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Abstract

In this paper, a velocity-based lineaisation framework is employed to develop a novel rigorous
approach to gain-scheduling design. The propased approach enables knowledge concerning the plant
dynamics at non-equilibrium operating points to be incorporated dredly into the wntroller design.
Since the velocity-based lineaisation framework supparts the analysis of the transient response,
performance ®nsiderations can be acommodated. The gproach retains continuity with linea
methods, which is central to the existing conventional gain-scheduling methoddogy, and, since asinge
type of lineaisation is employed throughout, the design procedure is both straightforward and

conceptually appeding.

1. Introduction

Whil st nonlinea dynamic systems are widespread, the analysis and design of such systems remains
relatively difficult. In contrast, techniques for the analysis and design of linea time-invariant systems
are rather better developed even though systems with genuinely linea time-invariant dynamics do not,
inredity, exist. It is, therefore, attradive to adopt a divide and conquer phil osophy whereby the design
of anonlinea system is decomposed into the design of a family of linea time-invariant systems. This
type of strategy forms the basis of one of the most widely, and successfully, applied techniques for the
design of nonlinea controll ers; namely, gain-scheduling.

Gain-scheduled controllers are linked by the design approach employed, whereby a nonlinea
controller is constructed by interpolating, in some manner, between the members of a family of linea
time-invariant controllers. In the cnventional, and most common, gain-scheduling design approach
(see for example, Astrom & Wittenmark 1989 Hyde & Glover 1993, ead linea controller is
typicdly associated with a spedfic equili brium operating point of the plant and is designed to ensure
that, locdly to the eguili brium operating point, the performance requirements are met. (The eistence
of afamily of equilibrium operating points, which spans the envelope of plant operation, is central to
most gain-scheduling arrangements and it is not sufficient to restrict consideration to a single, isolated,
equili brium operating point). By employing a first-order series expansion approximation which,
locdly to the equilibrium operating point, has smilar stability properties to the plant, linea techniques
may be gplied to this locd design task. However, the requirement is usualy for a controller which
functions well not only when operating in the vicinity of a single euili brium point but also during
transitions between equili brium operating points and periods of sustained non-equilibrium operation.
Conventionaly, this requirement is addressed by employing extensive simulation studies to iteratively
refine the gain-scheduled design, but this quickly beammes extremely time-consuming and inefficient
for any but the simplest nonlinea plants. There is, therefore, a mnsiderable incentive to dredly
incorporate, into the analyticd part of the design procedure, knowledge of the plant dynamics during
transiti ons between equili brium operating points and during sustained non-equilibrium operation.

In Leith & Leithead (1997b,c), a framework is propcsed for the analysis of gain-scheduled and
nonlinea systems which associates a family of velocity-based lineaisations with a nonlinea system.
Ead operating point of the nonlinea system, including operating points far from equili brium, has an
asociated member of the velocity-based lineaisation family which describes the dynamic
charaderistics in the vicinity of that operating point. Hence in contrast to the conventional series
expansion lineaisation about an equilibrium operating point, the velocity-based lineaisation family
indicates the plant dynamics not only in the vicinity of a single eguili brium operating point but also
during transiti ons between equili brium operating points and when operating far from equili brium. The
purpose of this paper is to investigate the dired exploitation of information concerning the plant
dynamics at nonequilibrium points in gain-scheduling design by employing velocity-based



lineaisation families. The paper is organised as follows. In sedion 2, the existing gain-scheduling
design approaches are reviewed and, in sedion 3, the velocity-based lineaisation families are
described. A framework employing velocity-based lineaisations for the analysis and design of gain-
scheduled controllers is developed in sedion 4 and spedalised to the dass of plants stisfying an
extended locd li nea equivalence onditionin section 5. The mnclusions are summarised in sedion 6.

2. Conventional gain-scheduling design

Consider the nonlinea plant with dynamics,

X=F(x,r), y=G(X,r) (@8]
where F(-,) and G(-,) are continuous with Lipschitz continuous first derivatives, r(00™ denotes the
input to the plant, y O 0P the output and x 0 0" the state. When necessary, assume
[OF OFOF ... (O6F)™0F] has rank n Ox,r. The set of equilibrium operating points of the
nonlinea plant, (1), consists of those points, (Xo, Yo, o), fOr which

F(Xo, o) =0, Yo =G(Xo, Io) (2
Let @:0"x0™ denote the space onsisting of the union of the state, x, with the input, r. The set of
equili brium operating points of the nonlinea plant, (1), forms a locus of poaints, (X, I'o), in ® and the
response of the plant to a general time-varying input, r(t), is depicted by atrgjecory in @.

The gain-scheduled design approach constructs a nonlinea controller, with certain required
dynamic properties, by interpolating, in some sense, between the members of an appropriate family of
linea time-invariant controllers. The cnventional gain-scheduling design approach may be gplied
diredly to a broad range of nonlinea plants and the design procedure typicdly involves the foll owing
steps (see for example, Astrom & Wittenmark 1989 sedion 9.5, Shamma & Athans 1990 Hyde &
Glover 1993 Leith & Leithead 1996.

1. The eguili brium operating points of the plant are parameterised by an appropriate quantity, p, which
may involve the plant input, output and/or state.

2. The plant dynamics, (1), are gproximated, locdly to a spedfic eguilibrium operating point,
(Xa:t 0:Yo0), @ which p equals p,, by the series expansion lineaisation,

5% = OF(%o(Po), To(Po))BX + OF(Xo(00), To{0e)) 3T (3)
89 = 0,G(Xo(0o): Feo(Pe))BX + LG (Xo(Po). o{Pc))3r “)
or=r- ro(po)! 9 = 69 +yo(p0)165Z =X - XO(pO) (5)

3. For asuitable mntroller input, e, with equilibrium value, e)(p,), alinea time-invariant controller is
designed,

32=A(po)dz + B(py)de (6)
3r = C(po)dz + D(po)de (7
de=e-ePo), I =0r+rupo) )

which ensures appropriate dosed-loop performance when employed with the plant lineaisation,
(3)-(5). It should be noted that p, is assumed to be constant when designing thislinea controller.

