlike the conventional gain-scheduling approach which requires a slow variation
restriction to keep the system close to the equilibrium operating points.   It therefore provides a natural and unified
framework for gain-scheduling analysis and design which addresses many of the shortcomings of conventional gain-
scheduling analysis and design and is an appropriate framework within which to study the relaxation of the restrictions
associated with the conventional gain-scheduling approach.

 The paper is organised as follows.  In section 2, a missile example is described which motivates the later discussion.
The velocity-based gain-scheduling approach is briefly summarised in section 3 and applied to the missile example in
section 4 to study the influence on the controller of progressively weaker assumptions regarding the rate of variation of
the scheduling variable.  The conclusions are summarised in section 5.

2. Motivating example
Consider a missile (similar to that studied by Refs 10 and 11) with longitudinal dynamics
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      , ,    ηZ = Z/m (1)

with
Z= q SCL,      M = q ScCM (2)

Consideration is restricted to the glide phase of the missile trajectory where the mass is constant and thrust is not applied.
The aerodynamic force and moment coefficients, for mach numbers between 1 and 4, are

CL = (-0.4+0.033M )f α - 0.034f δ,   CM = -0.3f α - 0.206f δ (3)
The pitch rate and the normal acceleration are measured but the angle of incidence cannot be reliably measured.  The
requirement is to design a controller for the skid-to-turn missile which achieves a uniform normal acceleration step
response over the entire flight envelope with a rise time (to 95% of final value) of around 0.3 seconds and overshoot less
than 5%.  Whilst this is, of course, not a complete performance specification, it is adequate for the present study.

The conventional gain-scheduling design approach requires appropriate linearisations of the dynamics which
approximate, locally to specific equilibrium flight conditions, the nonlinear dynamic behaviour of the missile.  Let the

equilibrium operating points be parameterised by π; for example, δ V q M
T

.  Adopting the standard short-period

approximation (see, for example, Ref 3 p78, Ref 12), assume that, locally to a specific equilibrium operating point at
which π equals πo, the variations in the forward velocity, dynamic pressure and mach number associated with the pitch
motion are negligible.  The non-linear dynamics of the missile, (1), may then be approximated, locally to the specific
equilibrium operating point πo, by the series expansion linearisation,

∆ ∆α ∆δ ∆ ∆α ∆δ ∆
�

( ) ( ) ,
�

( ) ( )q M M Z Z q= + = + +α δ α δαρ ρ ρ ρ0 0 0 0    (4)

∆ηZ = Zα(ρo)V(ρo)∆α + Zδ(ρo)V(ρo)∆δ (5)
together with the input, output and state transformations

∆δ ∆ ∆α ∆η= − = + = + = +δ δ α α η η0 0 0 0
, , ,      q q q Z Z Z (6)

where ρ = V q M
T

and ρ0 0 0 0 0
, , ,δ α ηq Z and  are, respectively, the values of ρ, δ, q, α and ηZ at the equilibrium

operating point πo and
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Differentiating,  (4) may be reformulated as the linear short period equation
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Since the magnitude of Zδ is much less than the magnitude of Mδ (specifically, |Zδ/Mδ| is less than 0.003 over the entire
flight envelope), (8) may, for control design purposes, be simplified to,
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which is valid locally to the specific equilibrium operating point πo.  Hence, the linearised plant dynamics at the
equilibrium operating point πo are described by (9) and (5) together with the input, output and state transformations (6).
It should be noted that, whilst the input, output and state transformations (6) are different at every equilibrium operating
point,  the linearised dynamics, (9) and (5), are the same at equilibrium operating points for which ρ equals ρo.   Hence,
(9) and (5)define a linear dynamic family parameterised by ρ.

For each member of the linear family, (9) and (5), a linear controller is designed to meet the performance
specification.  A cascaded inner-outer loop controller configuration is employed with an attitude inner  loop and a normal
acceleration outer loop; see Appendix A for details.  The resulting linear controller family, expressed in state-space form,
is
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where ∆
dZη is the perturbation in the demanded normal acceleration and K1 =2500, K2 =70, wn, = 10 rad/s, ζ = 0.7.    It

should be noted that, since the controllers are designed on the basis of the linearisation of the missile dynamics at trim
flight conditions, the linear controllers act on perturbed quantities.  The input, output and state transformations relating
the perturbed quantities to their measured counterparts depend on the specific equilibrium flight condition considered.
Hence, a family of input, output and state transformations, parameterised by the equilibrium flight condition, is also
associated with the family of linear controller transfer functions.

The family of linear controllers is parameterised by ρ; that is, by the airspeed, dynamic pressure and mach number of
the missile.  Perhaps the most widespread approach to constructing a non-linear controller realisation is to simply
substitute these scheduling variables into the linear controller family, (10)-(11); that is, simply vary the gains of the
controller according to the airspeed, dynamic pressure and mach number (see, for example, Ref 3 p298, Refs 10 and 12)
whilst relying on the feedback action to accommodate the input, output and state transformations.  The resulting non-
linear controller, denoted controller realisation A, is depicted in figure 1.  The response, obtained using non-linear
simulations, of the non-linear controller to a sequence of step demands in normal acceleration is shown in figure 2 (the
mach number time history, shown in figure 3, is employed3,).  Evidently, the non-linear controller achieves the
performance specification of a uniform normal acceleration step response over the flight envelope with rise time of around
0.3 seconds and overshoot less than 5%.

The conventional gain-scheduling approach followed in the preceding discussion does not uniquely define the
nonlinear controller.  State-space representations of a linear controller which are related by a non-singular linear state
transformation are linearly equivalent; that is, they have the same transfer functions.  Hence, each member of the family
of linear controllers, (10)-(11), has infinitely many state-space representations.  For example, an alternative controller
family is

                                                       
3 Only a very simple representation of the missile is employed and, in particular, the translational dynamics are not
modelled.  The airspeed, dynamic pressure and mach number time histories are generated by auxiliary equations in a
similar manner to Ref 10.  Nevertheless, the model is sufficient to illustrate the dependence of the closed-loop dynamics
on the rate of variation of these quantities.
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The linear family, (12)-(13), employs a different choice of state from (10)-(11).  However, it is emphasised that the
members of the families of linear controllers defined by (10)-(11) and  (12)-(13) are dynamically equivalent; that is, they
have the same transfer functions.  In this example, the linear family, (12)-(13), is obtained by simply altering the location
of controller outer loop gain which in realisation A is scheduled.  The non-linear controller realisation constructed by
directly scheduling the controller gains of the linear family,  (12)-(13),  with respect to airspeed, dynamic pressure and
mach number,  denoted controller realisation B, is depicted in figure 4.  The response of this non-linear controller to a
sequence of step demands in normal acceleration is also shown in figure 2.  Evidently, the performance of non-linear
controller realisations A and B is markedly different.   Whilst the non-linear controller with realisation A achieves the
performance specification, the response with the non-linear controller with realisation B fails to satisfy the rise time and
overshoot specification.  Indeed, with this controller realisation the response is quite oscillatory and, perhaps, divergent.

Clearly, the performance attained in this example is sensitive to the choice of controller realisation.   Since the
controllers are different realisations for the same family of linear controller transfer functions the dynamic behaviour, and
consequently the closed-loop performance, of the controllers is similar when the scheduling variable varies sufficiently
slowly (trivially, when the rate of change is zero).  However, since the airspeed, dynamic pressure and mach number are
directly related to the normal acceleration of the missile, the variations in the scheduling variables are not a priori slowly
varying relative to the dynamics of the controller; in particular, with respect to the dynamics of the acceleration outer loop
controller (as demonstrated by the difference in the response of realisation A and realisation B).   Moreover, whilst the
controllers are designed on the basis of the missile dynamics relative to trim conditions, the missile motion in this
example is not confined to small perturbations about trim but rather involves aggressive manoeuvring which takes the
missile far from equilibrium.  The assumptions underlying the conventional gain-scheduling procedure are clearly not
met. Nevertheless, the controller realisation A does meet the performance specification.  Hence, the potential clearly
exists to extend the gain-scheduling design methodology to accommodate situations, such as the present example, where
the conventional approach is no longer warranted.

It should be noted that the selection of an appropriate gain-scheduling controller realisation is considered by Refs 13-
15.   The utility of the former approach is, however, somewhat limited in general (Refs 16 and 17).  In the latter approach,
a controller realisation is sought which leads to the weakest slow variation requirement within the context of conventional
gain-scheduling; that is, on the basis of the plant dynamics relative to the equilibrium operating points.  However, the
slow variation requirement can, in general, be further weakened by exploiting knowledge of the plant dynamics at non-
equilibrium operating points (Ref 8).  In the present missile example, the controller realisations do not belong to either of
the classes studied by  Refs 13-15.

3. Velocity-based gain-scheduling
Despite the widespread application of gain-scheduled controllers, conventional theoretical techniques for analysing the

dynamics of gain-scheduled systems are rather poorly developed. A detailed review is presented in Ref 4.  Since the
conventional gain-scheduling design approach is based on combining linear controllers designed on the basis of plant
linearisations about a number of equilibrium operating points, the resulting nonlinear controller is only appropriate, in
general, in the vicinity of the equilibrium operating points.  This, in turn, implies an inherent slow variation requirement
to keep the system trajectories close to the equilibrium operating points.  Nonetheless, the stability of the closed-loop
dynamics, locally to a specific equilibrium operating point, can be analysed by series expansion linearisation theory.  In
addition, provided the family of equilibrium operating points can be parameterised by the input to the closed loop system,
frozen-input theory may be employed to analyse certain dynamic properties near the family of equilibrium operating
points.  However, the latter analysis is restricted to a small neighbourhood of the equilibrium operating points.
Furthermore, it is based on a frozen-input representation of the controlled system which is quite distinct from the mixed



series-expansion/frozen-scheduling variable representation4 employed in the conventional gain-scheduling design
procedure.  Similarly, whilst the frozen-scheduling variable linearisation is employed during the design procedure, the
series expansion linearisation of the controller is employed when analysing the dynamic behaviour locally to a single
equilibrium operating point.  Hence, the analysis of the dynamic properties of the controlled system near a specific
equilibrium operating point, does not reduce to either the series expansion analysis or the mixed series-expansion/frozen-
scheduling variable analysis employed in the design procedure. The foregoing analysis tools therefore provide limited
support for the conventional gain-scheduling design approach and are unsuitable for investigating the application of gain-
scheduling to flight control tasks when the aircraft motion may take it far from equilibrium and the scheduling variable
may not be slowly varying.

The velocity-based analysis and design framework, proposed recently in Refs 4,8 and 9, associates a linearisation with
every operating point of a nonlinear system, not just the equilibrium operating points.  The approach thereby relaxes the
restriction to near equilibrium operation whilst maintaining the continuity with linear methods which is a principle
advantage of conventional gain-scheduling.  Moreover, the velocity-based approach does not inherently involve a slow
variation requirement.  It therefore provides an appropriate framework within which to investigate the relaxation of the
restrictions associated with conventional gain-scheduling.  In contrast to the conventional analysis methods discussed
above, the velocity-based framework  provides a unified framework for gain-scheduling analysis and design which utilises
a single type of linearisation, namely the velocity-based linearisation, for both analysis and design.  It is briefly
summarised below.

Consider the nonlinear systemT
x = F(x, r ),  y = G(x, r ) (14)

where F(·,·) and G(·,·) are differentiable with bounded, Lipschitz continuous derivatives.  The set of equilibrium operating
points of the nonlinear system, (14), consists of those points, (xo,  r o), for which

F(xo, r o) = 0  (15)
Let Φ:ℜn×ℜm denote the space consisting of the product of the state, x, with the input, r .  The set of equilibrium operating
points of the nonlinear system, (14), forms a locus of points, (xo, r o), in Φ and the response of the system to a general
time-varying input, r (t), is depicted by a trajectory in Φ.

Suppose that the nonlinear system, (14), is evolving along a trajectory, (x(t), r (t)), in Φ and at time, t1, the trajectory
has reached the point, (x1, r 1).  From Taylor series expansion theory, the subsequent behaviour of the nonlinear system
can be approximated, locally to the point, (x1, r 1), by the first order representation,

δ U Vx  = F(x1, r 1) + ∇xF(x1, r 1) δ Wx  + ∇rF(x1, r 1) δr   (16)
δ Xy  = ∇xG(x1, r 1) δ Yx  + ∇rG(x1, r 1) δr (17)

δr  = r  - r 1 ,   Zy  = G(x1, r 1) + δ [y ,   \x  = δ ]x  + x1, ^ _x  = δ ` ax (18)

provided x1+δ bx  ⊆ Nx r 1+δr⊆ Nr, where the neighbourhoods, Nx and Nr, of, respectively,  x1 and r 1 are sufficiently small.
It should be noted that the expansion is carried out relative to the fixed operating point, (x1,r 1), as opposed to a trajectory
passing through (x1,r 1), and the derivative of x1 is, therefore, zero.  It is emphasised that (16)-(18)  is a well-defined
system in its own right, distinct from the nonlinear system (14), with state δ cx . Furthermore, the point, (x1,r 1), need not
be an equilibrium operating point and, indeed, may lie far from the locus of equilibrium operating points.  When δ dx (t1) is
zero, the solution, ex (t), to (16)-(18), initially at time t1, is tangential to the solution, x(t), of (14).  Indeed, locally to time
t1, fx (t) provides a second-order approximation to x(t) and gy (t) provides a first-order approximation to y(t) (Ref 4).