4. Reped steps 2 and 3 as required for a family of equili brium operating points, ensuring that the
linea controller designs have compatible structures; for example, when a smocothly gain-scheduled
controller is required, the linea controller designs are seleded to permit smocth interpolation, in
some gpropriate manner, between the designs. A family of linea time-invariant controllers is
obtained corresponding to the family of equili brium operating pdnts; both the controller family and
the equili brium operating points are parameterised by p.

5. Implement the wntroller input and output transformations, (8). Typicdly, the controller input,
e=Y-Ye, IS Zero in equilibrium (that is, e(p,)=0 and de = €) and either the plant exhibits pure
integral adion, so that rq(p) is identicdly zero, or ead linea controller contains integral adion
which implicitly generates r(p) through the adion of the feedbad loop (seg for example, Astrom
& Wittenmark 1989sedion 9.5, Shamma & Athans 1990 Hyde & Glover 1993 Leith & Leithead
199%). Alternatively, the oontroller output transformation may be implemented by explicitly
cdculating the eguilibrium controller output as a function of p (see for example, Rugh 1991,
Shamma & Athans 1990. However, the latter approach may involve rather complex cdculations
which are sensitive to modelli ng errors and, consequently, seemsto be largely of theoreticd interest
(Hyde & Glover 1997).

6. Substitute p (or some related quantity) for p, in the family of locd linea controllers, (6)-(8), to
obtain a nonlinea controller. It is noted that the scheduling variable need not be @ntinuous; for



example, it may be piecewise cnstant, corresponding to switching between the members of the
family of locd linea controllers. Typicdly, the seledion of an appropriate scheduling variable is
based on physicd insight (Astrom & Wittenmark 1989).

The gain-scheduling design processis frequently iterative, with the antroller revised in the light of
subsequent analysis until a satisfactory design is achieved.

The dfedivenessof the gain-scheduled design approach depends on the dynamic charaderistics of
the nonlinea system, composed of the nonlinea plant and the nonlinea gain-scheduled controller,
being related to those of the members of an associated family of linea systems, composed o the plant
lineaisations and corresponding locd linea controllers. The eisting results relating the dynamic
charaderistics of a nonlinea system to those of an associated family of linea systems is reviewed in
Leith & Leithead (1997hc) and summarised below. Series expansion lineaisation theory is well
established but is grictly confined to the dynamic analysis, locdly to a single trgjedory or equili brium
operating point, of smoath nonlinea systems. When the family of equili brium operating points can be
parameterised by the input to the nonlinea system (as distinct from the scheduling variable), frozen-
input techniques cater for the analysis of smooth nonlinea systems relative to a family of equilibrium
operating points and relate the stability of a nonlinea system to the stabili ty of a family of frozen-input
norlinear systems. A sow variation requirement is necessary which seems to be inherent to this type
of analysis, implicitly restricting the dass of alowable inputs and initial conditions; that is, implicitly
restricting the trajedories to remain sufficiently close to the eguili brium operating points. In order to
relate the stabili ty of the nonlinea system to the properties of afamily of linear time-invariant systems,
afurther explicit restriction on the dlowable trgedoriesis necessary to ensure they remain sufficiently
close to the euilibrium operating points that series expansion lineaisations are valid. This latter
restriction is not a priori necessary yet may be very strong since the neighbourhoods within which the
series expansion lineaisations are valid may, in general, be excessvely small. The utility of frozen-
input theory is, thus, somewhat diminished since it may imply a high degree of unnecessry
conservativeness. Series expansion lineaisation theory and frozen-input theory consider only the
stability properties of the nonlinea system and provide little dired insight into ather dynamic
properties, such as the transient resporse. When the scheduling is not continuous, few techniques,
other than extensive simulation testing, appea to be available for analysing the dynamic behaviour of
the controlled system.

Although frozen-input theory can suppart the analysis of a nonlinea gain-scheduled control system,
it provides littl e insight into the controller design procedure since the frozen-inpu representation of the
controlled system is quite distinct from the mixed series-expansion/frozen-scheduling variable
representation employed in step 3 d the design procedure. Series exparsion lineaisations of the plant
are employed but the arresponding locd controller designs are frozen-scheduling variable
lineaisations of the resulting nonlinea controller. In contrast, when analysing the dynamic behaviour
of the controller locdly to a single equilibrium operating point, the series expansion lineaisation is
employed instead o the frozen-scheduling variable lineaisation. Furthermore, since the scheduling
variable, p, is varying in the nonlinea controller but constant in the locd designs, the nonlinea
controller need not have the designed dynamics, locdly to an equilibrium operating point. Moreover,
the analysis of the controlled system in the vicinity of the family of equili brium operating points does
not reduce to either the series expansion analysis (see for example Shamma 1988 p110) or the mixed
series-expansion/frozen-scheduling variable analysis employed in the design procedure.

The analysis of conventional gain-scheduling design by means of existing results, relating the
dynamic charaderistics of a nonlinea system to those of an associated family of linea systems, is,
therefore, rather complex and inefficient. The use of a variety of different locd approximations
obscuresinsight and is surely unnecessary.  In addition, the analysisis confined to stability properties
and deces not diredly extend to ather dynamic charaderistics such as the transient response. Hence, the
existing theory does not provide an adequate framework to suppart the analysis and design of gain-
scheduled controll ers.