The solution, hx (t),  to the first-order series expansion, (16)-(18), provides a valid approximation only while the
solution, x(t), to the nonlinear system remains in the vicinity of the operating point, (x1, r 1).  However, the solution, x(t),
to the nonlinear system need not stay in the vicinity of a single operating point. Consider the time interval, [0,T]; the
initial time can, without loss of generality, always be taken as zero.  An approximation to x(t) is obtained by partitioning
the interval into a number of short sub-intervals.  Over each sub-interval, the approximate solution is the solution to the
first-order series expansion relative to the operating point reached at the initial time for the sub-interval (with the initial
conditions for each sub-interval chosen to ensure continuity of the approximate solution).  The number of local solutions
employed is dependent on the duration of the sub-intervals, but the local solutions are accurate to second order; that is, the

                                                       
4 In the conventional gain-scheduling approach, a nonlinear controller is obtained by combining, in some manner, the
members of a family of linear controllers.  A typical procedure  is simply to let the scheduling variable vary over the
linear controller family whilst neglecting the input, output and state transformations relating the input, output and state of
the nonlinear plant and controller to the perturbed quantities with respect to which the members of the linear plant and
controller families are described.  Hence, although the series expansion linearisations of the plant are employed in the
design procedure, the corresponding local controller designs are frozen-scheduling variable linearisations of the resulting
nonlinear controller.



approximation error is proportional to the duration of the sub-interval cubed.  Hence, as the number of sub-intervals
increases, the approximation error associated with each rapidly decreases and the overall approximation error also
decreases.  Indeed, the overall approximation error tends to zero as the maximum size of the sub-intervals tends to zero
(Ref 4).  Hence, the family of first-order series expansions, with members defined by (16)-(18), can provide an arbitrarily
accurate approximation to the solution of the nonlinear system.  Moreover, this approximation property holds throughout
Φ and is not confined to the vicinity of a single equilibrium operating point or even of the locus of equilibrium operating
points.

However, the state, input and output transformations, (18), depend on the operating point relative to which the series
expansion is carried out.  When the solution to the nonlinear system is confined to a neighbourhood about a single
operating point, the transformations, (18), are static and the dynamic behaviour is described by the system, (16)-(17),
alone.  However, when the solution to the nonlinear system traces a trajectory which is not confined to a neighbourhood
about a single operating point, the transformations, (18), are no longer static and the dynamic behaviour is no longer
described solely by the system, (16)-(17).  Instead, the dynamic behaviour is described by (16)-(18).  Combining (16) and
(17) with the local input, output and state transformations, (18), each member, (16)-(18), of the family of first-order
representations may be reformulated as,i j

x  = { F(x1, r 1) - ∇xF(x1, r 1) x1 - ∇rF(x1, r 1) r 1 }  + ∇xF(x1, r 1) kx  + ∇rF(x1, r 1) r  (19)l
y  = { G(x1, r 1) - ∇xG(x1, r 1) x1 - ∇rG(x1, r 1)r 1 }  + ∇xG(x1, r 1) mx  + ∇rG(x1, r 1) r  (20)

In contrast to the representation, (16)-(17), the state, input and output are now the same for all members of the
reformulated family.  The dynamics, (19)-(20), of an individual member of the family are affine rather than linear even
when (x1, r 1) is an equilibrium operating point.  The inhomogeneous terms in (19)-(20) may, in general, be extremely
large and can dominate the solution.

On differentiating (19)-(20)n o
x  = pw (21)q r
w = ∇xF(x1, r 1) sw  + ∇rF(x1, r 1) tr (22)u v
y  = ∇xG(x1, r 1) ww  + ∇rG(x1, r 1) xr (23)

The system, (21)-(23), is dynamically equivalent to the system, (19)-(20), in the sense that with appropriate initial
conditions, namely,y

x (t1) = x1,  zw (t1) =  F(x1, r 1),  {y (t1) = G(x1, r 1) (24)

the solution, |x ,  to (21)-(23), is the same as the solution, }x , to (19)-(20).  However, in contrast to (19)-(20), the
transformed system, (21)-(23), is linear.  The relationship between the nonlinear system and its velocity-based
linearisation, (21)-(23), is direct.  Differentiating (14), an alternative representation of the nonlinear system is~

x  = w (25)�
w = ∇xF(x, r )w + ∇rF(x, r ) �r (26)�
y  = ∇xG(x, r )w + ∇rG(x, r ) �r (27)

Dynamically, (25)-(27), with appropriate initial conditions corresponding to (24), and (14) are equivalent  (have the same
solution, x).  (When w = F(x, r ), y = G(x, r ) is invertible for every (x, r ), so that x may be expressed as a function of w, r
and y, then the transformation relating (25)-(27) to (14) is, in fact, algebraic).  When�

x (t1) = x(t1),  �w (t1) =  w(t1),   �y (t1) = y(t1) (28)

 �x (t) and  �y (t)  still provide a second- and first-order approximation to, respectively,  x(t) and  y(t) and  �w (t) provides a

first-order approximation to w(t) (Ref 4).  Clearly, the velocity-based linearisation, (21)-(23), is simply the frozen form of
(25)-(27) at the operating point, (x1, r 1).

There exists a velocity-based linearisation, (21)-(23), for every point in Φ.  Hence, a velocity-based linearisation
family, with members defined by (21)-(23), can be associated with the nonlinear system, (14).  Similarly to the family of
first-order expansions, the solutions to the members of the family of velocity-based linearisations, (21)-(23), can be pieced
together (with the initial conditions for each sub-interval chosen to ensure continuity of �x , �w and �y ) to approximate the

solution to the nonlinear system, (25)-(27) to an arbitrary degree of accuracy (Ref 4).  Hence, the velocity-based
linearisation family embodies the entire dynamics of the nonlinear system, (14), with no loss of information and provides
an alternative representation of the nonlinear system.    Whilst the velocity-based representation is equivalent to the direct
representation, (14), in the sense that they each embody the entire dynamics of the nonlinear system, they are not
necessarily equivalent with respect to other considerations.  In particular, the direct relationship between the velocity-form
of the nonlinear system and the velocity-based linearisation family and the linearity of the members of the latter family
provides continuity with established linear theory which, for example, facilitates analysis (Ref 4) and controller design
(Refs 5,6).



With regard to controller design, the velocity-based linearisation of the feedback combination of a plant and controller
is simply the feedback combination of the velocity-based linearisations of the plant and controller (Ref 5).   The following
velocity-based gain-scheduling design procedure is, therefore, appropriate.

1. Determine the velocity-based linearisation family associated with the nonlinear plant dynamics.

2. Based on the velocity-based linearisation  family of the plant, determine the required velocity-based linearisation
family of the controller such that the resulting closed-loop family achieves the performance requirements.   Since each
member of the plant family is linear, conventional linear design methods can be utilised to design each corresponding
member of the controller family.  Of course, it is necessary to ensure that the members of the controller family are, in
some appropriate sense, compatible with one another.

 3. Implement a nonlinear controller with the velocity-based linearisation family designed at step 2.  This step is
discussed in detail in Refs 4 and 5.  When the controller contains integral action, the controller velocity-based
linearisation family may be implemented directly in the velocity-based form, (25)-(27).

This design procedure retains a divide and conquer approach and maintains the continuity with linear design methods
which is an important feature of  the conventional gain-scheduling approach.  However, in contrast to the conventional
gain-scheduling approach, the resulting nonlinear controller is valid throughout the operating envelope of the plant, not
just in the vicinity of the equilibrium operating points.   This extension is a direct consequence of  employing the velocity-
based linearisation framework  rather than the conventional series expansion linearisation about an equilibrium operating
point.

Stability of the nonlinear closed-loop system is guaranteed provided the members of the closed-loop velocity-based
linearisation family are uniformly stable, the mapping from w to x is bounded (e.g. when ∇xF(x, r ) is integrable and the
integral uniformly invertible) and the class of inputs and initial conditions is restricted to limit the rate of evolution of the
solution trajectories to be sufficiently small (Ref 4).  In addition, provided that the rate of evolution is sufficiently slow,
the nonlinear system inherits the stability robustness of the members of the velocity-based linearisation family.
Nevertheless, it is emphasised that the velocity-based gain-scheduling methodology does not inherently involve a slow
variation requirement: rather, a number of factors which are a function of the controller design, and which the designer is
free to adjust, contribute towards any limitation on the rate of evolution of the trajectories.   A primary factor which
contributes towards any slow variation requirement is the degree of similarity between the dynamics of the velocity-based
linearisations, of the closed-loop system, associated with different operating points.   This determines the degree of
nonlinearity of the closed-loop system and is largely dependent on the performance specification.   A secondary factor is
the choice of controller realisation which, in contrast to the foregoing, is often subject to relatively few restrictions.
Whilst the transfer function of each member of the controller velocity-based linearisation family is unchanged  by a non-
singular state transformation which is different for each member of the family, the dynamics of the nonlinear controller
are changed.  This issue is largely neglected in the conventional gain-scheduling approach and may also be ignored in the
velocity-based gain-scheduling approach provided the rate of variation of the solution trajectories is sufficiently slow,
since the controller dynamics are then insensitive to the choice of state (Appendix B).  However, by choosing the
controller realisation appropriately, any limitation on the rate of evolution of the trajectories can be relaxed.   When, for
example, the controller is designed such that closed-loop velocity-based linearisations have the same input-output
dynamics at every operating point and compatible states, there is no restriction whatsoever on the rate of evolution and the
gain-scheduled controller may be interpreted as a dynamic inversion controller (Ref 9).   Of course, the velocity-based
gain-scheduling approach is not confined to the design of dynamic inversion controllers.   Since a velocity-based
linearisation is associated with every operating point, the controller can instead be designed such that the closed-loop
velocity-based linearisations vary, in some appropriate manner, across the operating envelope; for example, in the context
of flight control, a uniform response is often undesirable in piloted aircraft and a degradation in the response to warn of
the onset of stall may be preferred.

4. Velocity-based analysis of missile example
By differentiating, the nonlinear missile dynamics,  (1), may be reformulated in the velocity-based form�
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where x=[q  α]T, w = © ©q α T
, r = q M V δ

T
.

4.1 Classical situation
Before considering more general situations, the conventional gain-scheduling design approach is analysed within the

velocity-based framework.  Assume that the aerodynamic moment and force are linear with respect to incidence and

elevator angle and that 
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where the scheduling variable, ρ, does not depend on the incidence and elevator angles.   This assumption is clearly
satisfied in the present missile example, in which the elements of the scheduling variable ρ are airspeed, dynamic
pressure and mach number, and is almost always satisfied for conventional aircraft and missile configurations in normal
operation out of stall (see, for example, Ref 3 p103).
 Under these conditions, the missile dynamics, (29)-(31), may be reformulated asª
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and Mα(ρ), Mδ(ρ), Zα(ρ) and Zδ(ρ) are obtained by allowing the scheduling variable, ρ, to vary in (7).   Assume that the
scheduling variable, ρ, is sufficiently slowly varying that εw and εη may be neglected in (33); that is, the nonlinear missile
dynamics are described byÛ
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The members of the family of velocity-based linearisations associated with the missile dynamics are simply the frozen
forms of  (35).   The assumption that  εw and εη may be neglected is essentially a requirement that the short period
approximation is accurate.

In the velocity-based gain-scheduling approach, a family of linear controllers is designed corresponding to the family
of plant velocity-based linearisations.  The velocity-based linearisation family includes linearisations of the plant at both
non-equilibrium and equilibrium operating points.  In contrast, in the conventional gain-scheduling approach a  family of
linear controllers is designed corresponding to the family of series expansion linearisations of the plant relative to the
equilibrium operating points only.  Nevertheless,  the conventional series expansion linearisation, (4)-(5), relative to the
equilibrium operating point at which δ, q, α , ηZ and ρ are, respectively, equal to δ α η0 0 0 00
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in state-space form as
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together with the input, output and state transformations
∆δ ∆ ∆α ∆η= − = + = + = +δ δ α α η η0 0 0 0

, , ,      q q q Z Z Z (37)

Clearly, in this example, the members of the conventional series expansion linearisation family are closely related to the
members of the velocity-based linearisation family even though the states, inputs and outputs are different.  In particular,
the velocity-based linearisation family can be determined directly, by inspection, from the series expansion linearisation
family provided that there exists an equilibrium operating point corresponding to every value in the range of ρ.   This
correspondence is certainly not the case in general.  For example, the incidence and elevator angles are related at
equilibrium operating points but not at non-equilibrium operating points; that is, αo is a function of δ, but α in general is
not a function of δ and so every pair (α,δ) does not correspond to a pair (αo(δ), δ).  Hence, when the incidence and
elevator angles are also elements of the scheduling variable, the velocity-based linearisation family contains members
which do not correspond to any of those of the series expansion linearisation family.  Nevertheless, in the present missile



example, the equilibrium operating points are parameterised by the scheduling variable which is quite typical of flight
control applications where the elements of the scheduling variable are airspeed, dynamic pressure and mach number.
Consequently, the dynamics at the equilibrium operating points embody the dynamics at every operating point and a gain-
scheduled controller designed on the basis of the equilibrium dynamics may be valid even when operating far from
equilibrium; for example, during aggressive manoeuvring.

In the conventional gain-scheduling approach, a family of linear controllers is designed, for example (10)-(11) or (12)-
(13), of the form
 ∆ �x = A(ρo) ∆x + B(ρo) ∆r (38)

∆δ = c(ρo) ∆x + d(ρo) ∆r (39)
Exploiting the close relationship between the plant series expansion and velocity-based linearisation families, it follows
that the controller velocity-based linearisation family, obtained by substituting for the state, input and output in (38)-(39),� �

x  = �w (40)� 	
w = A(ρ1) 
w  + B(ρ1) �r (41)� 

δ  = c(ρ1) �w  + d(ρ1) �r (42)

is appropriate for the velocity-based gain-scheduling approach.   In the conventional gain-scheduling approach, the linear
controller family, (38)-(39), is typically implemented (ignoring the input, output and state transformations associated with
the perturbation quantities ∆r , ∆δ, ∆x) directly as the nonlinear controller�

x = A(ρ) x + B(ρ) r ,      δ = c(ρ) x + d(ρ) r (43)
It should be noted that the scheduling variable, ρ, acts as an implicit input to the nonlinear controller, (43), in addition to
the explicit input, r .  The velocity-based linearisation of the nonlinear controller, (43), at the operating point (x1, r 1, ρ1),
is � �

x  = �w (44)� �
w = A(ρ1) �w  + B(ρ1) �r + ε �w (45)� �
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Assuming that the rate of variation of  ρ is sufficiently slow, ε (w  and ε
δ)  are small and may be neglected in (44)-(46); that

is, the velocity-based linearisation family of the implemented nonlinear controller is, indeed, the required family, (40)-
(42).  It should be noted that whilst the transfer function of each member of the linear controller family is unchanged by a
non-singular state transformation which is different for each member of the family, the dynamics of the corresponding
nonlinear controller are changed, see Appendix B.  However, the difference in dynamics can be made arbitrarily small by
restricting the rate of variation of  the scheduling variable, ρ.  Since this issue is neglected in the conventional gain-
scheduling approach, assume that the rate of variation of ρ is sufficiently slow that the nonlinear controller dynamics are
insensitive to the choice of state in the velocity-based linearisation family and so to the choice of controller realisation.