3. Veocity-based linearisation families

An dlternative gproad, not discussed in sedion 2, to the analysis of a nonlinea system by relating
its dynamic charaderistics to those of an associated family of linea systems, is developed in Leith &
Leithead (1997b). Consider, the behaviour of the nonlinea system, (1), when there ae no restrictions
on the dass of alowable inputs and initial conditions. The solutions to (1) may trace trgjedories
anywhere in @ and are not confined to the vicinity of either a single equili brium operating point or the



locus of equilibrium operating points. Suppose that the nonlinea systemis evolving along atragjedory,
(X(), r(t), in ® and at time, t;, the trajedory has readed the point, (X4, r1). It is emphasised that the
point, (X1, r1), need not be an equili brium operating point and, indeed, may lie far from the locus of
equili brium operating points. From Taylor series expansion theory, the subsequent behaviour of the
nonlinea system, (1), can be goproximated, locdly to (xy, r1), by the first order representation,

BX = F(xy, 1) + OxF(Xq, r1) 8% + OF(xy, ry) or )
8y = 0xG(xq, r1) 8% + 0, G(xy, rq) &r (10
or=r-ry, §Y=y;+3dy, X =0X +X1,);Z:6);Z (11

provided x;+dX [ N, r1+3r 00 N;, where the neighbourhoods, N, and N;, of, respedively, x; andr; are
sufficiently small. When (9)-(11) and (1) have the same initial conditions, (X, r1), the solution to (9)-
(11) is, initialy, tangential to the solution of (1) and, indeed, locdly to time t;, provides a first-order
approximation to x (t) and a second-order approximation to x(t) (Leith & Leithead 1997b,c).

The solution to the first-order series expansion, (9)-(11), provides a valid approximation only while
the solution, X(t), to the nonlinea system remains in the vicinity the operating point, (X, r1). However,
the solution, x(t), to the nonlinea system need not stay in the vicinity of a single operating point.
Consider, therefore, the goproximation to x(t) over a time interval, [t;,t;], obtained by partitioning the
interval into a number of short sub-intervals. Over ead sub-interval, the gproximate solution is the
solution to the first-order series expansion relative to the operating point readied at the initial time for
the sub-interval (with the initial conditions chosen to ensure continuity of the gproximate solution).
The number of locd solutions employed is dependent on the duration of the sub-intervals, but the locd
solutions are now acairate to second order; that is, the gproximation error is proportiona to the
duration of the sub-interval cubed. Hence, as the number of sub-intervals increases, the goproximation
error associated with each rapidly deaeases and the overall approximation error reduces. Indeed, the
overall approximation error tends to zero as the number of sub-intervals becomes unbounded (Leith &
Leithead 1997hc). Hence the family of first-order series expansions, with members defined by (9)-
(112), can provide an acairate gproximation to the solution of the nonlinea system. Moreover, this
approximation property holds throughout @ and is not confined to the vicinity of a single eyuili brium
operating point or even of the locus of equili brium operating points.

The state, input and output transformations, (11), depend on the operating point relative to which
the series expansion is caried out. Combining (9)and (10) with the locd input, output and state
transformations, (11), eadr member, (9)-(11), of the family of first-order representations may be
reformulated as,

X = {F(Xy, r1) - OxF(X, re) Xa - OiF(Xg, ra) ra} + OWF(Xg, ra) X + OF(Xg, ro) r (12

¥ ={G(Xq, r1) - 0xG(Xg, r1) X¢ + 0,G(Xg, rdry } + 0,G(Xq, r1) X + 0,G(Xg, r1) r a3
The dtate, input and output is now the same & every point in @, but the dynamics, (12)-(13), are
nonlinea. By differentiating, (12)-(13) may be reformulated in the equivalent velocity-based form,

X =W, W=OFX, M)W + OFX, r)F, ¥ =0,6(Xy, r)W + 0,G(Xq, Fy) ¥ (14
With appropriate initial conditi ons, namely,
X (t) =x(t), W (t) = X (t) = X (t2) = F(xq, r1), ¥ (t2) = y(t2) = G(xy, r4) (15

the transformed system is dynamicdly equivaent to the original system. However, in contrast to
(12)-(13), the transformed system, (14), is linea. There eists a velocity-based lineaisation, (14), for
every point in ®. Hence, a velocity-based lineaisation family, with members defined by (14), can be
asciated with the nonlinea system, (1).

The relationship between the nonlinea system and its velocity-based lineaisation family is dired.
Differentiating (1), an alternative representation of the nonlinea systemis

X =w, W=0OF(x, r)w+OF(Xx, r)f, y = 0,6(x, r)w + O,G(x, r) ¢ (16)

Dynamically, (16), with appropriate initial conditions corresponding to (15), and (1) are equivalent
Evidently, the velocity-based lineaisation, (14), is smply the frozen form of (16) at the operating
point, (X1, ry). (When w = F(x, r), y = G(X, r) is invertible & every operating point, (x, r), in an
appropriate neighbourhood enclosing the locus of equili brium operating points, so that x may be
expressed as a function of w, r and y, then the transformation relating (16) to (1) is, in fad, algebraic).
The solutions to the members of the family of velocity-based lineaisations, (14), can be piecel
together to approximate the solution to the nonlinea system, (16). In this case, the X (t) are ill
second-order approximations to the x(t) but the W (t) are first-order approximations to the w(t).
However, it is draightforward to show that the piece-wise gproximation converges to the exad
solution (Leith & Leithead 1997hc).