Clearly, the velocity-based analysis provides a rigorous basis for the conventional gain-scheduling approach of
designing a family of linear controllers on the basis of the family of series expansion linearisations and employing a direct
controller realisation of the form, (43).   Strong support for the utility of the velocity-based paradigm in the context of the
conventional gain-scheduling design approach is provided by its ability to provide an analytic basis for a number of,
previously apparently undesirable, aspects of the conventional approach including (i) the practice of neglecting the input,
output and state transformations associated with the linearised descriptions used in analysis and design and (ii) the use of
frozen scheduling-variable controller linearisations in the design procedure.  The latter linearisation neglects the
variations in the scheduling variable and differs from the series expansion linearisation of the nonlinear gain-scheduled
controller at the relevant equilibrium operating point.   Moreover, the analysis shows that  since the dynamics at the
equilibrium operating points embody the dynamics at every operating point, a gain-scheduled controller designed on the
basis of the equilibrium dynamics may be valid, albeit inadvertently, even when operating far from equilibrium.  The
latter result is quite encouraging since it indicates that the utility of gain-scheduled controllers is considerably greater
than suggested by conventional gain-scheduling analysis.

4.2 Airspeed, dynamic pressure and/or  mach number  not “ slowly varying”
The analysis of section 4.1 establishes a rigorous basis for the conventional gain-scheduling design approach as

typically applied in flight control applications.  However, a number of conditions are required for the conventional
approach to be valid.  These conditions include the requirements that the short period approximation is accurate, the
aerodynamic moment and force are linear with respect to incidence and elevator angle, the equilibrium operating points
parameterise the scheduling variable ρ and, in addition,  ρ  varies sufficiently slowly that the nonlinear controller



dynamics are insensitive to the choice of state and the velocity-based linearisation family of the controller is directly
related to the conventional series expansion linearisation family.  The short period approximation is well established and
is known to be accurate for a wide variety of flight configurations and operating conditions (Refs 3 and 12).   Similarly,
during conventional  operation out of stall, the aerodynamic moment and force are frequently approximately linear in
incidence and elevator angle (see, for example, Ref 3 p103) and the equilibrium operating points parameterise ρ provided
scheduling with respect to incidence is not required.  However, the validity of the final assumption, that ρ is sufficiently
slowly varying,  is less clear.

It follows from the analysis of section 4.1 that when the rate of variation of ρ is sufficiently slow, the transfer functions
of the closed-loop velocity-based linearisations are the same with controller realisations A and B and the dynamics of the
nonlinear controllers are similar.  However, whilst the airspeed, dynamic pressure and mach number usually vary slowly
in comparison to the incidence angle, these scheduling variables are directly related to normal acceleration.  Hence,
particularly during aggressive manoeuvring, the scheduling variable ρ is not a priori slowly varying with respect to the
dynamics of the acceleration control loop.  This is illustrated by the simulation results presented in section 3 where the
closed-loop dynamics are significantly different with controller realisations A and B and inspection of figures 2 and 4
reveals that the only difference between the controller realisations lies in the position of the scheduled gain in the
acceleration outer loop.  The sensitivity of the performance to changes in the controller realisation provides, therefore, a
direct and immediately relevant indication of the strength of the controller nonlinearity induced by the variation of the
scheduling variables.  It should be noted that, in a similar manner, simulation studies indicate that the performance in this
example is (unlike the acceleration outer loop controller) insensitive to the choice of realisation of the incidence inner
loop controller.
 Since the dependence of the controller dynamics on the choice of realisation is a purely nonlinear effect, conventional
gain-scheduling analysis provides little insight into this issue.   In the present example, the requirement is for uniform
closed-loop dynamics across the operating envelope; that is, for a dynamic inversion type of controller.  Of course, general
nonlinear control design methods such as Feedback Linearisation (Refs 7 and 18) or the velocity-based gain-scheduling
approach proposed  in  Ref 9 can be employed to design a dynamic inversion controller.  However, in the present flight
control context, a rather simpler approach is possible by exploiting the specific structure of the missile and controller
dynamics.   Firstly, the controller is designed so that the dynamics of the incidence inner loop are sufficiently fast,
compared to those of the acceleration outer loop, that the incidence angle may be assumed to accurately track the
demanded incidence angle; that is, α equals αd+εα where εα is small5.  Secondly, it follows from (32) that

 ηZ = Zα(ρ)Vα + Zδ(ρ)Vδ  + Zε(ρ)/m (48)
where it is assumed, when designing the controller, that Zδ and Zε are sufficiently small that Zδ(ρ)Vδ + Zε(ρ)/m may be
treated as a minor disturbance (in fact Zε is zero in the present example).    In controller realisation A, the incidence
demand satisfies
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and it follows that the normal acceleration dynamics, in pseudo-transfer function form, are
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where s denotes the d/dt operator.   By assumption, Zδ(ρ)Vδ , Zε(ρ)/m and Zα(ρ)Vεα are sufficiently small that they may be
neglected in (52) and the normal acceleration is linearly related to the acceleration demand, ηZd

, as required.  Hence, by

adopting an appropriate controller realisation, namely realisation A, the conventional gain-scheduling approach can be
extended in a straightforward manner to accommodate situations where the airspeed, dynamic pressure and mach number
are not “slowly varying” .   Conversely, a poor choice of controller realisation can lead to unnecessary restrictions on the
operating envelope.

It is noted that the requirement, (48), may be relaxed to one that the acceleration is of the form

                                                       
5 Since  α is not measured, the inner loop ensures that the estimated incidence angle, *α , tracks αd.  It follows from (48)

that +-, + ( )( . )α α α αα− = −Z ρ and so provided Zα is negative, /α  is an accurate (after some initial transients) estimate of α.



      ηZ = zα(ρ)Vα + zε(ρ)V (53)
provided that, in the foregoing analysis, ZαV  is replaced by zαV, and ZδVδ and Zε/m are replaced by zεV.   The condition,
(53), is quite weak; for example, employing a partial series expansion of  Z with respect to α,

ηZ =
Z

m m

Z Z Z

m
= ∂

∂α
+ ∂

∂α
+

012 34 5 + 678 9: ;1 2

2
0

α α < (54)

where (Z/m)o is the acceleration when α is zero and it is assumed that Z is sufficiently differentiable.  The term(Z/m)o is
simply a trim offset which may be treated as a constant disturbance and neglected for the purposes of control design.  The
infinite series expansion, (54), can, of course, be truncated provided the resulting approximation to ηZ is sufficiently
accurate over the range of incidence angles associated with the allowable flight envelope.