In contrast to the previous approaches discussed in sedion 2, the velocity-based lineaisation
analysis has sveral advantages. There eists alineaisation of the nonlinea system at every operating
point and not just the euilibrium operating points. Stability conditions are derived for nonlinea
systems which avoid the restrictions, to trajedories lying within an unnecessarily, perhaps excessively,
small neighbourhood about the locus of equili brium operating pdnts, inherent to previous approaches
based on frozen-input theory (Leith & Leithead 1997kc). A restriction on the dlowable dass of inputs
and initial conditions is still required. However, in contrast to previous results, it is emphasised that
thisrestriction is purely a cnsequence of the slow variation requirement and, in this ense, isaweek as
posshle. Indeed, for systems where there is no restriction on the rate of variation, the analysisis globd
in nature. Hence, the stability conditions derived using the velocity-based lineaisations are inherently
much less conservative than those obtained previoudly. The stability analysis is also extended to
include nonlinea systems with non-smoath dynamics, such as gain-scheduled controll ers which switch
between locd controllers rather than employing smooth interpolation (Leith & Leithead 1997hkc).
Furthermore, the velocity-based lineaisation analysis is not confined to stability. Since the members
of the family of velocity-based lineaisations can be piecel together to approximate the solution to a
nonlinea system, the transient behaviour of the nonlinea system can also be investigated. This
approximation is not confined to the vicinity of the equili brium operating points but is valid throughout
the operating envelope, including during transitions between equili brium operating points and at
operating points which are far from equili brium. Consequently, the velocity-based lineaisation theory
has considerable patential for supparting the design and analysis of gain-scheduled controllers.

4. Gain-scheduled design using velocity-based linearisation famili es

The requirement is to dredly exploit the alvantages of velocity-based lineaisations; particularly,
to avoid the restriction to operation in the vicinity of the equilibrium operating points which is inherent
in existing gain-scheduling design approacdhes. Since the velocity-based lineaisation family
asciated with a nonlinea plant describes the dynamic behaviour at every operating point, not just
equili brium operating points, it clealy has the potential to mee this requirement.

Consider the nonlinea plant, (1), and the nonlinea controll er

Xo=Fe(Xe, T'e), Ye = G(Xe, I'c) (7

where r, 0™ denotes the input to the cntroller, y. 00 the output and x, OO™ the state.
Since the requirement is to design a feedbadk controller, it is assumed without loss of generality that
the input vector, r, to the plant includes the output, y., of the cntroller and the input vedor, r, to the
controll er includes the output, y, of the plant. Let r denote the vedor consisting of the dements of r
which are not elements of y, and let r, denote the vedor consisting of the dements of r which are not

elements of y. In addition, it is assumed that the that the inverse plant mapping from F(x,r) to (x,r) is
bounded; that is, x is bounded when F(x,r) and r are bounded. By differentiating, the plant may be
reformulated in velocity-based form as

Ve |
i

r

X =w, W=A(pw+ [B(p) B, (p)}{ y =Clp)w + [D(p) D (p)ﬁ } (18)

r

Pl P

and the controller may be reformulated in velocity-based form as

k=we wo=AdIw [B.(6) B ()] } V. = Cpowc | Do(p) D, (p)}{fy} 19
where )
A@=0.F), B ()=0, Fxr),  B(p)=0, F(xr)
CP)=0,60cr), D, (p)=0, G(xr),  D(p)=0,G(xr)
L 20)

Ac(pc) = DxC Fc(xwrc)'BrC (pc) = Drrc Fc(xwrc)’ Bc(pc) = Dch(prc)
Cc(pc) = DXCGC(XC’rC)’ Drc (pc) = |:lr,C(B(:(Xc’rc)! Dc(pc) = |]y(Bc(xcirc)

and p(x,r), pc(Xsrc) embody the dependence of the dynamics on the states and inputs of the plant and
controller, respedively.

The mmbined closed-loop d/namics are depicted in figure 1la. Assuming y=G(x,I), Ye=Gc(Xe ¢,
with r related to y. and r. related to y as described above, has a solution,y = H(x,xc,rrp,rrc), the

velocity-based form for the dosed-loop system may be represented dredly in terms of the velocity-



based form of the plant, (18), and the velocity-based form of the controller, (19), as depicted in figure
1b (see Appendix). The velocity-based lineaisation families associated with the plant and the
controller consist simply of the frozen forms of, respedively, (18) and (19), obtained for constant
valuesof pandp.. In addition, eady member of the velocity-based lineaisation family for the
closed-loop system may be obtained by enclosing the gpropriate members of the plant and controll er
families in a feedbadk loop. Given this dired relationship between the velocity-based form of the
nonlinea systems and their associated velocity-based lineaisation families and the strong
correspondence in their dynamic behaviour as discussed in section 3, the velocity-based lineaisation
famili es congtitute amuch more gpropriate framework for the analysis and design of gain-scheduled
controll ers than conventional approades.
The foregoing analysis suggests the foll owing gain-scheduling design procedure.

=

Determine the vel ocity-based lineaisation family associated with the nonlinea plant dynamics.

2. Based on the plant velocity-based lineaisation family, determine the required controll er velocity-
based lineaisation family such that the resulting closed-loop family achieves the performance
requirements. Since eab member of the plant family is linea, conventional linear design
methods can be utilised to design eadt corresponding member of the controll er family.

3. Redise anonlinea controller corresponding to the family of linea controllers designed at step 2

The velocity-based form of the antroller can be obtained dredly from the family of linea

controllers by simply permitting the p to vary with the operating point. Since the velocity-based

form of the system, compaosed of the nonlinea plant, (1), together with the velocity-based form of
the controller, (19), isidenticd to the velocity-based form of the system composed of the velocity-
based form of the plant, (18), together with the velocity-based form of the wntroller, (19), seethe

Appendix, an aternative to the redisation of figure lais that shown in figure 1c with the velocity-

based form of the cntroller. The latter has the alvantage of avoiding the need to determine a

nonlinea controller, (17), corresponding to the vel ocity-based form, (19).

This design procedure retains a divide ad conquer phil osophy and maintains the ntinuity with linea
design methods which is an important fedure of the @nventional gain-scheduling approach.
However, in contrast to the cnventional gain-scheduling approacd, the resulting nonlinea controller is
valid throughout the operating envelope of the plant, not just in the vicinity of the equilibrium
operating points. This extension is adired consequence of employing the velocity-based li neaisation
framework rather than the mnventional series expansion lineaisation about an equili brium operating
point.

With regard to step 3 d the design procedure, it should be noted that there ae anumber of issues
which must be mnsidered when determining the nonlinea controller redisation corresponding to the
family of linea controllers designed at step 2 In particular, the output, y., of the controller is an input
to the plant and the input, r, of the controller is an output from the plant. Hence, the value of r. and y,
at an equilibrium operating point of the plant is (re, Yeo) With re, dependent on yg, via the plant.
However, since r. is the ontroller input and y. is the controller output, (re, Yoo) Must also be an
equili brium operating point of the cntroller with y, dependent on r, via the mntroller. Requiring
consistency imposes, in general, a strong restriction on the dlowable nonlinea controllers. However,
this restriction is circumvented by adopting the velocity-based redisation of figure 1c since in
equili brium, the output of the differentiation term before the controller and the input to the integral
term after the controller are both zero. Of course, the presence of a derivative and integral adion on the
forward path in the velocity-based redisation of figure 1c requires to be treded with some cae.
However, when the cntroller contains integral adion, the differentiation operator at the input and the
pure integrator within the cntroller may be formally absorbed together' so that the input to the
controller beaomes r rather than . The integration of the controller output then explicitly provides
the required integral adion (Leith & Leithead 19974). A further issue that must be aldressd is the
most appropriate manner in which to implement the scheduling variable, p.. It is straightforward to
implement p, when it is a function of y. and r. alone. When p. is aso a function of x., a humber of
approaches can be alopted to obtain an appropriate redisation of the scheduling variable. For
example, when [F. G isinvertible such that x, may be expressed as a function of w,, r and Yo then
S0 can pe. It should be noted that, in these drcumstances, the direa formulation, (17), is related to the
velocity-based formulation, (19), by an algebraic transformation. These issues are discussed in detail in

1 It is emphasised that this operation is purely formal in rature: no unstable pole-zero cancdlation
occurs within the implemented controll er.



Leith & Leitheal (1997a) and the implementation approaches discussed there, whilst developed in the
context of the mnventional gain-scheduling design approach, may be reaily extended to the dass of
controll ers considered here.

Example 1

Consider the first order plant with dynamics
X = G(r —10x), y =X (21
where G(s)=tanh(s)+0.01s. The requirement is to desigh a wntroller such that the dosed-loop system
has a rise time of around 0.3 secnds with less than 25% overshoat in resporse to demanded step
changesin y of magnitude lessthan 100units. At an equilibrium operating point, (ro, Xo, Yo),

G(r,-10x,)=0 (22
which requires that
re-10%,=0 (23

Hence, the series expansion lineaisation of (21) relative to the equili brium operating paint, (ro, Xo, Vo),
is

X = —100G(0)dx + OG(0)ar, dy = & (29

O =r—r,0X=X—X,,Yy=0y+Yy, (25)
Sincethe first derivative of the nonlinea function, G, is

0G(s) =101-tanh’ s (26)
the series expansion lineaisation at an equili brium operating point may be reformulated as

ox = -1010x +101dr, dy =X 27

O =r—r,0k=X—-X,,y=0y+Y, (28

Hence based on the cnventional series expansion lineaisation at an equilibrium operating point, an
appropriate locd controller isthe Pl-type controll er

X, -50 0], | |50 X,
= + 1%e o =[K, K] (29

X, 1 0], 0 X,
de=e-e,r=4a+r, (30
with exy,«Y, Ko=3.86, K;=1000. The transfer function of the controller, (29), is (KO +%) 53050 .
The Bode plot of the dosed-loop transfer function obtained by combining (27) and (29) is depicted in

figure 2.

The dynamics, (27), are the same & every equili brium operating point and so the @ntroller, (29),
may be employed at every equili brium operating point. Owing to the integral adion in the controller
& is zero and r, is implicitly generated by the feadbadk. Hence on the basis of the family of
lineaisations at the equilibrium operating paints, a linea Pl-type controller seems to be gpropriate;
namely,

T LR et ]

The step response of the dosed loop system obtained by combining the nonlinea plant, (21), with the
linea controller, (31), is depicted in figure 3. Evidently, the linea controller does not achieve the
required performance Indeed, ssmulation results indicae that, for step demands greaer than
approximately 0.3 units, this controll er is unable to satisfy the overshoot requirements.