4.3 Aerodynamic force and moment nonlinear ly related to incidence angle
In the foregoing analysis, it is assumed that the aerodynamic moment and force are linear with respect to the incidence

and elevator angles; that is, 
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to incidence and elevator angle is not necessary.  This is frequently the case during conventional operation out of stall
(McLean 1990 p103) and scheduling with respect to the instantaneous incidence angle is traditionally avoided (Snell et
al. 1989) (as opposed to, for example, flap scheduling with respect to average incidence obtained using a low-pass filter
with very low bandwidth).   However, scheduling with respect to the instantaneous incidence angle is likely to be required
in, for example, future super-manoeuvrable aircraft (Refs 5 and 6).

When 
∂
∂α

∂
∂δ

∂
∂α

∂
∂δ

M M Z
, , ,  

Z
 depend on the incidence and/or elevator angles, the analysis of sections 4.1 and 4.2

remains valid provided that the scheduling variable now includes the incidence and elevator angles.  However, since the
incidence and elevator angles almost always vary considerably more rapidly than the airspeed, dynamic pressure and
mach number, it follows that the scheduling variable cannot now be assumed to be slowly varying.    In particular, it
cannot be assumed to be slowly varying with respect to the incidence inner loop dynamics.  Hence, the pitch dynamics can
be expected to be sensitive to the choice of realisation of both the inner and outer loop controllers.  Moreover, whilst the
incidence and elevator angles are related at equilibrium operating points, this is not the case at non-equilibrium operating
points.  Hence, when the incidence and elevator angles are elements of the scheduling variable, the velocity-based
linearisation family contains members which do not correspond to any of those of the series expansion linearisation family
and a gain-scheduled controller designed on the basis of the equilibrium dynamics may not be valid when operating far
from equilibrium; for example, during aggressive manoeuvring.  This observation provides insight into some of the well-
known difficulties associated with scheduling on a primary flight variable such as incidence angle which need not be
slowly varying (see, for example, refs 5 and 10).

To illustrate the performance degradation which can occur when scheduling with respect to incidence and elevator
angle, consider a missile which is similar to that studied in section 2 except that its aerodynamic moment and force
coefficients are described by

CM =-0.3fα-0.108f sin(3δ) (55)
CL = 0.000103f 3α3-0.00945f 2|α|α+(-0.339+0.056M )fα-0.034f δ (56)

The response, obtained using non-linear simulations, with non-linear controller realisation A (with values of the
aerodynamic derivatives corresponding to (55) and (56)) to a sequence of step demands in normal acceleration is shown
in figure 6.  It can be seen that the missile acceleration is unstable and diverges until the simulation fails due to numeric
overflow.  It should be noted that the airspeed, dynamic pressure and mach number are held constant in the simulation in
order to ensure that the performance degradation is purely a consequence of the nonlinearity of the aerodynamic moment
and force with respect to the incidence and elevator angles.  Evidently, the conventional gain-scheduling approach is
inadequate in this example.

In contrast to the conventional gain-scheduling approach, the velocity-based gain-scheduling methodology does not
inherently involve a slow variation requirement and includes information about the dynamics at both equilibrium and
non-equilibrium operating points.   It therefore has the potential to support the design of an incidence inner loop
controller which can accommodate rapid variations in the scheduling variable and operation far from equilibrium.

The dynamics of the missile are described, in velocity form, by (29)-(31).  Assume that the short period approximation
is accurate and Zδ is sufficiently small that its contribution to the pitch dynamics can be neglected; that is, the pitch
dynamics are accurately described by=
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where w = M Mq α T
.  The members of the velocity-based linearisation family associated with the nonlinear dynamics are

obtained by simply “ freezing”  the scheduling variable, ρ, in  (57).   The transfer function, of the velocity-based
linearisation corresponding to the value ρ1 of the scheduling variable, isN
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The velocity-based linearisations have relative degree two; that is, the difference between the orders of the numerator and
denominator of the transfer function is two.  LettingP
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where a and b are positive constants, the pitch dynamics may be reformulated, with input Vu , as
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.    The velocity-based linearisation of (60), associated with the value ρ1 of the scheduling
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and have relative degree zero.  Adopting a similar approach to that employed in Appendix A to design the linear family
for the conventional gain-scheduled controller, let the members of the controller velocity-based linearisation family have
transfer functionsw
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which are simply the reciprocal of the transfer functions, (61), of the augmented plant velocity-based linearisations.  The
cascade combination of each controller velocity-based linearisation with the corresponding plant velocity-based
linearisation has unity transfer function.  The velocity-based linearisations of the cascade connection of the plant and
controller are simply the cascade connection of the appropriate velocity-based linearisations of the plant and controller
(Ref 8) and so have unity transfer function.   Owing to the direct relationship between the velocity-form of a nonlinear
system and its velocity-based linearisation family (figure 5), the dynamics of the cascade combination of the nonlinear
plant and controller have linear dynamics with unity transfer function provided that the rate of variation of the scheduling
variable, ρ, is sufficiently slow that the dynamics are insensitive to the choice of controller state.

The slow variation requirement can be relaxed when the controller state is selected appropriately (Ref 9).  In the
present case, an appropriate choice is�
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The transfer function of the velocity-based linearisations of (63) associated with operating points at which ρ equals ρ1 is
(62) and, when (63) is connected in cascade with (60), the incidence angle satisfies� �

α = +0 1 z v (64)

where z  = ω + wi and� ( )
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ρ
ρ ,     (65)

In order to ensure internal stability of the cascade combination, assume that the controller dynamics, (63), are stable.
Provided the unforced dynamics (65) are also stable, z decays to zero and the incidence angle is related (after some initial
transients) to v by linear dynamics with unity transfer function.  This approach to dynamic inversion is a direct
generalisation to nonlinear systems of linear pole-zero cancellation (quite distinct from Feedback Linearisation).  It is
discussed in detail in Ref 9.  It should be noted that stability of (63) and (65) reduces, in the purely linear case, to the
requirement that the transfer function of the plant and its inverse are both stable thereby avoiding unstable pole-zero
cancellation.  It should be noted that the stability requirement is not inherent to the velocity-based gain-scheduling
approach but rather is a feature of the pole-zero cancellation approach adopted in this example to design the linear
controller family on which the gain-scheduled controller is based.

Letting the input to the dynamic inverse controller, (63), be
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the closed-loop pitch dynamics are linear with
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as required.   Of course, since a measurement of α is not available, the estimated incidence �α  is employed when
implementing (66).   It follows from (53) that the solution to� �

( ) � ( )α αα ε= +z zρ ρ (68)

is an accurate estimate of α (after some initial transients which decay to zero provided zα is negative).
Since  u is an internal controller state, ��� �u u and  (required in (59)) can be readily derived, without numerical

differentiation, from (63) and (66); namely,
  � �u b bv= +0 w i (69)� �
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α α αρ ¡ ¢ (70)

However, to derive £ £ £u requires ¤ , ¥ ( )
α α α
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Z
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d
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ρ
 which may not be directly available.   Alternatively, therefore, assume

that the nonlinear mapping, M(δ, ρm), relating the aerodynamic moment to the elevator angle δ and scheduling variable
ρm (which may depend on the airspeed, incidence angle etc but not on δ), is invertible in the sense that  there exists an
elevator angle,  δ=M -1(M, ρm), corresponding to every pair (M, ρm).  This invertibility condition is rather weak and
simply requires that the aerodynamic moment is controllable throughout the flight envelope.  Letting

δ αα= + + +
¦§¨ ©ª «

−M I M
u au bu

byy
1( ¬®­ ­m­ , )ρm (71)

the pitch dynamics can once again be reformulated as (60), with Mα(ρ) replaced by the constant, M̄α .  The input

transformation,  (71), does not require the calculation of  ° ° °u .
It is emphasised that there is no slow variation condition associated with the foregoing inner loop controller (other

than that implied by the initial modelling assumption that the short period approximation is accurate).   When the
velocity-based inner loop controller is employed and the outer acceleration loop controller is as in realisation A, the
response obtained in the foregoing missile example is shown in figure 6.  In contrast to the conventional gain-scheduled
controller, it is evident that the velocity-based controller attains the specified performance of a uniform normal
acceleration step response over the flight envelope with rise time of around 0.3 seconds and overshoot less than 5%.  This
is achieved whilst retaining the divide and conquer approach and continuity with linear design methods which are
important features of  the conventional gain-scheduling approach.   Moreover, although not pursued further here, the
velocity-based gain-scheduling approach is not confined to the design of dynamic inversion controllers: since a velocity-
based linearisation is associated with every operating point, the controller can instead be designed such that the closed-
loop velocity-based linearisations vary, in some appropriate manner, across the operating envelope (Ref 8).

4.4Shor t per iod approximation inaccurate
The foregoing sections employ progressively weaker assumptions about the characteristics of the missile dynamics but

the fundamental assumption remaining in section 4.3 is that the short period approximation is accurate.  However, this
requirement may be readily relaxed by letting±-² ±
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It follows from (29)-(31) that the pitch dynamics may be reformulated asÁ
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provided Mδ is not zero.  The pitch dynamics, (74), are in the form required by the analysis of section 4.3 which can be re-
applied to determine a suitable nonlinear controller.



Alternatively, consider the case when the nonlinear mapping, M(δ, ρm), relating the aerodynamic moment to the
elevator angle δ and scheduling variable ρm (which does not depend on  δ), is invertible in the sense that  there exists an
elevator angle,  δ=M -1(M, ρm), corresponding to every pair (M, ρm).   Let

δ α δ εα= + −−M I Myy Z
1( ( Ò Ò ), )ρm (75)

where
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The missile pitch dynamics may be reformulated as in (74) (with Mα(ρ) replaced by the constant, ÔMα , and Mδ(ρ) unity).

The expression for εZ is somewhat simpler than that for ε and, in particular, involves only the first time derivative of
Z/mV.

It is evident from the foregoing that, in comparison to section 4.3, only a relatively small increase in mathematical
complexity is required to relax the short period requirement.   However, measurements/estimates of the time derivatives of
airspeed, dynamic pressure and mach number are typically required which may, in practice, be difficult to obtain reliably.
It should be noted that these measurements/estimates are also necessary in other control approaches, such as Feedback
Linearisation (see, for example, Ref 7), and appear to be unavoidable in the general case when the requirement is for
uniform dynamics across the flight envelope.

5. Conclusions
Gain-scheduling is widely and successfully employed in flight control applications, where high performance has to be

achieved over a broad operating envelope.  Nevertheless, conventional theoretical techniques for analysing the dynamics
of  gain-scheduled systems are poorly developed and provide little support for the gain-scheduling design approach.
Moreover, the suitability of the conventional  gain-scheduling approach for designing controllers which can
accommodate, for example, aggressive manoeuvring far from equilibrium and operation at high angles of attack/post-stall
is unclear.  In particular, the sensitivity of gain-scheduled controllers to the choice of nonlinear realisation when the
scheduling is not sufficiently slowly varying and the difficulties associated with employing incidence angle as a
scheduling variable are well known.  There is, consequently, interest in the literature in alternative nonlinear control
design approaches such as dynamic inversion.   However, owing to the substantial body of experience which has been
accumulated with gain-scheduling methods both with regard to meeting performance requirements and also such practical
issues as safety certification, there is a strong incentive to retain the gain-scheduling approach whilst resolving the
foregoing difficulties.  The recently developed velocity-based analysis framework associates a linear system with every
operating point of a nonlinear system, not just the equilibrium operating points, and so is not confined to near equilibrium
operation and does not inherently involve a slow variation requirement.  Furthermore, it provides a natural and unified
framework for gain-scheduling analysis and design which addresses many of the shortcomings of conventional gain-
scheduling analysis and design whilst retaining the continuity with linear methods which is the principle feature of the
conventional approach.

In this paper, the conventional gain-scheduling design approach to controlling the longitudinal dynamics of a missile
is shown to be equivalent to the velocity-based gain-scheduling approach provided

1. the short period approximation is accurate;
2. the aerodynamic moment and force are linear with respect to incidence and elevator angle;
3. the equilibrium operating points parameterise the scheduling variable;
4. the scheduling variable varies sufficiently slowly that the nonlinear controller dynamics are insensitive to the choice of

realisation and the velocity-based linearisation family of the controller is directly related to the conventional series
expansion linearisation family.

The analysis thereby establishes a rigorous basis for the conventional gain-scheduling design approach.   Strong support
for the utility of the velocity-based paradigm in the context of the conventional gain-scheduling design approach is
provided by its ability to provide an analytic basis for a number of, previously apparently undesirable, aspects of the
conventional approach including (i) the practice of neglecting the input, output and state transformations associated with
the linearised descriptions used in analysis and design and (ii) the use of frozen scheduling-variable controller
linearisations in the design procedure.  The latter linearisation neglects the variations in the scheduling variable and
differs from the series expansion linearisation of the nonlinear gain-scheduled controller at the relevant equilibrium
operating point.   In addition, whilst the conventional gain-scheduling design approach is based on the linearisations of
the plant about equilibrium operating points,  it is shown that, under the foregoing conditions, the resulting gain-
scheduled controller is valid, albeit inadvertently, even when operating far from equilibrium.   The latter result is quite



encouraging since it indicates that the utility of gain-scheduled controllers is considerably greater than suggested by
conventional gain-scheduling analysis.

In addition to providing insight into the conventional gain-scheduling approach, the velocity-based analysis and
design framework is employed to design gain-scheduled controllers which progressively relax the restrictions (1)-(4)
required by the conventional approach whilst retaining, as far as possible, the continuity with linear design methods of
conventional gain-scheduling.  In particular, rigorous insight is thereby provided into issues such as the sensitivity of
gain-scheduled controllers to the choice of nonlinear realisation and the difficulties associated with employing the
incidence and elevator angles as scheduling variables.   This insight is exploited to develop gain-scheduled control
designs which resolve these issues and the effectiveness of these designs is illustrated by a number of simulation trials.