In order to incorporate information about the plant dynamics at non-equili brium operating points
into the antroller design, reformulate the nonlinea plant, (21), by differentiating, as

W= -100G(r —10x)w+ OG(r —10x)r, y=w 32

The velocity-based lineaisation family associated with the nonlinea plant, (21), consists of the frozen
forms of (32) obtained when r and x are mnstant,

W = -100G(r, —10x, )W+ 0OG(r, —10x,)f, y=w (33
The required velocity-based lineaisation family of the controller is determined by using linea methods

to design a locd controller for eat of the members of the plant velocity-based lineaisation family.
Employing aPl-type wntroller structure once ajain, consider the linea controller family

Pﬂ{_m O}Pﬂ{m}e F =K, Kl]{\ivﬂ (34)
W, 1 O We, 0 We,



where K,=-10.0+14.0/0G(r-10x;) and K;=1000/0G (r;-10x,). At equili brium operating poaints, the
members of the linea controller family correspond to the @ntroller dynamics, (31), determined
previously. However, at non-equili brium operating points, where r1-10x; is non-zero, the gains K, and
K, are now different from their equili brium values and are designed to compensate for the variation in
the dynamics of the members of the plant velocity-based lineaisation family. Since the cntroller
contains integral adion, anonlinea controll er with the velocity-based lineaisation family, (34), can be
obtained by diredly implementing the velocity form of the mntroller, seefigure 4. The step response
of the dosed-loop system thereby obtained is depicted in figure 5. It can be seen that the performance
requirements are met for the full range of step demands.

5. Plants satisfying the extended local linear equivalence @ndition

Assume that the plant dynamics are of the form
X =Ax+ Br +f(p), y =Cx + Dr + g(p) (35

where, r00™, y O O° x 00", p(x, )O0OY, A, B, C, D are mnstant matrices, f(+) and g(*) are
differentiable nonlinea functions and Oyp, O;p are functions of p alone. In addition, assume that p
minimally parameterises the locus of equili brium operating paoints, (Xo,r o), Of the plant. The variable,
p(x,r), equals the mnstant value, say p;, upon a surfaceof co-dimension g in ® and Okp and O, p are
constant over ead surface Hence, the normal to ead surfaceisidenticd at every point on the surface
and ead surfaceis, therefore, affine. Moreover, to ensure that p is a unique function of x and r, these
surfaces must be parallel for all p. Consequently, it may in fad be assumed, without lossof generality,
that Oyp and [, p are onstant.

The velocity-based lineaisation family associated with the nonlinea plant, (35), is

X=wW
W = (A +0,f (p)O,p)W + (B +0,f (p) 0, p)F (36)
y=(C+0,9(p)0,p)W +(C+0,9(p,) 0, p)¥
The members of the family are parameterised by p; that is, the velocity-based lineaisation is the same
at operating points lying on a surfaceof constant p.

The union of the surfaces of constant p covers the entire operating space @, and, sincep minimally
parameterises the locus of equilibrium operating points, ead surface of constant p interseds the
equili brium locus at a unique point. Each operating point in @ is, therefore, associated, via a surfaceof
constant p, with an equili brium operating point which has the same velocity-based lineaisation.
Hence, p may be interpreted as the “scheduling variable” associated with the plant, in the sense that, at
any operating point in @, p indicaes which member of the family of equili brium lineaisations of the
plant isvalid.

For the dass of plants considered here, the velocity-based lineaisation of the plant at the
equilibrium operating points, when taken together with the scheduling variable, p, completely
determines the velocity-based lineaisation family associated with the plant. The cnventional series
expansion lineaisation of the nonlinea plant, (35), relative to the euili brium operating paoint, (X,
rs,Yo), & which p equals py, is

&% = (A +0,f(p,)0,p)3% + (B +0,f (p,)0, p)or

oy =(C+0,9(p)0,p)x +(C+0,g(p,)0, p)or (37

X =X=Xo(P), O =r=r,(p), Y= +Y,(p)
It can be seen that, whilst the state, input and output differ, the series expansion lineaisation at an
equili brium operating point, (37), has the same form as the mrresponding velocity-based lineaisation,
(36), at that equili brium operating point. Hence, provided some cae is taken, it is posdble to employ
either type of lineaisation to charaderise the plant dynamics. Recdl that the cnventiona gain-
scheduling design approach utilises the series expansion lineaisations of the plant at the eguilibrium
operating points. Clealy, for the dassof plants considered here, the potential exists for employing the
conventional gain-scheduling design approach to oltain a nonlinea controller which is valid not only
in the vicinity of the equilibrium operating points but throughou the operating envelope. In that
context, the present framework provides rigorous insight into the role of the choice of controller
scheduling variable and redisation: the nature of the velocity-based linearisation family associated with
the resulting ronlinea controller and so the ontroller dynamics, particularly a non-equilibrium



operating points, are influenced by them. Clealy, the controller dynamics neal to be compatible with
the corresponding plant dynamics at non-equili brium operating points.

The dassof plants considered here mnsists predsely of those satisfying the extended locd linea
equivalence ondition originally proposed by Leith & Leithead (19961997a) in the wntext of
determining appropriate redisations for gain-scheduled controllers. It is natural to seled a controller
with a nonlinea structure which refleds that of the plant and so it is attradive to require, for the dass
of plants considered here, that the ntroller aso sdatisfies the extended locd linea equivalence
condition. In these drcumstances, the gain-scheduling design procedure proposed in sedion 4
spedalisesto:

1. Determine the lineaisation of the plant at ead equilibrium operating point. In addition, determine
the scheduling variable, p, associated with the plant; typicdly, this information might be derived
from physical understanding of the plant.

2. Sdled an appropriate scheduling variable for the antroller. An obvious choice is to employ the
plant scheduling variable, p, or an estimate thereof. However, an dternative choice might be
suggested by other considerations.

3. Design a suitable linea controller for eadhr member of the family of plant equilibrium
lineaisations. In order to ensure the eistence of a crresponding controller satisfying the
extended locd linea equivalence @ndition, the variations between the members of the resulting
family of linea controllers should be compatible with the doice of scheduling variable. The
compatibility requirement is not overly restrictivein general, seelLeith & Leithead (1997a).

4. Redise anonlinea controller, compatible with the choice of scheduling variable and family of
linea controllers determined at steps 2 and 3, which satisfies the extended locd linea equivalence
condition (seeLeith & Leithead 1996 19974).