Whilst illustrated with reference to a simple missile example, the analysis and design techniques developed are, of
course, also relevant to other flight control applications.
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Appendix A – Missile gain-scheduled controller
The requirement is to design a family of local linear controllers for the family of linear plants, (9).  A natural choice of

controller configuration is a cascaded inner-outer loop arrangement which employs an attitude inner loop and a normal
acceleration  outer loop.  With this approach, the acceleration outer loop supplies an angle of incidence demand to the
attitude inner loop based on the normal acceleration demanded.   Firstly, consider the design of the inner loop controller.
It follows from the short period dynamics, (9), that, locally to the equilibrium operating point πo,  the transfer function
relating incidence angle to elevator angle is
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where ∆α(s) and ∆δ(s) are, respectively, the Laplace transforms of  ∆α and ∆δ.  Selecting
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where ∆αd is the incidence demand from the outer loop acceleration controller, the closed-loop transfer function of the
incidence loop is
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(79)

Of course, an angle of incidence measurement is not available in the present example.  However, it may be estimated from
the pitch rate measurement using

∆ ∆ ∆δ ∆
Õ Ö

( ) × ( )α αα δ= + +Z Z qρ ρ0 0 (80)

where ∆ α̂  is the estimate of ∆α.  The controller parameters, K1 and K2 are selected to ensure that the inner loop
dynamics have a satisfactory natural frequency and damping whilst respecting the limitations of the actuator and the need
to avoid exciting elastic modes of the airframe; in the present example, values for these parameters are selected which
correspond to a natural frequency of 50 rad/s and damping factor of 0.7.

Secondly, the design of the outer loop normal acceleration controller is addressed.  A normal acceleration step
response with rise time (to 95% of final value) of around 0.3 seconds and overshoot of 5% corresponds to a natural
frequency of around 10 rad/s and a damping factor of 0.7.  Since the inner loop bandwidth of 50 rad/s is large compared
to the required bandwidth of the acceleration loop, the design of these loops is effectively decoupled; that is, the dynamics
of the inner loop may be neglected when designing the outer loop controller.  It should be noted that this time-scale
separation is quite natural and, indeed, inherent to the missile configuration since a change in acceleration is initiated by
a change in incidence angle and so incidence must always change more rapidly than normal acceleration.   Hence, it may
be assumed in this context that ∆α equals ∆αd.   Since the sign of the coefficient of δ in CL  is negative, the normal
acceleration in response to a change in the elevator angle, δ, is initially in the opposite direction; that is, the normal
acceleration response is non-minimum phase.  However, the right-half plane zero associated with the non-minimum
phase character of the acceleration response lies well outside the frequency range of interest and may, therefore, also be
neglected when designing the outer loop controller.  The gain, ZαV, relating changes in the angle of incidence to changes
in normal acceleration, varies strongly with the flight condition and, in order to accommodate this variation the gain of
the outer loop controller must also be varied.  An appropriate outer loop controller transfer function is, therefore,
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where ∆
dZη is the perturbation in the demanded normal acceleration and wn, = 10 rad/s, ζ = 0.7.  The corresponding

closed-loop dynamics obtained when this outer loop controller is combined with the linearised plant dynamics, (5),
(neglecting the inner loop dynamics) are

δ
ς

ς
η

ς
η δ ∆

++
+

+∆
++

=∆ )()(
2

2
)(

2
)(

22

2

22

2

oo

nn

n

dZ

nn

n
Z VZ

wsws

sws
s

wsws

w
s ρρ (82)

Evidently, the term, Zδ(ρo)V(ρo)∆δ, in (82) is attenuated over the control bandwidth and, consequently, the normal
acceleration of the missile, ∆ Zη , is essentially related to the demanded acceleration, ∆

dZη , by second order dynamics

with natural frequency 10rad/s and damping of 0.7, as required.
A family of linear controller transfer function designs is defined by (78), (80) and (81) which corresponds to the

family of plant linearisations, (9), and is parameterised by ρ.

Appendix B – Sensitivity to choice of controller  realisation
The nonlinear systemØ

x  = w (83)Ù
w = ∇xF(x, r )w + ∇rF(x, r ) Úr (84)Û
y  = ∇xG(x, r )w + ∇rG(x, r ) Ür (85)

has, at the operating point (x1, r 1), the velocity-based linearisationÝ Þ
x  = ßw (86)à á
w = ∇xF(x1, r 1) âw  + ∇rF(x1, r 1) ãr (87)ä å
y  = ∇xG(x1, r 1) æw  + ∇rG(x1, r 1) çr (88)



Of course, the dynamics of a linear system are invariant under a non-singular state-transformation.  Consider, therefore,
the nonlinear system

χè  = T(χ, r )ω (89)

ωé = T-1(χ, r )∇xF(χ, r )T(χ, r )ω + T-1(χ, r )∇rF(χ, r ) êr (90)
νë  = ∇xG(χ, r )T(χ, r )ω + ∇rG(χ, r ) ìr (91)

for which the velocity-based linearisation, at the operating point (x1, r 1), is

χí̂  = T(x1, r 1) ω̂ (92)

ωî̂ = T-1(x1, r 1)∇xF(x1, r 1)T(x1, r 1) ω̂  + T-1(x1, r 1)∇rF(x1, r 1) ïr (93)

νð̂  = ∇xG(x1, r 1)T(x1, r 1) ω̂  + ∇rG(x1, r 1) ñr (94)
where  χ, ω, χ̂ , ω̂  ∈ ℜn and T(•, •) is a uniformly bounded non-singular matrix which is differentiable with uniformly

bounded derivatives.  It can be seen that the velocity-based linearisations, (86)-(88) and (92)-(94), are related by the  non-
singular transformation

ω̂  = T-1(x1, r 1) òw ,  χ̂ = óx ,  ν̂ = ŷ (95)

and so are dynamically equivalent.  Similarly for the velocity-based linearisations at other operating points.   However,
letting

ω = T-1(χ, r )z (96)
the nonlinear system, (89)-(91), may be reformulated as

χô  = z (97)

zõ = ∇xF(χ, r )z + ∇rF(χ, r ) ör + ε (98)
ν÷  = ∇xG(χ, r )z + ∇rG(χ, r ) ør (99)

where  ε = ùT (χ, r ) T-1(χ, r )z.  Hence, despite the dynamic equivalence of the members of the velocity-based linearisation
families, it is evident that the dynamics of the nonlinear systems, (83)-(85)and (89)-(91), are not  equivalent.  The
difference between the dynamics is embodied by the perturbation  term, ε, and arises from the variation of the state
transformation, (95), with the operating point.   Nevertheless, the difference between the solutions to the nonlinear
systems, (83)-(85), and (97)-(99), over any finite time interval is arbitrarily small provided the magnitude of ε is
sufficiently small (see, for example, Ref 19 theorem 2.5).



Figure 1 Non-linear controller realisation A
Figure 2 Performance of non-linear controllers
Figure 3 Mach number time history.
Figure 4 Non-linear controller realisation B
Figure 5 Alternative representations of a nonlinear system
Figure 6 Performance when aerodynamic moment and force depend nonlinearly on incidence and elevator angles.
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Figure 5 Alternative representations of a nonlinear system
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