Example 2

Consider the nonlinea plant, depicted in figure 6, with second-order dynamics

X 0 -af|x -a A(r X

= | TR A0 y=[0 1 " |+r (39)

X, 1 -bj|x, -b B(r) X,
where A, B are differentiable nonlinea functions with sA(s)>0, OB(s)>0 OsO. The nonlinea plant,
(38), is of the form, (35), with p equal to r, and satisfies the extended locd linea equivalence
condition. The velocity-based lineaisation of the nonlinea plant at the general operating point,

(X11,%21,r1), IS

%] W] [w] [0 -aw] [OAr)-a] . Wl
Sl [l STl v 4] 09

At an equili brium operating paint, (X10,X20,f0),
b 1
X10 :gA(ro)_ B(ro)axzo :gA(ro)_ro (40)

and so the eyuilibrium operating points may be parameterised by r. The velocity-based lineaisation at
the equili brium operating point at which r equalsrgis

| W] [W] [0 -aTw] [OA(p)-a], . W
SR G SR ek e Rl e

Hence, the velocity-based lineaisation at the general operating point, (Xy1,%»1,r1), corresponds predsely
to the velocity-based lineaisation at the euili brium operating pant at which r equalsr,. The series
expansion lineaisation at the equili brium operating point at which r equalsryis

>

X, 0 -af o OA(r,) —a X,

= + &, dy=[0 1 +or 42
|:&2:| L‘ _b:||:6xz:| {DB(ro)_b Y [ ]5X2 “2
Xy = X = %40,y = Xy = X0, OF =T =T, Yy =y + Y, (43

Whil st the state, input and output of (42) and (41) differ, it is clea that (42) has the same form as (41).

Employing the cnventional gain-scheduling design approach, a linea controller is designed for
ead member of the family of series expansion lineaisations, (42), at the eguili brium operating paints.
Consider the family of linea controll ers



X 0 0 -DA(r) | &, 1 X

< <
K, |=|1 0 -0B(ry)| &, |+|0lde, o =[0 0 1, | =~ (49

C2

X 01 0 X 0 OX

C3 C3 G
The dosed-looptransfer function obtained by combining (42) and (44) is
1
s’ +bs’ +as+1
The plant input, r, is a natural choice of controller scheduling variable since it is aso the plant
“scheduling variable”. Employing one of the gproaches propcsed in Leith & Leithead (1996 1997a),
an appropriate nonlinea controller redisation is

(49

W, 0 -0A(r) Ofw, 1 W,
W, |=|1 -0B(r) O|w, |+|0le, r=[0 0 1w, |, e=y,-y (46)
W, 0 1 0] w, 0 W,

It may be shown that the nonlinea controller, (46), satisfies the extended locd linea equivalence
condition with the scheduling variable, r, and the family of series expansion lineaisations relative to
the euili brium operating points, (44) (Leith & Leithead 1996 1997a). The form of the wntroller
redisationisclealy diredly related to that of the linea family, (44).

In Leith & Leithead (1996, 1997a), controller redisations of the form, (46), (and more general
forms of redisation) are derived to minimise the slow variation conditi ons inherent to the conventional
gain-scheduling approach. However, in the more general framework considered here, it is evident that
(46) is smply athird-order example, with the nonlineaity purely a function of r, of the velocity-based
controller, (19). Hence, the velocity-based lineaisation family of the controller consists of the frozen
forms of (46) and the velocity-based lineaisation family associated with the dosed-loop system is
obtained by combining (39) and (46) (or, aternatively, (41) and (46)). The nonlinea controller, (46),
athough designed by the conventional gain-scheduling approach of using only the plant equilibrium
lineaisations, is valid throughout the operating envelope, not just in the vicinity of the equilibrium
operating points. Inded, it is graightforward to show that the combined plant and controller dynamics
consist of linea dynamics with transfer function, (45), and an exponentially stable, unohservable
nonlinea component.

6. Conclusions

In this paper, the velocity-based lineaisation framework is employed to develop a novel rigorous
approach to gain-scheduling design. The gproach addresses many of the deficiencies of the
conventional gain-scheduling design approadh. Whil st retaining continuity with linear methods, which
is central to the mnventional gain-scheduling methoddogy, the gpproach
¢ Enables knowledge ncerning the plant dynamics at nonequili brium operating points to be

incorporated dredly and rigorously into the antroller design. In contrast, the cnventional gain-
scheduling approach uilises only equilibrium lineaisations of the plant and so is inherently
restricted to situations where only rather small and/or dowly-varying control demands and
disturbances are encountered.

e Enables transient performance requirements, instead of stability alone, to be considered dredly
during the controller design.

e Encompasses both smocth and non-smooth scheduling within the same analysis and design
framework.

« Employs astreamlined analysis and design framework which uilises a single type of lineaisation
throughout. Consequently, in comparison with the @nventional gain-scheduling approad, the
design procedure proposed here is both straightforward and conceptually appeding.

These benefits dem diredly from adoption of the velocity-based lineaisation framework for the

anaysis of nonlinea systems.
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Appendix

Consider the nonlinea system with inputs, r and z,

X =F(x,r,z), y=G6G(x,r,z) (47
Transforming into velocity-based form, (47) is equivalent to

X =w

w = OF(x,r,2)w + O,F(x,r,2) z +0:,F(x,r,2) f (48)

y = 0,G6(x,r,2)w + 0,G(x,r,2) z + O,G(x,r,2)
Assuming that

y=G(x,r,y) (49)
has a suitable solution

y=N(x,r) (50
the system, (47), isenclosed is afealbadk loop ly settingz=y. The resulting closed-loopsystemis

Xx=M(x,r), y=N(xr) (51
with

M (x,r) = F(x,r,N(x,r)) (52
Transforming into velocity-based form, (51) is equivalent to

X =w

W = 0OM (x,n)w +0M (x,r) f (53

y = ONX W +0N(X,r)
Combining (49) and (50)

N(x,r) =G(x,r,N(x,r)) (59
Hence,

O,M(x,r)=0,F(x,r,N(x,r))+0O,F(,r,N(x,r)d,N(x,r)

O,M(x,r)=0,F(X,r,N(x,r))+ 0,F,r,N(X,r)O,N(x,r)

O,N(,r) =0,6(x,r,N(x,r))+0,G(x,r, N(x,r))d, N(x,r)

O,N(X,r)=0,6(X,r,N(x,r)) + 0,G(x,r, N(x,r )0, N(x,r)
and, by substituting (55) into(53), the dosed-loop system, (53), can be diredly reformulated as

X =w

W = OF(x,r,2)w + O,F(X,r,2) z +0F(x,r,2) (56)

y = 0G(x,r,2)w + 0,G6(x,r,2) z + 0,G(x,r,2)

z =y =N(x,r)
SinceN(x,r) satisfies (54), it is clea that (56) is the system obtained when the system, (48), is enclosed
in a feadbadk loop ly setting z=y. It follows that the velocity-based form of a dosed-loop system is
identicd to the system obtained by enclosing the velocity-based form of the open-loop system in a
feedbadk loop.

(59



Consider, now, the nonlinea system

Xl = Fl(xl’rl’zl)’ yl :Gl(xl’rl’zl) (57)
for which the velocity-based formis

Xl =Wy

W, = Dxl Fi(X1,rn,zy)wy + Dzl Fi(Xyru.z) z, + Drl Fi(Xy,ru.z)r, (58)

Vi = O, Gi(Xe,ry,z)wa + O, Gu(Xq,r1,21) 2, + U, Ga(Xa,r 1,21)
and the nonlinea system

X, =F(X2072:2,), Y2 =G o(X,0T502,) (59
for which the velocity-based formis

Xz =W,

W, = 0, Fa(Xal2,22)Wz + 0, Fa(Xal2,22) Z, + U, Fa(Xar2,29)F, (60

Y, = 0,, GaXa,F2,22)W2 + U, Ga(Xa,l2,22) 2, + U, Ga(Xa,l2,22) f,
The systems, (57) and (59), are cacaded together by setting z,=y;. The resulting systemis

x=F(x,r,z), y=G(xr,2) (61)
where
Xl ], _
Sl O L M EEE DA
(62
Fx,r,2) = Rxur.2) G(X.1.2) =G, (X,.1,.G,(X,,11.2,))
v FZ(XZ!rZ!Gl(Xllrlizl))’ v aarm T

Transforming into vel ocity-based form, (61) is equivalent to

. W,
X=wW=
WZ

W= Wl _ DxlFl(Xl!rl!Zl) 0 W,
W, DzzFZ(XZYrZYZZ)Dlel(Xllrlizl) szFz(szrzvzz) W,

0, Fi(xy.r1,2) ;5
DZZFZ(XZ'rZYZZ)DzlGl(Xllrllzl) '

|
{ 0, F 0 2) 0 }H -

DZZFZ(XZYrZYZZ)DrlGl(Xlirllzl) Drze(X21rzazz) I;2

. . w
Y=Y, =[0,,G,(X,.1,,2,)0,,G,(X,,11,2,) szez(xz,rz,z»]{wl}

2
+0,,G5(X5.15,2,)0, G4 (X1,11,2,)2,

r.
+[0,,6,(%,.1,,2,)0, G, (X,,11,2,) Drzez(xz,rz,zz)]{;}
2

ZZ = yl = Gl(xl’rl’zl)

Evidently, (63) is just the system obtained when the systems, (58) and (60), are cascaded together. It
foll ows that the velocity-based form of a system consisting of two cascaded sub-systems isidentical to
the system obtained by cascading together the velocity-based forms of the two sub-systems.
Furthermore, except for the output being y, rather than y,, both are equivalent to velocity-based

system, (58), cascaded together with the nonlinea system, (59).



Controller
(Dired formulation)

X = Fe(Xe, o)

C:GCXC
— Y (Xc)

Plant
(Dired formulation)

X=F(x,r)
y=G(x,r)

@

Controller
(Velocity-based formulation)

X =We
y
W, = AdP)we + |:Bc(pc) Br (pc):|[r ]

Yo = Cop)We

¥ w=A(Pw+ [(P) B (P)}{ }

Plant

(Velocity-based formulation)

P

y =C(p)w + {D(p) D (p)}{ }

d/dt

(b)

Controller

p| ddt

X =W

Y. = CpoWe

> (Velocity-based formulation)

y

|

P W, = Adpow, + {Bc(pc) 8, (pC)}{

c

Plant

(Dired formulation)

X=F(x,r)
y=G(X,r)

(©

Figure 1 Different formulations of nonlinea feedbad system. Note, the differentiation operators are
purely formal in nature.
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Figure 2 Bode plot of open-looptransfer function at the eguili brium operating points (Example 1).
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Figure 3 Responsesto steps of magnitudes 0.1, 0.5 and 10 with linea controll er designed using
equili brium information only (Example 1).
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Figure 4 Nonlinea controller redisation (Example 1)

output,y
140 . . . .

120

100
80
60 i\

40 1 1

20}

8 10

0 1
0 2 4 time (seQ 6

Figure 5 Responses to steps of magnitudes 10, 50 and 100 with nonlinea controll er designed using
off-equilibrium information provided by plant velocity-based lineaisation family (Example 1).



Figure 6 Nonlinea plant considered in Example 2




